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Abstract

Humans and animals, during their life, continuously acquire new knowledge

over time while making new experiences. They learn new concepts without

forgetting what already learned, they typically use a few training examples

(i.e. a child could recognize a giraffe after seeing a single picture) and they

are able to discern what is known from what is unknown (i.e. unknown

faces). In contrast, current supervised learning systems, work under the

assumption that all data is known and available during learning, training is

performed offline and a test dataset is typically required. What is missing

in current research is a way to bridge the human learning capabilities in an

artificial learning system where learning is performed incrementally from a

data stream of infinite length (i.e. lifelong learning). This is a challenging

task that is not sufficiently studied in the literature.

According to this, in this thesis, we investigated different aspects of Deep

Neural Network models (DNNs) to obtain stationary representations. Sim-

ilar to fixed representations these representations can remain compatible

between learning steps and are therefore well suited for incremental learn-

ing.

Specifically, in the first part of the thesis, we propose a memory-based

approach that collects and preserves all the past visual information observed

so far, building a comprehensive and cumulative representation. We exploit

a pre-trained fixed representation for the task of learning the appearance

of face identities from unconstrained video streams leveraging temporal-

coherence as a form of self-supervision. In this task, the representation

allows us to learn from a few images and to detect unknown subjects similar

to how humans learn.

As the proposed approach makes use of a pre-trained fixed representation,

learning is somewhat limited. This is due to the fact that the features stored

in the memory bank remain fixed (i.e. they are not undergoing learning)
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vi Abstract

and only the memory bank is learned. To address this issue, in the second

part of the thesis, we propose a representation learning approach that can

be exploited to learn both the feature and the memory without considering

their joint learning (computationally prohibitive). The intuition is that every

time the internal feature representation changes the memory bank must be

relearned from scratch. The proposed method can mitigate the need of

feature relearning by keeping the compatibility of features between learning

steps thanks to feature stationarity. We show that the stationarity of the

internal representation can be achieved with a fixed classifier by setting the

classifier weights according to values taken from the coordinate vertices of

the regular polytopes in high dimensional space.

In the last part of the thesis, we apply the previously stationary repre-

sentation method in the task of class incremental learning. We show that

the method is as effective as the standard approaches while exhibiting novel

stationarity properties of the internal feature representation that are other-

wise non-existent. The approach exploits future unseen classes as negative

examples and learns features that do not change their geometric configura-

tion as novel classes are incorporated in the learning model. We show that a

large number of classes can be learned with no loss of accuracy allowing the

method to meet the underlying assumption of incremental lifelong learning.

Keywords : machine learning, deep learning, incremental learning, class-

incremental learning, continual learning, computer vision, visual object track-

ing, few-shot learning, metric learning, regular polytopes, feature stationa-

rity.
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Chapter 1

Introduction

Natural intelligent systems learn incrementally. Animals and humans refine

the skills and attention they devote to problems based on the experiences

they accumulate throughout their lives. A fundamental ability of these sys-

tems is to learn new concepts without forgetting the previous ones, contin-

ually updating and refining what they already know.

Most supervised learning systems work under the assumption that all ob-

ject classes are known in advance and all the training data can be accessed at

the same time in arbitrary order. In contrast to natural intelligent systems,

when trying to integrate novel data, they suffer from a problem known as

catastrophic forgetting : the tendency of neural networks to completely and

abruptly forget previously learned information [5–7].

In a real-world scenario collecting a sufficiently large number of represen-

tative examples before starting the learning process may be difficult due to

time or memory constraints. In a non-stationary environment, the statistical

properties of the target concept may change over time in unforeseen ways

(concept drift), requiring the system to self-adapt. As new examples become

available, retraining from scratch might address catastrophic forgetting but

it might be prohibitively expensive due to computational cost and training

data storage requirements.

An artificial intelligent system should be able to adapt continuously in a

dynamic environment where situations can significantly change. Continual

Learning [8,9] specifically addresses this problem while also retaining previ-

ously learned knowledge, bringing machine learning closer to natural learn-

ing. This problem is also related to the plasticity/stability dilemma [10, 11]

1
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where too much plasticity will result in previously encoded data being con-

stantly forgotten while too much stability leads to an inability to adapt to

novel information.

The settings and applications for incremental learning can vary enor-

mously, depending on training and evaluation protocols. In a Multi-Task

scenario, a single model is required to learn incrementally a number of non-

overlapping, isolated tasks without forgetting how to solve the previous ones.

A typical neural network for this scenario has a multi-headed output layer

where each head is reserved for a particular task. At inference time the

task head is selected by an oracle in order to setup the right classification

layer [12–15]. Thus, the requirement of an oracle, fail to capture real-world

incremental learning problems with unknown task labels [16,17].

Conversely in the class-incremental learning (CIL) scenario, the agent

considers a sequence of tasks containing a subset of classes from a single

classification problem. Differently from Multi-Task, all class labels are rep-

resented in the same classification head whose number of output nodes equal

to the number of classes encountered from the start of the training. The

single-head final layer of a Neural Network is expanded with an output node

when a new class arrives, similarly to natural learning.

The way the human brain learns is incremental, new visual information

is continuously incorporated. For example, a child playing with toys learns

to recognize new objects discriminating them from the ones he has already

seen. This learning setting, quite common in natural learning, is closer to

the class-incremental learning scenario.

In this thesis, we mainly focus on the class-incremental learning classifi-

cation problem where the class label is unknown at inference time, making

the predictions of the learned models task-agnostic. In the next sections,

we review, compare and discuss relevant literature providing further techni-

cal details of this dissertation. Finally, in the last section, we explain the

contributions made in this thesis.

1.1 Continual Learning

Continual learning and the problem of alleviating catastrophic forgetting

has been has been extensively studied in literature [8, 9, 14]. These studies

can be broadly categorized in three main categories: (1) regularization, (2)

dynamic architecture methods, and (3) episodic memory-based (also termed
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Experience Replay or rehearsal strategies).

Regularization-based approaches to catastrophic forgetting add a regu-

larization term to the loss function restricting updates to the neural net-

work parameters that were important for previous tasks. Learning Without

Forgetting (LWF) [18] is a regularization strategy attempting to preserve

the model accuracy on old tasks by imposing the predictions of the previ-

ous tasks to be stable after adding data of the new task by using a form

of knowledge distillation [19]. Elastic Weighted Consolidation (EWC) [12]

imposes constraints on network parameters to reproduce biological mecha-

nism of consolidation using a quadratic penalty on the difference between

the parameters for the new and the old task. Online-EWC [20] optimizes

EWC approach for multiple tasks, overcoming the complexity of original

EWC which scales linearly with the number of tasks. Synaptic Intelligence

(SI) also replicates biological mechanism of synapses, preventing parameters

(synapses) to change based on the relevance of each parameter for the con-

sidered task [14]. Memory Aware Synapses (MAS) tackles the problem in a

similar fashion, based on the relevance of each parameter to the task.

Dynamic Architectural approaches make changes to the architecture of

the network as new tasks are learned. Changing layers, activation func-

tions, or freezing certain weights in a network are some of the practical

approaches. [21] simply freeze certain weights in the network so that they

stay exactly the same. [22] grows a network searching for similarities be-

tween known classes and unseen classes, organizing them into a hierarchy.

Predictions are made by visiting the hierarchy, from the super-classes down

to the specific class. [23] exploits boosting algorithm to control network ar-

chitecture growth balancing its complexity with empirical risk minimization.

Progressive Neural Network (PNN) [24] proposes a network structure orga-

nized in columns that grows every time a new task is added. Each column is

a network that learns a new task, sharing features learned by other columns

via lateral connections. Since the column for previous tasks do not change

over time, this entirely prevents forgetting on earlier tasks but causes the

architectural complexity to grow with the number of tasks.

Experience Replay approaches periodically “replay” past information

when training a new task. Part of the previous training data is stored in a

“episodic memory” to avoid forgetting what the network has already learned.

In contrast to dynamical architectural approaches that increase the network

complexity, memory-based methods add a relatively small memory overhead
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for each new task. The concept of experience replay in class-incremental

learning has been introduced in [25] where three properties are defined for

an algorithm to qualify as class-incremental learning: (1) it can learn from a

data stream where examples of different classes occur at different times; (2)

it should provide at any time competitive multi-class classification accuracy

for the classes observed so far; (3) the computational requirement and mem-

ory footprint should remain bounded. By means of rehearsal technique, new

and old data are combined when new tasks are learned in order to prevent

catastrophic forgetting of old tasks. [26] presents Gradient Episodic Memory

technique which does not store and reuse old samples but allows transfer

learning between tasks by storing old gradients and updating them to pre-

vent forgetting. An improved, memory-efficient version of GEM is obtained

by considering the average of the losses of all tasks rather than each indi-

vidual loss of single tasks [27]. Full data rehearsal may prevent catastrophic

forgetting, but it is unfeasible due to important memory impact, so [28] im-

plements memory-efficient buffer techniques to perform rehearsal without the

need for retaining all samples. [29] aims at finding data distribution that can

keep optimal performance level overall tasks. This is achieved by choosing

an adequate strategy to build data memory, exploiting the biological me-

chanic of replaying experiences. [30] introduces a technique to avoid learning

interference provoked by data coming from different source domains. Dual-

memory incremental learning is exploited in [31] to keep track of statistics

of past classes, in order to rebalance their prediction scores in later stages of

learning.

1.2 Representation Learning

An intelligent agent to perceive and interact with the environment can rely

on different sources of data, which can generally be identified as sensors.

The raw data is usually transformed into a better representation for complex

tasks since the performance of an intelligent agent is heavily dependent on

the choice of data representation. In computer vision, for example, the pixel

space is not appropriate for tasks like object classification or object detection

since each pixel value does not convey much information with respect to the

desired task. In order to exploit complex correlations present inside the

original data, an intelligent agent needs to transform it into another space

where tasks are easier to solve, a process known as feature learning.
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One of the reasons that neural networks have been so successful is that

they allow machine learning algorithms to learn representations that are

task specific directly from training data without human intervention. The

handcrafted feature extraction method, in contrast, relies on using a fixed

hand-designed function based on human intuition. While handcrafted fea-

ture extraction does not require much training and is less dependent on data

it is usually too complex to design manually.

In a convolutional neural network, training a task end to end, provide

the final layers with a representation where the training tasks are easier to

solve [32, 33]. Once the training procedure is finished the feature extraction

function is fixed since the network parameters are fixed. A feature represen-

tation, often called “embedding”, is a compressed information of the input

data representing low level or mid-level attributes. A good embedding is

expected to cluster input data of the same class in the embedding space

while also maximizing the distance of examples of different classes. The rep-

resentation, learned training a network on millions of labeled examples for

a classification task, provides a general-purpose feature representation that

can be re-used on other tasks through a transfer learning approaches [34].

In a class-incremental learning scenario, this interesting property can be

exploited to learn new classes that the network has never seen before. This

process is commonly used in modern applications like face recognition where

the number of classes (i.e. person identities) cannot be known at training

time [35,36]. After training a network on a large dataset of the task domain,

the classifier of the network it is no longer used since the system relies on the

feature representation. As images of a new class become available, they are

collected in a memory module called gallery set. Given a test input image,

(query) its class is assigned by identifying the closest cluster in the gallery

set since images of the same class are expected to cluster in the embedding

space. This process is known as visual search.

This approach only performs well when we assume that each sample ei-

ther in the training data or testing data is an identically and independently

distributed (i.i.d.) sample drawn from a fixed probability distribution. Un-

fortunately, this is a major simplification of what can happen in a real-world

scenario and what happens in human learning. Ignoring this issue can result

in clusters of different classes to overlap in the embedding space when new

classes are originated from a different distribution from the one sampled in

the training dataset. The impossibility of recognizing classes learned in the
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past leads to catastrophic forgetting.

To achieve an embedding capable of disentangling features from different

distributions, a solution is to fine-tune the network on the data collected.

Since the network learning is resumed, its parameters change irreversibly

from the old ones defining a new embedding space which is no longer com-

patible with the previous one. Once a new embedding is re-leaned, all the

data collected in the gallery set have to be re-processed to generate their

new feature representation and recreate the clusters, a process known as

“backfilling” [37].

Having feature compatibility between different embedding spaces is a de-

sirable property. New models can be deployed without having to re-process

the previously indexed gallery set. In this dissertation, we propose to ob-

tain a feature representation that is compatible by design achieving feature

stationary in an incremental learning scenario.

1.3 Contributions

In this thesis, we mainly focus on the class-incremental learning classification

problem where the class label is unknown at inference time. Overall, we are

interested in finding a way to bridge the human learning paradigm in an

artificial learning system, where learning is performed incrementally on all

available information that may increase over time as unknown subjects may

eventually appear.

First, we propose an approach that collects and preserves a pre-trained

fixed representation of the past visual knowledge observed so far in a mem-

ory module, building a comprehensive and cumulative representation. The

proposed learning procedure relies solely on the memory bank since the fea-

ture embedding is fixed and does not undergo learning. This approach can

be leveraged in different application scenarios. In particular we are inter-

ested in learning the appearance of face/body identities from unconstrained

video-streams, with the goal of identity recognition or counting.

Although updating the feature representation is a desirable property, do-

ing so would invalidate all information contained in memory as the feature

space would change continuously making it no longer compatible with the

previous one. Jointly learning of feature and memory even if it seems a

promising solution is computationally prohibitive. Motivated by this prob-

lem we propose a representation learning method that is stationary over time
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and does not change as learning proceeds. This is achieved by fixing (i.e.

set as non-trainable) the weights of the last learnable transformation (i.e.

the classifier), using values taken from the coordinate vertices of the three

regular polytopes available in Rd.

Finally, we propose an approach, that leverages the stationary features

learning method previously introduced, to achieve class-incremental learning

via a pre-allocated fixed classifier. An arbitrary number of output nodes is

pre-allocated at the beginning of the training and as soon as a new class

appears, it is assigned to an unused output node. Since the feature learning

method is stationary, the embedding space is compatible with the previous

ones as new classes appear.

In summary, we show several contributions in this dissertation:

Self-supervised On-line Cumulative Learning

In Chapter 2, we present a novel online self-supervised method for the

task of learning the appearance of face identities from unconstrained

video streams. The method exploits fixed pre-trained deep face fea-

ture descriptors together with a memory based learning mechanism

that takes advantage of the temporal coherence of visual data. Specif-

ically, we introduce a memory based cumulative learning strategy that

discards redundant features while time progresses. This allows building

a comprehensive and cumulative representation of all the past visual

information observed so far. The proposed strategy is shown to be

asymptotically stable. We argue this is a critical issue for any system

that claims to operate lifelong.

Open set recognition for unique person counting

In Chapter 3 we propose the task of unique counting which is a varia-

tion of counting task. We present a complete real-time system which

is able to perform detection, tracking and unique counting in the wild

with user drawn gates. Experiments on the challenging DukeMTMC

dataset [38] are reported showing that our method is able to effectively

count people in real time and discern between the few persons which

do multiple passages through the gates. The system is able to perform

incrementally leveraging a memory module where the appearances of

people are stored to discern their identities.

Regular Polytope Networks In Chapter 4 we generalize the concept of

fixed classifiers and show they can generate stationary and maximally
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separated features at training time with no loss of performance and in

many cases with slightly improved performance. We performed exten-

sive evaluations across a range of datasets and modern CNN architec-

tures reaching state-of-the-art performance. We observed faster speed

of convergence and a significant reduction in model parameters. We

further provide a formal characterization of the class decision bound-

aries according to the dual relationship between regular polytope and

statistically verify the validity of our method on random permutations

of the labels.

Class-incremental Learning with Pre-allocated Fixed Classifiers

In Chapter 5 we address class-incremental learning using a novel clas-

sifier in which a number of pre-allocated output nodes are subject to

the classification loss right from the beginning. This allows the output

nodes of yet unseen classes to firstly see negative samples since the

beginning of learning together with the positive samples that incre-

mentally arrive. The output nodes can learn from the beginning of the

learning phase, pre-allocating a special classifier with a large number

of output nodes in which the weights are fixed (i.e. not undergoing

learning) and set to values taken from the coordinate vertices of reg-

ular polytopes as introduced in Chapter 4. We achieve similar results

with respect to several important baselines on standard benchmarks.

Finally, in Chapter 6, conclusions of the dissertation and future challenges

of incremental learning using stationary representations are discussed.



Chapter 2

Self-supervised On-line

Cumulative Learning

We present a novel online self-supervised method for face iden-

tity learning from video streams. The method exploits deep face

feature descriptors together with a memory based learning mech-

anism that takes advantage of the temporal coherence of visual

data. Specifically, we introduce a discriminative descriptor match-

ing solution based on Reverse Nearest Neighbour and a mem-

ory based cumulative learning strategy that discards redundant

descriptors while time progresses. This allows building a com-

prehensive and cumulative representation of all the past visual

information observed so far. It is shown that the proposed learn-

ing procedure is asymptotically stable and can be effectively used

in relevant applications like multiple face identification and track-

ing from unconstrained video streams. Experimental results show

that the proposed method achieves comparable results in the task

of multiple face tracking and better performance in face identi-

fication with offline approaches exploiting future information. 1

2

1The part of this chapter has been published as “Memory based online learning of

deep representations from video streams” in IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2018 Salt Lake City [39] and as “Self-supervised on-line

cumulative learning from video streams” in Computer Vision and Image Understanding,

Volume 197-198 Year 2020 [40]
2Acknowledgments: This research was supported by the project Ideha ’Innovazioni per

L’elaborazione dei Dati nel Settore del Patrimonio Culturale’ (MIUR - PON ARS01-00421)

and Leonardo SpA, Italy.

9



10 Self-supervised On-line Cumulative Learning

2.1 Introduction

Supervised machine learning is a very successful learning paradigm in which

a clear distinction is made between the training phase and the testing phase.

Once a model is learned, it is no longer subjected to training and inference

on novel unseen data tacitly assumes that the data distribution does not

change over time. Once the learning phase is concluded no classes other

than those used for learning can be predicted. Although, such hard division

between training and testing and the availability of large corpus of annotated

data have demonstrated exceptional achievements in learning the appearance

of objects from images [41], they remain critical as linear improvements in

performance require an exponential number of labeled examples [42]. In ad-

dition to this, efforts to collect large quantities of annotated images, such as

ImageNet [43] and Microsoft COCO [44] don’t have the necessary scalability

and are hard to be extended, replicated or improved. These issues may also

put a performance limit on models learned in this way.

Drawing inspiration from biological systems, a possible attractive alter-

native would be incrementally to learn the object appearance from never-

ending video streams with no supervision, both exploiting the large quantity

of unconstrained videos available in the Internet and the fact that adja-

cent video frames contain semantically similar information. This not only

provides a variety of different viewing conditions in which objects can be ob-

served but it also overcomes the restrictive barrier between the training and

testing phase being each frame used for both training and testing. Specifi-

cally, each frame on a video stream can be used for learning, the following

for testing and so on. Accordingly, never-ending tracking multiple subjects

in the video could, at least in principle, support a sort of self-supervised in-

cremental learning of their appearance. This would avoid or reduce the cost

of annotation as time itself would provide a form of self-supervision which

does not stop learning, but rather updates the learning model over time by

accumulating knowledge without forgetting the past, reaching increasingly

better accuracy and better data diversity as time advances.

However, this solution is not without problems. It is practically not

possible to store all the data seen so far and re-learn a Deep Neural Network

model periodically. Removing past data to adequately incorporate the new

information without catastrophic forgetting, (i.e. performing Continual

Learning [9]), is still an open challenge [18, 24, 25, 45], especially when new

knowledge has to be incorporated in real time while tracking, without the
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availability of labels and with data coming from a stream which is often

non-stationary [46,47].

Single Object Tracking (SOT) [48] and Multiple Object Tracking (MOT)

[49,50] are closely related to the problem of learning from video streams but

they have substantial differences and divergent goals from incremental and

cumulative learning. While in SOT the object appearance is learned only

for detecting the object in the next frame (the past information is gradually

forgotten [51, 52]), cumulative learning from a video stream would require

that all the past visual information of the object observed so far is collected

in a comprehensive and cumulative representation. This not only requires

tracking to be robust in the presence of very long term occlusions due inter-

mittent (re)appearance of objects or other severe appearance changes, but

that incremental learning is asymptotically stable so that it converges to

an univocal cumulative representation. Moreover, modern SOT approaches

based on Deep Learning are pre-trained on large video datasets [53–56] and

typically do not perform any learning at runtime or perform conservative up-

dates [57]. Their extension to handle cumulative learning remains not trivial

and however prone to catastrophic forgetting. Long-term SOT methods

introduced in [58,59] implement explicit target re-detection to reacquire the

object after long term occlusion, despite of their successful performance on

complex extended video sequences, their strategy for learning the appearance

model does not substantially differ from those in SOT [60,61].

Although MOT appears similar to the problem of learning the appearance

of objects from video streams, major differences can be identified according

to the following four criteria:

(1) Motion Continuity and Data Association. Most methods formulate MOT

as a data association problem integrating several cues such as appearance,

position, motion, and size into an affinity model to link track fragments (i.e.

tracklets) into final trajectories. To be usefully exploited, this formulation

implicitly requires that the objects are continuously detected and the camera

is stationary, slowly moving or undergoing short-term rapid motions [62–64].

The motion continuity problem can be partially mitigated by the introduc-

tion of learned appearance model (i.e. features) trained on large corpus of

data to perform short-term re-identification [65–67]. Instead in long-term

re-identification after long occlusions, the continuity of motion is no longer

relevant to the problem of data association [3]. When an object exits the field

of view and re-enters after an unknown long period of time, re-association
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of the correct identity can be related only to the appearance of the object

observed and the learned appearance model of all the objects observed so

far. Video streams with many shot changes further reduce the relevance of

motion continuity.

(2) Re-Id and Track deletion. MOT short-term re-identification is typically

achieved by storing the appearance models of deactivated tracks for a fixed

number frames such that an object can be either re-acquired or deleted

(i.e. forgotten) [62, 67, 68]. However, simply setting a very large number

frames after which to delete tracks, would require the explicit management

of an undefined and large number of track identities with their correspond-

ing appearance models undergoing cumulative learning. This issue has not

been systematically investigated and therefore extending MOT approaches

to include this long-term re-identification learning scenario it is not straight-

forward.

(3) MOT Datasets. MOT has been extensively studied with a prime fo-

cus on human body visual data where it is not reasonable to assume that

clothes remain unchanged over very long-term periods of time as for face

data. Consequently, relevant MOT datasets do not explicitly cover long-

term re-acquisition and/or extended appearance variations [69,70].

(4) Learning Setting. MOT methods have either offline or online process-

ing mode [50] depending on whether observations from future frames are or

are not utilized when handling the current frame. However, with the terms

“incremental” and “cumulative” the reference here is to a learning setting

rather then to a processing mode [46, 71, 72]. The term “online” alone typ-

ically used to characterize MOT methods does not reflect the concept of

lifelong adaptation and cumulative learning in never-ending data streams

that have changing statistics. In order to avoid confusion, we will refer to

this learning setting as Multiple Object Cumulative Adaptation Learning

(MOCAL).

Differently from SOT and MOT methods, in this Chapter we present

a novel online self-supervised method that learns cumulative identity repre-

sentations adapted to all the visual information observed so far. We evalu-

ated our method on face visual data as it is more intrinsically pertinent to

this learning setting. In order to focus on the aspects that distinguish our

approach from MOT, we used datasets as in video face clustering [3, 73–75]

that include large corpus of face objects with abrupt motions, extended ap-
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pearance variations and very long-term occlusions.

Specifically, to achieve cumulative learning while handling the non-stationarity

of the data stream, we update a representative dataset and use it as a mem-

ory of all the past visual information observed so far. To this aim, CNN face

features [36, 76] are stored into a memory module and “distilled” based on

their redundancy so that a compact and complete appearance representation

of the individual identities is cumulative learned over time. The memory

module consists of feature-identity pairs as recently introduced in [77–79].

Extracted face features from the current frame are used to both query and

learn the memory model according to a Reverse Nearest Neighbor strat-

egy [80]. The features returned by the memory are used to determine the

final prediction of the identities. To avoid forgetting, no identity is explicitly

deleted after a fixed number of frames has passed. As the memory increases,

observed features are selectively removed only if there is subsequent informa-

tion in their locality in representation space. This makes the representations

of each identity more compact and discriminative since they are adapted to

incorporate all the past data. When a memory budget is met, new informa-

tion is written into the least used memory locations. It is further shown that

the proposed incremental procedure for learning the memory module ap-

proximates asymptotically the case of infinite accumulation of feature data.

A preliminary exploration of this work was presented in [39].

In Section 2.4 we expounded the approach in detail, in Section 2.5, ex-

perimental results are given and finally in Section 2.6 critical discussion and

further experiments are provided.

2.2 Related Works

In this section the general and methodological issues raised in the introduc-

tion are examined in different bodies of existing literature. MOCAL setting

is closely related to Continual Learning [8,9] and Open-World learning [81].

We will describe each of them briefly highlighting the relationships/connec-

tions with our approach.

Continual Learning deals with the problem of sequentially learning a sin-

gle model, preserving and reusing the previous knowledge while learning the

new one. Instead Open-World learning deals with the problem of detect-

ing new classes at test time (i.e. open-set) to avoid incorrect assignments

to known classes. When new classes are incorporated in the model, then
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Continual Learning meets the problem of Open-World. In the open set eval-

uation protocol, learned face features [35,36] with distance thresholding have

shown to achieve reliable performance [82]. Our approach follows a similar

strategy to detect novel identities also exploiting the fact that a single video

frame eventually contains distinct face identities.

In Continual Learning, typically a sequence of tasks is learned one at a

time, with label supervision, with all data of current task available and with-

out revisiting past tasks. Task boundaries and class identities are therefore

known at all times. This setting, is therefore not appropriate in applica-

tions that learn incrementally from unconstrained video streams. A recent

and notable exception is provided by [47]. They learn face identities in a

self supervised way. First they obtain face tracklets and then use this in-

formation to update the face representation. The tracks are then processed

in chronological order so as to generate a non-i.i.d. stream of data. In our

approach, representation is fixed and face-specific, but it is directly adapted

from the data coming from a detector without requiring a multi-pass analysis

of the video. According to this, our method allows learning in an online and

cumulative fashion from an unconstrained video stream.

2.2.1 Multiple Object Tracking

An alternative approach that partially accomplishes the open-world and

class-incremental learning (it does not perform cumulative learning) is Mul-

tiple Object Tracking (MOT) [49, 50, 83]. MOT exploits temporal self-

supervision to automatically generate labels with data coming directly from

the output of a detector. The major issue encountered by MOT when

applied to cumulative learning is track management. Track identity creation

and deletion are managed by two thresholds: a new identity is created when

the object has been constantly detected for a certain number of frames while

an identity is deleted if it is not associated for a duration of a predefined

number of frames. The value of these thresholds typically depends on both

the accuracy of detection models and the frame rate and are set in the or-

der of few seconds [68]. Track deletion basically precludes MOT methods

to perform long-term re-identification as required in MOCAL: objects that

exit and re-enter the field of view after few seconds are managed as new

identities. As a consequence, MOT methods cannot be directly applied to

perform cumulative learning nor to handle unconstrained video streams.

In [3], video face clustering is exploited to adapt face appearance. Their
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method applies MOT in videos consisting of pre-segmented shots taken from

different cameras. In order to take advantage of the continuity of the motion,

each shot is processed independently to estimate tracklets. Face appearance

adaptation learning is achieved with a further pass over the face image crops

along the estimated tracklets by fine-tuning the CNN feature representation

according to the triplet-loss [84]. This pass can be considered as addressing

both adaptive and cumulative learning of the feature representation across

the processed video. To overcomes the track deletion limit of MOT the

fine-tuned features are then used in a final pass to cluster tracklets across

multiple shots. The approach is similar to [47] except that the adaptation is

not performed incrementally. Our approach follows the same intents of both

[3] and [47] but formulates the problem as cumulative and online learning.

Differently from [3] and [47] we can handle an infinite video stream. To

this aim we leverage the success of recent tracking-by-detection approaches

[85–87].

Tracking-by-detection has become the leading MOT paradigm exploit-

ing both to the improved accuracy of CNN based object detectors [88–91]

and CNN feature representation [36,76,84,92]. Performance with respect to

earlier methods has been largely improved especially in the online process-

ing modality. In [87], both Faster R-CNN detections and features learned

using re-identification datasets [93] are combined obtaining a performance

improvement by a margin of 30% with respect to the state of the art, showing

that having higher-quality detections and feature representations reduces the

need of complex association/tracking algorithms. Other similar tracking-by-

detection methods have recently followed: [66, 67, 94, 95]. Specifically, [67]

further simplifies the tracking-by-detection MOT paradigm by removing the

optimal data-association step and the motion model. Our method exploits

this simplified paradigm.

Among MOT methods operating online not based on tracking-by-detection,

several interesting attempts has been proposed recently to favor short-term

identity preserving (i.e. occlusion between objects) against the most favor-

able off-line methods exploiting future information. A few methods have

exploited Single Object Tracking (SOT) to manage missing detections [4,68,

96, 97]. Tracks deletion and appearance forgetting still limits the applica-

bility of these methods in the MOCAL setting. In particular [4] addresses

tracking multiple faces that exit and re-enter the field of view. The method

exploits contextual relations (i.e. upper body appearance and relative cam-
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era poses) according to a graphical model to characterize the dependency

between multiple objects. It consists of two phases: in the first phase the

graphical model is learned off-line from some video sequences, in the sec-

ond phase the appearance of face objects are learned online according to the

SOT model described in [51]. However this method cannot handle an infi-

nite video streams since it relies on pre-segmented shots to exploit motion

continuity.

2.2.2 Long-Term Single Object Tracking

Another relevant research subject to our learning setting is long-term Single

Object Tracking [58, 60, 61, 98–101]. The aim of long-term SOT is to track

a specific object over time and re-detect it when the object leaves and re-

enters the scene. Only a few works on tracking have reported drift-free

results on on very long video sequences [58,98,102–104] among the few, and

only few of them have provided convincing evidence on the possibility of

incremental appearance learning strategies that are asymptotically stable

[58, 98]. However, all of these works perform incremental learning only to

detect the object in the next frame and gradually forget the past information.

In [3] authors evaluate a MOT baseline in which multiple TLD trackers

[58] initialized with the ground-truth bounding box in the first frame are

exploited. The baseline so defined can handle unconstrained videos avoiding

to segment them into shots to exploit motion continuity.

2.2.3 Learning With a Memory Module

Inclusion of a memory mechanism in learning [105] is a key feature of our

approach. On domains that have temporal coherence like Reinforcement

Learning (RL), memory is used to store the past experience with some pri-

ority and to sample mini-batches to perform incremental/cumulative learn-

ing [106] [107]. This makes it possible to break the temporal correlations

by mixing more and less recent experiences therefore handling the non-

stationarity of data streams. More recently, Neural Turing Machine ar-

chitectures have been proposed in [108, 109] and [110] that implement an

augmented memory to quickly encode and retrieve new information. These

architectures have the ability to rapidly bind never-before-seen information

after a single presentation via an external memory module. However, in

these cases, training data are still provided supervisedly and the methods
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are not primarily designed for handling video streams.

In [78] a memory module consisting of feature-value pairs to perform

predictions based on past knowledge is proposed. Features are activations

of the penultimate layer of a deep neural network (i.e. the internal feature

representation), and values are the ground-truth targets. The output of

the penultimate layer of the neural network is used as query to the memory

module and the nearest neighbor returned by the memory is used as the final

network prediction. As the memory increases it becomes more useful since it

can give predictions that leverage on knowledge from past data with similar

features. We use this basic strategy in which the feature-value pair consists in

a face specific feature and its associated identity. One main limitation of [78]

is in the lack of a mechanism to forget redundant observations to make rooms

to novel fresh data. The work [111] suggests a memory based forgetting

strategy based on the principle of spatio-temporal locality. We follow a

similar principle in which observations are forgotten if there is subsequent

information according to a distance ratio criterion between deep features.

2.3 Contributions

Our contributions can be summarized as follows:

1. We present a novel online method for the task of learning the ap-

pearance of face identities from unconstrained video streams. As video

streams are infinitely long, this requires online accumulation and preser-

vation of all the past visual knowledge observed so far.

2. We propose a memory module that achieves online cumulative learn-

ing in two different ways. (a) Avoiding the explicit deletion of object

identities after a fixed number of frames has passed. (b) Selectively

removing observed features depending on whether subsequent infor-

mation in their locality is available in representation space.

3. The proposed method firstly addresses very long-term object re-acquisition

in online MOT processing mode: when an object leaves the field-of-

view and then reappears, it is not treated as an unseen object with a

novel Id.

4. The proposed strategy is shown to be asymptotically stable. We argue

this is a critical issue for any system that claims to operate lifelong.
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5. The proposed method referred as IdOL (Identity Online Learning),

performs comparably with offline approaches exploiting future infor-

mation in the task of multiple face tracking in unconstrained videos

while it achieves better performance in the face identification.

2.4 The proposed approach

The block diagram of the solution proposed is shown in Fig.2.1. We used

the state of the art Tiny Face Detector [112] for detection and the VGGFace

features [35] to represent faces. A memory module is used to collect the face

features. In the ideal case (i.e. perfect invariance of the representation),

observations of the same subject originate the same features. In the real

case, we must expect that observations of the same subject under changes

of pose or illumination or partial occlusions originate different (although

correlated) features. The matching module is a discriminative classifier that

associates each new observation to the most similar past observations already

in the memory. The memory controller has the task of discarding redundant

features: highly similar features of the same subject having comparable dis-

tance feature already in the memory module. Ideally, a new identity should

be created whenever a new individual is observed that has not been observed

before.

We loosely follow [78] and the memory module at time t is represented

as:

M(t) = {(x, Id, e, a)i}N(t)i=1 (2.1)

where i is the index of a memory element and x is a deep feature, Id is the

face identity associated, e is a value referred to as eligibility that accounts

for the relevance of the item to be learned (discussed in the following), a

is a value that tracks the age from the last match, and N(t) is the number

of features in the memory at time t. We extend the feature-value pair (i.e.

x–Id) and the age in [78] by adding a further scalar quantity.

The mechanisms of identity matching, construction of the identity mod-

els, self-supervision using temporal coherence and the asymptotic behavior

of the method are separately addressed in detail in the following subsections.
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Figure 2.1: Block diagram of the incremental identity learning with basic

workflow.

2.4.1 Reverse Nearest Neighbor Matching

The Nearest Neighbor distance ratio criterion [113] allows matching based on

a discriminative rule between the most and the second most similar sample.

Unfortunately, in our learning scenario, we cannot exploit Nearest Neighbor

with distance ratio criterion to assess matching. Since it is likely that de-

tected faces of the same subject in consecutive frames have little differences

from one frame to the following, similar features having comparable distances

to the nearest and the second nearest will rapidly be stored in the memory

module. As a consequence, the distance ratios of observations to the nearest

and the second nearest feature in memory will be close to 1 and matchings

are undecidable in most cases. To solve this problem, we propose to use

Reverse Nearest Neighbor (ReNN) with the distance ratio criterion [80].

With ReNN, each feature in memory is NN-matched with the features of

the observations in the incoming frame and distance ratio is used to assess

matching. Fig. 2.2 explains this matching mechanism for a sample case. The

features o1 has the same identity as the xi in the memory while o2 has a

different identity. Due to the fact that the xi are close to each other, the

NN-distance ratios of o1 and o2 to their nearest and second nearest xi are are

both close to 1 and both matchings result to be NN-undecidable (Fig. 2.2-

left). Instead, with ReNN, the NN-distance ratios between the xi and o1

and o2 clearly assess the matching with o1 (Fig. 2.2-right). The set of xi
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Figure 2.2: Nearest Neighbor (left) and Reverse Nearest Neighbor (right)

matching with distances between the stored features and the observations.

The stored features xi in the grey area all have the same identity. ReNN can

assess matching between xi and o1 according to the distance ratio criterion.

that are ReNN matched to the observations at time t can be written as:

M+ = {(x, Id, e, a)i ∈ M(t) ∣ d
1
i

d2i
< ρ̄} (2.2)

where
d1i
d2i

is the distance ratio between xi and the nearest and second nearest

face features in the frame at time t and ρ̄ is the distance ratio threshold.

2.4.2 Learning the Memory Module

Collecting matched features indefinitely will soon accumulate features in

the memory module and a large amount of redundant information will be

included for each identity model. To avoid such redundancy, we associate

to each i -th feature-identity pair a dimensionless quantity ei referred to as

eligibility-to-be-learned (shortly eligibility) that dynamically indicates the

level of redundancy of the feature to be learned as representative of the

identity. Eligibility is set to 1 when the feature is loaded into the memory

and is decreased at each match with the observations according to:

ei(t + 1) = ηi ei(t)ηi = [1

ρ̄

d1i
d2i

]
α

, (2.3)

where the matching threshold ρ̄ of Eq. 2.2 is used for normalization and α

to dilate the effect of the distance-ratio. When doing this, we also reset the

feature age ai = 0. As the eligibility ei of a face feature xi drops below a

given threshold ē (that happens after a number of matches), the feature is no

more eligible to be learned as representative of the identity and is removed

from the memory.
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Figure 2.3: Learning the memory module. The 2D shape of the density

function (shown by level curves) down-weighting the eligibility associated to

each matched feature. Features xi in proximity of the observed feature o1

have their eligibility decreased (low values of η) to reflect their redundancy.

The asymmetric shape of the density encourages more diversity in the open

space far from the identity o2 rather than close.

Eq. 2.3 down-weights eligibility as a function of the distance ratio at a rate

proportional to the success of matching in consecutive frames. According to

this, eligibility allows to take into account spatio temporal redundancy in a

discriminative way. The equation it is a generalization of the Apollonious

circle 3 to multiple dimensions. As shown in Fig. 2.3, features in regions close

to o1 and far from o2 (dark red) have low η and therefore their eligibility

is more down-weighted (they will have higher chance to be replaced in the

future). Features in regions far from o1 and o2 (light red) have higher η and

their eligibility is less down-weighted and their chance of not being discarded

is higher. This asymmetry promotes diversity in the open space and defines

a learning schema well suited for the open world face recognition scenario.

Our method operates on-line and does not require any prior information

about how many identity classes will occur and can run for an unlimited

amount of time. However, if the number of identities increases indefinitely

the eligibility-based exemplar removal may not be sufficient to avoid mem-

ory overflow. Similarly to [78, 114], we remove from the memory the least

3Apollonius of Perga (c. 262 BC - c. 190 BC) showed that a circle may also be defined

as the set of points in a plane having a constant ratio of distances to two fixed foci.
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recently matched exemplars (those with the highest value of the paramter a

in Eq. 2.1), following the Least Recently Used Access (LRUA) strategy. This

also allows to remove false positives by the detector that have not received

other matches for a long time.

2.4.3 Self-supervision

The cumulative learning mechanism of the memory module breaks the tem-

poral coherence of the data stream (i.e. non-iid) by mixing more and less

recent recent observations. Nevertheless temporal coherence is used as form

of self-supervision in the assignment of novel identities to limit their frag-

mentation and proliferation.

Assuming that faces of the same individual have similar features in con-

secutive frames, in the case in which an observation does not match the

feature in memory, its feature is included in the memory with a new identity

only if the same identity is assigned also in the following frames (two consec-

utive identity assignments and at least one matching in the following three

frames was experimentally verified to provide good results). With this form

of verification potential novel identities in the current frame are included in

the memory only if at least one known identity is recognized. Since recog-

nition is obtained according to the RNN with the distance ratio and since

observations taken from a single frame derive from distinct identities, the

unmatched identities in the current frame are known to be reasonably dis-

tant (i.e. different) from the recognized ones and are considered potentially

novel.

In the case in which no observations match with features in memory,

new identities are assigned to the non-matched observations only if the same

situation persists for a time interval.

ReNN matching can determine ambiguous assignments when distinct face

observations match with features of the same identity, or an observation

matches with features of different identities in memory. In the first case we

assign no identity to the observations (i.e. identities in the current frame are

unique and therefore duplicated Ids in the same frame are not allowed). In

the second case, we assign the most represented identity, i.e. that with the

largest number of features in memory.

The complete algorithm of our IdOL (Identity On-line Learning) method

for incremental identity learning, is reported in pseudocode in Algorithm 1.

We indicate with O as the set of all the features extracted from the bounding
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boxes reported by the face detector in the current frame, and withM as the

set of features in the memory module. Correspondences between M and O
are computed in line 4 according to the Reverse Nearest Neighbour matching.

The sets M+ and O+ indicate the elements that have established a direct

correspondence. The set Icurr will contain (if any) the identity labels of

novel subjects (not present in the memory model) detected in the current

frame. It is initialized to the empty set for each novel frame (line 8). In

line 9 all the matched observations M+ in the memory module are updated

according to Eq. 2.3 and have their age reset to 0. Then, in line 10 potential

identities I are predicted and subsequently intersected with those predicted

in the previous frame Iprev to obtain the set Icurr of the identity labels

estimated for the current frame (line 11). In line 12 the estimated label

identities together with their observed features Ocurr will be added in to

the memory module as novel Ids with their eligibility and age values are set

to 1 and 0 respectively. With an excess of notation we denote 1 and 0 as

arrays of elements of value 1 and value 0 respectively. Their length is the

same as the number of elements in Icurr. In line 13 the potential identity

labels of the previous frame Iprev are updated with those estimated in the

current frame. In line 19 the tnc counter is incremented when a frame has

no matched correspondences. It get reset to 0 the first time a match occurs

(line 14) or after that a number of frames t̂nc are elapsed (line 16). In the

latter case all the detected observations are declared as novel. In line 20 all

observations from memory that are never matched after being included are

removed if their age is greater than a given threshold ā.

2.4.4 Asymptotic Stability

The cumulative learning procedure described above stabilizes asymptotically

around the probability density function of the features of each identity. This

is guaranteed by the fact that the memory updating rule of Eq. 2.3 is a

contraction that converges to its unique fixed point4 according to the Con-

traction Mapping Theorem [115]:

Banach Contraction Mapping Theorem

Let (X,d) be a complete metric space and M ∶ X ↦ X be a map

4A fixed point of a function is an element of the function’s domain that is mapped to

itself by the function.
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Algorithm 1: IdOL - Identity On-line Learning
Input: The video stream.

Output: Assigned identities Icurr in the current frame.

1 repeat

2 Detect faces in the current frame;

3 Extract observations features O;

4 Establish correspondences: M+↔O+ = ReNN(M,O);
5 Identify non-matching memory elements: M− =M∖M+;

6 Identify non-matched observations: O− = O ∖O+;

// Case with matched observations (eligibility updating and

temporal coherence verification)

7 if ∣O+∣ > 0 then

// Initialize the set of identities to be included in the

memory

8 Icurr = ∅;

// Update the eligibility with the matched observations

9 M= {(x, Id, ηe,0)i ∣ ∀ (x, Id, e, a)i ∈ M+} ∪M−;

// Assign known and novel identities to the observations

10 I =MajorityId(M+↔O+) ⋃NewId(O−);
// Keep identities assigned in two consecutive frames

11 Icurr = I ∩ Iprev;

// Include them in the memory module with their observations

12 M=M∪{(Ocurr,Icurr, 1, 0 )} ;

// Keep the assigned identities for the next frame

13 Iprev = I;

14 tnc = 0;

// Case with no matched observations (novel identity assignment

after a time interval has elapsed)

15 else if tnc > t̄nc then

16 M=M∪{(O,NewId(O), 1, 0 )};
17 tnc = 0;

18 else

19 tnc = tnc + 1

20 M=M∖{(x, Id, e, a)i ∈ M∣ai > ā, ei = 1};
21 M=M∖{(x, Id, e, a)i ∈ M∣ ei < ē};
22 M= {(x, Id, e, a + 1)i ∣∀(x, Id, e, a)i ∈ M};
23 Apply LRUA;

24 until True;

(referred to as contraction) such that

d(M(x),M(x′)) ≤ c ⋅ d(x,x′)

for some 0 < c ≤ 1 and all x and x′ ∈ X. Then M has a unique

fixed point in X. Moreover, for any x ∈ X the sequence of iterates
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Table 2.1: IDS and MOTA comparative for the methods in [3] (Music

dataset)

Apink BrunoMars Darling GirlsAloud

Method IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑

mTLD* 31 −2.2 35 −8.7 24 −22.0 9 −1.1

mTLD2* 173 77.4 278 52.6 278 59.8 322 46.7

ADMM* 179 72.4 428 50.6 412 53.0 487 46.6

IHTLS* 173 74.9 375 52.7 381 62.7 396 51.8

Siamese* 124 79.0 126 56.7 214 69.5 112 51.6

Triplet* 140 78.9 126 56.6 187 69.2 80 51.7

SymTriplet* 78 80.0 105 56.8 169 70.5 64 51.6

IdOL (VGGFace/VGG16-4096) 191 55.1 420 48.8 449 62.1 339 49.3

IdOL (VGGFace2/ResNet-2048) 178 61.4 375 59.4 432 63.0 315 55.0

IdOL (VGGFace2/SeNet-128) 177 62.6 367 60.1 427 64.2 306 55.8

HelloBubble PussycatDolls Tara Westlife

Method IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑

mTLD* 7 −3.5 24 3.1 130 1.4 20 −34.7

mTLD2* 139 52.6 296 68.3 251 56.0 177 58.1

ADMM* 115 47.6 287 63.2 251 29.4 223 62.4

IHTLS* 109 52.0 248 70.3 218 35.3 113 60.9

Siamese* 105 56.3 107 70.3 106 58.4 74 64.1

Triplet* 82 56.2 99 69.9 94 59.0 89 64.5

SymTriplet* 69 56.5 82 70.2 75 59.2 57 68.6

IdOL (VGGFace/VGG16-4096) 88 51.4 83 30.7 270 39.5 76 58.9

IdOL (VGGFace2/ResNet-2048) 92 49.1 80 33.7 257 42.3 70 64.1

IdOL (VGGFace2/SeNet-128) 85 51.5 77 35.2 254 42.5 68 63.9

* Values reported from [3]

x, M(x), M(M(x)), ...,M(...M(M(x))) converges to the fixed point.

In our case, the memory updating mechanism of Eq. 2.3:

e(t + 1) = η e(t) with η = [1

ρ̄

d1

d2
]
α

being η ∈ (0,1], satisfies the conditions of the theorem above. It can be

observed that the value e = 0 is the fixed point of this equation and corre-

sponds to the case of an infinite accumulation of samples. In such a case, the

Nearest Neighbor classifier error is bounded by twice the Bayes risk [116].

In our case, to have a finite number of samples, a threshold ē close to 0 can

be set that approximates with continuity the case of the infinite sample set.
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2.5 Comparative evaluation

Our method is evaluated over publicly available datasets, namely Music and

Big Bang Theory [117] and QMUL multi-face dataset [118]. We use the

MOTA (Multiple Object Tracking Accuracy) performance metric defined

as [70]:

MOTA = 1 − ∑t(FNt + FPt + IDSt)
∑tGTt

(2.4)

where GTt, FNt, FPt and IDSt are respectively the number of ground truth

objects, the number of false negatives, the number of false positives and the

number of identity switches at each time t.

We compare our solution with the performance of the offline methods

in [3]:

- mTLD running the TLD tracker in each shot [119]

- mTLD2 a modified versions of TLD that generates shot-level trajecto-

ries [3]

- ADMM [120];

- IHTLS [121];

- Siamese, Triplet and SymTriplet methods [3],

All these methods operate offline (so they exploit both past and future frames

to learn identities). They apply the Headhunter version of DPM detector by

[122] and detections are then linked into shot-level tracklets. Tracklets across

shots are hence merged into trajectories using Hierarchical Agglomerative

Clustering [123]. The Siamese, Triplet and SymTriplet methods [3] have a

sophisticated refinement of identity assignment. Tracklets are used in pairs

(in the Siamese) or triplets (in the Triplet and SymTriplet) to fine-tune an

AlexNet-based CNN pretrained on the CASIA-WebFace and the descriptor

of the fine-tuned CNN is finally used to link tracklets into shot-level tracklets.

Comparison with these methods were made over the Music and Big Bang

Theory datasets.

Tab. 2.1 provides a comparative overview of MOTA and IDS scores for

the videos of the Music dataset. These are YouTube videos of live vocal con-

cert recordings with very frequent shot changes (i.e. unconstrained videos),

views from different cameras and special effects. There are a limited num-

ber of annotated characters in continuous fast movement. Faces have large
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variations of appearance due to rapid changes in pose, scale, makeup, illu-

mination, camera motion and occlusions. In total, there are 117,598 face

detections and 3,845 face tracks annotations. Our IdOL method has lower

MOTA in most videos (although almost the same of admm and ihtls). How-

ever, it has comparable IDS for HelloBubble, Apink PussycatsDolls

and Westlife videos and lower IDS for Tara.

As feature representation is one of the main component of our method,

Tab. 2.1 reports performance evaluated according to three different feature

representations:

- 4096-dimensional feature learned from VGGFace with VGG16 archi-

tecture [76] (VGGFace/VGG16-4096)

- 2048-dimensional feature learned from MS-Celeb-1M and fine-tuned on

VGGFace2 dataset [36] with SeNet [124] (VGGFace/SeNet-128)

- 128-dimensional feature learned from MS-Celeb-1M and fine-tuned on

VGGFace2 dataset with ResNet [125] (VGGFace2/ResNet-2048) 5

As it can be noticed, performance follows the increasing quality of the dif-

ferent feature representation evaluated. This is due to the expressive power

of more competitive CNN architectures and the exploitation of richer train-

ing datasets.

Fig.2.4 shows the plot of MOTA of our method computed at each frame

for the VGGFace/VGG16-4096 features. Due to the incremental learning

mechanism, at the beginning there is not sufficient information available so

the identity models are largely incomplete and a large number of errors may

occur. As more and more observations are received that contain different

views and conditions of the faces, MOTA stabilizes. In the Music dataset,

asymptotic values of MOTA were reached approximately after 1000 frames

for all the videos, despite of the different editing and contents.

In order to assess our method on longer video sequences also in condi-

tions similar to surveillance contexts, we compared performance also on the

Big Bang Theory dataset. This dataset collects six episodes of Big Bang

Theory TV Sitcom, Season 1. These are much longer videos (approx 20’

each) with indoor ordinary scenes under a variety of settings and illumi-

nation conditions. They contain a much larger number of identities with

crowded scenes. Also in this case, faces have large variations of appearance

5Pretrained models are available at https://github.com/ox-vgg/vgg_face2

https://github.com/ox-vgg/vgg_face2
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Figure 2.4: MOTA computed at each frame for the videos in the Music

dataset

due to rapid changes in pose, scale, makeup, illumination, camera motion and

occlusions.In total, there are 373,392 face detections and 4,986 face tracks

annotations.

Table 2.2 reports MOTA and IDS scores for the videos of the Big Bang

Theory dataset and Fig. 2.5 shows the plots of MOTA computed at each

frame. It can be noticed that considerations similar to those drawn for the

Music dataset hold also in this case, despite of the differences between the

two datasets. The presence of less frequent cuts and less extreme conditions

due to editing effects and camera takes than in the Music dataset determines

sensibly lower Identity Switch values and closer MOTA values in almost all

the videos. MOTA plots have earlier convergence to their asymptotic values.

They all share similar behavior due to the uniform style of the series.

We further compare our solution with performance of methods reported

in [4]:

- Tracking-Clustering [126]

- Min-Cost Flow [127]

- CRF [4]

- M3 Networks [4]
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Table 2.2: IDS and MOTA comparative for the methods in [3] (Big Bang

Theory dataset)

bbt s01e01 bbt s01e02 bbt s01e03 bbt s01e04 bbt s01e05 bbt s01e06

Method IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑

mTLD* 1 −16.3 1 −7.6 5 −2.1 0 −15.9 1 −15.5 0 −3.9

mTLD2* 223 58.4 174 43.6 142 38.0 103 11.6 169 46.4 192 37.7

ADMM* 323 42.5 395 41.3 370 30.8 298 9.7 380 37.4 527 47.5

IHTLS* 312 45.7 394 42.4 376 33.5 295 13.3 360 33.8 515 43.2

Siamese* 144 69.0 116 60.4 109 52.6 85 23.0 128 60.7 156 46.2

Triplet* 164 69.3 143 60.2 121 50.7 103 18.0 118 60.5 185 45.4

SymTriplet* 156 72.2 102 61.6 126 51.9 77 19.5 90 60.9 196 47.6

IdOL 26 60.4 55 45.2 14 46.1 75 53.9 35 44.7 204 43.0

* Values reported from [3]

Table 2.3: IDS and MOTA comparative for the methods in [4] (QMUL

multi-face dataset)

Average

Method IDS MOTA

Tracking-Clustering* 23 61.8

Min-Cost Flow* 29 53.7

CRF* 20 65.2

M3 Networks* 17 68.8

IdOL (VGGFace) 10.0 81.5

IdOL (VGGFace2/SeNet) 2.3 87.5

IdOL (VGGFace2/ResNet) 2.3 87.2

* Values reported from [4]

Specifically Tracking-Clustering is a modified approach of [126] in which

the Haar cascade face detector is replaced with a DPM detector and Min-

Cost Flow performs offline optimal data association. Comparison with these

methods were made over the QMUL multi-face dataset. This dataset consists

of three single shot video sequences with four subjects entering and exiting

the field of view, namely Frontal, Fast and Turning. Although captured

by a static camera, all three video sequences contain intense face motions

and occlusions. In addition, subjects change their face poses frequently in

the Turning sequence and perform fast movements in the Fast sequence.

Tab. 2.3 provides a comparative overview of MOTA and IDS scores for the

videos of the QMUL Multiple Face Dataset. As can be noticed our approach

consistently outperforms the other four compared methods on both MOTA

and IDS. Since the dataset is composed by single shot videos, [4] can operate
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Figure 2.5: MOTA computed at each frame for the videos in the Big Bang

Theory dataset

online as our method (i.e. the offline shot segmentation pass is not required).

2.6 Critical discussion and additional experi-

ments

The MOTA score is a largely accepted metrics for Multiple Object Tracking.

However it has clear limitations to assess the performance of cumulative

learning as in the MOCAL learning setting. In the following, we discuss

such limitations and perform additional evaluations.

2.6.1 Influence of detection

MOTA produces a cumulative score considering False Positives, False Neg-

atives and Identity Switches. Typically, the number of False Positives and

False Negatives are much larger than Identity Switches (see Table 2.5 f.e.).

False Positives of MOTA are essentially determined by false positive detec-

tions, while False Negatives are in part due to missed detections and in part

to the case in which no identity is assigned to a face observation. From

the above it descends that MOTA score can be largely influenced by the

performance of the detector.
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Table 2.4: Influence of detection: FP FN MOTA for different detectors

(TARA video of Music dataset)

Tara

Method FP ↓ FN ↓ MOTA ↑

IdOL HeadHunter detector 1939 8592 25.6

IdOL Tiny-face detector 259 8259 39.5

Table 2.5: Influence of detection: IDS FN FP MOTA of IdOL using ground-

truth bounding boxes versus Tiny Detector bounding boxes (Music dataset)

Ground Truth Bounding Box Tiny Detector

Video IDS ↓ FN ↓ FP ↓ MOTA ↑ IDS ↓ FN ↓ FP ↓ MOTA ↑

Apink 130 2105 0 69.3 191 2627 446 55.1

BrunoMars 391 3644 0 75.8 420 4178 3950 48.8

Darling 361 2620 0 68.7 449 2278 887 62.1

GirlsAloud 469 4837 0 67.6 339 6691 1272 49.3

HelloBubble 160 707 0 83.4 88 2150 301 51.4

PussycatDolls 316 4697 0 64.9 83 7050 2764 30.7

Tara 542 5210 0 60.4 270 8259 259 39.5

Westlife 138 1433 0 86.2 76 3403 1198 58.9

While it can be presumed that a more effective detector has little influence

on the performance of the MOT methods reported in the comparison (these

methods operate off-line and most tracklets due to erroneous detections can

be removed using the future information), the effectiveness of the detector

largely influences the performance of online incremental identity learning,

since future information cannot be exploited in this case. A key requirement

for our task is therefore that the detector has as few False Positives and False

Negatives as possible. The Headhunter detector was verified being clearly

inadequate to this end. Table 2.4 shows the performance gap of the IdOL

method with the Headhunter and the Tiny Face Detector, for the T-ara

video of the Music dataset (the detections of the Headhunter were released

only for this video by the authors). However, since the Tiny Face detector

is capable to detect also very small-sized faces (say less than 40 pixels),

given the fact that most of these faces are not ground-truth annotated in

the Music and Big Bang Theory datasets (see Figure 2.6 as an example),
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Table 2.6: Influence of detection: IDS FN FP MOTA of IDoL using ground-

truth bounding boxes versus Tiny Detector bounding boxes (Big Bang The-

ory dataset)

Ground Truth Bounding Box Tiny Detector

Video IDS ↓ FN ↓ FP ↓ MOTA ↑ IDS ↓ FN ↓ FP ↓ MOTA ↑

bbt s01e01 218 1361 0 96.0 26 4631 10 875 60.3

bbt s01e02 178 3947 0 86.3 55 5525 10 914 45.2

bbt s01e03 191 6999 0 79.6 14 9668 9285 46.1

bbt s01e04 341 2345 0 92.1 75 8615 7054 53.9

bbt s01e05 381 3130 0 89.8 35 9919 9009 44.7

bbt s01e06 559 5449 0 87.4 204 15 872 11 103 43.0

it happens that False Positives are counted whenever the detector detects

a non annotated face. Tables 2.5 and 2.6 show the increase of performance

achievable by the IdOL method in the ideal condition of no False Positive

detections, considering the ground truth bounding boxes (left side).

False Positives of the detector have the additional drawback of increas-

ing identity switching and the number of wrong new identities. In the IdOL

method, the mechanism of Temporal Coherence verification limits the pro-

liferation of such new identities. The effects of the Temporal Coherence

verification are shown in Table 2.7 for the Music dataset using the ground

truth bounding boxes as detections. While it may increase False Negatives,

it avoids the increase of Identity Switches.

2.6.2 Cluster Purity

The MOTA score computes a cumulative performance score until the time

of evaluation based on instantaneous measures of False Negatives, False Pos-

itives and Identity Switches. According to this, if in a sequence an Identity

Switch occurs at a frame and the new (incorrect) identity is confirmed in the

following frames, MOTA counts one Identity Switch only, at the frame at

which it occurred. Instead in the case above, to assess the quality of online

learning we should count as many Identity Switches as the times the original

identity has been mismatched. According to this, it appears that MOTA is

not fully adequate to measure the performance of on-line identity learning.
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Table 2.7: Influence of Temporal Coherence: IDS FN MOTA of IDoL us-

ing Temporal Coherence versus IdOL without Temporal Coherence (Music

dataset)

IdOL with Temporal Coherence IdOL without Temporal Coherence

Video IDS ↓ FN ↓ MOTA ↑ IDS ↓ FN ↓ MOTA ↑

Apink 130 2105 69.3 265 1558 74.9

BrunoMars 391 3644 75.8 741 2301 81.8

Darling 361 2620 68.7 655 2017 72.0

GirlsAloud 469 4837 67.6 897 3927 70.6

HelloBubble 160 707 83.4 295 358 87.5

PussycatDolls 316 4697 64.9 884 3787 67.3

Tara 542 5210 60.4 1025 4436 62.4

Westlife 138 1433 86.2 274 1105 87.9

A better metrics is the Weighted Cluster Purity (WCP), defined as [3]:

WCP = 1

M
∑
c

mcpc (2.5)

where M is the number of identities detected in the video, c the index of

the cluster, mc the number of identity instances in the cluster and pc the

cluster purity, measured as the ratio between the most occurred identity in

the cluster and mc.

Figure 2.6: Detections of the Tiny-face detector for a sample frame (Music

dataset). Most of the small bounding boxes are not annotated as faces in

the ground-truth. Ground-truth annotated faces are circled.
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Tables 2.8 and 2.9 present the WCP scores for the Music and Big Bang

Theory datasets, and compare the IdOL method with respect to a few MOT

methods of [3]. In almost all the cases the IdOL method method has largely

better WCP scores. The lower score in the Apink video with respect to

Siamese, Triplet and Symtriplet methods can be ascribed both to the eth-

nicity bias of the VGGFace features and to the effect of fine tuning on these

methods.

Table 2.8: Weighted Cluster Purity score comparative. Music dataset.

Method Apink Bruno Mars Darling Girls Aloud Hello Bubble Pussycat Dolls T-ara Westlife

VGG-Face* 0.24 0.44 0.20 0.31 0.29 0.46 0.23 0.27

Siamese* 0.48 0.88 0.46 0.67 0.54 0.77 0.69 0.54

Triplet* 0.60 0.83 0.49 0.67 0.60 0.77 0.68 0.52

SymTriplet* 0.72 0.90 0.70 0.69 0.64 0.78 0.69 0.56

IdOL (VGGFace/VGG16-4096) 0.51 0.96 0.73 0.89 0.59 0.98 0.72 0.99

IdOL (VGGFace2/ResNet-2048) 0.72 0.92 0.78 0.92 0.47 0.97 0.74 0.99

IdOL (VGGFace2/SeNet-128) 0.73 0.91 0.79 0.93 0.48 0.98 0.78 0.95

* Values reported from [3]

Table 2.9: Weighted Cluster Purity score comparative. Big Bang Theory

dataset.

Method bbt s01e01 bbt s01e02 bbt s01e03 bbt s01e04 bbt s01e05 bbt s01e06

VGG-Face* 0.91 0.85 0.83 0.54 0.65 0.46

Siamese* 0.94 0.95 0.87 0.74 0.70 0.70

Triplet* 0.94 0.95 0.92 0.74 0.68 0.70

SymTriplet* 0.94 0.95 0.92 0.78 0.85 0.75

IdOL 0.99 0.99 0.94 0.94 0.99 0.97

* Values reported from [3]

Fig. 2.7 and 2.8 show the WCP plots for the videos in the Music and

the Big Bang Theory datasets. At each frame WCP is calculated from the

beginning up to that frame. It can be noticed that for the Big Bang The-

ory plots rapidly converge to the asymptotic values (each cluster contains

a sufficiently complete description of the identity and features of different

identities have been discarded). In some videos of the Music dataset, the

presence of very frequent discontinuities and extreme conditions makes less

effective the mechanism for keeping identity switches low.

Fig. 2.10 shows sample frames of the Big Bang Theory and Music videos

with the detected faces and their assigned identities. For each video two

frames are shown where the same persons are taken in different conditions,

with large appearance variations due to partial occlusions (Figs. 2.10b, 2.10c,
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Figure 2.7: Weighted Cluster Purity computed at each frame for the videos

in the Music dataset
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Figure 2.8: Weighted Cluster Purity computed at each frame for the videos

in the Big Bang Theory dataset

2.10h, 2.10g), pose changes (Figs. 2.10a, 2.10c, 2.10e, 2.10f), aspect change

(Figs. 2.10d, 2.10e) and in-plane rotations (Figs. 2.10g). It can be noticed

that the learning mechanism is able to distinguish the same identity also in

the presence of such large variations. Fig. 2.10i evidences the effect of the

ethnicity bias of the VGGFace features. In this case, the method is not able
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to predict unique identities for the faces and does not make any identity

assignments.
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Figure 2.9: Number of identities learned at each frame for the videos in the

Big Bang Theory dataset: Ground-truth, IdOL and Baseline.

The plots in Fig. 2.9 show the number of identities learned by the IdOL

method at each frame in comparison with the ground truth for the videos

of the Big Bang Theory dataset. For the sake of comparison we also show

the plot of a Baseline approach that performs 1-Nearest Neighbor matching

(i.e. forward) with thresholding of the distance value. For this baseline a

maximal number of memory elements for each identity is used and elements

are removed randomly when the identity budget is met (the best result of

experiments with different distance thresholds and max memory elements

is reported). As can be noticed, the number of identities estimated by the

Baseline method increases with time while our approach closely follows the

number of identities of the ground-truth. The results confirm the effective-

ness of the IdOL method to learn an unknown number of identities.
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(a) bbt 01e01 (b) bbt 01e02 (c) bbt 01e04

(d) bbt 01e05 (e) bbt 01e06 (f) PussycatDolls

(g) GirlsAloud (h) BrunoMars (i) Apink

Figure 2.10: Sample pairs of frames from the Music and Big Bang Theory

datasets showing takes of the same individuals in different conditions and

the identity label assigned by the IdOL method
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2.6.3 Scaling and Asymptotic Stability

As the number of identities grow, online learning of identities becomes more

challenging. In order to verify the behavior of the IdOL method in this case,

we concatenated the six sequences of the Big Bang Theory dataset to form

a single longer sequence of about two hours, and manually annotated all the

subjects up to a total number of 99 different identities.

Fig. 2.11a and Fig. 2.11b respectively show the number of features in

memory at each time instant and the number of ground-truth identities that

showed up until then. It can be noticed that the number of features in

memory follows the same trend as the number of identities. Fig. 2.11c shows

the MOTA plot on the whole sequence (dark bold line) and the MOTA plots

calculated for each video segment (colored lines). As the observations are

accumulated, all the identities are progressively learned and MOTA keeps

stable despite that the number of identities has been increased of one order of

magnitude with respect to the individual sequences. The MOTA fluctuations

due to the insufficient information that were observed at the beginning of

each sequence are no more present and the MOTA score is higher than the

MOTA of the individual video segments in most cases. In Episode 4 (e04 ),

a high number of new identities joins and MOTA is temporarily lower due

to the increased complexity of learning.

2.6.4 Ablation Study

To demonstrate the effectiveness of the solution we conduct an ablation study

in comparison with a baseline in which identities are never explicitly deleted

when they exit the field of view. The Baseline uses memory and Reverse

Nearest Neighbour as IdOL,and randomly forgets features when a memory

budget is met (three different budget values ∣M∣ are evaluated: 100, 500,

1000 and 1500 elements). The Baseline does not use the learning mechanism

of Eq.2.3. Since features are randomly deleted in the baseline to maintain

the memory budget, performance values are averaged over 100 tests.

We also consider the effect of different representations, using the fea-

tures discussed in section 2.5. The QMUL multi-face dataset is used for

the ablation as it provides specific types of appearance variation of the four

subjects. Effects of viewing conditions are considered by evaluating per-

formance for the three videos of the dataset, separately and concatenated

in different order. This latter allows to evaluate cumulative learning with
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curricula of different complexity. The average performance values are also

reported in both cases. Results for the three videos of the dataset, sepa-

rately evaluated are shown in Tab. 2.10a. For the Baseline, the performance

increases with the size of the memory and with the quality of the feature

representation. The IdOL method scores the best results overall with a sub-
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Figure 2.11: Big Bang Theory 2 hours sequence (184298 frames) obtained by

linking the videos of the 6 Episodes: (a) IdOL number of features in mem-

ory; (b) ground-truth number of identities (cumulative); (c) IdOL MOTA

computed at each frame for the whole sequence (black bold line) and each

Episode (colored lines).
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stantially lower number of features stored in the memory. The difference is

particularly evident in the case of the VGGFace2/SeNet-128 feature repre-

sentation. In this case the number of features in memory is one order of

magnitude smaller than with VGGFace/VGG16-4096. VGGFace2/SeNet-

128 and VGGFace2/ResNet score the best performance. This depends

on the CNN architecture used, the VGGFace2 training dataset and on the

lower feature dimension. Since the IdOL matching procedure is based on

distance ratio, under reasonable assumptions of feature distribution, the dis-

tance ratio between the nearest and the farthest neighbors to a given features

in high dimensional space is almost 1 [128, 129] so making the criterion less

discriminative than it is in a lower dimensional space.

Results for learning curricula of different complexity obtained by concate-

nating the three videos of the QMUL multi-face dataset (Fast → Frontal

→ Turning, Frontal → Turning → Fast and Turning → Frontal

→ Fast), are shown in Tab. 2.10b and Fig. 2.12. Results in Tab. 2.10b

confirm the conclusions derived for Tab. 2.10a. Fig. 2.12 compares IDF16

and MOTA of the three curricula with IDF1 and MOTA of the individ-

ual sequences (bold and dotted lines, respectively). It clearly appears the

increase of both MOTA and IDF1 by cumulative learning from the previ-

ous sequences. Features learned from the VGGFace2 dataset (green and red)

show better performance than features trained with the VGGFace one (blue).

With gradual increasing of complexity of the curriculum Frontal → Turn-

ing → Fast in Fig. 2.12a, IdOL is however able to improve the performance

of the Turning sequence also on the weakest VGGFace/VGG16-4096 repre-

sentation. On the contrary, as shown in Fig. 2.12b, starting with Turning

does not improve the performance on the Frontal. As shown in Fig. 2.12c,

similar behaviour of Fig. 2.12a is observed when the Fast video sequence is

moved to the the beginning.

Finally Fig. 2.13 shows a direct comparison between the Baseline with

∣M∣ = 500 and IdOL both using the VGGFace2/SeNet-128 feature represen-

tation. IdOL and the Baseline concluded the processing with 392 and 500

elements, respectively showing that with a comparable number of features,

our method does not change substantially MOTA and IDF1 over time.

The performance evaluations we reported use parameters values that cor-

respond to typical conditions observed in most real sequences. We use the

6IDF1 is the ratio of correctly identified detections over the average number of ground-

truth and computed detections [130].
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Figure 2.12: Effects of cumulative learning: performance plots of MOTA

and IDF1 over the three curricula (bold) and the individual sequences (dot-

ted) of the QMUL multi-face dataset. Plots are shown for different feature

representations: VGGface/VGG16 (blue), VGGFace2/SeNet (green) VG-

GFace2/ResNet (red). Learning performance shows some dependency on

initial learning: in the end, learning is clearly improved with curricula start-

ing with the Frontal and Turning sequence; does not improve when curricula

starts with the Fast. Effects of the quality of features are clearly evident.
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Table 2.10: Ablation study: Baselines with fixed memory budget (100,

500, 1000, 1500 features) versus the IdOL method. MOTA IDF1 and IDS

are evaluated for different feature representations (VGGFace/VGG16, VG-

GFace2/SeNet, VGGFace2/ResNet). (a) performance values over the three

sequences of the QMUL multi-face dataset ; (b) Performance values evalu-

ated over the three curricula. Average performance values of the three cases

are also presented.

Feature Representation Fast Frontal Turning Average

Dataset/Architecture Dim MOTA IDF1 IDS ∣M∣ MOTA IDF1 IDS ∣M∣ MOTA IDF1 IDS ∣M∣ MOTA IDF1 IDS

BASELINES (Tiny Face Detector)

VGGFace/VGG16 4096 67.526 0.683 10 100 66.261 0.727 16 100 41.502 0.509 11 100 58.430 0.640 12.3

VGGFace2/SeNet 128 76.005 0.750 6 100 63.996 0.683 22 100 43.165 0.513 14 100 61.055 0.649 14.0

VGGFace2/ResNet 2048 76.401 0.745 9 100 64.310 0.697 18 100 50.227 0.618 14 100 63.646 0.687 13.7

VGGFace/VGG16 4096 77.572 0.709 13 500 84.046 0.849 26 500 70.758 0.729 36 500 77.459 0.762 25.0

VGGFace2/SeNet 128 77.258 0.759 11 500 83.073 0.850 38 500 74.979 0.775 32 500 78.436 0.795 27.0

VGGFace2/ResNet 2048 76.518 0.751 17 500 83.987 0.854 38 500 75.839 0.779 43 500 78.781 0.794 32.7

VGGFace/VGG16 4096 78.053 0.706 12 1000 84.670 0.859 25 1000 72.358 0.737 36 1000 78.361 0.767 24.3

VGGFace2/SeNet 128 77.328 0.765 14 1000 86.261 0.901 54 1000 87.659 0.878 68 1000 83.749 0.848 45.3

VGGFace2/ResNet 2048 76.466 0.753 22 1000 86.375 0.887 49 1000 86.892 0.847 66 1000 83.244 0.829 45.7

VGGFace/VGG16 4096 77.989 0.706 12 1123 87.925 0.881 28 1500 73.752 0.743 35 1500 79.889 0.777 25.0

VGGFace2/SeNet 128 77.328 0.765 14 1123 86.292 0.907 55 1500 87.859 0.882 66 1500 83.826 0.851 45.0

VGGFace2/ResNet 2048 76.466 0.753 22 1123 86.389 0.891 54 1500 88.575 0.859 68 1500 83.810 0.834 48.0

IdOL (Tiny Face Detector)

VGGFace/VGG16 4096 79.138 0.886 4 785 87.152 0.933 6 1501 78.079 0.871 20 1705 81.457 0.897 10.0

VGGFace2/SeNet 128 80.259 0.892 0 203 90.104 0.951 2 321 92.323 0.960 5 323 87.562 0.934 2.3

VGGFace2/ResNet 2048 79.483 0.888 0 305 90.007 0.950 2 464 92.032 0.959 5 576 87.174 0.932 2.3

(a)

Feature Representation Fast→Frontal →Turning Frontal →Turning →Fast Turning →Frontal →Fast Average

Dataset/Architecture Dim MOTA IDF1 IDS ∣M∣ MOTA IDF1 IDS ∣M∣ MOTA IDF1 IDS ∣M∣ MOTA IDF1 IDS

BASELINES (Tiny Face Detector)

VGGFace/VGG16 4096 29.218 0.402 15 100 42.929 0.504 23 100 24.886 0.322 15 100 32.344 0.409 17.7

VGGFace2/SeNet 128 30.981 0.397 16 100 43.926 0.493 32 100 31.822 0.381 24 100 35.576 0.424 24.0

VGGFace2/ResNet 2048 19.069 0.265 14 100 44.947 0.510 27 100 39.055 0.483 29 100 34.357 0.419 23.3

VGGFace/VGG16 4096 57.070 0.598 50 500 66.803 0.719 53 500 60.892 0.653 64 500 61.588 0.657 55.7

VGGFace2/SeNet 128 45.376 0.485 47 500 67.436 0.729 63 500 63.587 0.662 61 500 58.800 0.625 57.0

VGGFace2/ResNet 2048 37.857 0.418 52 500 69.080 0.739 73 500 62.747 0.680 74 500 56.561 0.612 66.3

VGGFace/VGG16 4096 47.313 0.496 46 1000 69.795 0.741 61 1000 61.828 0.665 64 1000 59.645 0.634 57.0

VGGFace2/SeNet 128 45.610 0.532 83 1000 80.956 0.835 132 1000 83.916 0.842 152 1000 70.161 0.736 122.3

VGGFace2/ResNet 2048 40.397 0.469 75 1000 79.600 0.804 115 1000 76.103 0.775 130 1000 65.367 0.683 106.7

VGGFace/VGG16 4096 49.792 0.522 52 1500 77.317 0.781 86 1500 61.483 0.660 68 1500 62.864 0.654 68.7

VGGFace2/SeNet 128 48.073 0.557 90 1500 85.377 0.876 146 1500 84.866 0.855 160 1500 72.772 0.763 132.0

VGGFace2/ResNet 2048 46.373 0.540 93 1500 85.626 0.843 144 1500 85.096 0.838 167 1500 72.365 0.740 134.7

IdOL (Tiny Face Detector)

VGGFace/VGG16 4096 83.828 0.913 26 2436 88.049 0.912 78 2376 83.473 0.909 26 2465 85.117 0.911 43.3

VGGFace2/SeNet 128 89.850 0.947 14 381 89.380 0.946 7 367 89.792 0.948 6 392 89.674 0.947 9.0

VGGFace2/ResNet 2048 88.118 0.939 12 694 88.531 0.941 8 713 89.632 0.947 6 660 88.760 0.942 8.7

(b)

following values: ρ̄ = 1/1.6 = 0.625. This setting has the following inter-

pretation: in order to asses the match, the second nearest neighbour must
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Figure 2.13: Effects of cumulative learning: performance plots of MOTA

and IDF1 over the Turning → Frontal → Fast curriculum for the Baseline

with 500 features memory budget (light green) versus the IdOL method (392

features). In the IdOL method MOTA and IDF1 soon reach the maximum

value and keep stable over time, despite of the lower number of features in

memory.

be 1.6 times more distant than the first nearest neighbor. The eligibility

threshold ē, used to delete a feature, is set according to the length of the

processed video as the length have a direct impact on feature diversity on

the memory module. We set: ē = 0.5 for all the videos in the Music dataset

and QMUL multiface-dataset, ē = 0.9 for each single BBT video, ē = 0.99 for

the concatenated BBT. The value α in Eq. 2.3 is set to α = 0.001 for all the

datasets.

2.6.5 Computational Issues

An evident drawback of ReNN is that in practice a huge number of features

(those accumulated in the memory module) is matched against a relatively

small set of features (those observed in the current image). Due to that,

deciding matching by sorting is prohibitively expensive and tree-based data

structures [131] cannot be used effectively since the number of the prototypes

in the image is orders of magnitude smaller than the number of prototypes

in the memory. However, this drawback can be easily solved by computing

the first and second minimum distance through consecutive applications of

linear search with GPU implementation. In this way, we can exploit the

very efficient CUDA matrix multiplication kernel for the computation of the
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squared distance matrix and GPU parallelism [132]. Fig. 2.14 shows scaling

of performance on Intel i7-2600K 3.40GHz and Nvidia Geforce Titan X as a

function of the number of features in the memory module. It is evident that,

using GPU, performance keeps almost constant as the number of features

in memory increases. With such hardware support, the full system operates

on-line at 8 frames per second with 800x600 video frame resolution.
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Figure 2.14: Average processing time of Reverse Nearest Neighbor as a func-

tion of the number of features in memory: on Intel i7-2600K 3.40GHz and

NVIDIA Geforce Titan X GPU.

2.7 Conclusions

In this Chapter, we have presented a novel solution for cumulative learning

face identities in unconstrained video streams based on face appearance. We

discussed the substantial differences between our learning setting (referred

as MOCAL, Multiple Object Cumulative Adaptation Learning), Multiple

Object Tracking and Continual Learning when applied to video streams.

Our solution updates a representative dataset and use it as a memory of

all the past visual information observed so far. This strategy enables the

accumulation and preservation of essential knowledge and at the same time

allows to handle the non-stationarity of the data stream. We have shown

that the proposed method is theoretically sound, asymptotically stable and

operates online. Its effectiveness has been demonstrated in comparison with

Multiple Object Tracking methods over public datasets. We showed that the

method is capable of cumulative learning effectively over long unconstrained
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video sequences. The method can be applied in principle to any other context

for which a detector/feature combination is available (i.e. vehicle, person,

boat, traffic sign).
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Chapter 3

Open set recognition for unique

person counting

via virtual gates

Retail shops or restaurants are interested in real-time profiling

analysis of customer visit patterns, which could enable efficient

management and target marketing. They need to know not only

how many people entered but also if they are visiting for the first

time and keep track of their exact number. As a result, in this

chapter we define the new variant of unique counting for videos,

that is counting new persons who have not already been counted

in the past. To this end, we propose a complete real-time system

which is able to perform detection, tracking and unique count-

ing in the wild with user drawn gates. A fine-tuned network

on persons body is used to extract descriptors which are more

privacy-oriented. Experiments of the system on the challenging

DukeMTMC dataset show that our method is able to effectively

count people in real time and discern between the persons which

do multiple passages through the gates. 1 2

1The part of this chapter has been published as “Open set recognition for unique person

counting via virtual gates” in ICIAP: International Conference on Image Analysis and

Processing, 2019 Trento [133]
2Acknowledgments: tThis research was partially supported by NVIDIA Corporation

with the donation of Titan X Pascal GPUs and Leonardo Finmeccanica SpA, Italy.
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3.1 Introduction

In recent times there is a great interest in computer vision for monitoring

all types of environments. Many goals are impacted by new technologi-

cal advances in video analysis, e.g., security, resource management, urban

planning, or advertising. Of these technologies, counting people passing

through a place is a fundamental problem. It is an essential building block

for crowd analysis that is useful for several different applications, including

crowd monitoring [134], scene understanding [135], surveillance [136] and

customer analysis [137]. In particular, retail shops or restaurants are inter-

ested in real-time profiling analysis of customer visit patterns, which could

enable efficient management and target marketing. They need to know not

only how many people entered but also if they are visiting for the first time

and keep track of their exact number.

As a result, in this chapter we define the new variant of unique counting

for videos i.e. counting new persons who have not already been counted

in the past. At a high level, it requires to detect persons, remember and

match previously observed individuals. The main challenge is the open-

world setting: for each person detected the system must be able to tell if he

is in the set of already known persons or if he is a new person, which is a

very hard task and requires a memory based algorithm [138]. The task is

different than person re-identification, which is usually performed on images

and require only to match query to gallery persons. It is also different than

multi-target tracking where it is required to track all people across the scene

but does not address counting passages through an area or virtual line.

In the literature, people counting can refer to multiple different settings

[134], from counting the number of instances in a single image to counting

how many persons crossed a virtual gate or an area. Similarly to [136, 139],

in this chapter we address counting by defining virtual gates. These are

imaginary lines where the actual counting is made (see Fig. 3.1) and can be

drawn freely by the user over the frame. Hence, we perform counting in the

realistic setting commonly referred as “in the wild”, i.e. realistic footage,

including conditions contaminated by blur, non-uniform lighting, and non

frontal pose. Moreover, multiple gates can be defined per single cameras,

allowing monitoring of multiple entrances.

The contributions of this work are three-fold: i. we propose the task

of unique counting which is a variation of counting task; ii. we propose

a complete real-time system which is able to perform detection, tracking
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Figure 3.1: The unique counting task. The task is to count the number

of unique people who cross the virtual gate, drawn in blue. In this example,

person #2 crosses the gate twice but he is only counted once.

and unique counting in the wild with user drawn gates, and iii. we report

experiments on the challenging DukeMTMC dataset [38] showing that our

method is able to effectively count people in real time and discern between

the few persons which do multiple passages through the gates.

In Section 3.3 we describe our method in detail, including the various

parts of our pipeline; Section 3.4 reports experiments on our adaptation of

DukeMTMC to the task of unique counting and finally in Section 3.5 our

conclusions are reported.

3.2 Related Works

The problem of unique people counting is mainly related to the topics of

people counting and open world person re-identification.

3.2.1 People Counting

Vision-based people counting systems have become more popular in recent

years, which allow counting in different scenarios [134, 140]. Two different

research directions are pursued: spatial people counting and temporal people

counting.

Spatial people counting Works in this direction aim at counting the

exact number of people who are present in a given image or video frame.

The main difficulty of this task is related to detecting persons, taking careful
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attention to occlusions of people and their different appearance when in a

crowd.

Detection based methods typically employ object detection methods spe-

cialized to detect people [141]. They train classifiers using features such as

Haar wavelets, histogram oriented gradients [141] and more recently with

convolutional neural network based methods [134]. To increase robustness

to occlusions, Li et al. [142] propose to use head and shoulder detectors,

which are more distinct than full body. Xu et al. [143] add a tracker to re-

ject false pedestrian detections. However, head and shoulder detectors make

re-identification more difficult since they usually cover few pixels and the

face can be in the opposite direction than the camera.

Temporal people counting These works are applied to videos and aim

at counting the number of people who enter the recorded area, pass through

a virtual line or a forced passage.

For areas where people flow can be forced, several researchers proposed

to use overhead mounted depth cameras. They can accurately count people

flowing through an entrance [137]. Nonetheless, they need proper installa-

tion and cannot be employed in other environments. For open areas where

people can freely move, tracking of people is usually performed exploiting

the entire body [144] or the face [145]. Since counting is often employed

along waypoints or streets, a popular solution is using a virtual gate where

only detection passing thorough are recorded [136,139]. For instance, Liu et

al. [139] use segmentation to partition groups of people into individuals and

individually track their movement crossing the gate. They track people in

trajectories by formulating pedestrian hypotheses that are filtered and com-

bined into accurate counting events. In [136], a surveillance system based

on recent object detector YOLO [146] exploits an intersection over union

tracker to count people who cross a gate.

This work is related to temporal people counting and is based on the

use of a virtual gate. However, differently from all these works, we address

the task of unique person counting which require re-identification of people

who pass through the gate. We use the pedestrian appearance in a free

context where a user can freely draw the counting gate. Previous work

that perform re-identification uses only overhead mounted camera or face

information which is limited to high resolution cameras and may not be

privacy compliant.
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3.2.2 Open world person re-identification

The proposed method needs to discriminate between already known and

unknown persons as in the open-world setting [81]. The majority of person

re-identification methods focus on closed world scenarios using discriminative

view-invariant features or learning matching distance metrics [147]. Only

recent work considers open-set person re-identification [148], first in small

scale with basic features and distance learning [149], then with deep learning

features in an end-to-end manner [150]. Nonetheless, scaling to large scale

is still an open issue where only very recent work tries to address it, for

instance, with hashing [151].

Differently from these methods, our approach do not need to explicitly

maintain the full appearance of a person. We are only interested in the

appearance at the gate proximity, which permits to reduce the uncertainty

of the open-world setting and allows scaling with few resources.

3.3 Unique counting system

Given a video stream, the proposed system aims to count the number of

unique individuals crossing one or more gates. A gate is an imaginary line

drawn by a user where the system has to count people, usually used to

delimit a part of the scene from another.

Differently from the task of counting [134], unique person counting re-

quires the re-identification of persons in open-world setting [138]. The sys-

tem, beside detecting when a person crosses a gate, needs also to detect if an

instance has already crossed a gate in the past to avoid counting it multiple

times. It starts with no knowledge of the persons that will cross the gates,

so it has to memorize a discriminative representation of each new person as

it sees them.

For person re-identification one approach is to extract face features since

they are strongly discriminative [145]. However, their use limit where the

system can be applied due to technical requirements and privacy. Face de-

tections should be at least of a minimum size to be discriminative, forcing

to employ cameras with high resolutions, mounted to observe people facing

the camera. Hence people cannot be recognized in both directions. More-

over, being a sensitive information, the acquisition of faces without explicit

consent can raise privacy concerns. For these reasons, we propose to exploit

body related features. Body features are not as discriminative as face fea-
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tures but they can be extracted in every pose and hardly poses any privacy

concern.

The proposed system is composed of four submodules, shown in Fig. 3.2:

i. a person detector to identify pedestrians in the frame; ii. a tracker to

track the trajectory of each pedestrian and detect gate crossings; iii. a

module to extract body features, and iv. a re-identification module that

allows to recognize previously observed people. In the following sections we

will explain in details each module.

A

B

C

person
detection

tracking

gate crossing
detection

feature
extraction

NN
matching

re-identif. D
new

Figure 3.2: Pipeline of the proposed system. Given a frame, persons

are detected in the scene and tracked when they come near a gate. Upon

gate crossing, features of the person in the red area near a gate are extracted

and used to perform open-world re-identification.

3.3.1 Person Detector

The person detector module is responsible of detecting pedestrian in the

scene. We test two different state of the art methods which allow to process

videos in real-time, with different settings. The first method we employ is a

YOLO v3 network [146] which is a single-stage object detector that process

an image in a single pass and generates a set of boxes with an associated

probability. The method exploits a fully convolutional architecture where

the last layer uses 1 × 1 filters to output a fixed amount of windows with

different confidence. We used a network trained on the 80 classes in COCO
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dataset with a TensorRT implementation but detections are only taken for

the class of person.

For this module, we also test the recent OpenPose detector [152] which

is the first real-time multi-person system to jointly detect human body and

its parts from single images. OpenPose exploits a sequential architecture

composed of convolutional networks that directly operate on belief maps

from previous stages. Part locations are increasingly refined without the

need for explicit graphical model-style inference. This method emits 25 key-

points that encode the pose of each person detected, from which we derive

a bounding box. More specifically, we first split these keypoints to iden-

tify head, upper body and lower body separately. Then we ensure that the

three blocks that define the human body satisfy human body proportions

(i.e. body height should be about 7×head height and body width should

be about 2×head height). If we miss at most two of the three boxes due to

keypoint absence or to low keypoint score, we can derive them by exploit-

ing body proportions and the measures of the available ones. Finally, we

take the box that tightly encompasses the three main human body parts

obtained in this way. This makes our detections more robust, especially in

borderline situations like cases where there are persons overlapping or partial

occlusions.

3.3.2 Tracking and gate crossing detection

Tracking detections allows the system to track movement of pedestrians and

understand when they are crossing virtual gates. Each person is represented

using a bounding box with its location. The detected boxes are joined to-

gether into tracks using a tracking by detection strategy, grouping bounding

boxes in consecutive frames by looking at their Intersection over Union (IoU)

and the optical flow estimation.

We only evaluate tracks around the gates, so that we can reduce the risk

of incurring in tracking errors. We monitor the distance of the middle point

of the bottom segment of the bounding box (ideally the point between the

feet) from the gate line. Only when distance of the box is less than K pixels

(that we empirically set to 100) from the gate, it is tracked.

The tracker continuously monitors all pedestrians in the tracks. At each

frame a set of new detections is produced and we update the tracker state

by associating each track to every detection, if possible. For unassociated

detections we start new tracks. We employ a greedy association approach.
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At each frame we get a set of detections Dt; given the set of tracks Tt−1
detected at the previous frame, we compute an association matrix A based

on IoU, such that Aij = di∩tj
di∪tj . Then we apply the function track described

in Algorithm 2.

Algorithm 2: Data association algorithm. We associate tracks and

unassociated detection if IoU > τ and remove a track if it is “dead”

for ω frames. Matrix A keeps track of associations and vector l

counts the amount of frames a track i is not associated with any

detection.

1 FUNCTION track (Dt,Tt−1)
Data: Tt−1 ∶ {t1 . . . tn},Dt ∶ {d1 . . . dm},Aij = di∩tj

di∪tj
Result: Tt

2 while maxij Aij > τ do

3 if not Kij ∧Aij > τ then

4 ⟨̂i, ĵ⟩ ← arg maxij Aij ;

5 t̂i ← dĵ Kî∶ ← TRUE;

6 K∶ĵ ← TRUE;

7 end

8 end

/* Tracks not used for γ frames are removed. */

9 Tt ← Tt−1 ∖ {ti∣li > γ};

/* Unassigned detections initialize new tracks. */

10 Tt ← Tt−1 ∪ {d∣Kij = TRUE}

The procedure generates the paths, i.e. a sequence of points followed

by people on the scene. Gate crossing detection is performed by testing

segment intersection between the sequences of points from each track and

a given line of the gate. We address it as a segment intersection problem

of 2nd degree, also known as the orientation test which robustness has been

studied in [153]. Given two line segments A = (s1, e1) and B = (s2, e2), we

can test if they intersect by checking the orientations of the ordered triplets

formed by the four points (s1, e1, s2, e2). There is intersection between A

and B if (s1, e1, s2) and (s1, e1, e2) have different orientations and similarly

(s2, e2, s1) and (s2, e2, e1) have different orientations. If points are collinear,

we handle this case by fitting a line through A and B and checking that



3.3 Unique counting system 55

the angle is around 0 or 180 degrees. By looking at the orientations of the

triplets we can also understand in which direction the intersection occurred.

In case of multiple gates per camera, by tracking a person that is moving

across the scene we can re-identify the tracks who crosses multiple gates. In

that case, the system can directly ignore the following intersections, without

further advancing with the pipeline.

3.3.3 Body feature extractor

The body feature extractor module receives from the tracker those tracks

that cross a gate and extract a characteristic representation of each per-

son. We fine-tuned and tested two ResNet50 [125] networks pre-trained on

the ImageNet dataset as body feature extractors. To this end, we chose

two datasets which are popular for the task of person re-identification and

that contain challenging visual conditions of people. The first net, named

ResNet50-Market, is fine-tuned on the Market1501 dataset [154], while the

other, ResNet50-Duke on the DukeMTMC-reID dataset [155]. For ResNet50-

Market, we use the full training set of the Market1501 dataset which has 6

cameras and contains 32,668 annotated bounding boxes of 1,501 identities.

For ResNet50-Duke, we use the full training set of the DukeMTMC-reID

dataset, which is a subset of the DukeMTMC dataset, where 1,404 identities

are selected and for whom 36,411 bounding boxes are extracted, sampling

the videos every 120 frames. The resulting fine-tuned networks are evaluated

on the respective validation sets, obtaining a mAP of 79.1% and a Rank-1

of 91.8% and a mAP of 59.4% and a Rank-1 of 77.2% respectively. In both

cases the results, specifically the Rank-1 figures, show that the fine-tuned

networks exhibit good re-identification capabilities.

For both network, each bounding box of a person is resized to the fixed

size of 128x256 pixels as network input. The body feature is obtained by

taking as output the penultimate layer feature maps of dimension 2048 nor-

malization.

Given a track K that cross a gate, the module extracts the bounding box

of the person and a feature fi for each one of the M = 90 (empirically set)

frames before and after the crossing, using one of the fine-tuned networks. As

a result we obtain a set of feature per person crossing F = {f−45, . . . , f45}. We

obtain the final feature PK by applying average pooling to the set following

L2 normalization.
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3.3.4 Re-Identification

This module is responsible to keep track of the known identities and incre-

ment the counter of each gate when a new person is crossing. To this end,

the module maintain a set of features M for each gate where new person

features are stored upon crossing. To detect if a person was saw in the past

we implement a simple distance strategy. Given a feature PK , we compute

its cosine distance < PK ,Mi > from all features Mi in M. When Mi > η,

with η cross-validated on the training set, we consider the person as new. In

that case the module increments the counter of the gate and adds PK toM.

The number of known identities corresponds to the count of unique persons

that have crossed each gate and is the final output of the system.

3.4 Experiments

In this section we report our experiments of the whole system and its com-

ponents. We first describe the dataset used and the experimental settings.

Then we report the experiments of our system on the unique counting task.

Gate #1 Gate #2

Gate #3

Gate #1

Gate #2

Gate #3

Camera #5 Camera #6

Figure 3.3: Gates location. We drawn 3 gates per camera to count the

flow of people along the principal directions. Note that the system allow a

user to freely drawn them as many as needed.

3.4.1 Dataset and ground truth

We used the challenging DukeMTMC dataset [38]. The dataset is comprised

of 8 static camera recordings of the Duke University campus. Each recording

consists of roughly 85 minutes of 1080p 60fps video footage with more than

2,000,000 manually annotated frames for multi-target tracking, 7,000 single

camera trajectories and more than 2,000 identities. Identities have been
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manually annotated with the respective bounding box and unique ID. They

follow unconstrained paths, moving between different cameras.

3.4.2 Experimental Setup

From the 8 cameras of the DukeMTMC dataset we selected 2 cameras for

testing the system, specifically number 5 and 6 as they feature the most

number of identities exiting from the scene and later returning. We used

the train val sequence as ground truth annotations are available for this

one, while they are not provided for test sequences. We cross-validated the

cosine-distance threshold η and the M frame length on camera 4.

For each scene we place 3 gates which cover all the main directions a

person can go. Images of the gates for each scene are shown in Fig. 3.3.

Naturally the dataset does not come with unique counting ground truth,

but we can generate it starting from its multi-target annotations. To this

end, identity annotations are used to identify which gate is crossed and by

how many persons. Counting is made when a person crosses one of the gates.

Subsequent crossing of the same or any other gate in the scene is ignored.

We use the resulting number as ground-truth for our method.

3.4.3 Results

For assessing the performance of the system, we first test the proposed

tracker with the two detectors and then we test the performance of the

whole system comprised also of feature extraction and re-identification.

Table 3.1: Counting results using the baseline approach.

Cam. 5 Cam. 6

YL + Tracker 785 1187

OP + Tracker 644 1070

GT + Tracker 459 728

GT Unique 431 725

Detector + Tracker For the first experiment, we test the tracker only

in absence of feature extractor and re-identification modules. The detector

and tracker can perform unique counting in presence of more than one gate
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Table 3.2: Counting results using the full system. R50 represents the

ResNet50 network.

Cam. 5 Cam. 6

YL + Tracker + R50-Market 561 778

OP + Tracker + R50-Market 533 762

GT + Tracker + R50-Market 501 741

YL + Tracker + R50-Duke 438 752

OP + Tracker + R50-Duke 434 748

GT + Tracker + R50-Duke 432 730

GT Unique 431 725

by checking if a track intersects more multiple gates. We use this method

as baseline, named YL + Tracker when using the YOLO detector and OP

+ Tracker when using OpenPose. For reference, we also measure the tracker

performance only by using the ground truth boxes as detector. We name

this combination GT + Tracker.

We report the resulting persons counted by the baseline in Table 3.1 and

compare the methods to the ground truth person counting (GT Unique). We

observe that GT + Tracker and GT Unique are very narrow in gap. We note

that both cameras exhibit the same observations. Given a perfect detector,

our tracking method is able to obtain a very good result with only the 6.4 %

of error, confirming that the tracker can effectively discern when the same

person cross multiple gates. Looking at YL + Tracker and OP + Tracker we

observe that the error is higher, while the latter has a slightly more correct

result. This suggest that detector and tracking alone are not sufficient to

perform the hard task of unique counting due to missing detections and

tracker not able to completely recover from such issues. OpenPose result in

more coherent detections as expected. Our tracker may miss some identities

due to occlusions or persons abandoning the scene and re-entering later.

This leads to double-counting, as re-entering persons would be considered

new identities. At the same time, overlapping between tracks may lead to

identity swap and thus to erroneous counting.

Full system In this experiment we test the complete system, that is the

four modules including feature extraction and re-identification, with the two

fine-tuned networks (ResNet50-Market and ResNet50-Duke). The full sys-
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tem run at about ∼12.2 FPS. We report in table 3.2 the persons counted

by the whole system in the various combinations. We can see that although

having achieved a lower Rank-1 for re-identification, fine-tuning on the same

domain dataset yields better results. In fact, between the various combina-

tions, we observe that the best combination is OP + Tracker + ResNet50-

Duke, resulting in a near perfect result. Comparing Table 3.1 and 3.2, we

note that by adding the last two modules, the system is able to recognize

more passed people and outputs a counter more near the ground truth. This

confirm that our re-identification approach is able to reduce the false count-

ing by re-identify the track of same persons.

3.5 Conclusions

In this chapter we proposed a system to perform the variant of unique count-

ing, that is counting the unique persons which crosses a user drawn gate. The

system is able to detect persons, track them when they are near a gate and

crosses it. We perform open-world re-identification on the body feature, by

exploiting fine-tuned features that we trained on Market and DukeMTMC-

reid datasets. Experiments on the challenging DukeMTMC dataset showed

that our system is able to effectively count people passing through the gates

in real time and recognize already passed people.
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Chapter 4

Regular Polytope Networks

Neural networks are widely used as a model for classification

in a large variety of tasks. Typically, a learnable transformation

(i.e. the classifier) is placed at the end of such models returning

a value for each class used for classification. This transforma-

tion plays an important role in determining how the generated

features change during the learning process. In this work we ar-

gue that this transformation not only can be fixed (i.e. set as

non trainable) with no loss of accuracy and with a reduction in

memory usage, but it can also be used to learn stationary and

maximally separated embeddings. We show that the stationarity

of the embedding and its maximal separated representation can be

theoretically justified by setting the weights of the fixed classifier

to values taken from the coordinate vertices of the three regu-

lar polytopes available in Rd, namely: the d-Simplex, the d-Cube

and the d-Orthoplex. These regular polytopes have the maximal

amount of symmetry that can be exploited to generate station-

ary features angularly centered around their corresponding fixed

weights. Our approach improves and broadens the concept of a

fixed classifier, recently proposed in [156], to a larger class of fixed

classifier models. 1 2

1Part of this chapter has been published as “Regular Polytope Networks” to IEEE

Transactions on Neural Networks and Learning Systems (TNNLS) [157]
2Part of this chapter has been published as “Maximally compact and separated features

with regular polytopenetworks” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops [158]

61
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4.1 Introduction

Deep Convolutional Neural Networks (DCNNs) have achieved state-of-the-

art performance on a variety of tasks [159,160] and have revolutionized Com-

puter Vision in both classification [161, 162] and representation [2, 36]. In

DCNNs, both representation and classification are typically jointly learned

in a single network. The classification layer placed at the end of such models

transforms from the dimension d of the network internal feature representa-

tion to the number K of the class categories. Despite the large number of

trainable parameters that these layers add to the model (i.e. d ×K), their

removal only gives a slight increase in error [163]. Additionally, latest ar-

chitectures achieving improved generalization tend to avoid the use of fully

connected layers [164] [165] [125]. Furthermore, it is well known that DC-

NNs can be trained to perform metric learning without the explicit use of

a classification layer [166] [167] [168]. In particular, it has been shown in

more detail that excluding the parameters of the classification layer from

learning causes little or no decline in performance while allowing a reduc-

tion in the number of trainable parameters [156]. Fixed classifiers have also

an important role in theoretical convergence analysis of training models with

batch-norm [169]. It is shown very recently in [170] that DCNNs with a fixed

classifier and batch-norm in each layer establish a principle of equivalence

between different learning rate schedules.

All these works seem to suggest that the final fully connected layer used

for classification is somewhat redundant and does not have a primary role

in learning and generalization. In this Chapter we show how a special set

of fixed classification layers has a key role in modeling the internal feature

representation in DCNNs, while still ensuring little or no loss in classification

accuracy and a significant reduction in memory usage.

In DCNNs the internal feature representation for an input sample is the

feature vector f generated by the penultimate layer, while the last layer (i.e.

the classifier) outputs score values according to the inner product as:

zi = w⊺
i ⋅ f (4.1)

for each class i, where wi is the weight vector of the classifier for the class i.

To evaluate the loss, the scores are further normalized into probabilities via

the Softmax function [171].

Since the values of zi can be also expressed as zi = w⊺
i ⋅f = ∣∣wi∣∣ ∣∣f ∣∣ cos(θ),

where θ is the angle between wi and f , the score for the correct label with
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Figure 4.1: Regular Polytope Networks (RePoNet). The fixed classifiers

derived from the three regular polytopes available in Rd with d ≥ 5 are

shown. From left: the d-Simplex, the d-Cube and the d-Orthoplex fixed

classifier. The trainable parameters wi of the classifier are replaced with

fixed values taken from the coordinate vertices of a regular polytope (shown

in red).

respect to the other labels is obtained by optimizing ∣∣wi∣∣, ∣∣f ∣∣ and θ. This

simple formulation of the final classifier provides the intuitive explanation of

how feature vector directions and weight vector directions align simultane-

ously with each other at training time so that their average angle is made as

small as possible. If the parameters wi of the classifier in Eq. 4.1 are fixed

(i.e. set as non trainable), only the feature vector directions can align to-

ward the classifier weight vector directions and not the opposite. Therefore,

weights can be regarded as fixed angular references to which features align.

According to this, we obtain a precise result on the spatio-temporal sta-

tistical properties of the generated features during the learning phase. Sup-

ported by the empirical evidence in [156] we show that not only the final

classifier of a DCNN can be set as non trainable with no loss of accuracy

and with a significant reduction in memory usage, but that an appropriate set

of values assigned to its weights allows learning a maximally separated and

strictly stationary embedding while training. That is, the features generated

by the Stochastic Gradient Descent (SGD) optimization have constant mean,

angularly centered around their corresponding fixed class weights. Constant

known mean implies that features cannot have non-constant trends while

learning. Maximally separated features and their stationarity are obtained
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Figure 4.2: Feature learning on the MNIST dataset in a 2D embedding space.

Fig. (a) and Fig. (c) show the 2D features learned by RePoNet and by a stan-

dard trainable classifier respectively. Fig. (b) and Fig. (d) show the training

evolution of the classifier weights (dashed) and their corresponding class fea-

ture means (solid) respectively. Both are expressed according to their angles.

Although the two methods achieve the same classification accuracy, features

in the proposed method are both stationary and maximally separated.

by setting the classifier weights according to values following a highly sym-

metrical configuration in the embedding space.

DCNN models with trainable classifiers are typically convergent and

therefore, after a sufficient learning time has elapsed, some form of stationa-

rity in the learned features can still be achieved. However, until that time,

it is not possible to know where the features will be projected by the learned

model in the embedding space. An advantage of the approach proposed in

this Chapter is that it allows to define (and therefore to know in advance)

where the features will be projected before starting the learning process.

Our result can be understood by looking at the basic functionality of

the final classifier in a DCNN. The main role of a trainable classifier is to

dynamically adjust the decision boundaries to learn class feature represen-

tations. When the classifier is set as non trainable this dynamic adjustment

capability is no longer available and it is automatically demanded to all

the previous layers. Specifically, the work [156] reports empirically evidence

that the expressive power of DCNN models is large enough to account for

the missing dynamic adjustment capability of the classifier [156]. We provide

more systematic empirical evidence confirming and broadening the general

validity of DCNNs with fixed classifiers (Sec. 4.5.1).

We show that our approach can be theoretically justified and easily imple-

mented by setting the classifier weights to values taken from the coordinate

vertices of a regular polytope in the embedding space. Regular polytopes
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are the generalization in any number of dimensions of regular polygons and

regular polyhedra (i.e. Platonic Solids). Although there are infinite reg-

ular polygons in R2 and 5 regular polyhedra in R3, there are only three

regular polytopes in Rd with d ≥ 5, namely the d-Simplex, the d-Cube and

the d-Orthoplex. Having different symmetry, geometry and topology, each

regular polytope will reflect its properties into the classifier and the embed-

ding space which it defines. Fig. 4.1 illustrates the three basic architectures

defined by the proposed approach termed Regular Polytope Networks (Re-

PoNet). Fig. 4.2 provides a first glance at our main result in a 2D embedding

space. Specifically, the main evidence from Fig. 4.2a and 4.2b is that the

features learned by RePoNet remain aligned with their corresponding fixed

weights and maximally exploit the available representation space directly

from the beginning of the training phase.

We apply our method to multiple vision datasets showing that it is possi-

ble to generate stationary and maximally separated features without reduc-

ing the generalization performance of DCNN models and with a significant

reduction in GPU memory usage at training time.

4.2 Related Works

4.2.1 Fixed Classifier

Empirical evidence, reported in [172], firstly shows that a convolutional neu-

ral network with a fixed classification layer (i.e. not subject to learning)

initialized by random numbers does not worsen the performance on the

CIFAR-10 dataset. A recent paper [156] explores in more detail the idea of

excluding the parameters wi in Eq.4.1 from learning. The work shows that

a fixed classifier causes little or no reduction in classification performance for

common datasets while allowing a noticeable reduction in trainable parame-

ters, especially when the number of classes is large. Setting the last layer as

not trainable also reduces the computational complexity for training as well

as the communication cost in distributed learning. The described approach

sets the classifier with the coordinate vertices of orthogonal vectors taken

from the columns of the Hadamard3 matrix. The paper in question does not

investigate on the internal feature representation. A major limitation of this

3The Hadamard matrix is a square matrix whose entries are either +1 or −1 and whose

rows are mutually orthogonal.
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method is that, when the number of classes is greater than the dimension of

the feature space, it is not possible to have mutually orthogonal columns and

therefore some of the classes are constrained to lie in a common subspace

causing a reduction in classification performance. We improve and general-

ize this work by finding a novel set of unique directions that overcomes the

limitations of the Hadamard matrix.

The work [173] trains a neural network according to the triplet loss with a

set of fixed vertices on a hyper-sphere (i.e. a sphere lattice). The work aims

at learning a function that maps real-valued vectors to a uniform distribution

over a d-dimensional sphere.

As shown in [170], fixed classifiers are also related to BatchNorm [169]

and learning rate schedules. BatchNorm parameterizes the weights of a layer

to “normalize” its activations (i.e. the features), however, BatchNorm is not

typically applied to normalize the classifier activations (i.e. logits). The

work in [170] firstly shows that in the presence of BatchNorm layers and a

fixed classifier layer, the L2 regularization has the effect of training a Neural

Network with an exponentially increasing learning rate.

4.2.2 Softmax Angular Optimization

As originally described in [174], under Softmax loss4 the label prediction is

largely determined by the angular similarity to each class since Softmax loss

uses cosine distance as classification score. Several papers followed exploiting

this intuition to train DCNNs by direct angle optimization [175–178]. The

angle encodes the required discriminative information for class recognition.

The wider the angles the better the classes are separated from each other

and, accordingly, their representation is more discriminative. The common

idea of these works is to constrain the features and/or the classifier to be

unit normalized.

The works [179], [180] and [178] normalize both features and weights

thus obtaining an exact optimization of the angle in Eq. 4.1. Under the only

weight normalization label prediction is largely determined by the angular

similarity [174] [176]. This is not only because Eq. 4.1 can be e factorized

into amplitude and angular component, but also because decision boundaries

between adjacent classes are determined by their angular bisectors.

4The combination of cross-entropy loss and the Softmax function at the last fully

connected layer.
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Differently from weight normalization, feature normalization cannot di-

rectly perform angle optimization but encourages intra-class compactness of

learned features [175]. Specifically, [175] also proposes adding a scale param-

eter after feature normalization based on the property that increasing the

norm of samples can decrease the Softmax loss [178,181]. Despite not being

involved in learning discriminative features, the work [156], in addition to

fixing the classifier, normalizes both the weights and the features and ex-

ploits the multiplicative scale parameter. In accordance with [156, 175, 182]

and [178] we found that feature normalization and the multiplicative scale

parameter are hard to optimize for general datasets, having a significant de-

pendence on image quality. According to this, we follow the work [176] that

normalizes the classifier weights and sets its biases to zero. A property intro-

duced in [178] and further discussed in [181] shows that setting the classifier

bias to zero encourages well-separated features to have bigger magnitudes.

This avoids features collapsing into the origin making angles between the

fixed weights and features a reliable metric for classification. As further con-

jectured in [178], if all classes are well-separated, weight normalization will

roughly correspond to the means of features in each class. The maximal and

fixed separation proposed in this Chapter further strengthens the conjecture

producing features more centered around their fixed weights as the training

process advances.

Another close related work is [183] in which separability of learned fea-

tures is improved by injecting a single dynamic virtual negative class into

the original softmax. A virtual class is a class that is active in the classifier

but has no data available from which to learn. Injecting the virtual class

enlarges the inter-class margin and compresses intra-class distribution by

strengthening the decision boundary constraint. Due to the fixed classifier

we can exploit their result in the case of multiple static virtual classes. This

happens when the number of classes does not match the number of vertices

of a regular polytope.

While all the above works impose large angular distances between the

classes, they provide solutions to enforce such constraint in a local manner

without considering global inter-class separability and intra-class compact-

ness. For this purpose, very recently the works [184], [185] and [186] add a

regularization loss to specifically force the classifier weights to be far from

each other in a global manner. These works draw inspiration from a well-

known problem in physics – the Thomson problem [187], where given K
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charges confined to the surface of a sphere, one seeks to find an arrangement

of the charges which minimizes the total electrostatic energy. Electrostatic

force repels charges each other inversely proportional to their mutual dis-

tance. In [184], [185] and [186] global equiangular features are obtained by

adding to the standard categorical cross-entropy loss a further loss inspired

by the Thomson problem. We follow a similar principle for global sepa-

rability by considering that minimal energies are often concomitant with

special geometric configurations of charges that recall the geometry of Pla-

tonic Solids in high dimensional spaces [188]. Preliminary and qualitative

results of Regular Polytope Networks for compact feature learning have been

presented in [158].

4.3 Main Contributions

Our technical contributions can be summarized as follows:

1. We generalize the concept of fixed classifiers and show they can gener-

ate stationary and maximally separated features at training time with

no loss of performance and in many cases with slightly improved per-

formance.

2. We performed extensive evaluations across a range of datasets and

modern CNN architectures reaching state-of-the-art performance. We

observed faster speed of convergence and a significant reduction in

model parameters.

3. We further provide a formal characterization of the class decision bound-

aries according to the dual relationship between regular polytope and

statistically verify the validity of our method on random permutations

of the labels.

4.4 Regular Polytopes and Maximally Sepa-

rated Stationary Embeddings

We are basically concerned with the following question: How should the non

trainable weights of the classifier be distributed in the embedding space such

that they generate stationary and maximally separated features?
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Let X = {(xi, yi)}Ni=1 be the training set containing N samples, where xi
is the raw input to the DCNN and yi ∈ {1,2,⋯,K} is the label of the class

that supervises the output of the DCNN. Then, the cross entropy loss can

be written as:

L = − 1

N

N

∑
i=1

log
⎛
⎝

exp(w⊺
yifi + byi)

∑Kj=1 exp(w⊺
j fi + bj)

⎞
⎠
, (4.2)

where W = {wj}Kj=1 are the classifier weight vectors for the K classes. Fol-

lowing the discussion in [176] we normalize the weights and zero the biases

(ŵj = wj

∣∣wj ∣∣ , bj = 0) to directly optimize angles, enabling the network to

learn angularly distributed features. Angles therefore encode the required

discriminative information for class recognition and the wider they are, the

better the classes are represented. As a consequence, the representation in

this case is maximally separated when features are distributed at equal angles

maximizing the available space.

If we further consider the feature vector parametrized by its unit vector

as fi = κi f̂i where κi = ∣∣fi∣∣ and f̂i = fi
∣∣fi∣∣ , then Eq.4.2 can be rewritten as:

L = − 1

N

N

∑
i=1

log
⎛
⎝

exp(κiŵ⊺
yi f̂i)

∑Kj=1 exp(κiŵ⊺
j f̂i)

⎞
⎠

(4.3)

The equation above can be interpreted as if N realizations from a set of K

von Mises-Fisher distributions with different concentration parameters κi are

passed through the Softmax function. The probability density function of

the von Mises-Fisher distribution for the random d-dimensional unit vector f̂

is given by: P (f̂ ; ŵ, κ) ∝ exp (κŵ⊺f̂) where κ ≥ 0. Under this parameteriza-

tion ŵ is the mean direction on the hypersphere and κ is the concentration

parameter. The greater the value of κ the higher the concentration of the

distribution around the mean direction ŵ. The distribution is unimodal for

κ > 0 and is uniform on the sphere for κ = 0.

As with this formulation each weight vector is the mean direction of its

associated features on the hypersphere, equiangular features maximizing the

available space can be obtained by arranging accordingly their corresponding

weight vectors around the origin. This problem is equivalent to distributing

points uniformly on the sphere and is a well-known geometric problem, called

Tammes problem [189] which is a generalization of the physic problem firstly

addressed by Thomson [187]. In 2D the problem is that of placing K points

on a circle so that they are as far as possible from each other. In this
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Table 4.1: Number of regular Polytopes as dimension d increases.

Dimension d 1 2 3 4 ≥ 5

Number of Regular Polytopes 1 ∞ 5 6 3

case the optimal solution is that of placing the points at the vertices of a

regular K-sided polygon. The 3D analogous of regular polygons are Platonic

Solids. However, the five Platonic solids are not always the unique solutions

of the Thomson problem. In fact, only the tetrahedron, octahedron and the

icosahedron are the unique solutions for K = 4, 6 and 12 respectively. For

K = 8: the cube is not optimal in the sense of the Thomson problem. This

means that the energy stabilizes at a minimum in configurations that are

not symmetric from a geometric point of view. The unique solution in this

case is provided by the vertices of an irregular polytope [190].

The non geometric symmetry between the locations causes the global

charge to be different from zero. Therefore in general, when the number of

charges is arbitrary, their position on the sphere cannot reach a configuration

for which the global charge vanishes to zero. A similar argument holds

in higher dimensions for the so called generalized Thomson problem [188].

According to this, we argue that, the geometric limit to obtain a zero global

charge in the generalized Thomson problem is equivalent to the impossibility

to learn maximally separated features for an arbitrary number of classes.

However, since the classification task it is not grounded in a specific di-

mension as for the case of charges, our approach addresses this issue by

selecting the appropriate dimension of the embedding space so as to have

access to symmetrical fixed classifiers directly from regular polytopes. In di-

mensions 5 and higher, there are only three ways to do that (See Tab. 4.1)

and they involve the symmetry properties of the three well known regu-

lar polytopes available in high dimensional space [191]. These three special

classes exist in every dimensionality and are: the d-Simplex, the d-Cube and

the d-Orthoplex. In the next paragraphs the three fixed classifiers derived

from them are presented.

The d-Simplex Fixed Classifier. In geometry, a simplex is a gener-

alization of the notion of a triangle or tetrahedron to arbitrary dimensions.

Specifically, a d-Simplex is a d-dimensional polytope which is the convex hull

of its d+ 1 vertices. A regular d-Simplex may be constructed from a regular
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(d − 1)-Simplex by connecting a new vertex to all original vertices by the

common edge length. According to this, the weights for this classifier can

be computed as:

WS = {e1, e2, . . . , ed−1, α
d−1
∑
i=1

ei} (4.4)

where α = 1−
√
d+1
d

and ei with i ∈ {1,2, . . . , d − 1} denotes the standard basis

in Rd−1. The final weights will be shifted about the centroid and normalized.

The d-Simplex fixed classifier defined in an embedding space of dimension d

can accommodate a number of classes equal to its number of vertices:

K = d + 1. (4.5)

This classifier has the largest number of classes that can be embedded in Rd

such that their corresponding class features are equidistant from each other.

It can be shown (see appendix) that the angle subtended between any pair

of weights is equal to:

θwi,wj = arccos( − 1

d
) ∀i, j ∈ {1,2, . . . ,K} ∶ i ≠ j. (4.6)

The d-Orthoplex Fixed Classifier. This classifier is derived from the

d-Ortohoplex (or Cross-Polytope) regular polytope that is defined by the

convex hull of points, two on each Cartesian axis of an Euclidean space, that

are equidistant from the origin. The weights for this classifier can therefore

defined as:

WO = {±e1,±e2, . . . ,±ed} (4.7)

Since it has 2d vertices, the derived fixed classifier can accommodate in

its embedding space of dimension d:

K = 2d (4.8)

different classes. Each vertex is adjacent to other d−1 vertices and the angle

between adjacent vertices is

θwi,wj =
π

2
∀ i, j ∈ {1,2, . . . ,K} ∶ j ∈ C(i) (4.9)

Where each j ∈ C(i) is an adjacent vertex and C is the set of adjacent

vertices defined as C(i) = {j ∶ (i, j) ∈ E}. E is the set of edges of the graph

G = (WO,E). The d-Orthoplex is the dual polytope of the d-Cube and
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vice versa (i.e. the normals of the d-Orthoplex faces correspond to the the

directions of the vertices of the d-Cube).

The d-Cube Fixed Classifier. The d-Cube (or Hypercube) is the

regular polytope formed by taking two congruent parallel hypercubes of di-

mension (d − 1) and joining pairs of vertices, so that the distance between

them is 1. A d-Cube of dimension 0 is one point. The fixed classifier derived

from the d-Cube is constructed by creating a vertex for each binary number

in a string of d bits. Each vertex is a d-dimensional boolean vector with bi-

nary coordinates −1 or 1. Weights are finally obtained from the normalized

vertices:

WC =
⎧⎪⎪⎨⎪⎪⎩
w ∈ Rd ∶ [− 1√

d
,

1√
d
]
d⎫⎪⎪⎬⎪⎪⎭
. (4.10)

The d-Cube can accommodate:

K = 2d (4.11)

classes. The vertices are connected by an edge whenever the Hamming dis-

tance of their binary numbers is one therefore forming a d-connected graph.

It can be shown (see appendix) that the angle of a vertex with its adjacent

(i.e. connected) vertices is:

θwi,wj = arccos(d − 2

d
),∀ i, j ∈ {1, . . . ,K} ∶ j ∈ C(i) (4.12)

where C(i) is the set of vertices adjacent to the vertex i.

Fig. 4.3 shows the angle between a weight and its adjacent weights com-

puted from Eqs. 4.6, 4.9 and 4.12 as the dimension of the embedding space

increases. Having the largest angle between its weights, the d-Simplex fixed

classifier achieves the best inter-class separability. However, as the embed-

ding space dimension increases, its angle tends towards π/2. Therefore, the

largest the dimension of the space the more it becomes similar to the d-

Orthoplex classifier. The main difference between the two classifiers is in

their neighbor connectivity. The different connectivity of the three regular

polytope classifiers has a direct influence on the evaluation of the loss. In the

case of the d-Simplex classifier, all the summed terms in the loss of Eq. 4.3

have always comparable magnitudes in a mini batch.

The d-Cube classifier has the most compact feature embedding and the

angle between each weight and its d neighbors decreases as the dimension

increases. Accordingly, it is the hardest to optimize.
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Figure 4.3: The angular space defined by RePoNet classifiers. Curves repre-

sent the angle between a weight and its adjacent weights as the dimension

of the embedding space increases. The angle between class features follows

the same trend.

4.4.1 Implementation

Given a classification problem with K classes, the three RePoNet fixed clas-

sifiers can be simply instantiated by defining a non trainable fully connected

layer of dimension d, where d is computed from Eqs. 4.5, 4.8 and 4.11 as

summarized in Tab 4.2.

Table 4.2: Feature dimension d as a function of the number of classes K.

RePoNet d-Simplex d-Cube d-Orthoplex

Layer dim. d =K − 1 d = ⌈log2(K)⌉ d = ⌈K
2
⌉

In order to accommodate different CNN architectures having different

convolutional activations output size, a middle “junction” linear layer (with-

out ReLu) is required to go for example from the 2048 size of the ResNet50

to the feature size of 10 of the fixed d-Cube classifier with the 1000 classes

of ImageNet, or as to go from the 1669 of the DenseNet169 to the 500 of the

fixed d-Orthoplex classifier of the ImageNet dataset.
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Figure 4.4: Learning with not assigned classes in a 2D embedding space.

The figure shows the features learned with virtual negative classes using the

MNIST dataset. The distribution of features is learned using a 10-sided

regular polygon in which six of the classes are virtual (i.e. only the first four

digits are used). Unassigned weights (colored lines inside the shaded region)

force a large angular margin region (shaded region) from which features are

pushed out.

4.4.2 Exceeding Vertices as Virtual Negative Classes

Except for the d-Simplex that allows to fully assign all of its vertices for any

given number of classes K, for both the d-Cube and the d-Orthoplex clas-

sifiers some of the vertices may be in excess for a given number of classes.

As implied by Eq. 4.8, in the case of the d-Orthoplex one vertex remains

unassigned when the number of classes K is odd. In the case of the d-Cube

classifier, due to the exponential dependency in Eq. 4.11, a large number

of vertices may remain not assigned. For example, assuming K = 100 the

d-Cube fixed classifier has 128 vertices (see Tab. 4.2) and 28 of them are not

assigned to any class. As shown in [183], such unassigned classes act as vir-
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tual negative classes forcing a margin around the unassigned weights with-

out affecting the correctness of softmax based cross entropy optimization.

Indeed, virtual class injection does not change substantially the objective

function of Eq. 4.3 that can be rewritten as:

L = − 1

N

N

∑
i=1

log
⎛
⎝

exp(κiŵ⊺
yi f̂i)

∑Kj=1 exp(κiŵ⊺
j f̂i) +∑

KV

j=K+1 exp(κiŵ⊺
j f̂i)

⎞
⎠

(4.13)

where KV is the number of virtual classes (i.e. the exceeding polytope ver-

tices). The practical effect is that of packing the features space for each

class. Fig. 4.4 illustrates an example similar to Fig. 4.2(a) in which a 10-

sided polygon fixed classifier is learned to classify the first four digits of the

MNIST dataset (0,1,2 and 3). The remaining six “empty slots” of the clas-

sifier are not assigned to any class data and therefore the classifier acts as a

virtual negative classifier forcing a large margin (indicated as shaded region)

around the virtual class weights (colored lines). This basic result generalizes

the proposed method to an arbitrary number of classes.

4.4.3 Fixed Classifier Decision Boundaries

In binary-classification, the posterior probabilities obtained by softmax of

Eq.4.3 are:

p1 =
exp(κŵ⊺

1 f̂)
exp(κŵ⊺

1 f̂) + exp(κŵ⊺
2 f̂)

(4.14)

p2 =
exp(κŵ⊺

2 f̂)
exp(κŵ⊺

1 f̂) + exp(κŵ⊺
2 f̂)

(4.15)

where f is the learned feature vector and w1 w2 are the fixed classifier

weights. The predicted label will be assigned to the class 1 if p1 > p2 and

to the class 2 if p1 < p2. By comparing the two probabilities p1 and p2,

κŵ⊺
1 f̂ + κŵ⊺

2 f̂ determines the classification result. The decision boundary

is therefore κŵ⊺
1 f̂ + κŵ⊺

2 f̂ = 0. Due to weight normalization the posterior

probabilities result in p1 = κ∣∣f̂ ∣∣cos(θ1) and p2 = κ∣∣f̂ ∣∣cos(θ2) and since p1
and p2 share the same feature f̂ the equation cos(θ1)− cos(θ2) = 0 is verified

at the angular bisector between w1 and w2. Although the above analysis is

built on binary-class case, it can be generalized to the multi-class case [176].

In RePoNet angular bisectors define class decision boundaries that follow

a symmetry similar to that of the regular polytope defining the classifier.
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Bisector

Normal of the 
polygon side

Figure 4.5: The intuition behind the decision boundaries in RePoNet (10-

sided polygon). The bisector directions (dotted lines), represent the class

decision boundaries. They have the same direction of the normal of the corre-

sponding polygon side (only one shown for clarity). The decision boundaries

form a regular polygon that is related with the classifier 10-sided polygon

according to duality. For clarity only one class region is highlighted (shaded

region).

Specifically, the class decision boundaries and the weights of the classifier

are related by the duality relationship that exists between regular polytopes.

More practically:

• the set of decision boundaries of the d-Simplex classifier is shaped as a

d-Simplex.

• the set of the decision boundaries of the d-Cube classifier is shaped as

a d-Orthoplex;

• the set of the decision boundaries of the d-Orthoplex classifier is shaped

as a d-Cube.
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Figure 4.6: RePoNet fixed classifiers decision boundaries in a 3D embedding

space. In each figure, on the left it is shown: the regular polytope classifier

(light blue), its dual polytope (grey), a classifier weight w (red) and its edge

decision boundaries v1,v2, . . . (black). On the right the same entities are

shown on the unit sphere. Specifically, the yellow region shows the region

where class features are located. For clarity, only one class weight and the

corresponding edge decision boundaries are shown. Specifically, (a) shows

the d-Orthoplex classifer, (b) shows the d-Cube classifer and (c) shows the

d-Simplex classifer. While the figures illustrate the situation in R3, the

characterization extends to arbitrary dimensions.
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Class decision boundaries are still defined as a regular polytope and the

features located within such boundaries are therefore maximally separated.

The basic intuition behind this result can be better appreciated in 2D ex-

ploiting the well known result stating that all the regular polygons are self-

dual [191]. That is, the normal of each side of a regular polygon is parallel to

the direction from the origin towards the vertex of its dual polygon. Fig. 4.5

shows the example introduced in Fig. 4.4 in which decision boundaries are

highlighted with dotted lines according to the dual regular polygon. Fig. 4.6

illustrates the duality relationship between the weights of the proposed three

fixed classifiers and their decision boundaries in the 3D embedding space.

4.5 Experimental Results

We evaluate the correctness (Sec. 4.5.1) and the no loss of performance of our

approach with respect to standard baselines using trainable and fixed classi-

fiers across a range of datasets and architectures (Sec. 4.5.2). All the experi-

ments are conducted with the well known MNIST, FashionMNIST [192], EM-

NIST [193], CIFAR-10, CIFAR-100 [194] and ImageNet (ILSVRC2012) [43]

datasets. We chose several common CNN architectures (i.e. LeNet, VGG,

ResNet, DenseNet), as well as more recent ones (i.e. SeResNeXt50 [195],

SkResNeXt50 [196] and EfficientNet [197]) that improve performance while

maintaining or reducing computational complexity and model size.

4.5.1 Hard Permutations Verification

Since fixed classifiers cannot rely on an adjustable set of subspaces for class

feature representation, we want to test if some permutations are harder than

others for our proposed method. The presence of such hard permutations

would preclude the general applicability of our method. The standard train-

able classifier does not suffer from this problem, when features cannot be

well separated a trainable classifier can rearrange its feature subspace di-

rections so that the previous convolutional layers can better disentangle the

non-linear interaction between complex data patterns. A fixed classifier de-

mands this missing capability to all the previous layers.

According to this, we generate random permutations of the ground truth

label positions5 and a new model is learned for each permuted dataset.

5This is equivalent to randomly permuting the classifier weight vectors set W =
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Figure 4.7: Class permutation verification. Average accuracy curves and

confidence interval computed from the MNIST, CIFAR-10 and CIFAR-100

datasets (from top to bottom, respectively) under different random permu-

tations of the ground truth labels position.

Fig. 4.7 shows the mean and the 95% confidence interval computed from the

accuracy curves of the learned models. To provide further insight into this

analysis, 20 out of 500 accuracy curves computed for each dataset are also

shown. Specifically, the evaluation is performed on three different datasets

with an increasing level of complexity (i.e MNIST, CIFAR-10 and CIFAR-

100). All the models are trained for 200 epochs to make sure that the models

trained with CIFAR-100 achieve convergence.

In order to address the most severe possible outcomes that may happen,

for this experiment we used the d-Cube fixed classifier. Being the hardest to

optimize, this experiment can be regarded as a worst case analysis scenario

for our method. As shown in the same figure, the performance is substan-

tially insensitive to both permutations and datasets. The average reduction

in performance at the end of the training process is negligible and the con-

fidence intervals reflect the complexity of the datasets. Although the space

of permutations cannot be exhaustively evaluated even for a small number

of classes, we have achieved proper convergence for the whole set of 1500

learned models. The experiment took 5 days on a Nvidia DGX-1.

According to this, it is concluded that fixing the final classifier (therefore

not having access to a set of adjustable subspaces for class feature repre-

{wj}Kj=1.
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Figure 4.8: The distribution of features learned using a 10-sided regular

polygon. (a): A special permutation of classes is shown in which the MNIST

even and odd digits are placed in the positive and negative half-space of the

abscissa respectively. (b): The features learned using the CIFAR-10 dataset.

sentation) does not affect the expressive power of neural networks. This

experiment also provides a novel and more systematic empirical evidence

with respect to [156] (in which basically only one permutation is tested) on

the general applicability and correctness of fixed classifiers.

We finally report qualitative results of a learned permuted dataset. Fig. 4.8(a)

shows features learned in a k-sided polygon (2d embedding space) on the

MNIST dataset. In particular the model is learned with the permutation

(manually selected) of the labels that places even and odd digits features re-

spectively on the positive and negative half space of the abscissa. Fig. 4.8(b)

shows the features of on CIFAR-10 learned with a similar 10-sided-polygon.

It can be noticed that features are distributed following the same polygonal

pattern shown in Fig. 4.8(a).

4.5.2 Generalization and Performance Evaluation

Once verified that the order position of the class labels does not adversely

affect the proposed method, in this section we evaluate the classification per-

formance of RePoNet on the following datasets: MNIST, EMNIST, Fash-
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ionMNIST, CIFAR-10, CIFAR-100 and ImageNet. The proposed method

is compared with the fixed classifier method reported in [156], here imple-

mented for different architectures and different dimensions of the embedding

space. Standard CNN baselines with learned classifiers are also included.

Except for the final fixed classifier all the compared methods have exactly

the same architecture and training settings as the one that RePoNet uses.

MNIST and CIFAR

We trained the so called LeNet++ architecture [198] on all the MNIST family

datasets. The network is a modification of the LeNet [199] to a deeper and

wider network including parametric rectifier linear units (pReLU) [200]. We

further trained VGG [201] with depth 13 and 19, ResNet50 [125], SeNet [124]

and DenseNet169 [202] on the CIFAR-10 and CIFAR-100 datasets. Popular

network architectures for ImageNet require modifications to adapt to the

CIFAR 32x32 input size. According to this, our experiments follow publicly

available implementations6. We compared all the variants of our approach

for each architecture including trainable classifiers with different dimensions

of the feature space.

The mini batch size is 256 for both the MNIST family datasets and the

CIFAR-10/100 datasets. Specifically, for the CIFAR datasets, we compared

both a ”vanilla” learning setup with no hyperparameters tuning based on

the Adam optimizer (learning rate 0.0005) for the VGG architectures and a

learning setup based on SGD with a specific learning rate schedule (start-

ing from 0.1 and decreasing by a factor of 10 after 150 and 250 epochs) on

the ResNet50, SEnet18 and DenseNet169 architectures. As hyperparameters

tuning is an integral part of Deep Learning we provide two opposite learning

setup in this regard.

All the results are reported in Tab. 4.3, 4.4 and 4.5 for respectively the

MNISTs, CIFAR-10 and CIFAR-100. In addition to the well-known MNIST

and FashionMnist, we included EMNIST dataset having 47 classes including

lower/upper case letters and digits. This allows to quantify with a specific

dataset and architecture, as in CIFAR-10 and CIFAR-100, the classification

accuracy with a higher number of classes. Each entry in the tables report

the test-set accuracy. The subscript indicates the specific feature space di-

6https://github.com/bearpaw/pytorch-classification and https://github.com/

kuangliu/pytorch-cifar

https://github.com/bearpaw/pytorch-classification
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
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Table 4.3: Reported accuracy (%) of the RePoNet method on MNIST, EM-

NIST, FashionMNIST datasets on different combinations of architectures

and relative learned classifier baselines.

MNIST
(K = 10)

EMNIST
(K = 47)

FashionMNIST
(K = 10)

Architecture LeNet++

RePoNet K-sided-polygon 99.24d=2 72.81d=2 92.48d=2

Hadamard fixed classifier [156] 21.14d=2 4.12d=2 19.89d=2

Learned Classifier 99.21d=2 73.08d=2 92.79d=2

RePoNet d-Cube 99.58d=4 88.12d=6 94.01d=4

Hadamard fixed classifier [156] 41.99d=4 15.12d=6 37.16d=4

Learned Classifier 99.41d=4 86.96d=6 93.94d=4

RePoNet d-Orthoplex 99.66d=5 88.19d=24 94.84d=5

Hadamard fixed classifier [156] 79.34d=5 60.34d=24 74.22d=5

Learned Classifier 99.07d=5 87.66d=24 94.21d=5

RePoNet d-Simplex 99.71d=9 88.89d=46 94.29d=9

Hadamard fixed classifier [156] 99.12d=9 88.48d=46 94.30d=9

Learned classifier 99.41d=9 88.33d=46 94.41d=9

Hadamard fixed classifier [156] 99.54d=512 88.35d=512 94.14d=512

Learned classifier 99.29d=512 88.87d=512 94.28d=512

mension d used for that experiment. The results reveal and confirm that the

proposed method achieves comparable classification accuracy of other train-

able classifier models. This evidence is in agreement on all the combinations

of datasets, architectures, number of classes and feature space dimensions.

All the RePoNet variants exhibit similar behavior even in complex combi-

nations such as in the case of the CIFAR-100 dataset in low dimensional

feature space. For example, the RePoNet d-Cube fixed classifier implemented

with the VGG19 architecture achieves an accuracy of 65.32% in a d = 7 di-

mensional feature space. A fully trainable classifier in a feature space of

dimension d = 512 (i.e. two orders of magnitude larger), achieves a moderate

improvement of about 3% (68.47%). On the other hand, with a significantly

shorter feature dimension of d = 50, RePoNet d-Orthoplex improves the ac-

curacy to 69.76%. All the RePoNet variants exhibit similar behavior also
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Table 4.4: Reported accuracy (%) of the RePoNet method on the CIFAR-

10 dataset on different combinations of architectures and relative learned

classifier baselines.

CIFAR-10 (K = 10)

Architecture VGG13 VGG19 ResNet50 SENet18 DenseNet169

Training hyperparameters adam adam sgd sgd sgd

RePoNet K-sided-polygon 90.79d=2 91.54d=2 92.78d=2 92.63d=2 92.74d=2

Hadamard fixed classifier [156] 19.45d=2 19.19d=2 19.69d=2 19.77d=2 19.76d=2

Learned classifier 90.41d=2 91.17d=2 93.15d=2 93.25d=2 92.89d=2

RePoNet d-Cube 92.26d=4 92.58d=4 94.86d=4 94.96d=4 93.94d=4

Hadamard fixed classifier [156] 37.19d=4 36.95d=4 37.89d=4 38.05d=4 38.12d=4

Learned classifier 92.14d=4 92.21d=4 95.03d=4 94.95d=4 94.97d=4

RePoNet d-Orthoplex 92.51d=5 92.47d=5 95.25d=5 95.05d=5 95.16d=5

Hadamard fixed classifier [156] 73.77d=5 72.46d=5 75.99d=5 75.95d=5 75.73d=5

Learned classifier 92.28d=5 92.21d=5 95.18d=5 95.08d=5 95.41d=5

RePoNet d-Simplex 92.71d=9 92.59d=9 95.66d=9 95.36d=9 95.32d=9

Hadamard fixed classifier [156] 92.03d=9 92.37d=9 95.53d=9 95.25d=9 94.92d=9

Learned classifier 91.89d=9 92.60d=9 95.08d=9 95.20d=9 95.32d=9

Hadamard fixed classifier [156] 90.11d=512 88.32d=512 95.36d=512 95.49d=512 95.68d=512

Learned classifier 92.34d=512 92.42d=512 95.53d=512 95.26d=512 95.68d=512

in the case of more sophisticated architectures trained with SGD scheduled

learning rates to match state-of-the-art performance. RePoNet classifiers

are both agnostic to architectures and training setup being able to improve

accuracy as in the case of trainable classifier.

Results further show that in the Hadamard fixed classifier [156], when

the number of classes is large relative to number of unique weight directions

in the embedding space (i.e. d < K), no proper learning can be obtained.

As expected, this effect is present for simple datasets as the MNIST digits

dataset, however as reported in [156] Section 4.2 (Possible Caveats) as the

number of classes K increases the effect is less pronounced.

When d≈K or d>K, classification performance is similar. However, as

shown in Fig. 4.9(a) RePoNet achieves higher speed of convergence than [156]

and equal to that of the trainable baseline. Our conjecture is that with our

symmetrical fixed classifiers, each term in the loss function tends to have

the same magnitude centered around the mean of the distribution (i.e. von

Mises-Fisher distribution is similar to the Normal distribution) and there-
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Table 4.5: Reported accuracy (%) of the RePoNet method on the CIFAR-

100 dataset on different combinations of architectures and relative learned

classifier baselines.

CIFAR-100 (K = 100)

Architecture VGG13 VGG19 ResNet50 SENet18 DenseNet169

Training Techniques adam adam sgd sgd sgd

RePoNet K-sided-polygon 36.22d=2 37.65d=2 33.39d=2 35.26d=2 30.04d=2

Hadamard fixed classifier [156] 1.75d=2 1.75d=2 1.61d=2 1.80d=2 1.64d=2

Learned classifier 37.56d=2 35.83d=2 33.30d=2 40.57d=2 32.87d=2

RePoNet d-Cube 64.35d=7 65.32d=7 67.27d=7 69.38d=7 68.99d=7

Hadamard fixed classifier [156] 5.96d=7 5.52d=7 5.91d=7 6.27d=7 6.08d=7

Learned classifier 64.11d=7 65.29d=7 74.96d=7 75.29d=7 75.51d=7

RePoNet d-Orthoplex 68.78d=50 69.76d=50 78.23d=50 77.24d=50 79.41d=50

Hadamard fixed classifier [156] 43.88d=50 43.89d=50 50.33d=50 49.56d=50 50.65d=50

Learned classifier 68.13d=50 68.41d=50 78.22d=50 77.15d=50 78.83d=50

RePoNet d-Simplex 68.61d=99 68.69d=99 79.02d=99 78.20d=99 80.01d=99

Hadamard fixed classifier [156] 67.23d=99 67.18d=99 78.82d=99 77.21d=99 79.41d=99

Learned classifier 68.15d=99 68.87d=99 78.58d=99 77.42d=99 79.05d=99

Hadamard fixed classifier [156] 63.16d=512 64.46d=512 78.78d=512 77.94d=512 79.44d=512

Learned classifier 68.56d=512 68.47d=512 77.96d=512 77.63d=512 79.63d=512

fore the average computed in the loss is a good estimator. Contrarily, in

Hadamard classifier the terms may have different magnitudes and “impor-

tant” errors in the loss may not be taken correctly into account by averaging.

ImageNet

We further evaluated our method on the 1000 object category classification

problem defined by the ImageNet dataset. This dataset consists of a 1.2M

image training set and a 100k image test set. We compared all the variants

of our approach on different combinations of architectures and relative train-

able classifiers. The comparison also includes the Hadamard classifier.

Experiments have been conducted in two different configurations of the

training hyperparameters. First, we performed experiments using Adam

optimizer and simple augmentation based on random cropping and hor-

izontal flipping on well-established networks such as ResNet50 [125] and

DenseNet169 [202]. The learning rate is automatically adjusted when a
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plateau in model performance is detected. We trained for 250 epochs with

batch size 64 with an initial learning rate of 0.0005. With this configuration,

we aim to evaluate our method without performing any specific hyperpa-

rameter optimization or exploiting large computational resources.

Second, we evaluated our method with three more sophisticated CNN ar-

chitectures (SKresNeXt, SEresNeXt, and EfficientNet) and related training

hyperparameters. With this configuration, the aim is to evaluate whether

our method can reach state-of-the-art performance. The SKresNeXt and

SEresNeXt architectures integrate the SE and SK blocks, [124] and [203]

respectively, with the ResNeXt architecture [204]. The benefit of these vari-

ants is to maintain computational complexity and model size similar to the

SEnet and SKnet architectures while further improving performance. The

third architecture, EfficientNet [197], achieves state-of-the-art performance

using significantly fewer parameters than other state-of-the-art models. As

these architectures typically require large effort to tune training hyperparam-

eters, we trained our method on top of these models following the settings

reported in their original papers. Specifically, we train EfficentNet-B2 fol-

lowing the original paper [197]: RMSProp optimizer with decay 0.9 and

momentum 0.9; batch norm momentum 0.99; initial learning rate 0.256 that

decays by 0.97 every 2.4 epochs; weight decay 1e-5. Analogously, SKres-

NeXt50 and SEresNeXt50 are trained following the ResNeXt50 [204]: SGD

optimizer, weight decay 0.0001; momentum 0.9; initial learning rate of 0.1,

divided by 10 for three times using a specific schedule reported in the paper.

For all the three models we used automated data augmentation techniques

from [205] (RandAugment) with distortion magnitude 7. SeResNext50 and

SkResNext50 were trained for 250 epochs with 192 batch size. EfficientNet-

B2 was trained for 450 epochs with 120 batch size. Our evaluation is based

on the pytorch-image-models7 repository.

Tab. 4.6 summarizes our results. As can be clearly noticed, except for

the d-Cube there is no substantial variation between our proposed fixed

classifiers and learned classifiers. This holds also in the case of the learned

classifiers as defined in their original architecture implementations as shown

in the bottom line. The table also reports comparable accuracy with the

Hadamard Fixed Classifier [156]. As in the case of CIFAR-10 and CIFAR-

100, the overall accuracy of the d-Cube is lower than its corresponding

learned classifiers. We argue this is mainly due to the increased difficulty

7https://github.com/rwightman/pytorch-image-models

https://github.com/rwightman/pytorch-image-models
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Table 4.6: Reported accuracy (%) of the RePoNet method on the ImageNet

dataset on different combinations of architectures and relative Learned Clas-

sifier baselines.

Architecture ResNet50 DenseNet169 SeResNeXt50 SkResNeXt50 EfficientNet-B2

Training hyperparameters adam adam sgd+randaug sgd+randaug rmsprop+randaug

RePoNet d-Cube 63.44d=10 63.63d=10 73.58d=10 74.80d=10 75.62d=10

Learned classifier 68.82d=10 68.03d=10 76.66d=10 77.49d=10 77.42d=10

RePoNet d-Orthoplex 73.71d=500 74.20d=500 79.95d=500 79.66d=500 80.07d=500

Learned classifier 73.67d=500 73.70d=500 77.60d=500 80.18d=500 79.27d=500

RePoNet d-Simplex 74.13d=999 74.03d=999 80.25d=999 80.17d=999 80.61d=999

Learned classifier 73.96d=999 73.37d=999 77.99d=999 80.08d=999 79.36d=999

Hadamard Fixed Classifier [156] 74.07d=2048 73.95d=1669 80.25d=2048 80.19d=2048 79.74d=1408

Learned classifier 74.11d=2048 74.01d=1669 79.95d=2048 80.09d=2048 80.57d=1408

of optimizing in the d = 10 dimensional space as the angle between each

class weight vector and its d adjacent weight vectors decreases to zero as

the dimension increases (Fig. 4.3). However, the d-Cube classifier shows

the largest relative improvement as the representational power of the archi-

tectures increase (left to right). For example, the accuracy of the d-Cube-

EfficientNet-B2 fixed classifier is 12.18 percentage points larger than the

d-Cube-ResNet50 (i.e. 75.62 − 63.44 = 12.18). This relative performance

improvement is substantially higher than that of the corresponding learned

classifier (i.e. 77.42 − 68.82 = 8.6). This result is quantitatively consistent

with the underlying assumption of this work and provides further support

on the fact that the adjustable capability of the final classifier can be suc-

cessfully demanded to previous layers. The other two RePoNet variants

substantially achieve the same accuracy of learned classifiers, irrespective

whether they have similar (d = {10,500,999}) or higher feature space di-

mension (d = {2048,1669,1408}) as in their original architecture implemen-

tations. They do not show specific relative performance improvement with

increasing representational power. More importantly, both the d-Simplex

and the d-Orthoplex classifiers reach state-of-the-art accuracy (around 80%)

when combined with competitive architectures. This confirms the validity

and the no loss of generalization capability of our method.

Finally, we report on Tab. 4.7 the decrease in model parameters of our

method when implemented on top of the evaluated architectures. The table

shows the total number of parameters for each network in comparison with

their original learned classifiers (i.e. bottom line in Tab. 4.6). As indicated in
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Table 4.7: The number of parameters of each network and the percentage

(%) of saved parameters on the ImageNet dataset (d indicates the feature

dimension).

Saved Params ( % )

Architecture Param# d-Cube d-Orthoplex d-Simplex

DenseNet169 14.15M 11.65d=10 5.89d=500 0.02d=999

ResNet50 25.56M 7.94d=10 4.01d=500 0.01d=999

SeResNext50 27.56M 7.36d=10 3.72d=500 0.01d=999

SkResNext50 27.50M 7.38d=10 3.73d=500 0.01d=999

EfficientNet-B2 9.11M 15.31d=10 7.74d=500 0.03d=999

Tab. 4.7, the d-Orthoplex-EfficinetNet-B2 fixed classifier saves 7.74% of

the network parameters while achieving the same accuracy (around 80%). A

further notable example is that the d-Cube-EfficinetNet-B2 with 7.7M of

parameters (15.31% savings) achieves similar accuracy of a vanilla ResNet50

baseline (i.e. around 75% accuracy) having 25.5M of parameters.

4.5.3 Training Time

The time it takes to train a neural network model to address a classification

problem is typically considered as the product of the training time per epoch

and the number of epochs which need to be performed to reach the desired

level of accuracy [206]. Although training time per epoch is shorter in our

case as the weights of the fixed classifier do not require back-propagation,

the effect can be considered negligible with respect to the number of epochs

required to reach a reasonable desired level of accuracy (i.e. speed of conver-

gence). According to this, we report in Fig. 4.9 and Fig. 4.10 the classification

accuracy over the epochs for the two different configurations of the training

hyperparameters we evaluated.

Specifically, Fig. 4.9(a)(top) and Fig. 4.9(a)(bottom) show the training

error and the classification accuracy, respectively, over the epochs. The

curves are obtained on the CIFAR100 dataset, using the VGG19 architecture

and training is performed according to the Adam stochastic optimization.

Fig. 4.9(b) shows the accuracy curves of the proposed three fixed classifiers

and the best performing relative learned classifier (i.e. d = 999). The curves
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are obtained on the ImageNet dataset with the DenseNet169 architecture

and learned according to Adam. As can be noted, the time to reach a

desired level of accuracy is shorter or equal in the d-Simplex and d-Orthoplex

classifiers in comparison with the learned and Hadamard fixed classifiers.

The d-Cube classifier is the slowest and it does not reach a comparable

final performance. This is due to the different feature dimension (d = 10)
and topology. However, when compared with a learned classifier with same

feature dimension (as discussed in the next paragraph) the training time is

similar.
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Figure 4.9: Speed of convergence comparison (Adam). (a): Training er-

ror curves (top) and test accuracy curves (bottom) using the CIFAR-100

dataset with the VGG19 architecture. (b): ImageNet learning speed using

DenseNet169. As evidenced from the figures, the proposed method has faster

convergence.

Fig. 4.10(a) and Fig. 4.10(b) show the training configuration using SGD+RandAug

on the SeResNeXt50 architecture. The d-Simplex and d-Orthoplex fixed
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Figure 4.10: Speed of convergence comparison (Sgd+RandAug). Test ac-

curacy curves over the epochs on the ImageNet test set for the SeResNeXt50

architecture using the proposed fixed classifiers (red) and the standard train-

able baselines (blue). The time to reach the same accuracy is shorter or equal

for our method.

classifiers (red) and the learned classifiers (blue) are shown, respectively. As

evidenced in the figure, the learned classifiers require to be trained for about

150 epochs to obtain the accuracy our method achieves in 50 and 90 epochs,

respectively. Although this advantage reduces as the training progresses to-

ward the end, our method achieves consistently better results. Fig. 4.10(c)

shows equal time consumption for the case of the d-Cube classifier. Although

the final accuracy is lower, the training time is similar.

The general behavior of the curves shown in Fig. 4.9 and Fig. 4.10 is con-

sistent across combinations of datasets, architectures, classifiers and training

strategies. The training time to reach the same accuracy is shorter or equal

for our method and the time reduction follows the complexity of the embed-

dings defined by each regular polytope fixed classifier.



90 Regular Polytope Networks

Overall, we observed that Regular Polytope Networks provide a novel,

effective and easy approach to fixed classifiers that is no worse than the

standard trainable ones and it achieves comparable state-of-the-art perfor-

mance. Overall we also observed faster speed of convergence and a significant

reduction in model parameters.

4.6 RePoNet with Additive Angular Margin

Loss

Softmax with Cross Entropy loss is widely adopted by many classification

approaches due to its simplicity, good performance and probabilistic in-

terpretation. In applications like face recognition [36] or human body re-

identification [207] test samples are not known in advance and recognition

at test time is performed according to learned features based on their dis-

tance.

DCNN

𝐟

𝐰𝑖

DCNN

𝐟

𝐰𝑖

DCNN

𝐟

𝐰𝑖

ℝ𝑑 ℝ𝑑 ℝ𝑑

𝜑 𝜑

𝜑

Figure 4.11: Margin Regular Polytope Networks (Margin-RePoNets). Fea-

tures with maximal inter-class separability and intra-class compactness are

shown (light blue). These are determined combining fixed classifiers derived

from regular polytopes [1] with a recently developed margin loss [2]. Maximal

features separation is obtained by setting the classifier weights wi according

to values following the symmetrical of configuration regular polytopes (red).

Maximal compactness is obtained by setting the margin between the features

at the maximum allowed (i.e. ϕ).

The underlying assumption in this learning scenario is that images of
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the same identity (person) are expected to be closer in the representation

space, while different identities are expected to be far apart. Or equivalently,

the learned features having low intra-class distance and large inter-class dis-

tance are successful at modeling novel unseen identities and for this reason

such features are typically defined “discriminative”. Specifically, the Center

Loss, firstly proposed in [198], has been proved to be an effective method

to compute discriminative features. The method learns a center determined

as the average of features belonging to the same class. During training, the

centers are updated by minimizing the distances between the deep features

and their corresponding class centers. The CNN is trained under the joint

supervision of the Softmax loss and the Center Loss by balancing the two

supervision signals. Intuitively, the Softmax loss forces the deep features of

different classes to be separable while the Center Loss attracts the features

of the same class to their centers achieving compactness.

Despite its usefulness, the Center Loss has some limitations: the fea-

ture centers are extra parameters stored outside the network that are not

jointly optimized with the network parameters. Indeed, they are updated

with an autoregressive mean estimator that tracks the underlying represen-

tation changes at each step. Moreover, when a large number of classes must

be learned, mini-batches do not provide enough samples for a correct es-

timation of the mean. Center Loss also requires a balancing between the

two supervision losses which typically requires a search over the balancing

hyper-parameter.

Some works have successfully addressed all the issues described above

importing intra-class feature compactness directly into the Softmax loss.

This class of methods, including [2, 175, 176, 178, 208], avoids the need of

an auxiliary loss (as in the Center Loss) with the possibility of including a

margin between the class decision boundaries, all in a single Softmax loss.

Other successful works follow a nearly opposite strategy by removing the

final classification layer and learn directly a distance evaluated on image

pairs or image triplets as shown in [166] and in [167] respectively. Despite the

performance results, carefully designed pair and triplet selection is required

to avoid slow convergence and instability.

Except for few recent cases [1, 184,209] inter-class separability and com-

pactness are always enforced in a local manner without considering global

inter-class separability and intra-class compactness. For this purpose, the

work [184] uses an auxiliary loss for enforcing global separability. The
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work [209] use an auxiliary loss similar to [184] for enforcing global sepa-

rability and a further margin loss to enforce compactness. Regular Polytope

Networks [157], use a fixed classifier in which the parameters of the final

transformation implementing the classifier are not subjected to learning and

are set with values taken from coordinate vertices of a regular polytope. This

avoids optimizing for maximal separation as in [209] and [184] since regular

polytopes naturally provide distributed vertices (i.e. the classifier weights)

at equal angles maximizing the available space (Sect. 4.4.3).

In this Section we address all those limitations including global inter-

class separability and compactness in a maximal sense without the need of

any auxiliary loss. This is achieved by exploiting the Regular Polytope fixed

classifiers and improving their feature compactness according to the additive

angular margin described in [2]. As illustrated in Fig. 4.11, the advantage of

the proposed combination is the capability of generating global maximally

separated and compact features (shown in light blue) angularly centered

around the vertices of polytopes (i.e. the classifier fixed weights shown in

red). In particular, the angle ϕ subtended between a class weight and its

connected class weights is constant and maximizes inter-class separability in

the available space. The angle ϕ is further exploited to obtain the maximal

compactness by setting the angular margin between the features to ϕ (i.e.

the maximum allowed margin). The advantage of our formulation is that

the margin is no longer an hyperparameter that have to be searched since it

is obtained from a closed form solution.

Although, Eq. 4.3 directly optimizes for small angles, only partial intra-

class compactness can be enforced. Fig.4.12 shows (from left to right) the

distribution of features learned from the MNIST dataset with the three dif-

ferent classifiers. The features are displayed as a collection of points, each

having the activation of one feature coordinate determining the position on

the horizontal axis and the value of the other feature coordinate activation

determining the position on the vertical axis. All the pairwise scatter plots

of the feature activation coordinates are shown and feature classes are color

coded. The size of the scatter plot matrices follows the size of the feature

dimensionality d of each fixed classifier which can be determined according

to the number of classes K as:

d =K − 1, d = ⌈log2(K)⌉, d = ⌈K
2
⌉, (4.16)

respectively. The scatter plot matrices therefore result in the following di-
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Figure 4.12: The distribution of features learned from the MNIST dataset

using the RePoNet classifiers. Features are shown (from left to right) with

a scatter plot matrix for the d-Simplex, d-Orthoplex and d-Cube classifier

respectively. It can be noticed that features are distributed following the

symmetric vertex configuration of polytopes. Although features are maxi-

mally separated, their compactness is limited.

mensions: 9 × 9, 5 × 5 and 4 × 4 respectively. As evidenced from the figure,

the features follow the symmetric and maximally separated vertex configura-

tions of their corresponding polytopes. This is due to the fact that each single

pairwise scatter plot is basically a parallel projection onto the planes defined

by pairs of multidimensional axes. According to this, features assume a ),

+, and × shaped configuration for the d-Simplex, d-Orthoplex and d-Cube

respectively. Although maximal separation is achieved, the intra-class aver-

age distance is large and therefore not well suited for recognition purposes.

The plotted features are obtained training the so called LeNet++ architec-

ture [198]. The network is a modification of the LeNet architecture [199]

to a deeper and wider network including parametric rectifier linear units

(pReLU) [200]. The network is learned using the Adam optimizer [210] with

a learning rate of 0.0005, the convolutional parameters are initialized follow-

ing [211] and the mini-batch size is 512.

To improve compactness keeping the global maximal feature separation

we follow [178,208] normalizing the features and multiplying them by a scalar

κ: f̂i = fi
∣∣fi∣∣κ. The loss in Eq.4.3 can be therefore rewritten as:
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L = − 1

N

N

∑
i=1

log
⎛
⎝

exp(κiŵ⊺
yi f̂i)

∑Kj=1 exp(κiŵ⊺
j f̂i)

⎞
⎠

= − 1

N

N

∑
i=1

log
⎛
⎝

exp(κ cos(θyi))
∑Kj=1 exp(κ cos(θj))

⎞
⎠

(4.17)

The equation above minimizes the angle θyi between the fixed weight cor-

responding to the label yi and its associated feature. The equation can be

interpreted as if features are realizations from a set of K von Mises-Fisher

distributions having a common concentration parameter κ. Under this pa-

rameterization ŵ is the mean direction on the hypersphere and κ is the

concentration parameter. The greater the value of κ the higher the con-

centration of the distribution around the mean direction ŵ and the more

compact the features. This value has already been discussed sufficiently in

several previous works [175,178]. In this work, we directly fixed it to 30 and

will not discuss its effect anymore.

To obtain maximal compactness the additive angular margin loss de-

scribed in [2] is exploited. According to this, Eq.4.17 becomes:

L = − 1

N

N

∑
i=1

log
⎛
⎝

exp(κ cos(θyi +m))

exp(κ cos(θyi +m)) +
n

∑
j=1
j≠yi

exp(κ cos(θj))

⎞
⎠
, (4.18)

where the scalar value m is an angle in the normalized hypersphere intro-

ducing a margin between class decision boundaries. The loss of Eq. 4.18

together with the fixed classifier weights of Eqs. 4.4, 4.7, 4.10 allows learn-

ing discriminative features without using any auxiliary loss other than the

Softmax.

The advantage of our formulation is that m is no longer an hyperpa-

rameter that have to be searched. Indeed, the loss above when used with

RePoNet classifiers is completely interpretable and the margin m can be set

according to the angle ϕ subtended between a class weight and its connected

class weights as illustrated in Fig.4.11. For each of the three RePoNet fixed
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Figure 4.13: Maximally compact feature learning with RePoNet fixed clas-

sifiers and the angular margin loss. Left : In a standard learnable classifier

the decision boundaries (dashed lines) defined by the angular margin m do

not push features to their respective weights uniformly (red arrows). Right :

In RePoNet classifiers the margin can be analytically determined (m = ϕ)

so that the decision boundaries maximally push the features closer to their

respective fixed weight.

classifiers the angle ϕ can be analytically determined as:

ϕs = arccos( − 1

d
), (4.19)

ϕo =
π

2
, (4.20)

ϕc = arccos(d − 2

d
), (4.21)

respectively, where d is the feature space dimension size.

Fig. 4.13 shows the effect of setting m = ϕ. We draw a schematic 2D

diagram to show the effect of the margin m on pushing the class decision

boundary to achieve feature compactness. In the standard case of a learnable

classifier, as shown in Fig. 4.13 (left), the value ϕ is not known in advance,

it varies from class to class and features are not guaranteed to distribute

angularly centered around their corresponding weights. Therefore, m cannot

be set in an interpretable way. Contrarily, in the case proposed in this

Chapter and shown in Fig. 4.13 (right), the value ϕ is constant and known

in advance, therefore by setting m = ϕ, the class decision boundaries are

maximally pushed to compact features around their fixed weights. This

because the Softmax boundary (from which the margin is added) is exactly

in between the two weights w1 and w2. According to this, the features

generated by the proposed method are not only maximally separated but
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also maximally compact (i.e. maximally discriminative).

4.6.1 Qualitative Results

Experiments are conducted with the well-known MNIST and EMNIST [193]

datasets. Fig. 4.14 shows a visual comparison between the features gen-

erated by the RePoNet fixed classifiers (left column) and by a standard

CNN baseline with learnable classifiers (right column). Both approaches are

trained according to the loss of Eq. 4.18 and have exactly the same architec-

ture, training settings and embedding feature dimension used in Fig. 4.12.

Results are presented with a scatter plot matrix. Although the two meth-

ods achieve substantially the same classification accuracy (i.e. 99.45% and

99.47% respectively), it can be noticed that the learned features are differ-

ent. Specifically, Margin-RePoNet follows the exact configuration geometry

of their related polytopes. Features follow very precisely their relative ), +,

and × shapes therefore achieving maximal separability. The standard base-

lines with learnable classifiers (Fig. 4.14 left column) achieve good but non

maximal separation between features. However, as the embedding dimension

decreases, as in Fig. 4.14(c), the separation worsens.

This effect is particularly evident in more difficult datasets. Fig.4.15

shows the same visual comparison using the EMNIST dataset where some

of the 47 classes are difficult to be correctly classified due to their inherent

ambiguity. Fig. 4.15 shows the scatter plot matrix of the d-Cube classifier

(left) compared with its learnable classifier baseline (right) in dimension

d = 6. Although also in this case they both achieved the same classification

accuracy (i.e. 88.31% and 88.39%), the features learned by the baseline are

neither well separated nor compact.

Finally, in Fig. 4.16 we show the L2 normalized features (typically used

in recognition) of both the training (top) and test set (bottom) for the same

experiment shown in Fig. 4.15. Class features in this case correctly follow

the vertices of the six-dimensional hypercube since all the parallel projections

defined by each pairwise scatter plot result in the same unit square centered

at the origin.
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(a)

(b)

(c)

Figure 4.14: The distribution of MNIST learned features using the proposed

method (Left) and learned using a standard trainable classifier (Right). The

scatter plot highlights the maximal separability and compactness of the ex-

tracted features for the (a) d-Simplex, (b) d-Orthoplex and (c) d-Cube clas-

sifiers. Class features are color coded. As the feature space dimension de-

creases standard baselines have difficulty in obtaining inter-class separation.
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Figure 4.15: The distribution of EMNIST (balanced split) learned features.

Left : Features learned using the d-Cube fixed classifier with the additive

angular margin loss. Right : Features learned using a standard trainable

classifier with the additive angular margin loss. In both cases the feature

dimension is 6 and the classification accuracy is comparable. Maximal sep-

arability and compactness are evident in our approach.
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Figure 4.16: The distribution of the EMNIST normalized learned features

shown in 4.15 (Left). (Top) training-set. (Bottom) test-set (best viewed in

electronic version).
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4.7 Discussion: Potential and Challenges

Our finding may have implications in those Deep Neural Network learning

contexts in which a classifier must be robust against changes of the feature

representation while learning as in incremental learning settings, especially

when features are stored in memory banks while learning as introduced

in [109, 212, 213]. Despite recent advances, methods inspired by memory-

augmented deep neural networks are still limited when it comes to incre-

mental learning. The method [214] simplifies the original fully differentiable

end-to-end idea. Except for the nearest-neighbor query to the memory bank,

their approach is fully differentiable, can be trained end-to-end and operates

in a incremental manner (i.e. without the need to reset it during training).

However, the features stored in the memory bank remain fixed (i.e. they

are not undergoing learning) and only the memory bank is learned. Our ap-

proach may have a promising potential for learning both the feature and the

memory without considering their joint learning. The intuition is that every

time the internal feature representation changes the memory bank must be

relearned from scratch. Our method can mitigate the need of feature relearn-

ing by keeping the compatibility of features between learning steps thanks

to feature stationarity. Concurrent to this work, [215] addresses a similar

problem in terms of feature “back-compatibility” and exploits a pre-trained

fixed classifier to avoid re-indexing a memory bank containing the gallery

features of a retrieval system that has been updated.

This basic idea can be in principle applied to the many computer vision

tasks that have benefited from memory based learning as: [40,216] for cumu-

lative learning of face appearance models from video stream, [217–221] for

object detection, [222] for video object segmentation and [223] for visual ob-

ject tracking. The works [217–221] accumulate context from pre-computed

feature banks (with fixed pre-trained feature extractors i.e. not undergoing

learning). These feature banks extend the time horizon of their network up

to 60 second in [220] or to one month in [217] achieving strong results on

spatio-temporal localization. The works [40, 216] accumulate extracted face

features in a memory bank to preserve all the past knowledge without for-

getting and at the same time handle the non-stationarity of the data stream.

At a high level, all these approaches can be framed as a non-parametric es-

timation method (like nearest neighbors) sitting on top of a high-powered

parametric function (Faster R-CNN in the case of object detection [217] or

a face features extractor in [40] and [216] or SiamFC feature extractor [224]
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for object tracking in [223]). These methods use a fixed representation which

is not incrementally learned as it would require re-encoding all the images

in the memory bank. Avoiding re-encoding images can be advantageous in

applications in which images cannot be stored for privacy reasons (i.e. face

recognition, applications in medical imaging, etc.).

4.7.1 Conclusion

We have shown that a special set of fixed classifiers based on regular poly-

topes generates stationary features by maximally exploiting the available

representation space. The proposed method is simple to implement and the-

oretically correct. Experimental results confirm both the theoretical analysis

and the generalization capability of the approach across a range of datasets

and architectures. RePoNet improves and generalizes the concept of a fixed

classifier, recently proposed in [156], to a larger class of fixed classifier models

exploiting the inherent symmetry of regular polytopes in the feature space.

Our finding may have implications in all of those Deep Neural Network

learning contexts in which a classifier must be robust against changes of the

feature representation while learning as in incremental and continual learning

settings.
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Chapter 5

Class-incremental Learning

with Pre-allocated Fixed

Classifiers

In class-incremental learning, a learning agent faces a stream

of data with the goal of learning new classes while not forget-

ting previous ones. Neural networks are known to suffer under

this setting, as they forget previously acquired knowledge. To ad-

dress this problem, effective methods exploit past data stored in

an episodic memory while expanding the final classifier nodes to

accommodate the new classes. In this work, we substitute the ex-

panding classifier with a novel fixed classifier in which a number

of pre-allocated output nodes are subject to the classification loss

right from the beginning of the learning phase. Contrarily to the

standard expanding classifier, this allows: (a) the output nodes

of future unseen classes to firstly see negative samples since the

beginning of learning together with the positive samples that in-

crementally arrive; (b) to learn features that do not change their

geometric configuration as novel classes are incorporated in the

learning model. 1 2

1Part of this chapter has been published as “Class-incremental Learning with Pre-

allocated Fixed Classifiers” to 25th International Conference on Pattern Recognition
2Acknowledgments: This work was partially supported by the Italian MIUR within

PRIN 2017, Project Grant 20172BH297: I-MALL.
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5.1 Introduction

Natural intelligent systems learn incrementally by continuously receiving in-

formation over time. They learn new concepts adapting to changes in the

environment by leveraging past experiences. A remarkable capability of these

systems is that learning of new concepts is achieved while not forgetting pre-

vious ones. In contrast, current Deep Learning models, when updated with

novel incoming data, suffer from catastrophic forgetting : the tendency of

Neural Networks to completely and abruptly forget previously learned infor-

mation [5–7]. This problem is related to the plasticity/stability dilemma in

incremental learning [10]. Too much “plasticity” leads to catastrophic for-

getting, too much “stability” leads to an inability to adapt to novel informa-

tion. Continual Learning [8, 9] specifically addresses this problem, bringing

machine learning closer to natural learning. In this learning scenario, the

agent is presented with a stream of tasks and each new task is learned by

reusing and combining the knowledge acquired while learning previous tasks.

As the learning agent is processing a stream, it cannot store all examples

seen in the past.

Continual learning has recently received increasing attention and sev-

eral methods have been developed [225–232]. However, despite the intense

research efforts, the gap in performance with respect to offline multi-task

learning makes continual learning an open problem. Most of the techniques

have focused on a sequence of tasks in which both the identity of the task

(task label) and boundaries between tasks are provided [12–15]. Thus, many

of these methods fail to capture real-world continual learning, with unknown

task labels [16] [17]. A typical example that illustrates the difference between

using or not the task labels is the Split MNIST experiment, in which the ten

digits of the well known handwritten dataset are split into five classification

tasks of two-class each. The model has five different final classification lay-

ers, one for each task. Those classifiers (i.e. output heads) are indexed by

the task identity (1 to 5) that is given at testing time.

This scenario is shown to be easier than class-incremental learning (CIL)

since the selection of the output head is given by the task identity [16]. CIL

is typically addressed with single-headed variants that do not require task

identity, where the model always performs prediction over all classes (i.e. all

digits 0 to 9) [9, 16,17,25,233,234].

In CIL the single head final layer of a Neural Network is expanded with

an output node when a new class arrives (multiple new classes are expanded
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Figure 5.1: Class-incremental classifiers. (a): Expanding classifier. (b): Pre-

allocated classifier. The latter can exploit unseen future classes as negative

examples.

with multiple nodes); thus, in general, during learning, an output node sees,

according to the samples in the current random batch, positive and negative

samples in the newly arrived class and in the old seen classes (i.e. the

remaining), respectively (Fig.5.1(a)).

In this Chapter, we address CIL using a novel classifier in which a num-

ber of pre-allocated output nodes are subject to the classification loss right

from the beginning. This allows the output nodes of yet unseen classes to

firstly see negative samples since the beginning of learning together with the

positive samples that incrementally arrive (Fig.5.1(b)). Contrarily to the

expanding classifier, in our formulation, the output nodes can learn from the

beginning of the learning phase. This is achieved by pre-allocating a special

classifier with a large number of output nodes in which the weights are fixed

(i.e. not undergoing learning) and set to values taken from the coordinate

vertices of regular polytopes [1]. The classification layer so defined has two

intriguing properties. The first is that the features do not change their geo-

metric configuration as novel classes are incorporated in the learning model.

The second is that a very large number of classes can be pre-allocated with no

loss of accuracy. This allows the method to meet the underlying assumption

of lifelong learning as for the case of the expanding classifier.
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5.2 Related Works

5.2.1 Continual Learning

Continual learning has been extensively studied in literature [8, 9]. Prior

works can be broadly categorized into three main categories: (1) regulariza-

tion, (2) dynamic architecture methods and (3) episodic memory-based (also

termed Experience Replay).

Regularization. Regularization-based approaches reduce forgetting by

restricting the updates in parameters that were important for previous tasks.

Elastic Weighted Consolidation (EWC) imposes constraints on network pa-

rameters to reproduce biological mechanism of consolidation [12]. Online-

EWC [20] optimizes EWC approach for multiple tasks, overcoming the com-

plexity of original EWC which scales linearly with number of tasks. Synaptic

Intelligence (SI) also replicates biological mechanism of synapses, preventing

parameters (synapses) to change based on the relevance of each parameter

for the considered task [14]. Memory Aware Synapses (MAS) tackles the

problem in a similar fashion, based on the relevance of each parameter to

the task. When the number of tasks is large, the regularization of past tasks

becomes obsolete, leading to representation drift [235].

Dynamic Architecture. Second, dynamic architecture or modular

approaches add new modules to the model architecture as new tasks are

learned. [22] grows a network searching for similarities between known classes

and unseen classes, organizing them into a hierarchy. Predictions are made

by visiting the hierarchy, from the superclasses down to the specific class. [23]

exploits boosting algorithm to control network architecture growth balancing

its complexity with empirical risk minimization. The work in [24] proposes

a network structure organized in columns. Each column is a network which

learns a new task, sharing features learned by other columns via lateral con-

nections. Sparse regularization is employed in [236] to decide how many

parameters add to each network layer when new tasks are learned. Then,

selective retraining is performed.

While modular architectures overcome forgetting by design, these approaches

do not scale with the number of tasks as memory requirements increase with

the number of tasks.

Experience Replay (ER). Third, Experience Replay methods store a

few examples from past tasks in an “episodic memory”, to be revisited when

training for a new task. In contrast to modular approaches, memory-based
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methods add a relatively small memory overhead for each new task. The con-

cept of experience replay in class-incremental learning has been introduced

in [25]. By means of rehearsal technique, new and old data are combined

when new tasks are learned in order to prevent catastrophic forgetting of

old tasks. [26] presents Gradient Episodic Memory technique which does not

store and reuse old samples but allows transfer learning between tasks by

storing old gradients and updating them to prevent forgetting. An improved,

memory-efficient version of GEM is obtained by considering the average of

the losses of all tasks rather than each individual loss of single tasks [27]. Full

data rehearsal may prevent catastrophic forgetting, but it is unfeasible due to

important memory impact, so [28] implements memory-efficient buffer tech-

niques to perform rehearsal without the need for retaining all samples. [29]

aims at finding data distribution which can keep optimal performance level

overall tasks. This is achieved by choosing an adequate strategy to build data

memory, exploiting the biological mechanic of replaying experiences. [30] in-

troduces a technique to avoid learning interference provoked by data coming

from different source domains. Dual-memory incremental learning is ex-

ploited in [31] to keep track of statistics of past classes, in order to rebalance

their prediction scores in later stages of learning. Memory-based methods

have currently shown state-of-the-art.

5.2.2 Fixed Classifiers

Dynamically freezing3 weights is a form of implicit dynamic architecture

in which some selected weights are not undergoing learning [233, 237–239].

When freezing is applied to the final classification layer, class decision bound-

aries remain stationary during learning. This was exploited in [240, 241] to

reduce catastrophic forgetting in domain adaptation. They show that a

frozen classifier, together with a distillation loss on the features preserve the

geometric configuration of old classes. These two constraints are recently

shown to be resilient to catastrophic forgetting in class incremental learning,

and in incremental few-shot learning [227, 230], respectively. Freezing the

classifier is also the key strategy used in [215] to learn visual features that

are compatible with features computed with different CNN models. Com-

patibility between features from different models learned at different times

means that if such features are used to compare images, then “new” features

3The terms frozen and fixed are used interchangeably.
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can be compared directly to “old” features, so they can be used interchange-

ably. This enables visual search systems to avoid re-computing new features

for all previously seen images when updating the models. This capability

may enable incremental learning of features in more realistic scenarios in

which classes can be revisited [138], [47], [242], [243].

Fixing the final classification layer in multi-task supervised classification

has been explored in detail in [1,156,244,245] showing that it causes little or

no reduction in accuracy for common datasets, while allowing a noticeable

reduction in trainable parameters. Fixed classifiers have also an important

role in theoretical convergence analysis of training neural network models

with batch-norm [169]. It is shown recently in [170] that CNNs with a fixed

classifier and batch-norm in each layer establish a principle of equivalence

between different learning rate schedules.

5.3 Contributions

• We introduce a novel approach for class-incremental learning that keeps

features in a constant specific spatial configuration distributed at equal

angles maximizing the available space.

• The approach exploits negative samples from unseen classes since the

beginning of learning.

• We achieve similar results with respect to several important baselines

on standard benchmarks.

5.4 Proposed Method

5.4.1 Class Incremental Learning Setting

In continual learning, a stream of data triplets (xi, yi, ti) containing an input

xi, a target yi, and a task identifier ti ∈ T = {1, . . . , T} are presented to the

learning agent. Each input-target pair (xi, yi) ∈ X ×Yti is an identically and

independently distributed (i.i.d.) example drawn from an unknown distribu-

tion Pti(X,Y ) that represents the ti-th learning task. We assume that the

tasks are learned in order: ti ≤ tj for all i ≤ j, and that the number of tasks

T is not known a priori. Specifically in CIL: a single classifier is learned and
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the task-membership ti is ignored. Under this setup, the goal is to estimate

a Neural Network based model

fθ = (w ○Φ) ∶ X × T → Y, (5.1)

parameterized by θ ∈ Rp where p is the number of parameters of fθ. The

Neural Network model is composed of a feature extractor Φ ∶ X → H and a

classifier w ∶ H → Y, that minimize the multi-task loss

L = 1

T

T

∑
t=1

E(x,y)∼Pt
[ `(f(x, t), y) ] , (5.2)

where Y = ∪t∈T Yt, and ` ∶ Y × Y → R is a loss function.

Following [26], we evaluate the performance of class-incremental learning

algorithms according to the final average accuracy defined as

Accuracy = 1

T

T

∑
j=1

aT,j , (5.3)

where ai,j denotes the test accuracy on task j after the model has finished

learning the task i. That is, the final average accuracy measures the test per-

formance of the model at every task after the continual learning experience

has finished.

5.4.2 Class-Incremental Learning with a Pre-allocated

Regular Polytope Classifier

As based on Experience Replay (ER), our method learns the model fθ by

storing few past observed triplets in an episodic memory M = {(x′, y′, t′)}.

For every new mini-batch of observations B = {(x, y, t)}, the learner samples

a mini-batch BM from M at random, and applies the rule

θ ← θ − α ⋅ ∇θ `(B ∪ BM)

to update the parameters of fθ, where

`(A) = 1

∣A∣ ∑
(x,y,t)∈A

`(fθ(x, t), y)

denotes the average loss across a collection of triplets A. Since we address

class-incremental learning (i.e. single output head) the task identifiers t and

t′ are ignored.
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Figure 5.2: Class-incremental learning classifiers. Comparison between a

standard expanding classifier (left) and a pre-allocated Regular Polytope

Classifier (RPC) (right). Both classifiers are shown with three learned classes

(green, blue, red) and with a new class under learning (orange). (a): The

weights of the classifiers are represented in feature space f . The figure illus-

trates the situation in a 2D scenario, the characterization extends to arbi-

trary dimensions. As a new class is learned old classes move to include the

new one, the motion is shown in transparent colors. This effect is not present

in our RPC. (b): The final layers of the classifiers in a Neural Network archi-

tecture. The pre-allocated RPC weights (grey) can receive negative samples

and adapt the network from the beginning of learning as new classes arrive.

The logit responses of each class are also shown in purple.

As firstly noted in [25], in this learning condition, it is problematic that

the classifier weight vectors w are decoupled from the feature extraction

routine Φ: whenever Φ changes in Eq.5.1, all w must be updated as well.

Otherwise, the network outputs will change uncontrollably, which is observ-
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able as catastrophic forgetting. Changes in the extracted features are mainly

due to the inclusion of novel classes, that is, when a novel class is incorpo-

rated in the neural network model, the classifier weights of the other old

classes move to create space to accommodate the novel one. Under the as-

sumption of normalized weights and zero biases for the classifier, as proposed

in [178] and [176], the classifier weights are constrained in the unit hyper-

sphere and can be easily visualized. Fig. 5.2(a)(left) shows the geometric

configuration of the classifier weights in feature space f . As the new class

(orange) is learned, old classes (green, blue, red) move changing their spatial

configuration to include the new one. The motion is shown in transparent

colors. Basically the set of weights forming an irregular triangle transforms

into a set of weights forming an irregular quadrilateral and eventually, if a

further class is introduced, the set of weights transforms into an irregular

pentagon and so on. As new classes are continually incorporated into the

model, the classifier continues to change its configuration (without stopping)

with its corresponding features following a similar motion. The same trans-

formative pattern occurs in higher dimensional spaces where sets of weights

form convex polytopes. Fig. 5.2(b)(left) shows the corresponding expanding

classifier in which the three old classes have been already learned (green,

blue, red) and a new class is undergoing learning (orange).

In order to avoid this continuous motion of features, our approach uses a

pre-allocated special fixed classifier (i.e. not undergoing the learning proce-

dure) that keeps the features of the learned classes in a constant specific spa-

tial configuration as novel classes are incorporated into the learning model.

This allows to partially handle the catastrophic forgetting effect of the final

classifier layer. Fig. 5.2(a)(right) shows the proposed fixed classifier con-

sisting of a number of pre-allocated directions (grey) distributed at equal

angles maximizing the available feature space with the purpose of defining

class decision regions (delimited by decision boundaries) of equal extension

for each class. Fig. 5.2(b)(right) shows the corresponding pre-allocated fixed

classifier.

The number of pre-allocated classes is typically large because the num-

ber of class K is not known a priori, however, this design choice allows our

method to receive and learn from negative examples since the beginning of

the data stream. More specifically, Fig. 5.2(a)(right) and Fig. 5.2(b)(right)

show how this is achieved: at each learning update, the weights of the clas-

sifier keep the same constant position [1]. By fixing the weights, the train-



112
Class-incremental Learning

with Pre-allocated Fixed Classifiers

able classifier is superseded by previous layers. Fixed classifiers are shown

recently to cause little or no reduction in classification performance for com-

mon datasets while allowing a noticeable reduction in trainable parameters,

especially when the number of classes is large [1, 156].

Since no prior assumption about the semantic similarity between future

classes can be made, in order to define the fixed classifier the natural as-

sumption is to use the d-Simplex regular polytope. With the d-simplex, all

classes are nearest to all other. In geometry, a simplex is a generalization of

the notion of a triangle or tetrahedron to arbitrary dimensions. Specifically,

a d-simplex is a d-dimensional polytope which is the convex hull of its d + 1

vertices. A regular d-simplex may be constructed from a regular (d − 1)-
simplex connecting a new vertex to all original vertices by the common edge

length. According to this, the weights for this classifier can be computed as:

WS = {e1, e2, . . . , ed−1, α
d−1
∑
i=1

ei}

where α = 1−
√
d+1
d

and ei with i ∈ {1,2, . . . , d − 1} denote the standard basis

in Rd−1. The final weights will be shifted about the centroid and normalized.

The d-Simplex fixed classifier defined in an embedding space of dimension d,

can accommodate a number of classes K equal to its number of vertices:

K = d + 1. (5.4)

This classifier has the largest number of classes that can be embedded in Rd

such that their corresponding class features are equidistant from each other.

5.5 Experimental Results

We perform experiments on four classfication benchmarks for continual learn-

ing: SplitMNIST, PermutedMNIST, SplitCIFAR10 and SplitCIFAR100. SplitM-

NIST splits the MNIST dataset of handwritten digits [248] to create five

different tasks with non-overlapping classes. PermutedMNIST is a variant

of the MNIST dataset where each task applies a fixed random pixel permu-

tation to the original. A total of ten tasks of ten classes each is created.

Although this dataset is unrealistic from the point of view of how images

are formed [16], PermutedMNIST allows evaluating and understanding class-

incremental learning systems in the extreme case in which tasks are unrelated
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Table 5.1: Accuracy (Eq. 5.3) of class incremental learning experiments.

Averages and standard deviations are computed over 10 runs using different

random seeds.

Method ∣M∣ SplitMNIST PermutedMNIST SplitCIFAR10 ∣M∣ SplitCIFAR100

EWC [246] - 19.92 ± 0.06 19.51 ± 0.05 16.89 ± 0.03 - 17.17 ± 0.12

Online-EWC [20] - 19.93 ± 0.05 31.63 ± 0.11 17.28 ± 0.09 - 17.29 ± 0.06

SI [14] - 21.01 ± 0.10 18.27 ± 0.07 17.81 ± 0.12 - 14.21 ± 0.29

MAS [247] - 23.01 ± 0.31 17.53 ± 0.53 17.75 ± 0.87 - 16.97 ± 0.05

GEM [26] 100 74.92 ± 2.97 31.03 ± 3.19 24.48 ± 3.21 1400 22.83 ± 2.17

GEM [26] 1100 95.16 ± 0.15 79.44 ± 0.23 45.48 ± 0.19 5600 N.A.

Expanding Classifer 100 80.10 ± 3.29 64.18 ± 2.85 31.74 ± 2.15 1400 33.79 ± 0.56

Expanding Classifer 1100 96.25 ± 0.28 93.52 ± 0.41 66.93 ± 0.48 5600 51.76 ± 0.55

Pre-allocated RPC (Ours) 100 82.32 ± 2.19 81.43 ± 2.12 31.80 ± 1.61 1400 33.80 ± 0.42

Pre-allocated RPC (Ours) 1100 96.90 ± 0.29 94.63 ± 0.35 67.44 ± 0.50 5600 51.77 ± 0.61

to each other [17, 229]. SplitCIFAR10 and SplitCIFAR100 are variants of

the CIFAR10 and CIFAR100 datasets, respectively [14, 249]. In CIFAR100

each task contains the data pertaining to twenty random classes out of the

total 100 classes. This benchmark contains five tasks. In CIFAR10 a total

of five tasks of two classes each are created.

We implemented our fixed classifier on top of the LeNet architecture [199]

for the MNIST and PermutedMNIST datasets. Popular network architec-

tures for ImageNet require modifications to adapt to the CIFAR 32x32 input

size. According to this, for the SplitCIFAR10 and SplitCIFAR100 dataset

our experiments follow publicly available implementations4 and for our fixed

classifier implemented on top of a ResNet56 architecture.

We compared our proposed model to the following baselines: EWC [12],

Online EWC [20], SI [14], MAS [247], GEM [26] and Expanding Classifier

with Experience Replay. For both the Expanding Classifier and our method,

the mini-batch is constructed by an equal amount (64/64) of new data and

the memory data. The buffer size is predefined to match the space overhead

used by Online-EWC and SI, which translates to 1100 and 5400 images for

the MNIST/CIFAR10 and CIFAR100 datasets, respectively [17].

For a fair comparison, all methods use the same neural network archi-

tecture. The classification loss function is the standard cross-entropy in all

methods. All models are trained for 5 epochs per task with mini-batch size

128 using the Adam optimizer (β1 = 0.9, β2 = 0.999, learning rate = 0.001) as

the default, unless explicitly described. SplitCIFAR10 and SplitCIFAR100

4https://github.com/GT-RIPL/Continual-Learning-Benchmark/

https://github.com/GT-RIPL/Continual-Learning-Benchmark/
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Table 5.2: Ablation study on CIFAR-10 for different number of pre-allocated

classes.

SplitCIFAR10

#Pre-allocated Classes

Method ∣M∣ 10 50 100 1000

Pre-allocated Expanding Classifer 100 31.74 ± 2.15 31.59 ± 0.96 31.64 ± 1.37 32.05 ± 1.10

Pre-allocated Expanding Classifer 1100 66.93 ± 0.48 66.57 ± 0.90 66.37 ± 1.20 66.75 ± 0.68

Pre-allocated RPC (Ours) 100 31.80 ± 1.61 32.20 ± 0.70 32.93 ± 1.50 32.27 ± 1.31

Pre-allocated RPC (Ours) 1100 67.44 ± 0.50 67.07 ± 0.12 67.10 ± 0.26 66.77 ± 0.52

Table 5.3: Ablation study on CIFAR-100 for different number of pre-

allocated classes.

SplitCIFAR100

#Pre-allocated Classes

Method ∣M∣ 100 200 500 1000

Pre-allocated Expanding Classifer 1400 33.79 ± 0.56 33.07 ± 0.61 33.37 ± 0.33 33.55 ± 0.48

Pre-allocated Expanding Classifer 5600 51.76 ± 0.55 49.71 ± 0.63 49.18 ± 0.85 48.62 ± 0.96

Pre-allocated RPC (Ours) 1400 33.80 ± 0.42 33.43 ± 0.45 33.98 ± 0.38 33.92 ± 0.47

Pre-allocated RPC (Ours) 5600 51.77 ± 0.61 51.25 ± 0.39 51.28 ± 0.49 51.39 ± 0.52

are trained with 10 epoch per task. For reproducibility, all the results of the

baselines are evaluated from scratch (no results are reported from papers)

based on the unified code described in [17].

Tab. 5.1 summarizes the main results of our experiments. An ablation

study of memory size is also included (100 and 1100 elements for SplitM-

NIST, PermutedMNIST and SplitCIFAR10; 1400 and 5600 elements for CI-

FAR100). First, our proposed method achieves similar accuracy (Eq.5.3) to

the expanding classifier in all benchmarks. Second, the relative gains from

the same methods using one order small memory, namely GEM and Expand-

ing Classifier with 100 memory elements are significant, confirming that the

pre-allocated fixed classifier allows Experience Replay methods to work bet-

ter with less memory. Third, note that approaches making use of memory

(GEM, ER based methods) work significantly better in this setup, while reg-

ularization methods such as EWC, Online-EWC, SI and MAS are suffering

the class-incremental learning setting. Note that for GEM with 5600 mem-

ory elements evaluated in the SplitCIFAR100 dataset did not complete due

to lack of GPU memory resources.
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Figure 5.3: Evolution of Accuracy as new tasks are learned. (a), (b) and (c)

show the results for SplitMNIST, PermutedMNIST and SplitCIFAR10.
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Figure 5.4: Evolution of Accuracy for the SplitCIFAR100 dataset.

Fig. 5.3 shows a more detailed analysis of the average accuracy as new

tasks are incrementally learned. More specifically, Fig. 5.3(a), (b), (c) and

Fig. 5.4 show SplitMNIST, PermutedMNIST, SplitCIFAR10, and SplitCI-

FAR100, respectively. As evident from all the figures the performance of our

approach is no worse than other baselines and in some cases, the accuracy is

slightly higher. In the case of PermutedMNIST with 100 memory elements

is clearly higher.

5.5.1 Ablation Study

We conducted an ablation study on the effect of pre-allocation on both

the RPC classifier and the Expanding Classifier. Different number of pre-

allocated classes are also evaluated. The quantitative results in Tab. 5.2 and

Tab. 5.3 for the CIFAR10 and CIFAR100 datasets, respectively, show that

in both cases the pre-allocation does not substantially affect the final per-

formance. The advantage of our method is that the geometric configuration

of features in our method does not change as novel classes are incorporated

into the CNN model. This property can be appreciated in Fig. 5.5. In par-

ticular, Fig. 5.5(a) shows the evolution of the distribution of class features as

learned by a 10-sided polygon fixed classifier and Fig. 5.5(b) shows the evo-

lution of a standard pre-allocated Expanding Classifier. Both classifiers are

implemented on top of the LeNet architecture and learned using the MNIST
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(a)

(b)

Figure 5.5: Class Incremental Feature Learning on the MNIST dataset in

a 2D embedding space. Figures (a) and (b) show the 2D features learned

by the RPC classifier and by a standard trainable classifier, respectively.

The two methods achieve the same classification accuracy. The figures show

the training evolution of the classifier weights (colored lines) and their cor-

responding test-set class feature (2D point cloud) respectively. As it can

be noticed, in (b) each novel learned class significantly and unpredictably

changes the geometric configuration of already learned features. As shown

in (a) this effect is absent in the RPC classifier. The figure is best viewed in

color.

dataset. This toy example reduces the output size of the last hidden layer to

2 (i.e. the dimension of the feature is 2) so that we can directly plot the dis-

tribution of features on a 2D plane to ease visualization. A k-sided polygon

is the equivalent of a Regular Polytope Classifier in a two dimensional space.

While the figure illustrates the situation in R2, the characterization extends

to arbitrary dimensions. The evolution of the incrementally learned features

is shown starting from three classes and adding two more, one at a time, with

ten pre-allocated classes. In the case of the pre-allocated Expanding Clas-

sifier, weights are randomly initialized. As it can be noticed in Fig. 5.5(b),
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each novel learned class, significantly and unpredictably changes the geomet-

ric configuration of the already learned features and already learned classi-

fier weights. This effect is particularly evident in the green and blue colored

classes when the new purple colored class is learned. Contrarily, as shown

in Fig. 5.5(a), our method is not influenced by this effects: both features

(colored point cloud) and weights (colored lines) do not change their relative

geometric configuration. In addition to this, class feature distributions are

perfectly aligned with their corresponding class weights.

5.6 Conclusion

We introduced a novel approach for class-incremental learning that exploits

future unseen classes as negative examples and learns features that do not

change their geometric configuration as novel classes are incorporated in the

learning model. The approach uses a pre-allocated special fixed classifier (i.e.

not undergoing the learning procedure) in which weights are set according

to the vertices of the d-Simplex regular polytope. As shown in the experi-

ments our method is as effective as the expanding classifier while exhibiting

properties of internal feature representation that are otherwise not-existent.



Chapter 6

Conclusion and Future

Challenges

In this thesis, we studied the problem of class-incremental learning using

feature representations that are kept stationary during its evaluation. The

methods we have addressed follows the main approaches used to tackle con-

tinual learning: a regularization strategy in the form of keeping the feature

embedding fixed and an experience replay approach to replay past informa-

tion when training a new task.

First in Chapter 2, we have presented a novel solution for cumulative

learning face identities in unconstrained video streams based on face ap-

pearance. We discussed the substantial differences between our learning

setting, Multiple Object Tracking and Continual Learning when applied to

video streams. Our solution updates a representative dataset of collected

features extracted from a convolutional neural network which is being kept

fixed during execution. The dataset collected is used as a memory of all the

past visual information observed so far as a rehearsal strategy. This strat-

egy enables the accumulation and preservation of essential knowledge and at

the same time allows to handle the non-stationarity of the data stream. We

have shown that the proposed method is theoretically sound, asymptotically

stable and operates online. Its effectiveness has been demonstrated in com-

parison with Multiple Object Tracking methods over public datasets. We

showed that the method is capable of cumulative learning effectively over

long unconstrained video sequences.

In Chapter 3 we proposed a system to perform the variant of unique
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counting, that is counting the unique persons which crosses a user drawn

gate. The system is able to detect persons, track them when they are near

a gate and crosses it. We perform open-world re-identification on the body

feature, by exploiting fine-tuned features that we trained on Market and

DukeMTMC-reid. Similarly to Chapter 2 the feature representation is kept

fixed once the evaluation start and a memory module is exploited to han-

dle person re-identification. Experiments on the challenging DukeMTMC

dataset showed that our system is able to effectively count people passing

through the gates in real time and recognize already passed people.

Finally we presented a novel technique for obtaining feature stationa-

rity and compatibility while training a neural network. In Chapter 4 we

have shown that a special set of fixed classifiers based on regular polytopes

generates stationary features by maximally exploiting the available represen-

tation space. The proposed method is simple to implement and theoretically

correct. Experimental results confirm both the theoretical analysis and the

generalization capability of the approach across a range of datasets and archi-

tectures. RePoNet improves and generalizes the concept of a fixed classifier,

recently proposed in [156], to a larger class of fixed classifier models exploit-

ing the inherent symmetry of regular polytopes in the feature space. Finally

we have shown that features extracted from a RePoNet classifier can achieve

the desirable properties of maximal separation and maximal compactness

using an additive angular margin which is constant and known in advance.

In Chapter 5 we introduced a novel approach for class-incremental learn-

ing that exploits future unseen classes as negative examples and learns fea-

tures that do not change their geometric configuration as novel classes are

incorporated in the learning model using our findings in Chapter 4. The

approach uses a pre-allocated special fixed classifier (i.e. not undergoing the

learning procedure) in which weights are set according to the vertices of the

d-Simplex regular polytope. As shown in the experiments our method is as

effective as the expanding classifier while exhibiting properties of internal

feature representation that are otherwise not-existent.

In the future, there are several directions to further investigate on. The

scenario we explored in Chapter 5, exploits the properties of RePoNet to pre-

allocate a special classifier where the number of classes is set before learning

starts. While the number of classes to allocate is arbitrary, we could argue

that, eventually, they could all be allocated leaving no extra space for future

classes.
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Visual retrieval systems, rely directly on the embedding space discard-

ing the classifier, as shown in multiple face recognition systems. These ap-

proaches, however, cannot update their feature representation model unless

they are willing to reprocess all images stored in memory with the newer em-

bedding model. Recently [215] proposed a method for backward-compatible

representation learning, where features of a newer embedding are compatible

with the ones of the older model, making it possible to apply visual retrieval

between features of different models. Given the effectiveness of RePoNet

in obtaining feature stationarity, we plan to use them in the same learning

scheme. The feature learned with RePoNet should have a better backward-

compatible representation with respect to classical neural networks making

them ideal to address the problem of incremental learning and backward-

compatible representation.
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Appendix A

Appendix

A.1 Computing the Angle Between Adjacent

Classifier Weights

The angle between a vertex and its adjacent vertices in a regular polytope can

be computed following the same mathematical formulation used to compute

its dihedral angle. The dihedral angle of a regular d-Simplex is the acute

angle formed by a pair of intersecting faces. In the case d = 2 the dihedral

angle is the angle at the vertex of an equilateral triangle, while in the case

d = 3 is the angle formed by the faces of the regular tetrahedron.

Because the dual polytope of a regular d-Simplex is also a regular d-

Simplex, the angle θ between pairs of vertices can be expressed as [250]:

θ = π − δ, (A.1)

where δ is the dihedral angle. Since the dihedral angle of a regular d-Simplex

is known to be [250] [191]:

δ = arccos (1

d
), (A.2)

substituting Eq. A.2 into Eq. A.1 we obtain:

θ = π − arccos (1

d
)

which simplifies to:

θ = arccos ( − 1

d
).
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The Eq. above provides the value between any pair of vectors in a d-Simplex.

The calculation for the the d-Cube follows a similar argument. The

dihedral angle of a regular d-Orthoplex is known to be arccos ((2 − d)/d).
Since the d-Cube is the dual of the d-Orthoplex the angle defined by a vertex

of a d-Cube and its adjacent vertices is:

θ = arccos (d − 2

d
). (A.3)
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[115] S. Banach, “Sur les opÃ©rations dans les ensembles abstraits et leur appli-
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