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Abstract. In the usual aim of discrete tomography, the reconstruction
of an unknown discrete set is considered, by means of projection data
collected along a set U of discrete directions. Possible ambiguous recon-
structions can arise if and only if switching components occur, namely,
if and only if non-empty images exist having null projections along all
the directions in U . In order to lower the number of allowed reconstruc-
tions, one tries to incorporate possible extra geometric constraints in the
tomographic problem, such as the request for connectedness, or some
reconstruction satisfying special convexity constraints. In particular, the
class P of horizontally and vertically convex connected sets (briefly, hv-
convex polyominoes) has been largely considered.

In this paper we introduce the class of hv-convex switching components,
and prove some preliminary results on their geometric structure. The
class includes all switching components arising when the tomographic
problem is considered in P, which highly motivates the investigation of
such configurations, also in view of possible uniqueness results for hv-
convex polyominoes.

It turns out that the considered class can be partitioned in two disjointed
subclasses of closed patterns, called windows and curls, respectively, ac-
cording as the pattern can be travelled by turning always clockwise (or
always counterclockwise), or points with different turning directions ex-
ist. It follows that all windows have a unique representation, while curls
consist of interlaced sequences of sub-patterns, called Z-paths, which
leads to the problem of understanding the combinatorial structure of
such sequences.

We provide explicit constructions of families of curls associated to some
special sequences, and also give additional details on further allowed or
forbidden configurations by means of a number of illustrative examples.
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1 Introduction

Discrete Tomography is a part of the wider area of Computerized Tomogra-
phy, which relates to a huge number of applications where image reconstruc-
tion from X-ray collected data is required. While Computerized Tomography
involves analytical techniques and continuous mathematics (see, for instance
[17,18]), Discrete Tomography is mainly concerned with discrete and combina-
torial structures, it works with a small number of density values, in particular
with homogeneous objects, and usually allows very few X-rays directions to be
considered (see [15,16] for a general introduction to the main problems of Dis-
crete Tomography).

The reconstruction problem is usually ill-posed, meaning that ambiguous
reconstructions are expected. To limit the number of allowed configurations,
further information is usually incorporated in the tomographic problem, which
sometimes leads to a unique solution (see for instance [12]) in the case of convex
reconstructions), or to the enumeration of the allowed solutions (an example
with two projections is [6]).

In case different discrete sets Y1 and Y2 are tomographically equivalent with
respect to a set U of directions, namely Y1, Y2 can be reconstructed by means
of the same X-rays with respect to U , then there exist specific patterns, called
switching components which turn Y1 into Y2. Understanding the combinatorial
and the geometric structure of the switching components is a main issue in
discrete tomography (see, for instance [1,2,3,5,9,10,11,12,13,14,19]).

A largely investigated case concerns the class P of hv-convex polyominoes,
i.e., finite connected subsets of Z2 that are horizontally and vertically convex.
Early results for two projections can be found in [2], where a uniqueness con-
jecture has been also stated, later disproved in [8]. On this regard, a main role
is played by switching components with respect to the horizontal and to the

vertical directions, respectively denoted by
−→
h and −→v . In [13], such switching

components have been studied from an enumerative and an algorithmic point
of view, which provided a very interesting and illustrative presentation of their
connection with the complexity of the reconstruction problem. In this paper we
also focus on such switching components, but we follow a different approach,
based on a special geometrical condition (see Definition 2), which defines a class
of patterns called hv-convex switching components. It includes the classes of reg-
ular and of irregular switching components considered in [13], that we redefine
in terms of hv-convex windows and hv-convex curls, respectively.

The geometric condition in Definition 2 is always satisfied when the switching
component is determined by a pair of sets Y1, Y2 both internal to the class
P. This motivates a deep investigation of the structure of hv-convex switching
components, in view of possible uniqueness results for hv-convex polyominoes.

We give a geometric characterization of hv-convex windows (Theorem1), and
a necessary condition for a curl to be a hv-convex switching component (Theorem
2). In general, the condition is not sufficient, but it provides a basic informa-
tion concerning the geometric structure of hv-convex curls, which leads to the
problem of understanding their geometric and combinatorial structure.



2 Notations and preliminaries

We first introduce some notations and basic definitions. As usual, R2 denotes
the Euclidean two-dimensional space, and Z2 ⊂ R2 is the lattice of points having
integer coordinates. If A is a subset of R2, we denote by int(A) and by conv(A)
the interior and the convex hull of A, respectively. If A consists of two distinct
points v and w, then conv(A) is a segment, denoted by s(v, w). If A is a finite set
of Z2, then A is said to be a lattice set, and |A| denotes the number of elements
of A. A convex lattice set is a lattice set A ⊂ Z2 such that A = (conv(A)) ∩ Z2.

By
−→
h ,−→v we mean the horizontal and the vertical directions, respectively.

For any point v ∈ R2, we indicate by Lh(v) and Lv(v) the horizontal and the
vertical line passing through v, respectively.

Finally, we define horizontal (resp. vertical) projection of a finite set A ⊂ Z2

to be the integer vector H(A) (resp. V (A)) counting the number of points of A
that lie on each horizontal (resp. vertical) line passing through it. We underline
that such a notion of projection can be defined for a generic set of discrete lines
parallel to a given (discrete) direction.

In literature, the word polyomino indicates a connected finite discrete set
of points. In particular, a polyomino is hv-convex if each one of its rows and
columns is connected. As it is commonly assumed, a polyomino is composed
by rows and columns due to the habit of representing it by a binary matrix
whose dimensions are those of its minimal bounding rectangle. The class of all
hv-convex polyominoes is denoted by P.

Given a point v = (i, j) ∈ Z2, the four following closed regions are defined
(with the same notations as in [4,7]):

Z0(v) = {(i′, j′) ∈ R2 : i′ ≤ i, j′ ≤ j}, Z1(v) = {(i′, j′) ∈ R2 : i′ ≥ i, j′ ≤ j},
Z2(v) = {(i′, j′) ∈ R2 : i′ ≥ i, j′ ≥ j}, Z3(v) = {(i′, j′) ∈ R2 : i′ ≤ i, j′ ≥ j}.

A set of points A is said to be Q-convex (quadrant convex) along the hori-
zontal and vertical directions if Zl(v) ∩A 6= ∅ for all l = 0, 1, 2, 3 implies v ∈ A.

Lemma 1. Let P be a hv-convex polyomino, and consider a point v ∈ Z2. If
w1, w2, w3 ∈ P exist such that Zi(v)∩ {w1, w2, w3} 6= ∅ for all i = 0, 1, 2, 3, then
v ∈ P .

Proof. By [4, Proposition 2.3], a hv-convex set is also Q-convex with respect to
the horizontal and to the vertical directions. The statement follows immediately
by the hv-convex property of P . ut

2.1 Switching components and the uniqueness problem

Definition 1 A pair S = (S0, S1) of sets of points is a hv-switching if:

- S0 ∩ S1 = ∅ and |S0| = |S1|;
- H(S0) = H(S1) and V (S0) = V (S1), i.e., S0 and S1 have the same hori-
zontal and vertical projections.



Each set S0 and S1 is indicated as hv-switching component. We underline
that also the notion of switching can be extended to the projections along a
generic set of discrete directions (again refer to [15,16] for these definitions and
the related main results).

A discrete set A contains a hv-switching component if S0 ⊆ A and S1∩A = ∅.
In this case, we consider A = Y ∪S0, with Y being a (possibly void) discrete set;
we define the set A′ = Y ∪ S1 as the dual of A, and we say that the switching
S is associated to A and A′.

2.2 hv-convex switching

A classical result in [19] states that if A1 and A2 are two discrete sets sharing the
same horizontal and vertical projections, then A2 is the dual of A1 with respect
to a hv-switching. So, for any point v ∈ S0 (resp. v ∈ S1), there exist points
w1, w2 ∈ S1 (resp. w1, w2 ∈ S0) such that w1 ∈ Lh(v) and w2 ∈ Lv(v).

If the sets A1 and A2 are hv-convex polyominoes, then, due to Lemma 1,
for any x ∈ S there exists one and only one i ∈ {0, 1, 2, 3} such that Zi(x) ∩ S
consists of points all belonging to the same component of S as x. The quadrant
Zi(x) is said to be the free region of x, or the S-free region of x in case we wish to
emphasize that the free region relates to the switching S. We denote by F (x) (or
by FS(x)) the free region of x ∈ S. Also, Fi(S) denotes the subset of S consisting
of all points having free region Zi(x), namely Fi(S) = {x ∈ S, FS(x) = Zi(x)},
i ∈ {0, 1, 2, 3}.

We have the following

Lemma 2. Let S = (S0, S1) be a hv-switching. Then, the following conditions
are equivalent

3⋃
i=0

Zi(S) = S. (1)

v, w ∈ Zi(S), i ∈ {0, 1, 2, 3}, v ∈ S0, w ∈ S1 ⇒ v /∈ Zj(w), w /∈ Zj(v), j = i+2(mod4).
(2)

Proof. Let v, w ∈ S such that v, w ∈ Zi(S), with v ∈ S0, w ∈ S1. Suppose that
v ∈ Zj(w), with j = i+2(mod4). Then w ∈ Zi(v), a contradiction. Analogously,
if w ∈ Zj(v), with j = i+ 2 (mod 4), then v ∈ Zi(w), a contradiction. Therefore,
(2) holds. Conversely, assume that (2) holds. Let v ∈ S, and suppose v ∈ S0.
Since S is a hv-switching, then there exist three values of k ∈ {0, 1, 2, 3} such
that Zk(v) ∩ S1 6= ∅. Suppose that w ∈ S1 exists such that w ∈ Zi(v) for i 6= k.
Then v ∈ Zj(w), where j = i + 2 (mod 4), which contradicts (2). Therefore, v
has a free region, namely F (v) = Zi(v). With the same argument we get that
any w ∈ S1 has a free region. Therefore, each point of S has a nonempty free
region, and (1) follows. ut



Definition 2 Let S = (S0, S1) be a hv-switching. Then, S is said to be a hv-
convex switching if one of the equivalent conditions of Lemma 2 holds.

Remark 1 By the above discussion, if S = (S0, S1) is a hv-switching associ-
ated to a pair of hv-convex polyominoes, then (1) holds, so S is a hv-convex
switching. However, the converse is not necessarily true, namely it could exist
two polyominoes P1 and P2 that are one the dual of the other with respect to S
and such that one or both of them are not hv-convex polyominoes. An interesting
case is Figure 23 in [13], or Figure 2 below.

2.3 Squared spirals

A closed polygonal curve K in R2 is said to be a squared spiral if K consists of
segments having, alternatively, horizontal and vertical direction. Their endpoints
form the set of vertices of the polygonal, denoted by V (K). Two squared spirals
are said to intersect in case some of (possibly all) their segments done. Assume
to travel K according to a prescribed orientation. A vertex v of K is said to
be a counterclockwise point if, crossing v, implies a counterclockwise change of
direction. Differently, v is a clockwise point. Of course, by reversing the trav-
elling orientation, clockwise and counterclockwise vertices mutually exchange.
The bounding rectangle of K is the smallest rectangle RK containing K.

2.4 Windows and curls

We now introduce two classes of special squared spirals that provide a geometric
reformulation of the notions of regularity and of irregularity discussed in [13],
which, in addition, constitute the main focus of our study. A squared spiral W is
said to be a window if it can be traveled by turning always clockwise, or always
counterclockwise. Differently, the squared spiral is said to be a curl. Therefore,
travelling a curl needs changes of turning direction.

Obviously a rectangle is a particular case of window that coincides with its
bounding rectangle.

Remark 2 Each window and each curl form a hv-switching S = (S0, S1) by
considering the corresponding vertices alternatively belonging to S0 and S1.

2.5 Z-paths

A Z-path is a staircase shaped pattern consisting of a monotone sequence of
horizontal and vertical segments, whose vertices alternate between clockwise
and counterclockwise points. We say that the Z-path is of type SE-NW, or SW-
NE, according as it can be travelled moving from South-East to North-West (or
conversely), or from South-West to North-East (or conversely), respectively. A
simple, or one-level, Z-path consists of just three segments, horizontal-vertical-
horizontal, or vertical-horizontal-vertical, referred to as hvh, or vhv Z-path,



respectively. Excluding its endpoints, a simple Z-path exhibits a pair of ver-
tices having a specified orientation, clockwise-counterclockwise, or clockwise-
counterclockwise, according to the considered type, and moving from south to
north along the pattern. In general, for q > 0, we have a q-level Z-path if, ex-
cluding its endpoints, it consists of q+1 vertices having alternating orientations.
Therefore, if q is odd, we have q horizontal and q − 1 vertical segments, or con-
versely, and we refer to the corresponding Z-path with the notation h(vh)q−1
and v(hv)q−1, respectively. If q is even, then the Z-path consists of q horizontal
and of q vertical segments, and we adopt the notation (hv)q, or (vh)q, according
as the first segment is horizontal or vertical (see Figure 1). Any Z-path is a hv-
convex set. In a SE-NW Z-path, any vertex v, different from an endpoint, has
free region Z0(v) or Z2(v), while, in a SW-NE Z-path, the free region is Z1(v)
or Z3(v). In any case, the elements of the sets of free regions {Z0(v), Z2(v)}, or
{Z1(v), Z3(v)} alternate along the Z-path. Since the vertices of a Z-path are,
alternatively, clockwise and counterclockwise oriented, then no q-level Z-path,
with q > 0, can be found in a window, while any curl surely includes some Z-
paths. Differently, if q = 0, we have an L-shaped path, consisting of an horizontal
and a vertical segment, with just one intermediate point. We refer to such a path
as a degenerate Z-path. Note that a window can be considered as a consecutive
sequence of degenerate Z-paths, while, in a curl, different Z-paths (possibly de-
generate) can appear. In what follows, we provide a precise characterization of
how these paths can be combined together.

Fig. 1. Different types of Z-paths. From left to right: A simple hvh SE-NW Z-path, a
v(hv)2 SE-NW Z-path, a (hv)3 SW-NE Z-path, and a v(hv)2 SW-NE Z-path.

3 Characterization of hv-convex windows

We give a necessary and sufficient condition for a window to be hv-convex. This
leads to a geometric characterization of the hv-convex switchings that have the
structure of a hv-convex window.

Theorem 1. Let W be a window of size n ≥ 1 and {w1, w2, ..., w4n} be the set
of its vertices. Then W is a hv-convex switching if and only if a point x ∈ R2

exists such that wi ∈ Z0(x)∪Z2(x) for all the odd indices, and wi ∈ Z1(x)∪Z3(x)
for all the even indices.

Proof. Assume that a point x ∈ R2 exists such that wi ∈ Z0(x)∪Z2(x) for all the
odd indices, and wi ∈ Z1(x)∪Z3(x) for all the even indices. Then, by definition of



window, W has the same number of vertices in each Zi(x), i = 0, 1, 2, 3, namely,
wi ∈ Z0(x), for i = 1 (mod 4), wi ∈ Z1(x), for i = 2 (mod 4), wi ∈ Z2(x), for
i = 3 (mod 4), and wi ∈ Z3(x), for i = 0 (mod 4). Therefore, if W 0 and W 1 are,
respectively, the set of the even and of the odd labeled vertices of W , then each
point of W 0 has a horizontal and a vertical corresponding in W 1 and conversely.
This implies that the free regions of all points in W 0 are contained in Z1(x) or
in Z3(x), and the free regions of all points in W 1 are contained in Z0(x) or in
Z2(x). Therefore, W is hv-convex.

Conversely, suppose that W is a hv-convex switching. Without loss of gener-
ality we can assume that W is traveled counterclockwise, starting from w1. Also,
up to a rotation (which does not change the argument) we can always assume
that the free region of w1 is Z0(w1). Then the free region of wi is Zj(wi) where
i− j = 1 (mod 4). For j = 0, 1, 2, 3, let Hj be the set

Hj =
⋃

i=j+1 (mod 4)

Zj(wi).

Due to the hv-convexity of W , the sets Hi are mutually disjointed. Consider
the strip bounded by the two horizontal lines supporting H0 ∪H1 and H2 ∪H3,
and the strip bounded by the two vertical lines supporting H0∪H3 and H1∪H2

(see Figure 2).

Fig. 2. The four regions Hi, i ∈ {0, 1, 2, 3} related to a hv-convex window. The rect-
angle Rx contains all the points having the property stated in Theorem 1.

The intersection of such strips forms a rectangle R, having horizontal and
vertical sides, and with no points of W belonging to the internal int(R) of R.
Let x be any point such that x ∈ int(R). Then Hj ⊆ Zj(x) for all j = 0, 1, 2, 3,
and the statement follows. ut

Remark 3 The property stated in Theorem 1 is not restricted to a single point,
but it involves all the points belonging to the interior of the rectangle R.

For any hv-convex window W , and point x ∈ R2 as in Theorem 1, all quad-
rants Zi(x), i ∈ {0, 1, 2, 3} contain the same number of points of W , which is
said the size of the window. Note that a window can be a switching component
with respect to the horizontal and vertical directions without being hv-convex.



4 Characterization of hv-convex curls

Moving to curls, a deeper analysis is required, as it has been pointed out in [13]
in terms of irregular switching components. Here we push the study a step ahead,
by investigating the geometric nature and the main features of those curls that
form hv-convex switching. As a first result, we prove a necessary condition for
a curl to be a hv-convex switching, say hv-convex curl. In general, the given
condition is not sufficient, but it spreads light on the geometric structure of the
hv-convex curls, and leads to their characterization in terms of Z-paths. As a
consequence, the class of hv-convex curls will be partitioned into two subclasses.

Theorem 2. Let C be a curl that forms a hv-switching, and let v and w be
two points in V (C) with the same orientation. If precisely 2n > 0 consecutive
vertices between v and w exist, and having their opposite orientation, then C is
not a hv-convex curl.

Proof. Suppose that C is hv-convex. Without loss of generality, we can assume
that travelling C from v to w the vertices v and w are counterclockwise oriented.
Up to a rotation we can also assume that Z0(v) is the free region of v, so that
a vertex v1 ∈ Z2(v) ∩ Z3(v) exists, with v, v1 in different components of C. Let
x1, ..., x2n be the 2n > 0 clockwise oriented vertices of C that are crossed when
moving from v to w.

The segment s(v, x1) is horizontal. The same holds for the segment s(x2n, w),
and also for all segments s(x2k, x2k+1), for 1 ≤ k ≤ n − 1. Analogously, all
segments s(x2k−1, x2k), for 1 ≤ k ≤ n are vertical. Then Z2(x1) is the free
region of x1, Z1(x2) is the free region of x2, Z0(x3) is the free region of x3, and,
in general, the free region of xi is the quadrant Zj(xi) such that i+j = 3(mod4).
Therefore, the free region of x2n is Z1(x2n) if n is odd, and Z3(x2n) if n is even,
which implies that the free region of w is, respectively, Z3(w) and Z1(w) (see
Figure 3, where the case F (w) = Z1(w) is represented).

Fig. 3. Positions of consecutive vertices having a same orientation in a curl.

Now, all the vertices xh, with h odd, belong to a component different from
that v, so they do not lie in F (v) = Z0(v). Since x1 ∈ Z1(v) ∩ Z2(v), then
x2 ∈ int(Z1(v)). If n = 1, then w ∈ int(Z1(v)), and F (w) = Z3(w), so that
v ∈ F (w), a contradiction, since v and w belong to different components of
C. So, the statement follows for n = 1. If n > 1, then x3 ∈ int(Z1(v)), so



x4 ∈ Z1(v)∪Z2(v). However, x4 /∈ Z1(v), since, otherwise v1 ∈ F (x4) = Z3(x4),
a contradiction, being v and v1 in different components of C. By iterating the
argument, we get that all the vertices of the form x2k, with k ≤ n and k even must
belong to Z2(v). Analogously, all the vertices of the form x2k, with k ≤ n and k
odd must belong to Z1(v), since, differently, x2k would belong to F (x1) = Z3(x1),
or conversely, x1 ∈ F (x2k) = Z1(x2k), a contradiction, since x1 and x2k belong to
different components of C. This implies that the vertices x2k−1 with 2 ≤ k ≤ n
and k even belong to Z1(v), while the vertices x2k−1 with 1 < k ≤ n and k odd
belong to Z2(v). Consequently, also w ∈ Z1(v) ∪ Z2(v).

Suppose that w ∈ Z1(v). Since the segment s(x2n, w) is horizontal, then x2n

also belongs to Z1(v). As shown above, this implies that n is odd, so F (w) =
Z3(w), and consequently v ∈ F (w), a contradiction.

Hence w ∈ Z2(v), then x2n also belongs to Z2(v), which implies that n is even,
and consequently F (x2n) = Z3(x2n), and F (w) = Z1(w). Therefore, w must
belong to Z2(x2), otherwise w ∈ Z3(x2), and consequently x2 ∈ F (w) = Z1(w),
a contradiction. From w ∈ Z2(x2), and w ∈ Z2(v), it follows that w ∈ Z2(x1).
Since C is a switching with respect to the vertical direction, then there exists
a vertex w1 ∈ Z2(w) ∩ Z3(w), with w and w1 in different components, and
consequently also x1 and w1 belong to different components of C (see Figure 3).
Since w ∈ Z2(x1), then also w1 ∈ F (x1) = Z2(x1), a contradiction.

Consequently, the assumption that C is hv-convex always leads to a contra-
diction, and the statement follows. ut

5 On some sequences associated to hv-convex switchings

Let S be a squared spiral. We associate to S an integer sequence (k1, k2, ..., kn),
say hv-sequence, where each ki represents the i-th maximal sequence of ki ver-
tices that can be travelled clockwise or counterclockwise, with i = 1, 2, ..., n. The
starting vertex is not indicated, so the sequence can be considered up to circu-
lar shifts. If the sequence (k1, k2, ..., kn) is periodic, then we adopt the notation
(k1, ..., kn′)h, to represent the h time repetition of the sequence (k1, ..., kn′), with
n = n′ · h; if h = 1, we choose to omit it. We are interested in characterizing
the hv-sequences that admit a hv-convex switching, say hv-convex sequences.
Therefore, we are led to the following general problem.

Problem 1. For which k1, ..., kn, h ∈ N there exists a hv-convex sequence (k1, ..., kn)h?

Concerning windows, Problem 1 has an easy solution.

Theorem 3. For each n > 0, (4n) is a hv-convex sequence if and only if the
associated square spiral is a window.

Proof. By Theorem 2, the hv-sequence associated to a curl is of the form (k1, ..., kn′)h,
where k1, ..., kn are odd. Therefore, (4n) cannot be the hv-sequence associated to
a curl. Let W be a window. By Theorem 1, x ∈ R2 exists such that all quadrants
Zi(x), i ∈ {0, 1, 2, 3} contain the same number of points of W . Then, W has 4n



vertices, for some n > 0, which implies that the hv-sequence associated to W is
(4n). ut

Differently, Problem 1 seems to require a deeper investigation of the geo-
metrical and combinatorial structure of the set of vertices of a curl. In this
view, we give here some preliminary remarks. First of all, note that, having a
(k1, ..., kn)h curl, is in general not sufficient to get hv-convexity, since the con-
ditions in Lemma 2 do not automatically hold.

A vertex v of a curl whose turning direction differs from that of the previous
encountered point, is said to be a changing point. In order to improve our knowl-
edge on the hv-sequences allowed for curls, it is worth focusing on the possible
Z-paths that can be included in a hv-convex curl, which reflects in the under-
standing of how changing points can occur. As already observed, the simplest
hv-convex curl is the (3, 3)1 curl shown in Figure 4 (a). Its vertices consists of
six points x1, . . . , x6, where F (x1) = Z1(x1), F (x2) = Z0(x2), F (x3) = Z3(x3),
F (x4) = Z1(x4), F (x5) = Z2(x5), F (x6) = Z3(x6). The (3, 3)1 curl can also be
considered as the join of two simple hvh and vhv SW-NE Z-paths (see Section
2.5) having x2 and x5 in common. This means that x1, x4 are changing points
(or x3, x6, depending on the starting choice for the walking direction). Figure 4
(b) shows a (3, 3)2 hv-convex curl, consisting of two different pairs of intersect-
ing simple SW-NE Z-paths (analogous constructions can be performed by using
SE-NW Z-paths). Analogously, for any integer number h ≥ 1, a curl C can be
constructed having h pairs of intersecting SW-NE Z-paths. These can be con-
secutively arranged, or, differently, connected by means of L-shaped paths, as
described above. See Figure 4 (c) for an example where h = 4.

(a) (b) (c)

Fig. 4. (a) A (3, 3)1 hv-convex curl C, corresponding to a SW-NE vertex-gluing of two
rectangles. (b) A (3, 3)2 hv-convex curl with two pairs of intersecting simple Z-paths.
(c) Example of curl associated to the hv-sequence (3, 3)4.

Of course, curl containing Z-paths of higher level can be also constructed.

However, different Z-paths of a same curl are not necessarily consecutive.
For instance, Figure 5 shows how to insert degenerate Z-paths (L-shaped paths)
between the bottom-left endpoint of a Z-path and the upper-right endpoint of
a different Z-path, so transforming a (3, 3)1 curl into a (5, 5)1 curl.



Fig. 5. Including L-shaped paths in a given curl. (a) The starting curl. (b) The split
of the two constituent simple Z-paths. (c) The connection of the two simple Z-paths
by joining their extremal vertices with two degenerate Z-pats.

Further constructions also exist having associated hv-convex sequence of type
(k1, k2)h, with k1 6= k2. Figure 6 shows a curl associated to the hv-convex se-
quence (3, 5)2.

Fig. 6. The hv-convex curl associated to the hv-convex sequence (3, 5)2.

6 Conclusion and remarks

We have introduced the class of hv-convex switching components, which includes
all switching components associated to a pair of tomographically equivalent hv-
convex polyominoes. We have separated the class in two disjointed subclasses
of closed patterns, the windows and the curls, respectively. We have given geo-
metrical results on both subclasses, which leads to the problem of characterizing
them in terms of hv-convex sequences. While windows provide a complete and
easy solution, deeper investigation is required for curls. We have discussed a few
preliminary allowed or forbidden hv-sequences, which provide partial answers to
Problem 1 in the case of curls. For a complete solution to Problem 1 it becomes
relevant to understand how, in general, different Z-paths can be connected be-
tween them in a same curl. In particular, it would be worth exploring possible
connections between the allowed levels of the Z-paths in a same curl, and the de-
gree of convexity of L-convex sets [6]. We wish to investigate in these directions
in separated further works
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