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ABSTRACT

Assuming Schanuel’s Conjecture we prove that for any irreducible variety

V ⊆ Cn×(C∗)n over Qalg, of dimension n, and with dominant projections

on both the first n coordinates and the last n coordinates, there exists a

generic point (a, ea) ∈ V . We obtain in this way many instances of the

Strong Exponential Closure axiom introduced by Zilber in [20].
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1. Introduction

In [20] Zilber conjectured that the complex exponential field is quasi-minimal,

i.e., every subset of C definable in the language of rings expanded by the ex-

ponential function is either countable or co-countable. If the conjecture is true

the complex exponential field should have good geometric properties.

He introduced and studied a class of new exponential fields now known as

Zilber fields via axioms of algebraic and geometrical nature. There are many

novelties in his analysis, including a reinterpretation of Schanuel’s Conjecture

in terms of Hrushovski’s very general theory of predimension and strong exten-

sions, [12]. Zilber proved that his axioms are uncountably categorical, and all

models are quasiminimal (see [13, 20]).

Zilber conjectured that the one in cardinal 2ℵ0 is C as exponential field.

Comparing the complex exponential field and Zilber fields has been object of

study in [16], [6], [7], [17], [8], [11], [15].

In this paper we will analyze one of the axioms introduced by Zilber, the

Strong Exponential Closure (SEC), in the complex exponential field. Modulo

Schanuel’s Conjecture, (SEC) is the only axiom still unknown for (C, exp). Some

instances of (SEC) for (C, exp) have been proved in [16], [15], [5]. Here we obtain

a more general result which includes those in [5].

Let Gn(C)=Cn×(C∗)n be the algebraic group. Let 1 ≤ k ≤ n andM = (mij)

be a k × n matrix of integers and

[M ] : Gn(C) → Gk(C)

be the homomorphism given by

(x1, . . . , xn, y1, . . . , yn) → (x′
1, . . . , x

′
k, y

′
1, . . . , y

′
k)

where

x′
i = mi1x1 + · · ·+minxn and y′i = ymi1

1 · · · ymin
n ,

for i = 1, . . . , k. We recall that a variety V is rotund if for every nonzero

matrix M ∈ Mk×n(Z), dim([M ](V )) ≥ rank(M), i.e., all the images of V

under suitable homomorphisms are of large dimension.

A variety V is free if V does not lie inside any subvariety of the form ei-

ther {(x̄, ȳ) : r1x1 + · · · + rnxn = b}, where ri ∈ Z, ri not all 0, b ∈ C,

or {(x̄, ȳ) : yr11 · · · yrnn = b}, where ri ∈ Z, ri not all 0, b ∈ C∗.
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Strong Exponential Closure. If V ⊆ Cn × (C∗)n is a rotund and free

algebraic variety of dimension n, and ā is a finite tuple of elements of C then

there is z̄ ∈ Cn such that (z̄, ez̄) ∈ V , and is generic in V over ā, i.e.,

t. d.Q(ā)(z̄, e
z̄) = dim(V ).

The hypotheses of rotundity and freeness on the variety V guarantee that the

only relations among the coordinates of points in V are those coming from V

itself and the laws of exponentiation.

We recall

Schanuel Conjecture (SC): Let z1, . . . , zn ∈ C. Then

t. d.Q(z1, . . . , zn, e
z1, . . . , ezn) ≥ l.d.(z1, . . . , zn).

(SC) has many consequences in exponential algebra, see [14, 18].

In this paper, assuming Schanuel’s Conjecture we prove the Strong Expo-

nential Closure for (C, exp) for certain varieties defined over Qalg. We de-

note the projections on the first n coordinates and on the last n coordinates

by π1 : V → Cn and π2 : V → (C∗)n, respectively.

Main Result (SC): Let V ⊆ Cn× (C∗)n be an irreducible variety defined over

the algebraic closure of Q, such that dimV = n, and both projections π1 and π2

are dominant. Then there is a Zariski dense set of generic points (z̄, ez̄) in V.

We recall that π1 and π2 being dominant means that π1(V ) and π2(V ) are

Zariski dense in Cn. As observed in [1], π1 being dominant implies that V is

rotund and both projections being dominant imply that V is free.

There are examples of free and rotund varieties with projections not domi-

nant, e.g., {(x1, x2, y1, y2) : x2 = x2
1 and y2 = y1 + 1}.

In Lemma 2.10 in [5] (see also [4]) the existence of a Zariski dense set of

solutions of V is proved under the hypothesis that π1 is dominant. No appeal

to Schanuel’s conjecture is necessary, and moreover there is no restriction on

the set of parameters. For the new result on the existence of generic solu-

tions, Schanuel’s Conjecture is crucial and there are restrictions on the set of

parameters defining the variety V .

Recently, Bays and Kirby in [1] proved the quasi-minimality of (C, exp) as-

suming a weaker condition than the strong exponential closure, requiring only

the existence of a point (z̄, ez̄) in V under the same hypothesis on the variety.

No appeal to Schanuel’s Conjecture is made.
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Some instances of quasi-minimality are known, e.g., if X is a subset of C

defined by either quantifier-free formulas or by ∀y(P (x, y) = 0) where P is a

term in the language {+, ·, 0, 1, exp}, then X is either countable or co-countable.

Boxall in [3] extends this result to sets defined by an existential formula,

∃ y(P (x, y) = 0),

where P is a term in the language {+, ·, 0, 1, exp} together with parameters

from C.

2. Preliminaries

We recall that the definable subsets of Cn (in the language of rings) in the sense

of model theory coincide with the constructible sets in algebraic geometry. We

briefly review some basic facts about the notion of dimension associated to a

definable set in Cn which will be used in the proof of the main theorem; for

details see [9] and [10].

We will always allow a finite or a countable set of parameters P . If not

necessary we will not specify the set of parameters P .

Every definable (with parameters in P ) set X has a dimension

dim(X) = max{d : ∃ x̄ ∈ X t. d.P (x̄) = d}.

Let X
Zar

denote the Zariski closure of X . Then

dim(X) = dim(X
Zar

).

Moreover, for algebraically closed fields the model-theoretic algebraic clo-

sure (acl) coincides with the usual field-theoretic algebraic closure.

Fact 1: dim(X) is well-defined, i.e., it does not depend on the choice of the

set P of parameters in the definition of X .

Fact 2: Let X be a definable set in Cn. The dimension of X is 0 iff X is finite

and nonempty. We use the convention that the empty set has dimension −1.

Notation: Let Y ⊆ Cn+m. For every x̄ ∈ Cn,

Yx̄ = {ȳ ∈ Cm : (x̄, ȳ) ∈ Y } and Y ȳ = {x̄ ∈ Cn : (x̄, ȳ) ∈ Y }.
If Y ⊆ Cn+m is definable then (Yx̄)x̄∈Cn is a definable family.
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Fact 3: Let (Yx̄)x̄∈Cn be a definable family of subsets ofCm. For every d ∈ N, the

set {x̄ ∈ Cn : dim(Yx̄) = d} is definable, with the same parameters as (Yx̄)x̄∈Cn .

For d = 0 this gives that {x̄ ∈ Cn : Yx̄ is finite} is also definable.

Fact 4: Let (Yx̄)x̄∈Cn be a definable family of subsets of Cm. Then the fam-

ily (Y x̄
Zar

)x̄∈Cn of the Zariski closures is still a definable family.

Let π1 : Y → Cn and π2 : Y → Cm be the projections on the first n and the

last m coordinates, respectively.

Lemma 2.1: Let Y ⊆ Cn+m be definable over P , and X := π1(Y ). Assume

that, for every x̄ ∈ X , dim(Yx̄) = d. Then, dim(Y ) = dim(X)+d. In particular,
if Yx̄ is infinite for every x̄ ∈ X , then dim(Y ) > dim(X).

Notice that an equivalent result holds in the case of X := π2(Y ). For the

proof of the above lemma see [9].

Simple calculations give the following result.

Lemma 2.2: Let Y ⊆ Cn×Cm be a definable set over P , such that dim(Y ) ≤ n.

Let c̄ ∈ Cn be generic over P , i.e., t. d.P (c̄) = n. Then, the fiber

Yc̄ := {z̄ ∈ Cm : (c̄, z̄) ∈ Y }
is finite.

Brownawell and Masser in [4] develop a very powerful criterion for solvability

of systems of exponential equations. Proposition 2 in [4] implies the following

result (see also [5]).

Theorem 2.3: Let W ⊆ Gn(C) be an irreducible algebraic variety such

that π1(W ) is Zariski dense in Cn. Then, the set {a ∈ Cn : (a, ea) ∈ W}
is Zariski dense in Cn.

The hypothesis that π1(W ) is Zariski dense is a non-trivial condition, and it

implies that the variety is rotund. Theorem 2.3 states an even stronger property

than the Exponential-Algebraic Closedness for (C, exp) for irreducible varietyW

with π1 dominant. Indeed, there is a Zariski-dense sets of points (a, ea) in W .

A major problem is to replace the hypothesis that π1 is dominant with much

weaker ones like rotundity and freeness while still retaining the conclusion of

the theorem.

Notice that no restriction is made on the coefficients of the polynomials defin-

ing W , and the result is independent from Schanuel’s Conjecture.
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3. Strong Exponential Closure

We now go back to analyze Zilber’s original axiom (SEC), i.e., we want to

prove the existence of a point in the variety V of the form (a, ea) which is

generic in V . Assuming Schanuel’s Conjecture we can prove (SEC) for algebraic

varieties satisfying certain conditions.

Theorem 3.1 (SC): Let V ⊆ Cn × (C∗)n be an irreducible variety over the

algebraic closure of Q with dim V = n. Assume that both projections π1 and π2

are dominant. Then there is a ∈ Cn such that (a, ea) ∈ V and t. d.Q(a, e
a) = n.

In fact, the set

{a ∈ Cn : (a, ea) ∈ V and t. d.Q(a, e
a) = n}

is Zariski dense.

In the proof of Theorem 3.1 we will use the following known result.

Let M ∈ Mm×n(Z),

LM = {x ∈ Cn : M · x = 0} and TM = {y ∈ (C∗)n : yM = 1}.
By yM we denote the result of the exponential map applied toM ·x, where yi=exi

for i = 1, . . . , n.

Fact 5: The hyperspace LM and the algebraic subgroup TM have the same

dimension.

Proof. Let

ZM = {x ∈ Cn : eM·x = 1} = {x ∈ Cn : ex ∈ TM} = {x ∈ Cn : M ·x ∈ 2πiZm}.
The algebraic subgroup TM is a closed differential submanifold in (C∗)n, and
since exp is a local diffeomorphism ZM is a differential submanifold of Cn of

the same dimension as TM . Notice that LM is the tangent space of ZM at 0,

and so dim(LM ) = dim(ZM ) = dim(TM ).

Proof of Theorem 3.1. Let U={(x, y)∈V : |Vx| and |V y| are finite}. Clearly, U
is definable and Zariski dense in V . Let (a, ea) ∈ U , and suppose that (a, ea) is

not generic in U , i.e., t. d.Q(a, e
a) = m < n. The finite cardinality of Va implies

that all coordinates of the tuple ea are algebraic over a, since they are in acl(a).

Exchanging a and ea we have that each coordinate of the tuple a is algebraic

over ea. Hence,

(1) m = t. d.Q(a) = t. d.Q(a, e
a) = t. d.Q(e

a).
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Schanuel’s Conjecture implies l.d.(a) ≤ t. d.Q(a, e
a) = m < n. By equa-

tion (1) we can then conclude that l.d.(a) = m. Hence, there exists a matrix

M ∈ M(n−m)×n(Z) of rank n−m such that M · a = 0, which together with its

multiplicative version give the following hyperspace and torus:

LM = {x : M · x = 0} and TM = {y : yM = 1}.

As observed dim TM = dimLM = m. So, a is generic in LM and ea is generic

in TM . Then the non-genericity of (a, ea) in U is witnessed by either a or ea.

Without loss of generality we can assume that TM is irreducible. If not, we

consider the irreducible component of TM containing 1 whose associated matrix

we call M ′. By results on pages 82–83 in [2] the associate hyperspace LM ′

coincides with LM .

For every N ∈ M(n−m)×n(C), define

WN = {(x, y) ∈ U : x ∈ LN}.

Clearly, WN is definable, and so (WN )N is a definable family.

If N = M then (a, ea) ∈ WM , and so dimWM ≥ dimLM . Moreover, from

the definitions of U and WN it follows that π1 restricted to WM is finite-to-

one. Therefore, dimWM = dimπ1(WM ), and so dimWM ≤ dimLM . Hence,

dimWM = dimLM .

LetW ′
M be the irreducible component of the Zariski closure ofWM containing

the point (a, ea). Since (a, ea) is generic in W ′
M , and ea ∈ π2(W

′
M ) ∩ TM is

generic in π2(W
′
M ) we have that π2(W

′
M ) ⊆ TM . Hence, the Zariski closure of

the projection, π2(W ′
M )

Zar
, is contained in TM . Moreover, ea is generic in TM ,

and this implies that

TM = π2(W ′
M )

Zar
.

Let (W ∗
i )i∈I (where I is a definable set) be the definable family of all irreducible

components of all (WN )N for N ∈ M(n−m)×n(C). In particular, W ′
M is one

of W ∗
i for some i ∈ I. For each i ∈ I, denote Si the Zariski closure of π2(W

∗
i ).

Let

Um = {Si : Si is a subgroup of (C∗)n}.

Since Um is a countable definable family in (C∗)n, and C is saturated then Um

is either finite or uncountable. Then Um is necessarily finite, and TM ∈ Um.
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Let U := U1 ∪ · · · ∪ Un−1. Clearly, U is finite since each Uj is finite

for j ∈ {1, . . . , n− 1}, so U = {H1, . . . , H�}. Let
T = H1 ∪ · · · ∪H� and C = {(x, y) ∈ U : y ∈ T }.

Then by Theorem 2.3 the set

X = {(a, ea) : (a, ea) ∈ U − C}
is not empty, Zariski dense in U (and hence in V ), and t. d.Q(a, e

a) = n for

every (a, ea) ∈ X .
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