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Chapter 1

Introduction

Quantum mechanics works exceedingly well in all practical applications. No

example of conflict between its predictions and experiment is known. Without

quantum physics, we could not explain the behaviour of the solids, the structure

and function of DNA, the color of the stars, the action of lasers, or the properties of

superfluids. Yet nearly a century after its inception, the debate about the relation

of quantum physics to the familiar physical world continues. Why is a theory

that seems to account with precision for everything we can measure still deemed

lacking? [65]

One of the problems that Quantum Mechanics seems not to be able to answer

is the explanation of the quantum-to-classical world transition.

Roughly speaking, why are the laws of Quantum Mechanics not visible to our

eyes and vice versa? In this context, the quantum decoherence turns out to

be a key concept, a topic which is worth to be studied thoroughly. Indeed, the

interest towards the decoherence phenomenon has increased since the Eight-

ies and its role has been recognized by material scientists and philosophers,

beyond proper physicists [63,65,32].
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The word coherence incorporates the globality of the quantum properties

of a quantum system. Decoherence is the process of loss of quantum coherence

[32,64]. It is properly a dynamic mechanism, entirely predictable on the basis

of quantum evolution laws, responsible for the appearance of the classical

behaviour of the particles (or disappearance of the quantum behaviour since

the state of the systems becomes a statistical mixture) as a consequence of

the interaction with the environment. As such, the decoherence phenomenon

governs quantum-to-classical transition and it shapes our actual perception of

the world. The theoretical and experimental study of decoherence processes

is not only important for our understanding of fundamental physics, but it

is also crucial for technological applications, such as quantum computers

and spintronics [66], where quantum coherence must be preserved as long

as possible. Nevertheless, decoherence is still lacking a rigorous description,

where in particular we mean not a general overview, but at least a precise

mathematical framing, and many attempts have been made in this direction,

e.g. [22,2,18,15].

Furthermore, we would like to point out that quantum-to-classical regime

transition due to decoherence is conceptually different from the semi-classical

limit one. This last approach leans on the smallness of Planck’s constant, i.e.

×−→ 0. Following [1] and [42], it is possible to list four main differences:

1. Decoherence regards systems which interact with an environment, namely

open quantum systems;

2. Decoherence acts at the length-scale of the interference pattern, whereas

a typical semi-classical procedure consists in evaluating a macroscopic

observable on a fast oscillating probability distribution;

3. Decoherence is a dynamical effect which grows with time, while the

semi-classical limit is also valid in a stationary picture;

4. From a qualitative point of view, × plays no role in the mechanism of

decoherence, even if it must be said that, quantitatively, in many models

of physical relevance the time-scale of the decoherence owes its shortness

to the smallness of the Planck’s constant.

In this work, we intend to present a model of dynamical quantum decoherence

within the Wigner (phase-space) formulation of quantum mechanics [10], [34],

[57], [50], [62]. In fact, due to its striking analogies with classical mechanics,

the formulation of quantum mechanics in terms of Wigner functions is partic-

ularly suited to illustrate the quantum-to-classical regime transition. Of course,
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this approach is not new and several important papers on this subject resort

to (or, at least, mention) the Wigner formalism (see e.g. Refs.[5,13,32,49,58]).

The novelty the reader may encounter here is that we start from a model for

decoherence which is fairly general whenever the environment is viewed as

a "gas" of particles of asymptotically small mass, with respect to the "heavy"

particle undergoing decoherence. This model has been rigorously derived

from the laws of quantum mechanics in Refs. [2,3], and, to this extent, our

description can be considered as arising "from first principles". Moreover,

other models (above all the Wigner-Fokker-Planck equation) can be recovered

as particular cases of the general mechanism introduced here.

The thesis is organized as follows.

After a dutiful introduction to the mathematical basics of Quantum Mechan-

ics, the Wigner phase space formulation of Quantum Mechanics is recalled

because of the needs related to the model and the reasons presented above.

In Chapter 3 the decoherence phenomenon, the Joos-Zeh models and the

single-collision decoherence model analysed in Refs. [2,3] are briefly resumed.

Then, we consider the case of many collisions, randomly distributed in time,

and obtain the corresponding "mean field" limit model, which is then trans-

lated into the Wigner framework. The Wigner equation with decoherence is

obtained in this way and is shown to be strictly related to other models of

decoherence, such as the Wigner-Fokker-Planck equation [5,4,21,32] and the

Jacoboni-Bordone Wigner function with finite coherence length [31]. We study

the influence of the decoherence mechanism on the dynamics of macroscopic

quantities, namely density, current and energy. About these contents you can

refer to our recent work [8]. The last part (Chapter 5 ) is devoted to the issue of

long-time asymptotics: the numerical investigation of a simple situation (i.e.

the case of gaussian solutions) suggests that the correct long-time behaviour

requires the addition of a Caldeira-Legget "quantum friction term" [13] and we

draft some ideas on the general case. Finally, we draw some conclusions and

discuss future perspectives. In the Appendix are collected the codes which have

allowed to gain some didactic pictures and control the behaviour of the model,

but, most of all, the results contained in Chapter 4, where our model is evinced

to be indicated in an application of physical interest as a tunneling process in a

decoherent environment. This part has been exposed at the 26th International

Conference on Transport Theory at La Sorbonne Université Pierre et Marie

Curie Campus in Paris and is contained in a larger ongoing work.
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Chapter 2

Basics of Quantum Mechanics &

Quantum Mechanics in Phase Space

2.1 Mathematical background

Herewith are counted important basic prerequisites concerning Hilbert spaces

and spectral theory of unbounded operators, as natural setting of Quantum

Mechanics mathematical foundations, since when von Neumann himself has

laid the groundwork for this formalism which, though some difficulties of a

physical interpretation nature and the necessary extensions to the abstract

algebras in order to adapt it to the quantum field theory, is still the landmark of

the quantum paradigm description ([41], [39]).

2.1.1 Linear operators on Hilbert Spaces

Let recall some notations for the hermitian product. Then

Definition 1. Let V be a linear space on the field C of complex numbers.

A hermitian product is aC-valued application 〈·, ·〉 defined over V ×V such that,

for all x, y, z ∈V and λ ∈C, these properties hold:

1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0;

2. 〈x + y, z〉 = 〈x, z〉+〈y, z〉;

3. 〈x,λy〉 =λ〈x, y〉;

4. 〈x, y〉 = 〈y, x〉.

5



Example 1.
(
L2(RN ,C),‖‖2

)
is a Hilbert Space with respect to the hermitian

product given by

〈ϕ,ψ〉 =
∫
RN

ϕ(ξ)ψ(ξ) dξ, (2.1)

for all ϕ, ψ ∈ L2(RN ,C).

Although it may appear redundant, according to the writer, it is also nec-

essary to clarify some operator definitions in the Hilbert spaces, so that the

reader is aligned with the notations.

Definition 2. A Hilbert space operator H is a linear map

A : D(A) −→ H ,

where D(A) indicates the domain of operator A and it is the (maximal) vectorial

subspace of H such that A is well-defined.

Let always suppose 1 D(A) is dense in H and A has closed extension.

Definition 3. An operator A on H is bounded (in symbols A ∈ L (H )) if

D(A) =H and there exists M ∈R+ such that

‖Aϕ‖ ≤ M‖ϕ‖, for all ϕ ∈H .

L (H ) is a Banach space with respect to the operator norm defined as follows:

‖A‖ = inf
0 6=ϕ∈H

‖Aϕ‖
‖ϕ‖ , A ∈L (H ). (2.2)

Definition 4. Let A be an operator on H and let D(A∗) be the set of ϕ ∈H

for which there is a η ∈H with

〈ψ, Aϕ〉 = 〈η,ψ〉, for all ψ ∈D(A).

For each such ϕ ∈D(A∗), we define A∗ϕ= η. A∗ is called the adjoint of A.

Definition 5. An operator A on H is said symmetric (or hermitian) if

〈ψ, Aϕ〉 = 〈Aψ,ϕ〉, for all ϕ,ψ ∈D(A). (2.3)

We shall say that A is self-adjoint if it is symmetric and D(A) =D(A∗). In this

case A = A∗. For A ∈L (H ) the two definitions are equivalent.
1Rigorous motivations in [46], chap. VI
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2.1.2 Hilbert-Schmidt and Trace Class Operators

We present some fundamental facts which regard Hilbert-Schmidt and Trace

Class Operators. [46], [60].

The first result concerns the characterization of compact and self-adjoint op-

erators on a Hilbert space and it represents the natural infinite dimension

generalization of the spectral theorem for finite dimensional vectorial spaces.

Theorem 1 (Hilbert-Schmidt). Let H a Hilbert space and A ∈ L (H ) a self-

adjoint compact operator. Then there is a complete orthonormal system
{
ϕn

}
n∈N

for H such that, for n ∈ N, Aϕn = λnϕn . Besides the sequence {λn}n∈N ⊆ R
tends to zero as n −→∞.

Hence, every compact and self-adjoint operator A ∈L (H ) is such that there

exist an orthonormal basis
{
ϕn

}
n∈N and an infinitesimal real-valued sequence

{λn}n∈N , such that

Aϕ= ∑
n∈N

λn〈ϕn ,ϕ〉ϕn , for all ϕ ∈H , (2.4)

where the convergence is in the H norm.

Definition 6. An operator B su H is said positive (B ≥ 0) if for all ψ ∈ D(B)

holds

〈ψ,Bψ〉 ≥ 0. (2.5)

Remark 1. Every positive and bounded operator B ∈ L (H ) is self-adjoint.

Indeed, for every ψ ∈H ,

0 ≤ 〈Bψ,ψ〉 = 〈Bψ,ψ〉 = 〈ψ,Bψ〉.

Then, using the following equality2

4〈ϕ,ψ〉 = (‖ϕ+ψ‖2 −‖ϕ−ψ‖2)− i
(‖ψ+ iψ‖2 −‖ϕ− iψ‖2) , (2.6)

turns

〈Aϕ,ψ〉 = 〈ϕ, Aψ〉
for all ϕ,ψ ∈H , namely A is self-adjoint.

2Equation (2.6) is said polarization identity and represents, for C Hilbert spaces, a general-
ization of the parallelogram rule in R Hilbert spaces, tipically given by

2(‖ϕ‖2 +‖ψ‖2) = ‖ϕ+ψ‖+‖ϕ−ψ‖

7



Remark 1 is no more true for operators which are not defined on the whole

space. In particular, it is not true forF-Hilbert Spaces where F is not C isomor-

phic field (then it is not true for F=R either).

Besides, for all A, B ∈L (H ) we say that A ≥ B if and only if A−B ≥ 0.

Remark 2. A positive (and self-adjoint) operator is certainly A∗A, which is

defined for all A ∈L (H ) and is still a bounded operator. After all, for ψ ∈H ,

it holds

〈A∗Aψ,ψ〉 = 〈Aψ, (A∗)∗ψ〉 = 〈Aψ, Aψ〉 ≥ 0.

For a positive operator we can define another operator, said squared root

operator, as follows

Definition 7. Let B ∈ L (H ), then
p

B is the unique positive operator Q ∈
L (H ) such that Q2 = B .

Thanks to this concept it is possible to give a sense to the operator module

Definition 8. Let A ∈L (H ). The operator module of A is |A| =p
A∗A.

Although the notation | · | looks familiar, it must not deceive: on one side,

|λA| = |λ||A| is still valid for all λ ∈C, whereas on the other side properties like

|AB | = |A||B | nor |A+B | ≤ |A|+ |B | are no more valid.

The following results concern compact operator and are fundamental to con-

tinue.

Theorem 2 (Canonical form for Compact Operators). Let A ∈L (H ) a compact

operator on the Hilbert space H . Then there exist two orthonormal system{
ψn

}
n∈N,

{
ϕn

}
n∈N (which are not necessarily different, not necessarily complete)

and a real valued sequence {λn}n∈N ⊆R+ such that, for all ϕ ∈H ,

Aϕ= ∑
n∈N

λn〈ϕ,ψn〉ϕn .

The elements belonging to sequence {λn}n∈N are said singular values of the

compact operator A and they coincide with the eigenvalues of |A|.
Compact operators own good properties. Hilbert-Schmidt and Trace-class

operators, which we are going to introduce, are compact operators.

Definition 9. Let H a separable Hilbert space and
{
ϕn

}
n∈N orthonormal basis

of H . Let A ∈L (H ) positive.

The trace of A is3

tr A = ∑
n∈N

〈ϕn , Aϕn〉 ∈ [0,∞].

3independently from the choice of the H basis, provided orthonormal.

8



An operator A ∈L (H ) is said trace class (or nuclear) if and only if tr |A| <∞.

We indicate the set of trace class operators on the Hilbert separable space H

as J1(H ).

Trace class operators form a (bilateral) ideal of L (H ) with respect to the

adjoint. Besides, if equip with the norm

‖A‖J1 := tr |A|, (2.7)

J1(H ) it results to be a Banach space.

Theorem 3. If A ∈J1, then A is compact. if A is compact, then A ∈J1 if and

only if its singular values series converges.

Definition 10. Let H a separable Hilbert space and A ∈L (H ).

A is said a Hilbert-Schmidt operator or, briefly, HS if

tr (A∗A) <∞.

The set HS operators on H is denoted by J2(H ).

Similarly to J1, HS operators form *-ideal of L (H ).

Moreover, for all A,B ∈ J2, the following relation between the norms is de-

duced

〈A,B〉2 := ∑
n∈N

〈ϕn , A∗Bϕn〉. (2.8)

This last definition is well posed, since (2.8) absolutely conserges and it is

independent on the chosen orthonormal basis ofH ,
{
ϕn

}
n∈N.

Equation 2.8 defines a hermitian product, thanks to which J2 is a Hilbert

space in turn, with induced norm

‖A‖
HS

=
√
〈A, A〉2 =

√
tr (A∗A). (2.9)

Hence one has

‖A‖ ≤ ‖A‖
HS

≤ ‖A‖J1 . (2.10)

and, consequently,

J1 ⊆ J2. (2.11)

The space of J2 operators admits a functional space representation, in

some specific cases.

Definition 11. Let (M ,dµ) a measure space and ϕ,ψ ∈ L2(M ,dµ).

9



The function ϕ⊗ψ such that

(ϕ⊗ψ)(x, y) =ϕ(x)ψ(y), ∀x, y ∈ M , (2.12)

is said tensor product of ϕ and ψ.

Hölder’s theorem leads straithforwardly to the

Proposition 1. If (M ,dµ) is a measure space and ϕ,ψ ∈ L2(M ,dµ) , then

ϕ⊗ψ ∈ L2(M ×M ,dµ⊗dµ) (2.13)

and

‖ϕ⊗ψ‖L2(M×M) = ‖ϕ‖2‖ψ‖2. (2.14)

Proposition 2. Se
{
ϕn

}
n∈N e

{
ψn

}
n∈N are orthonormal basis L2(M ,dµ) , then{

ϕn ⊗ψm
}

n,m∈N is an orthonormal basis L2(M ×M ,dµ⊗dµ).

When H = L2(RN ), then a fundamental characterization subsists for J2(H )and

provide a sufficient condition for compactness of integral operators.

Theorem 4 (Characterization of HS operators). Let (M ,dµ) a measure space

and H = L2(M ,dµ). A bounded operator A ∈L (H ) is HS if and only if there is

a function ρ ∈ L2(M ×M ,dµ⊗dµ) such that

Aψ(x) = Aρψ(x) :=
∫
M

ρ(x, y)ψ(y)dµy , for all ψ ∈H .

The map which associates ρ ∈ L2(M×M ,dµ⊗dµ) to Aρ ∈J2(H ) is an isometry

between the two spaces.

This result authorizes to work effectively and directly with operator kernels.

Since the last are functions it is possible to formulate evolution problems in the

form of partial differential equations. Theorem 4 leads directly to the following

statement

Corollario 5. HS norm coincides with L2 norm over R2N , that is

if A = Aρ ∈J2 then

‖Aρ‖HS
= ‖ρ‖L2(R2N ). (2.15)

Other proprerties regarding the fact that J2(H ) is an ideal of L (H ) are

easily translatable in terms of integral kernels.

Definition 12. Let ρ, η ∈ L2(R2N ). We define:

10



• ρ ◦η ∈ L2(R2N ) given by

(ρ ◦η)(x, y) =
∫
RN

ρ(x, z)η(z, y) d z, ∀(x, y) ∈R2N ; (2.16)

• ρ∗ ∈ L2(R2N ) given by

ρ∗(x, y) = ρ(y, x), ∀(x, y) ∈R2N . (2.17)

Proposition 3. Let Aρ, Aη ∈J2(H ) be HS operators with kernelsρ, η ∈ L2(R2N ),

respectively. Then

• AρAη = Aρ◦η ;

• A∗
ρ = Aρ∗ .

2.1.3 Density matrices

From HS operators, trace class operators inherit the characterization estab-

lished by Theorem 4. Farther, they have the finite trace property.

In order to carry on quantum system analysis it is worth presenting a more

exclusive class of operators included in J1 in turn. It is about the class of

density operators, which play the role of the wave functions in the context of

mixed states. For semplicity, let denote the separable Hilbert space L2(RN )

withH .

Definition 13. A = Aρ ∈J1(H ) ⊆J2(H ) is said to be a density operator if it

owns the following properties:

1. A is positive;

2. A has unitary trace4.

The integral kernel ρ associated to the density operator is usually named density

matrix.

Remark 3. Since a bounded positive operator is self-adjoint, then density

operators are self-adjoint.

As consequence of Hilbert Schmidt Theorem 1 and Theorem 4, the following

characterization holds for density operators.

4ore finite trace, taking for granted that it can be normalized playing with constants
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Theorem 6. An operator A ∈L (H ) is a density operator if and only if there exists

a complete orthonormal system
{
ϕn

}
n∈N ⊆ H and a sequence {λn}n∈N ⊆ R+,

with
∑

n∈Nλn = 1, such that

A = ∑
n∈N

λnϕn⊗ϕn (2.18)

and any ϕn is an eigenvector forA with eigenvalue λn > 0 . Furthermore,

‖A‖
HS

= ∑
n∈N

λ2
n . (2.19)

An immediate effect is the possibility to write A = Aρ ∈J2(H ) in this form

ρ(x, y) = ∑
n∈N

λnϕn(x)ϕn(y), (x, y) ∈R2N , (2.20)

and clearly

‖ρ‖L2(R2N ) =
∑

n∈N
λ2

n . (2.21)

2.1.4 The spectral theorem

Roughly speaking, the Spectral Theorem is the result known as the possibility

to diagonalize a linear operator and is often stated by saying that a self-adjoint

operator has an orthonormal basis of eigenvectors. The concept of diagonal-

ization is relatively straightforward for operators on finite-dimensional vec-

tor spaces but, as seen so far, it requires some modification for operators on

infinite-dimensional spaces. In general, the Spectral Theorem identifies a class

of linear operators that can be modeled by multiplication operators. The most

important application of this theorem is the possibility of defining a functional

calculus. That is, given a function f defined on the spectrum of a proper op-

erator A, we might define an operator f (A). Here two fundamental results of

operators analysis on separable Hilbert spaces are reported (for the demon-

stration we suggest referring to [46], sez. VIII.3). The first theorem provides

sufficient conditions for an operator being seen as a multiplicative operator on

an appropriate measure space. The second one allows to extend the functional

calculus to operators. Indeed, thanks to this result, the one-parameter group

e i t A is well-posed for all t ∈R with an appropriate A.

Theorem 7 (Spectral Theorem, Multiplicative operators form). Let A be a self-

adjoint operator on a separable Hilbert space H and domain D(A) ⊆H . There

is a finite measure space (M ,dµ), a unitary operator U : H −→ L2(M ,dµ) and

12



a measurable function f on M with values in R∪ {±∞}, but finite almost every-

where, such that

• ψ ∈D(A) if and only if f (U )ψ ∈ L2(M ,dµ);

• if ϕ ∈U (D(A)), then U AU−1ϕ= f ϕ.

Theorem 8 (Spectral Theorem, Functional calculus form). Let A be a self-

adjoint operator on a separable Hilbert space H and domain D(A) ⊆H . There

exists one and only one mapΨ : B −→L (H ) such that

1. Ψ is a ∗-algebraic homomorphism;

2. ‖Ψ( f )‖ ≤∞, for all f ∈B;

3. if Aψ=λψ, thenΨ( f )ψ= f (λ)ψ , for all ψ ∈D(A);

4. if f ≥ 0, thenΨ( f ) ≥ 0, for all f ∈B.

This last version of the Spectral Theorem is very useful in the context of

Quantum Mechanics axiomatization. In particular, it is exploited concurrently

with the basic measurable functions, namely the characteristic (or indicator)

functions, whose we recall the following

Definition 14. χB (·) indicates the indicator function of the set B belonging

to the σ-algebra B of the borelian sets of R. In other words, for all ξ ∈ R it is

defined as

χB (ξ) =
1 if ξ ∈ B ,

0 if ξ ∈ B ,
(2.22)

2.2 Quantum Mechanics Axioms

The mathematical structure of Quantum Mechanics can be fairly resumed in

a procedure (essentially due to Von Neumann and then revisited considering

Gleason’s Theorem) which moves from five fundamental axioms.

Let consider a quantum mechanics system S with N ∈N degrees of free-

dom. Its quantum mathematical description is based on five postulates.

1. The (pure) physical states of S are represented by wave functions, namely

functions ψ in the Hilbert space H = L2(RN ,C) such that ‖ψ‖2 = 1.

In a wave function ψ we cannot find a direct physical meaning5, but it

contains the whole physical information which can be gathered for the

system. The way to obtain this information is provided by the following

two axioms
5H can be seen as the quantum equivalent of the classic phase space
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2. Physical observable quanties (in short the observables) are represented

by linear self-adjoint operators on H . By means of a process called

quantization, every observable G is associated to a linear symmetric

operator

A = AG : D(A) −→ H . (2.23)

The eigenfunctions of A are called eigenstates. The corresponding eigen-

values form the spectrum of A.

3. Let B be the borel σ-algebra in R and let G be an observable. The ex-

perimental measurement of the observable G (to which operator A is

associated) performed with the system in the state ψ ∈H , gives a ran-

dom variable X A,ψ such that for any B ∈B

Prob{ X A,ψ ∈ B } = 〈χB (A)ψ ,ψ〉. (2.24)

Hence the expected value of the measurement is

E{ X A,ψ } = 〈Aψ,ψ〉. (2.25)

The possible measurable values of G are real values because 〈ψ, Aψ〉 =
〈Aψ,ψ〉, but thanks to symmetry 〈Aψ,ψ〉 = 〈ψ, Aψ〉.
The wave function information has a probabilistic nature and this fact is

intrinsic and never avoidable. It means that the result of a measurement

is always affected by an error, even when the appliance has got an infinite

precision.

4. Any measurement perturbs the state of the system. If the system S lies in

the stateψwhen a measurement of observable G is performed, the result

is given by the eigenvalue λ ∈R, then the state of after the measurement

is the corresponding eigenstate of A.

5. The evolution of S is subjected to the Schrödinger equation

i× d

d t
ψ(t ) = Hψ(t ), t ∈R, (2.26)

in which H is the Hamiltonian operator, associated to the observable

total Energy of S.

The evolution law is a deterministic law, even if the objects have a random

nature:

ψ(t ) = e− i
× (t−t0)Hψ0. (2.27)
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We underline that thanks to the spectral theory (i.e. Theorem 8) it is possible to

provide the import consistency rule

f (X A,ψ) = X f (A),ψ, f : R −→ RB−measurable, A (2.28)

valid for a B-measurable functions f : R −→ R and a self-adjoint operator A

on H .

Before concluding this axiomatic part, it is necessary to spend some other

words about simultaneous measurements of two or more observables6 in order

to make the second and the forth axioms more complete.

If A1, . . . , Ak are self-adjoint operators which commute pairwise, then it is pos-

sible to perform simultaneous measures with the system in a state ψ.

The result of the measure is a random vector

(X A1,ψ, . . . , X Ak ,ψ)

such that

Prob{(X A1,ψ, . . . , X Ak ,ψ) ∈ B1 ×·· ·×Bk } = 〈χB1 (A1) · · ·χBk
(Ak )ψ,ψ〉, (2.29)

for all the plurirectangles B = B1×·· ·×Bk ∈Rk where B1, . . . ,Bk ∈B are borelian

sets.

We reveal in advance that these postulates are undergoing to modifications

to better suit the requirements of Statistical Quantum Mechanics.

2.3 Quantization and W −1 transform

How it is possible to assign a physical observable a self-adjoint operator so as

to satisfy the second axiom? There is a specific process, known as quantization,

which has been refining over years.

In Classic Mechanics an observable has a corresponding real-valued func-

tion7 on the phase space γ(q, p) = γG (q, p), said classical symbol of G (or briefly,

simbol of G).

Definition 15. The quantization is a procedural rule which gives every symbol

γG a self-adjoint operator AG = Aγ on H = L2(RN ).

6The simultaneity of the measurements of several observables is a very delicate issue. The
fundamental [43] is recommended for details in the case of observables that do not switch two
by two, i.e. of non-independent measures.

7More precisely: a field for vectorial quantities, a scalar function otherwise.
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There are two fundamental quantization, related to two fundamental observ-

ables: position and momentum. These quantizations are postulated since

suggested by the experience. The classical symbol of the observable position is

γ1(q, p) = q corresponding to quantum operatorAq ,

whereas the classical symbol of the observable momentum is

γ2(q, p) = p corresponding to quantum operatorAp . (2.30)

Aq and Ap are defined by

Aqψ(x) = ψ(x)x, ψ(x) ∈D(Aq ) ⊆H ; (2.31)

Apψ(x) = −i×∇ψ(x), ψ(x) ∈D(Ap ) ⊆H . (2.32)

We may resume in the following scheme (2.33)

position
CM−−→ q

QM−−→ Aq : D(Aq ) −→ H

ψ(x) −→ xψ(x)

momentum
CM−−→ p

QM−−→ Ap : D(Ap ) −→ H

ψ(x) −→ −i×∇xψ(x)

(2.33)

where to each observable is associated a classical symbol as in the Classical

Mechanics (CM) context and, then, a quantum operator by an appropriate

quantization rule in the Quantum Mechanics (QM) framework.

The fundamental quantization (2.33) are consistent with the second postulate

because operators Aq and Ap are self-adjoint. The domains D(Aq ), D(Ap )

coincide with the Sobolev space W 1,2(L2(RN )) and the operator associated to

momentum is the Fourier transform of the operator associated to position,

meaning that

Apψ(x) =F Aqψ(x), (2.34)

for any ψ ∈W 1,2(RN ).

Since Aq (and Ap ) components are pairwise commuting operators 8, the result

8Indeed, for j = 1, . . . , N , the components Aq j of Aq fulfils Aq jψ(x) = x jψ(x), whereas the
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of a measurement of the observable position is the random vector

(X Aq1 ,ψ, . . . , X AqN ,ψ)

which respects equality (2.29). Then, thanks to the spectral theorem, any

component Aq j is such that[
χB j

(
Aq j

)]
ψ(x) =χB j

(
x j

)
ψ(x), x ∈RN , ψ ∈H , B j ∈B. (2.35)

From this,

Prob{ X Aq ,ψ ∈ B1 ×·· ·×BN } = 〈χB1

(
Aq1

) · · ·χBN

(
AqN

)
ψ,ψ〉 =

=
∫
RN

N∏
j=1

χB j

(
x j

)
ψ(x)ψ(x) d x =

=
∫
RN

χB (x)ψ(x)ψ(x) d x =

=
∫

B1···BN

|ψ(x)|2 d x. (2.36)

So we have obtained again that the squared module of a wave function represents

the density of the random variable "position measurement". Notice that X Aq ,ψ

is absolutely continue with respect to the Lebesgue measure.

The following computation which determin the density of the random vector

"measurement of momentum" are similar to the former ones at all, but they are

possible only thanks to the invertibility of the Furier transform on H = L2(RN ).

Since, for x ∈RN , j = 1, . . . , N , ψ ∈H

F
[
χB j

(
Ap j

)]
F−1ψ(x) =

[
χB j

(
Ap j

)]
ψ(x) =χB j

(
p j

)
ψ(x), (2.37)

components Ap j of Ap fulfils Ap jψ(x) =−i× Ç
Çx j

ψ(x).
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then

Prob{ X Ap ,ψ ∈ B1 ×·· ·×BN } = 〈χB1

(
Ap1

) · · ·χBk

(
ApN

)
ψ,ψ〉 =

= 〈FχB1

(
Ap1

)
F−1 · · ·FχBN

(
ApN

)
F−1Fψ,Fψ〉 =

=
∫
RN

N∏
j=1

χB j

(
p j

) |(Fψ)(p)|2 d p =

=
∫

B1···BN

|Fψ(p)|2 d p.

(2.38)

Once again X Ap ,ψ is absolutely continue with density |Fψ(p)|2.

2.3.1 Weyl quantization

Fundamental quantization represents the starting point for other observables

quantizations. For instance, the symbol associated to the observable kinetic

energy of a free particle with mass m is

γ(q, p) ≡ γ(p) = |p|2
2m

. (2.39)

Thanks to the rule supplied by the Spectral Theorem, the operator associated

to the symbol (2.39) is

Aγ(p) = γ(Ap ), (2.40)

namely

Aγ(p)ψ(x) = γ(Ap )ψ(x) = γ (−i×∇)ψ(x) = 1

2m
|−i×∇|2ψ(x) = ×2

2m
∆ψ(x).

(2.41)

An analogous behaviour is the one one of q-depending symbols. hence the

following quantization rule holds:

Aγ1(q) = γ1(Ar ); Aγ2(p) = γ2(Ap ). (2.42)

Nevertheless, when the symbol γ depends on both the two variables some

ambiguities may arise, since the rule is not 1-to-1. Let consider the symbol

γ(q, p) = q2p on R2, for instance. Its quantization might be

Aγ = Aq
2 Ap , (2.43)
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but also γ(q, p) = qpq , then

Aγ = Aq Ap Aq . (2.44)

The problem is that Aq and Ap do not commute, thus (2.43) and (2.44) do not

define the same operator.

Hermann Weyl formulated [55]9 a quantization rule which unties this ambi-

guity, still respectng the fundamental quantization sanctioned by (2.31), (2.32)

and the spectral theorem with (2.42).

Weyl quantization is based on Weyl transform which we are going to outline

very briefly to deepen it later then.

Definition 16. The Weyl quantization of the symbol γ(q, p) is the operator

Aγ : H ⊇D(Aγ) −→ H

such that

Aγϕ(x) = cN ,×
∫
RN

W −1ϕ(y)γ(y, p) d y .

Of course this has a meaning only if the integral of the symbol does exist.

It is shown (e.g. in [60]) that Weyl quantization is consistent with Quantum

Mechanics postulates when classic symbols γ are in the Schwartz functions

class S (RN
q ×RN

p ) and consequently when γ ∈ L2(RN
q ×RN

p ) (in these cases

Aγ ∈L (H ), that is H =D(Aγ)), whilst the issue becomes more delicate when

the symbols are in Lp (RN
q ×RN

p ) for other values of p. In [29] you can find a

complete discussion about this issue of consistency between quantization rules

and Quantum Mechanics axioms.

Remark 4. Let γ ∈ L2(RN
q ×RN

p ). Then the operator Aγ is an integral operator

with kernel W −1γ, where

Definition 17. The Weyl transform is the map

W −1 : L2(RN
q ×RN

p ) −→ L2(RN
x ×RN

y )

γ(q, p) −→ ∫
RN

γ
( x+y

2 , p
)

e i p
x−y
× d p

(2.45)

The notation W −1 ensues from the fact that the Weyl transform is actually

the inverse of another transform which we are more used to handling and

which we are going to introduce soon: the Wigner transform W .

9[55], original article in German language; [56], posthumous translation in English language.
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Weyl quantization permits to "convert" a classic observable into a quantum

one effectively. At the same time this rule raised many issues concerning

interesting mathematical problems within pseudodifferential operators, for

which a good reference is again a [60].

Is not true that every self-adjoint operator on H (i.e. quantum observable)

owns a corresponding classical physical quantity. The typical example is given

by the following operator.

Definition 18. Let ψ ∈H be a quantum state. The orthogonal projection on

the (closed) vectorial subspace Span{ψ} is the operator Pψ ∈L (H ) such that

Pψϕ = 〈ϕ,ψ〉ψ ,

for all ϕ ∈H .

Pψ is obviously positive and then self-adjoint, as bounded. Furthermore,

P 2
ψ = Pψ, that is idempotent, and unitary (‖Pψ‖ = 1) and the possible eigen-

values are only two: 1 and 0. This means that the projection is a quantum

observable which "measures", nay try out if the system lies in a state (1) or not

(0). States and Projection are hence very strictly connected. This is the base for

the Quantum Mechanics to develop.

To conclude, an important property which connects expectation of a measure

and operator trace holds. Its proof is a simple application of Theorem 1.

Proposition 4. Let A a bounded self-adjoint on H and let ψ ∈D(A). Then

E{ X A,ψ } = tr (PψA). (2.46)

Proof. A is a self-adjoint operator, so it can be represented as in (2.4), with the

orthonormal basis
{
ϕn

}
n∈N of H . Then

ψ= ∑
n∈N

〈ψ,ϕn〉ϕn .

Hence

E{ X A,ψ } = 〈Aψ,ψ〉 =
= ∑

n∈N
〈ψ,ϕn〉〈Aϕn ,ψ〉 =

= ∑
n∈N

〈ψ,ϕn〉λn〈ϕn ,ψ〉 =

= ∑
n∈N

〈PψAϕn ,ϕn〉 =

= tr (PψA).
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Let focus on one of the consequences of the Quantum Mechanics axiomati-

zation, which will be example of the effects of decoherence on open quantum

systems.

2.3.2 The Superposition Principle

Let consider a d-dimensional quantum system S .

The pure states of the system are unitary elements of a Hilbert space

H = L2(Rd ,C)

with respect to the L2 norm || · ||2.

By linearity, if ψ1,ψ2 are possible states of S (i.e. elements of H ), then

any other vector

ψ=αψ1 + βψ2 with α, β ∈C such that ||ψ||2 = 1 (2.47)

is still a state of the system S .

This fact is known as superposition principle and ψ as superposition state.

The probability density of the "new" state ψ is

|ψ|2 = |α|2|ψ1|2 +|β|2|ψ2|2 +2ℜ(αβψ1ψ2), (2.48)

namely

|ψ|2 = |α|2|ψ1|2 +|β|2|ψ2|+2|αβ||ψ1|2|ψ2|cos(ϑ1 −ϑ2) (2.49)

where ψ j = |ψ j |e ıϑ j ( j = 1, 2) as C-valued functions. Thus, the probability

density of the superposition of two wave functions is not simply given by the

sum of the two wave functions densities, as it might be natural in Classical

Mechanics, but it rather owns a mixed term (or interference term), which leads

to the typical interference fringes of waves packets.

In the following example the probability density of two gaussian states is

explicitly computed, as it will suit us later in the discussion.

Example 2. Let consider the superposition of two well-localised orthogonal

wave packets ψ1 and ψ2 of a one-dimensional system.

According to an appropriate reference system, the first is centred in x0 and it

runs with pH momentum:

ψ1(x) = c√
σ
p
π

e− (x+x0)2

2σ2 +ı
pH
× x .
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The second is symmetric with respect to the x axis and runs with opposite

momentum:

ψ2(x) = c√
σ
p
π

e− (x−x0)2

2σ2 −ı
pH
× x .

IfΨ is the balanced superposition of the two states

Ψ= 1p
2
ψ1(x) + 1p

2
ψ2(x)

then its associated probability density is given by

|Ψ(x)|2 = c2

2

[|ψ1(x)|2 +|ψ2(x)|2 + 2ℜψ1(x)ψ̄2(x)
]

where c = 1+exp

{
−

(
x2

0
σ2 + p2

Hσ
2

×2

)}
, so it is not simply the sum of the probability

densities associated to the former states, as expected.

It leads to the presence of interference patterns among the two bumps,

typical of wave phenomena. But why do not we notice this phenomenon at a

macroscopic level of observation? Why classic distribution are superposed as a

sum of distributions without a mixed term presence?

In order to answer this question by the means of Quantum Mechanics itself

it is important to broaden the frame towards the purview of Statistical Quantum

Mechanics. A quantum system is now seen as a part of a larger system. The

last is then "traced out" (in a sense we will immediately clarify), pouring its

properties as environment to the one we want to concentrate on.

2.4 Statistical Quantum Mechanics Axioms

Let consider a quantum system S ′ with N degrees of freedom.

If S is a subsystem of S ′ with d degrees of freedom and d << N (i.e. a single

particle in a gas of many others particles of the same type), it is possible to focus

on system S behaviour, regretting system S ′ behaviour unless its influence

over S itself.

First, a wave functionΨ(x,η) for S ′ belongs to Hilbert space

H ′ = L2(Rd ×RN−d ).

Thanks to Fubini’s theorem, fixed η ∈RN−d , then the function ψη(x) =Ψ(x,η)

is a wave function for system S : ψη ∈ H = L2(Rd ). Let A be (the operator

associated to) an observable physical quantity which acts on Ψ only with
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respect to variable x ∈Rd . Hence, it is an operator on space H ′, and also on

space H . Therefore, A is associated to a physical quantity proper of system

S . According to "classical" Quantum Mechanics Axioms, it turns out that the

expected value of A, performed when S ′ lies in the stateΨ, is given by

∫
RN−d

tr (Pψη A) dη= tr

 ∫
RN−d

Pψη dηA

 . (2.50)

We can define an operator ρ̂ as

ρ̂ψ=
∫
RN−d

Pψηψ dη, for all ψ ∈H , (2.51)

from which we deduc that E{ A } is equal to tr (ρ̂A).

the following result holds

Theorem 9. The operator defined by (2.51) is a density operator on H with

Hilbert-Schmidt integral kernel

ρ(x, y) =
∫

RM−N

Ψ(x,η)Ψ(y,η) dη.

In the light of these considerations, we are ready to formulate the axiomatics

of Statistical Quantum Mechanics.

1. The mixed states of a quantum system S with wave functions in H

are density operators onH . A mixed state Aρ is a pure state if there

exixts a wave function ψ ∈ H such that Aρ = Pψ, namely such that

ρ(x, y) =ψ(x)ψ(y). Thanks to 6 every mixed state can be seen as a convex

(possibly infinite) combination of pure states.

2. The second axiom does not change and can be formulated as before.

3. The measurement of an observable A, performed with system in the state

Aρ is a random variable X A,ρ such that for all B ∈B

Prob{ X A,ρ ∈ B } = tr
(

AρχB (A)
)

. (2.52)

This is a well posed definition for X A,ρ since ıB A inherits good properties

from χ by means of the Spectral Theorem. Asking the finitude of the

expected value of A is a more delicate issue, but not relevant for now
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4. The evolution of the system according to the hamiltonian operator H

obeys to the Quantum Liouville equation or, more in general to the von

Neumann equation

i× d

d t
Aρ =

[
H , Aρ

]
, t ∈R, (2.53)

where the squared parenthesis indicate the commutator between the

two operators10, once an opportune domine is defined.

Equation (2.53) is the extended version of the Schrödinger equation for mixed

states. Sometimes we will confuse the two names deliberately.

2.5 Wigner Formulation of Quantum Mechanics

Due to its striking analogies with classical mechanics, the formulation of quan-

tum mechanics in terms of Wigner functions is particularly suited to describe

the quantum-to-classical regime transition. This approach is not new and

several important papers on this subject resort to (or, at least, mention) the

Wigner formalism (see e.g. Refs. [5,13,32,49,58]). Therefore, we spend few

words in order to introduce the Wigner transform and the related issues.

By the means of its homonymous transform, Eugene Wigner managed to ob-

tain something very similar to a classic distribution function in the phase space

from a mixed state and, in this way, to provide a representation of Quantum

Mechanics which might take advantage of the Classical (Statistical) Mechanics

basics.

To follow this path, it is worth to consider operator kernels for mixed states

which are nothing but functions in L2(RN
x ×RN

y ), as we have seen in the previous

section.

2.5.1 The Wigner transform

Let define the already mentioned Wigner transform, which associates a L2

function in the phase-space to a HS kernel, namely ρ ∈ L2(RN
x ×RN

y ) (the phase-

space function can be seen a kernel of an integral operator over L2(RN
q ) ).

Definition 19. Let consider the map

R : L2(RN
x ×RN

y ) −→ L2(RN
q ×RN

ξ ), (2.54)

10Let A,B two operators on H , then [A,B ] := AB −B A is an operator on H
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such that

(Rρ)(q,ξ) = ρ(q + ×
2
ξ, q − ×

2
ξ), ρ(x, y) ∈ L2(RN

x ×RN
y ). (2.55)

This is nothing but the map corresponding to variables change

(x, y) ←→ (q, p)

given by 
q = x + y

2
,

ξ= x − y

× .
(2.56)

Up to ×−N , i.e. less than the jacobian of the transform, R is a unitary operator

from L2(RN
x ×RN

y ) to L2(RN
q ×RN

ξ ).

Let cN = 1√
(2π)N

and cN ,× = 1

(2π×)N
. The map

F 2 : L2(RN
q ×RN

ξ ) −→ L2(RN
q ×RN

p )

such that

(F 2g )(q, p) = c2
N

∫
RN

g (q,ξ)e−i p·ξ dξ, (2.57)

is the Fourier transform with respect to the variable ξ for g (q,ξ) (up to the

normalization constant cN ). The Plancharel’s idenity,

〈F 2g1,F 2g2〉 = c2
N 〈g1, g2〉, (2.58)

is then still valid for every g1, g2 ∈ L2(RN
q ×RN

ξ ).

The Wigner transform W is the composition of F 2 and R, namely

W =F 2R : L2(RN
x ×RN

y ) −→ L2(RN
q ×RN

p )

such that, for every ρ ∈ L2(RN
x ×RN

y ),

(W ρ)(q, p) = c2
N

∫
RN

ρ(q + ×
2
ξ, q − ×

2
ξ)e−i p·ξ dξ=

= cN ,×
∫
RN

ρ(q + y

2
, q − y

2
)e−i p· y

× d y. (2.59)

Thanks to (2.58) and up to cN ,×, W defines an isometry of L2(RN
x ×RN

y ) and

L2(RN
q ×RN

p ). Indeed it is invertible and its inverse transform is the one we have
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met talking about quantization. We refer to Weyl transform W −1. Hence

W −1 =R−1F−1
2 ,

where, for g ∈ L2(RN
q ×RN

ξ ),

(R−1g )(x, y) = g (
x + y

2
,

x − y

h
),

whereas for f ∈ L2(RN
q ×RN

p ),

(F−1
2 f )(q,ξ) =

∫
RN

f (q, p)e i p·ξd p.

More explicitly,

W −1 : L2(RN
q ×RN

p ) −→ L2(RN
x ×RN

y ),

is such that for every f ∈ L2(RN qp)

W −1 f (q, p) =
∫
RN

f
(x + y

2
, p

)
e i p

x−y
× d p. (2.60)

From Definition 19 and the Fourier Transform properties a very simple but

useful fact follows.

Proposition 5.
[
Moyal-Weyl–Groenewold product

]
Let ρ1(x, y), ρ2(x, y) be two

functions in L2(RN
x ×RN

y ) and let f1(q, p) = W (ρ1), f2(q, p) = W (ρ2) be their

respective Wigner transform in L2(RN
q ×RN

p ). Then

W (ρ1ρ2) = f1 ∗p f2 (2.61)

where ∗p indicates the convolution with respect to the only variable p, i.e.

( f1 ∗p f2)(q, p) =
∫
RN

f1(q, p −p ′) f2(q, p ′) d p ′. (2.62)

The Wigner transform becomes particularly of interest when it is not simply

applied to a function in L2(RN
x ×RN

y ).

Definition 20. A physical Wigner function is the Wigner transform of a density

matrix.

Note that as well as a density matrix ρ(x, y) has the dimensions of a density

in the positions space, its Wigner transform has the dimensions of a density in

the phase space.
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Remark 5. In this definitional part (see 2.54) we set R as a map of L2(RN
x ×RN

y ) in

L2(RN
q ×RN

ξ ). In other terms we distinguished the "quantum" position variable

x from the "phase space" position variable q . This is an excess of zeal which will

not occur in the following chapters: we will not differentiate the two variables,

naming both x.

2.5.2 Characterization of physical Wigner functions

What is the relation between a density matrix and its Wigner function?

Let ψ ∈ L2(RN
x ) and let Ψ(x, y) = ψ⊗ψ be the corresponding pure state.

We can indicate with wψ = W Ψ(x, y) its Wigner transform and immediately

observe that wψ is a physical Wigner function, because pure states are density

matrices. This can be seen as the fundamental "wignerization", since mixed

states are (infinite) convex combination of pure states.

Referring to [37] and [10] it is convenient to resume in the following theorem

a characterization for physical Wigner functions. From now on, the angular

parenthesis 〈,〉 will indicate the hermitian product on L2(RN
x ×RN

y ) as well as

on L2(RN
q ×RN

p ). They will still denote the hermitian product on H .

Theorem 10. Let Aρ ∈J2(H ) and w(q, p) =W ρ. Hence

1. The following are equivalent:

(a) w(q, p) ∈R;

(b) Aρ is self-adjoint;

(c) ρ(x, y) = ρ(y, x).

2. The following are equivalent:

(a)
∫
RN

q ×RN
p

w(q, p)d q d p = 1;

(b)
∫
RN
ρ(x, x)d x = 1;

(c) tr Aρ = 1.

3. The following are equivalent:

(a) Aρ is positive;

(b) 〈ρ,ψ(x)ψ(y)〉 ≥ 0;

(c) 〈w, wψ〉 ≥ 0, for every ψ ∈ L2(RN
x ).
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The bijections established by Theorem 10 can be moderately extended. In

the following proposition a connection among trace properties of the operator

and integrability of the kernel Wigner transform are set.

Proposition 6. Let ρ ∈ L2(RN
x ×RN

y ) be the kernel of a Hilbert-Schmidt positive

operator Aρ. f (q, p) =W ρ ∈ L1(RN
q ×RN

p ) if and only if Aρ ∈J1(H ).

Proof. Aρ is positive (and self-adjoint), then there exists an orthonormal com-

plete system {ψn}n∈N ∈H and a sequence {λn}n∈N ∈R+, such that

ρ(x, y) = ∑
n∈N

λnψ⊗ψ.

Thus,

tr |Aρ| =
∑

n∈N
|λn | =

∑
n∈N

λn = ∑
n∈N

λn

∫
RN

ψn(x)ψ̄n(x) d x =

=
∫
RN

ρ(x, x) d x = (W −1 f )(x, x) =
∫
R2N

f (x, p)d p d x. (2.63)

Remark 6. The step (2.63) make possible to point out the following remarkable

identy

ρ(x, x) =
∫
RN

f (x, p) d p, per quasi ogni x ∈RN . (2.64)

Another important fact concerning Wigner function is the link with symbols

Proposition 7. Let ρ(x, y) ∈ L2(RN
x ×RN

y ) be a density matrix and let w(q, p) be

its Wigner function. If Aγ is the Weyl quantization of γ(q, p) s.t. AρAγ ∈J1(H ),

then

tr (AρAγ) =
∫
R2N

γ(q, p)w(q, p)d q d p. (2.65)

From this and (2.50), equation (2.65) expresses the expectation of the mea-

sure of the quantum observable associated to the classical symbol γ in the

Wigner frame. Note the strong analogy with Classical Mechanics: looking at

w as phase space distribution function then the expected value of γ is given

exactly by the integral overRN
q ×RN

p of the product wγ. But w stands out from

a classical distribution: even if w is physical, Theorem 10 assures its realty, not

its positiveness.
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Figure 2.1: From [62]. It represents the Wigner transform w(q, p) of the state

ρ(x, y) = ψ(x) ¯ψ(y) with ψ(x) = 1
c {e− (x+a)2

2 + e− (x−a)2

2 } and c =
√

2
p
π(1−e−a2 ).

The parameter in the picture is a = 6. Note the superposition of two gaussian
states and the presence of strong fluctuations above and below the pq plane,
i.e. the zero level. This fluctuations are indeed the expression of quantum
interference of the two states. For this reason, the image is normally referred as
Schrödinger’s cat Wigner function.
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With this in mind, look at at Figure 2.1 "Schrödinger’s cat".

Anyway, the "marginal distributions" of w result to be very similar to the

classical picture ones. Thanks to the spectral theorem, if we choose

γ(q, p) =χB (q) with B borelian set in RN
q ,

we obtain that the observable "position" measurement is given by distribution

law

Prob{ X Aq ∈ B } = tr (AρχB

(
Aγ

)
) = tr (AρAγ) =

∫
B×RN

p

w(q, p)d q d p. (2.66)

In other terms, the map q 7−→ ∫
RN

w(q, p) d p is the "position" density function.

This was already deducible by∫
RN

w(q, p) d p = ρ(q, q). (2.67)

Analogously, p 7−→ ∫
RN

w(q, p) d q is the momentum density function.

We point out, besides, the following

Remark 7. When w is a physical Wigner function on the phase space, then the

operator AcN ,×w is the quantization of the symbol w , but the vice versa is not

true: in general AcN ,×w is not a priori the quantization of a classic symbol.

2.5.3 The Wigner Equation

As well as a mixed state fulfils the Von Neumann evolution equation, a Wigner

function fulfils a Wigner equation, which is very similar to a classic evolution

equation in the phase space.

Let A be an operator on H and ρ(x, y) be a density matrix. There exists an

orthonormal basis {ϕn}n∈N and a sequence {λn}n∈N ⊆R+, such that, as usual,

ρ(x, y) =λnϕn(x)ϕn(y),

thus [
A, Aρ

]= ∑
n∈N

λn((Aϕn)⊗ϕn)−ϕn ⊗ (A∗ϕn).

This fact suggests to re-define the product as

[A, ·] = A⊗ I − I ⊗ A∗, (2.68)
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which, for operators of kind ψ⊗ϕ, becomes

(Aϕ)⊗ψ−ψ⊗ (A∗ϕ).

Definition 21. Let A be an operator on H . The wignerization of A is given by

the operator

Awig =W [A, ·]W −1 (2.69)

on the space L2(RN
q ×RN

p ), with domain D(Awig) =W (D(A)).

Hence, in the case of a Hamiltonian H = A|p|2/2m + AV , according to equa-

tion (2.53), the Wigner equation, i.e. the wignerization (2.69) of Von Neumann

equation, holds

i×d w

d t
(t ) = H wigw(t ), t ∈R, (2.70)

namely

i× Ç

Çt
w =− i×

m
p ·∇q w(t )+δV (q,−i∇p )w, t ∈R, (2.71)

or
Ç

Çt
w + p

m
·∇q w(t )+ i

×Θ[δV ]w = 0 (2.72)

where δV (q,ξ) =V (q + ξ
2×)−V (q − ξ

2×) and

(Θ[V ]w) (q, p, t ) =i cN ,×
∫
RN

∫
RN

[
V

(
q + ξ

2

)
−V

(
q − ξ

2

)]
e

i
ħξ·(p ′−p)w(q, p ′, t )dξd p ′

(2.73)

=i cN ,×
∫
RN

∫
RN
δV (q,ξ)e

i
ħξ cdot (p ′−p)w(q, p ′, t )dξd p ′. (2.74)

is the wignerization of the potential V multiplicative operator, which becomes

a pseudo-differential operator and can be seen as

(Θ[V ]w) (x, p, t ) = i

2πħ2

∫
R

∫
R

[
V

(
x + ξ

2

)
−V

(
x − ξ

2

)]
e

i
ħξ(p ′−p)w(x, p ′, t )dξd p ′

=−
∞∑

k=0
(−1)k

(ħ
2

)2k ( d

d x

)2k+1
V (x)

( ∂
∂p

)2k+1
w(x, p, t ). (2.75)

It is shown in [37] that (2.72) reduces to Liouville equation for a classic

distribution f (q, p, t )

Ç

Çt
f (t )+ p

m
·∇q f −∇qV ·∇p f = 0 (2.76)
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when the classic limit ×−→ 0 is taken in consideration. Formally it is already

perceivable from

i

cN ,×

∫
R2N

δV (q,ξ)w(q, p ′)e−i (p−p ′)·ξ dξd p ′ ×→0−→ −∇qV ·∇p w.

Here, it is important to point out that Eq. 2.72 holds under the assumption

that V is symmetric as |q| −→∞.

Not that if V is a quadratic potential energy, or if one takes the semiclassical

limit ħ→ 0, as already observed in Chapter 1, thenΘ[V ] reduces to the classical

force term of the Liouville equation, namely in 1D case

Θ[V ]w =−V ′ ∂w

∂p
, (2.77)

where, of course, −V ′(q) is the force.
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Chapter 3

A mathematical model for

decoherence in the Wigner picture

An important problem which has highlighted somehow the peculiarities of

decoherence concerns the Wilson cloud chamber experiment: a very energetic

α-particle is emitted in a radially symmetric way by a radioactive source and,

inside the chamber, ionizes atoms of a super-saturated vapour. The ionized

atoms become in turn condensation nuclei, triggering the formation of liquid

drops. The observed tracks in real experiments look like classical particle

trajectories (see Figure 3.1). Why does it happen? Darwin, Heisenberg and Mott

separately suggested that the problem could be solved taking into account that

the wave function in the configuration space of the entire quantum system, not

in the real space. This answer is also a far-reaching intuition and was exploited

by Mott in [40]. Recently it has been re-examined [19], [52] and [16], in order

to give a mathematical explanation to the physics of the issue. The models

involve many degrees of freedom, so writing a closed evolution equation on

the density matrix of the α wave was not easy. Then the matter has been faced

numerically in the case of a small environment. The cost of the simulation

was exponentially increasing with the size of the environment. That is why it

has been decided [27] to afford the problem by means of a toy model reducing

the environment to the minimum. This has the advantage of being able to

frame the problem in a "strict mathematical look". Thus, the environment has

been represented by one single particle which scatters with a central particle,

considered as the principal system subjected to decoherence.
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Figure 3.1: The images are typical of those obtained by Wilson during his
experiences of the cloud chamber, thanks to the development of which he was
awarded the Nobel Prize in Physics in 1927 [61].

3.1 Adami-Hauray-Negulescu model for decoherence

Moving from considerations of these kinds, in Refs.[1,2,3], the quantum dy-

namical decoherence of a heavy particle interacting with a single light particle

is analysed has been analised in detail. The main result of this analysis is the

following. Let ρ(X ,Y , t ) be the reduced density matrix of the heavy particle (the

degrees of freedom of the light particle are traced out). Then, in the limit of large

heavy-to-light mass ratio, the interaction is concentrated in a single instant of

time (say, t = 0) and has the form of the “instantaneous” transformation

ρ(X ,Y ,0) 7−→I (X ,Y )ρ(X ,Y ,0),

where I (X ,Y ) is a "collision factor", depending on the details of the interaction.

Elsewhere, ρ(X ,Y , t ) evolves freely (up to possible external potentials V ). In the

one-dimensional case, this single-interaction decoherence mechanism model

is therefore given by the von Neumann equation with a modified initial datum:
iħ∂ρ
∂t

=− ħ2

2m

(
∂2ρ

∂X
− ∂2ρ

∂Y

)
+ [V (X )−V (Y )]ρ,

ρ(X ,Y ,0) =I (X ,Y )ρ0(X ,Y ),

(3.1)

34



where ρ0(X ,Y ) is the pre-interaction density matrix. The form of the collision

factor I is completely characterized in the one-dimensional case [3] and is

given by

I (X ,Y ) = 1−Λ(X −Y )+ iΓ(X )− iΓ(Y ), (3.2)

with

Λ(X ) =
∫
R

(1−e2i k X )|r (k)|2|χ̂(k)|2dk, (3.3)

Γ(X ) =
∫
R

e2i k X r (−k) t (k) χ̂(−k) χ̂(k)dk (3.4)

where r and t are the scattering coefficients of the interaction, and χ̂ is the

Fourier transform of the light-particle wave function χ. A particularly simple

form can be obtained by assuming that

1. χ is a gaussian wave-packet with average momentum p0 =ħk0 and posi-

tion variance σ2;

2. p0 is large with respect to the momentum spread ħσ−1;

3. σ−1 is small compared to the scale at which |r (k)|2 varies.

In this case, as shown in Ref. [3], one can make the following approximations:

Λ(X ) ≈ |r (k0)|2
(
1−e2i k0 X− X 2

2σ2

)
, Γ(X ) ≈ 0. (3.5)

Such approximation, providing simple and explicit expressions, will be helpful

in the following.

3.2 A Wigner equation with decoherence

We now consider a quantum particle undergoing random collisions with a

gas of much lighter particles, each collision being described by the single-

interaction model introduced above. Let et A denote the unitary evolution

group associated to the von Neumann equation

iħ∂ρ
∂t

=− ħ2

2m

(
∂2ρ

∂X
− ∂2ρ

∂Y

)
+ [V (X )−V (Y )]ρ,

so that the solution to this equation with a generic initial datum ρ0 is expressed

(omitting the variables X and Y ) as

ρ(t ) = et Aρ0.
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Let ν be the collision probability per unit time, and let ∆t be a time-interval

small enough to neglect the probability of having more than one collision

inside it. The random dynamics of the heavy particle can be described by a

density-matrix valued stochastic process R(t ) such that

R(t +∆t ) =
{

e∆t AR(t ), with probability 1−ν∆t ,

e(∆t−s)AI es AR(t ), with probability ν∆t ,

for some collisional time s ∈ [0,∆t ]. If now ρ(t) = 〈R(t )〉 is the expected value

of R(t ), we clearly have

ρ(t +∆t ) = (1−ν∆t )e∆t Aρ(t )+ν∆t e(∆t−s)AI es Aρ(t )

and then

ρ(t +∆t )−e∆t Aρ(t )

∆t
=−νe∆t Aρ(t )+νe(∆t−s)AI es Aρ(t ).

By using the fundamental property of the evolution group

e∆t A =
∫ ∆t

0
AeτA dτ+ I ,

we arrive at

ρ(t +∆t )−ρ(t )

∆t
= 1

∆t

∫ ∆t

0
AeτAρ(t )dτ−νe∆t Aρ(t )+νe(∆t−s)AI es Aρ(t )

and, taking the limit ∆t → 0 and recalling that s ∈ [0,∆t ], we obtain

dρ(t )

d t
= Aρ(t )−νρ(t )+νIρ(t ).

By explicitly writing down this differential equation, and putting τ := ν−1, we

get

iħ∂ρ
∂t

+ ħ2

2m

(
∂2ρ

∂X 2
− ∂2ρ

∂Y 2

)
+ [V (X )−V (Y )]ρ = iħ

τ

(
Iρ−ρ)

, (3.6)

which is the von Neumann equation with a collisional term representing

decoherence. The above formal derivation can be of course made rigorous by a

suitable analysis. The rigorous derivation of Eq. (3.6), assuming the approxima-

tion (3.5), is contained in Ref. [30].

Let us adopt a phase-space description in terms of the Wigner function

[10,57,62], i.e. the Wigner transform w =W ρ of the density matrix, where the
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Wigner transform W is defined as in (2.59)

(
W ρ

)
(x, p, t ) = 1

2πħ
∫
R
ρ

(
x + ξ

2
, x − ξ

2
, t

)
e−iξp/ħ dξ. (3.7)

If we Wigner-transform the von Neumann equation (3.6), by using the property

(2.61) W (ρ1ρ2) =W (ρ1)∗W (ρ2), we arrive at the following Wigner equation

∂w

∂t
+ p

m

∂w

∂x
+Θ[V ]w = (W I )∗w −w

τ
, (3.8)

where W I is the Wigner transform of the collision factor, ∗ for simplicity here

denotes the p-convolution,

By using (3.2), 3.7 and (2.75), we can write

(W I )∗w −w =−γ∗w +Θ[ħΓ]w (3.9)

where

γ(p) = (W Λ)(p) = 1

2πħ
∫
R
Λ(ξ)e−iξp/ħ dξ (3.10)

is a function of p alone, because Λ is a function of the correlation variable

ξ= X −Y .

Hence, the Wigner equation (3.8) takes the final form

∂w

∂t
+ p

m

∂w

∂x
+Θ

[
V − ħ

τ
Γ
]

w =−γ∗w

τ
. (3.11)

Note that the term −ħ
τΓ is equivalent to a potential energy and, therefore,

it contributes to the unitary evolution and not to the decoherence. In the

particular case of the peaked-gaussian approximation (3.5) we easily obtain

−γ∗w

τ
≈ |r (k0)|2

τ

[
σ

ħp2π

∫
R

e−
σ2

2ħ2 (p−p ′−2ħk0)2

w(x, p ′, t )d p ′−w(x, p, t )

]
.

(3.12)

With respect to the standard Wigner equation, Eq. (3.11) contains a decoherence

mechanism which is represented by the right-hand side. Such equation is our

basic model of dynamical quantum decoherence.

The physical interpretation of Eq. (3.11) is given as follows. The typical

I (X ,Y ) is a decaying function of the correlation distance |X −Y | (see Ref. [3]).

It means that the decoherence process

ρ(X ,Y ) 7−→I (X ,Y )ρ(X ,Y ),

results in a loss of spatial correlation. Switching to the Wigner picture basically
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Interference fringes damping

means performing a Fourier transform with respect to the correlation variable

ξ= X −Y and then the multiplication I (X ,Y )ρ(X ,Y ) becomes a convolution

with respect to the Fourier variable p. Hence, the loss of spatial correlation

corresponds to a smoothing out of w(x, p, t ) along the p direction. In particular,

from Equations (3.5) and (3.12) we can see that, in the peaked-gaussian approx-

imation, the position spread σ of the light particle determines the reduction

scale of the coherence length and, correspondingly, the momentum spread

ħσ−1 determines the smoothing scale of the Wigner function. In other terms,
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this mechanism attenuates the oscillations of the Wigner function (that are

typically on a scale of order ħ in phase space [50]), thus making the Wigner

function progressively to lose its quantum character and to become a classical

object. This is evident in Figure 3.2, obtained with a (second order) Lie-Strang

numerical scheme (code in Appendix 1).

3.3 Relations with other models

By expanding 1−e2i k X =−2i k X +2k2X 2 +·· · , we obtain from (3.3)

Λ(X ) =−i XΛ1 +X 2Λ2 +·· · , (3.13)

where, in the general case,

Λ1 = 2
∫
R

k |r (k)|2 |χ̂(k)|2dk, Λ2 = 2
∫
R

k2 |r (k)|2 |χ̂(k)|2dk, (3.14)

and, in the approximation (3.5),

Λ1 = 2k0|r (k0)|2, Λ2 = |r (k0)|2
2σ2

.

Then, we see from (3.10) and (3.13) that

γ∗w ≈−ħΛ1
∂w

∂p
−ħ2Λ2

∂2w

∂p2
, (3.15)

and, if one also assumes Γ= 0, the following model is obtained from (3.11) and

(3.9):
∂w

∂t
+ p

m

∂w

∂x
+Θ[V ]w = ħ2Λ2

τ

∂2w

∂p2
+ ħΛ1

τ

∂w

∂p
. (3.16)

The term ħΛ1
τ

∂w
∂p is just a momentum drift due to our assumption that all en-

vironment particles are identical, having in particular the same momentum.

This rather unphysical assumption can of course be relaxed by assuming that

the light particle is chosen at random from a given population. In this case,

Λ1 survives if the light-particle distribution is asymmetric with respect to the

momentum. Otherwise, if |r (k)|2 and |χ̂(k)|2 are even functions of k (or, simply,

if k0 = 0 in the approximation (3.5)), thenΛ1 = 0 and Eq. (3.16) reduces to the

Wigner-Fokker-Planck equation

∂w

∂t
+ p

m

∂w

∂x
+Θ[V ]w = ħ2Λ2

τ

∂2w

∂p2
, (3.17)
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which is a largely used model of decoherence [5,4,21,32].

By assuming Γ= 0 and

1−Λ(X ) = e−|X |/λ, (3.18)

we obtain

W (Iρ) = 1

2πħ
∫
R

e−|ξ|/λρ
(

x + ξ

2
, x − ξ

2
, t

)
e−iξp/ħ dξ,=: wλ(x, p, t ).

In this case, our model can be written

∂w

∂t
+ p

m

∂w

∂x
+Θ[V ]w = wλ−w

τ
, (3.19)

and can be interpreted as the dynamical analogous of the approach proposed

by Jacoboni and Bordone in Ref. [31], where a Wigner function with finite

coherence length λ is introduced, which is exactly wλ. In fact, the decoherence

mechanism contained in Eq. (3.19) is clearly a relaxation of w to wλ in a typical

time τ. Recalling 2.61, we can also write

wλ(x, p, t ) = (W I )∗w = 1

π

∫
R

ħ/λ

(ħ/λ)2 + (p −p ′)2
w(x, p ′, t )d p ′,

from which we see that the effect of the finite coherence length is a Lorentzian

broadening of the Wigner function in momentum space, as already remarked

in Ref. [31].

Our approach allows a straightforward generalization of Eq. (3.19). In fact, it

is enough to assume that the population of lighth particles has a non vanishing

momentum p0 to enrich Eq. (3.19) with the additional parameter p0, namely

wλ,p0 (x, p, t ) = 1

π

∫
R

ħ/λ

(ħ/λ)2 + (p −p0 −p ′)2
w(x, p ′, t )d p ′,

which embeds the momentum transfer from the environment to the particle

undergoing decoherence.

We would like furthermore add that, like ours, Jacoboni-Bordone’s model

[31] foresees the possibility to adopt any kernelΛλ(ξ) which fulfils these prop-

erties:

1. Λλ(ξ) is smooth, differentiable, nonnegative and vanishes at infinity;

2. limλ→∞Λλ(ξ) = 1 so that standard case is recovered;

3. Λλ(0) = 1.
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3.4 Balance laws

In the following we assume Γ= 0, because, as we can see from Eq. (3.11), the

general case with Γ 6= 0 can be recovered by substituting V with V − ħ
τΓ.

Balance laws can be deduced from the Wigner equation (3.11) by taking

suitable moments with respect to p. In particular, we are interested in the

momenta till second order, namely following quantities:

N (x, t ) =
∫
R

w(x, p, t )d p, (number density),

J (x, t ) = 1

m

∫
R

p w(x, p, t )d p, (current density),

E(x, t ) = 1

2m

∫
R

p2 w(x, p, t )d p, (kinetic energy density).

(3.20)

In order to compute balance laws for N , J and E , we need to take the corre-

sponding moments of Eq. (3.11) and, in particular, we need the momenta of

Θ[V ]w and γ∗w . By using the series expansion in Eq. (2.75), it is readily seen

that ∫
R

(Θ[V ]w) (x, p, t )d p = 0,

1

m

∫
R

p (Θ[V ]w) (x, p, t )d p = 1

m
V ′(x)N (x, t ),

1

2m

∫
R

p2 (Θ[V ]w) (x, p, t )d p =V ′(x) J (x, t ).

(3.21)

Moreover, from (3.10) and (3.3) we obtain∫
R
γ(p)d p =Λ(0) = 0, (3.22)

which means that the number of particles is conserved, and∫
R

p γ(p)d p =−iħΛ′(0),
∫
R

p2γ(p)d p =−ħ2Λ′′(0). (3.23)

With a little additional algebra we arrive at

1

m

∫
R

p
(
γ∗w

)
(x, p, t )d p =− iħ

m
Λ′(0) N (x, t ),

1

2m

∫
R

p2 (
γ∗w

)
(x, p, t )d p =− iħ

m
Λ′(0) J (x, t )+ ħ2

2m
Λ′′(0) N (x, t ).

(3.24)

From (3.13) we see that iΛ′(0) =Λ1 and Λ′′(0) = 2Λ2 (where the constants Λ j

are given by (3.14)). Then, by multiplying the Wigner equation (3.11) by 1, p/m
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and p2/2m, respectively, and integrating both sides with respect to p, we obtain

the following system of Euler-like equations:

∂N

∂t
+ ∂J

∂x
= 0,

∂J

∂t
+ ∂JJ

∂x
+ 1

m
V ′N = ħΛ1

mτ
N ,

∂E

∂t
+ ∂JE

∂x
+V ′ J = ħΛ1

mτ
J − ħ2Λ2

mτ
N ,

(3.25)

where

JJ (x, t ) = 1

m2

∫
R

p2w(x, p, t )d p = 1

m
E(x, t )

and

JE (x, t ) = 1

2m2

∫
R

p3w(x, p, t )d p

are the currents associated to J and E , respectively. As usual, this system

contains the extra unknown JE (but also JJ would be an unknown in higher

spatial dimensions) and needs to be closed by making suitable assumptions

(see e.g. Refs. [11,34,48] and references therein).

The right-hand sides of Eq. (3.25) are due to decoherence collisions. We

can notice that the terms depending onΛ1 are due to the momentum injection

from the environment (see the discussion in the first part of Sec. 3.3), while

the term depending onΛ2 (which is a positive constant, as it is apparent from

(3.14)) represents energy dissipation in the environment.
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Chapter 4

Quantum decoherence effects on a

scattering process

In this chapter we aim to test the efficacy of our Wigner equation model for

decoherence on a situation of physical interest as a tunneling process through

a potential barrier in a decoherent environment.

It is indicated, for example in [33], that one typical quantum property, the

coherence length, is reduced by decoherence. According to the Schrödinger

equation, a free wave packet would spread, thereby increasing its size and

extending its coherence properties over a larger region of space. Decoherence

is expected to counteract this behaviour and reduce the coherence length.

In [26] the authors analyze, from a theoretical point of view in the Wigner for-

malism, the problem of electron dynamics inside nanometric systems, where

the coherence of the electron ensemble is maintained in a very short region.

For very short devices indeed, transport properties, such as tunnelling through

potential barriers, are significantly influenced by the distance between the con-

tacts, which spoil such a coherence, so that the interference processes between

the carrier wavefunction and the internal potential profile result affected by

the proximity of the contacts. By means of the model presented in the previous

chapter we are able to point out the following

Property 1. In a tunneling process through a potential barrier, the decoherence

phenomenon (i.e. finite coherence length related to finitude of the semiconduc-

tor device, see [26,23,33,49]) favours transmission in an otherwise reflection-

dominated regime.

We would like to stress that this phenomenon occurs because long wave-

length components of the potential cannot interfere effectively with low energy

electron states, hence reflection is someway inhibited. If the coherence length

of the system is short, electrons cannot "feel" the wavelengths needed to be
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reflected by the potential profile. An experimental measurement of this ef-

fect is still sought, since the hypothesis of an abrupt vanishing of coherence

at the contacts and the need for a sharp control of the spatial dimensions of

the nano-device make the experimental results really sensitive to the accu-

racy of the geometrical definition of the sample and to the effectiveness of the

decoherence processes within the contacts.

Here below we numerically solve the evolution equation with decoherence

resulting from the one-dimensional scattering problem. The finitude of the

device is contained in the decoherence term (which reduces then essentially to

parameter λ as seen in Section 3.3 in relation to [31]), so that the problem can

be faced on the entire real spacial domain. The final state is observed in terms

of average quantities (momentum and position) and density profiles, but the

proper "measure" of the effect is given by the observation of the transmission

coefficients we will be aware of later.

4.1 The physical model

Let consider a gaussian wave packet, supposed free at t −→−∞, which enters

a region where a potential barrier is present. Here, we are no more interested

to observe the classical behaviour effects appearance (i.e. the damping of

interference fringes), but rather to verify Property 1. This is why, instead of a

superposition initial state, we take a single bump centred in x0 with average

momentum p0 as initial condition:

ψ0(x) =
(

2σp

π×2

) 1
4

e−σp (x−x0)2

×2 +i
p0(x−x0)

× , (4.1)

where σp is the initial momentum variance.

To the wave function in (4.1) there corresponds an initial density matrix

ρ0(x, y) =ψ0(x)ψ0(y), (4.2)

and an initial Wigner function

w0(x, p) = 1

π×e−2
σp (x−x0)2+σx (p−p0)2

×2 , (4.3)

where the initial position variance σx fulfils

σxσp = ×4

4
, (4.4)
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requiring a minimal uncertainty wave packet.

We suppose that the initial Wigner function starts in free motion at large dis-

tance from the origin.

We recall Eq. (3.11) in the form (3.19)

∂w

∂t
+ p

m

∂w

∂x
+Θ[V ]w = wλ−w

τ
, (4.5)

where

wλ = γλ ∗p w, (4.6)

with a correlation length parameter λ contained in the collisional kernel

γλ(p) = 1

2πħ
∫
R
Λλ(ξ)e− i

ħ pξdξ

being responsible for the damping of the density matrix for large values of ξ.

For the numerics we have chosen a gaussian potential located in the central

region

V (x) =V0e− x2

a2 (4.7)

and the gaussian decoherence function

Λλ(ξ) = r0
2
(
1−e− ξ2

2λ2

)
. (4.8)

in accordance to Equation (3.13).

4.1.1 Nondimensionalization

In order to numerically solve the problem we reduce to a dimensionless evolu-

tion equation. In this regard, we take in account characteristic quantities as the

characteristic lenght a, the characteristic potential barrier height V0, and time

T =
√

V0
ma2 , which represents the time a particle of energy V0 takes to overpass

the barrier.

Hence, we introduce a dimensionless energy

EK = p2
0

2mV0
(4.9)

and an initial dimensionless momentum variance

σ0 =
σp

mV0
. (4.10)
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The nondimensionalized variables are

x ′ = x

a
, t ′ = t

T
, p ′ = pp

mV0
, (4.11)

and the dimensionless Planck constant becomes

h̄ =× ap
mV0

.

The initial dimensionless momentum is then

p ′
0 =

√
2EK (4.12)

and the initial dimensionless position x ′
0 is empirically chosen so that the initial

packet bump is far from the potential. These parameters characterize, hence,

the initial Wigner function in the new variables, which has been divided byp
mV0 to nondimensionalize. Moreover, the new potential has been divided by

the quantity V0, as well.

In sake of simplicity, from now on, we will get rid of the primes in the notations

and consider the unprimed variables as dimensionless.

In the new variables, the evolution equation recalled in (4.5) becomes

Çw

Çt
+p

Çw

Çx
+Θ [V ] w = 1

τ
(wλ−w) (4.13)

with an initial condition

w0(x, p) = 1

πh̄
e
−2

[
σ0(x−x0)2

h̄2 +h̄2σ0(p−p0)2
]

(4.14)

4.2 The numerical method

The solution of (4.13) can be numerically found using a splitting scheme algo-

rithm. This numerical method consists in decoupling the problem in two (or

more) subproblems.

Indeed our evolution equation can be split in two parts: one of "free transport"

evolution and one of "due-to-potential" evolution. The idea of using this

method is borrowed from the one proposed initially in [12] for the one-dimensional

classical Vlasov equation for collisionless plasmas,

Ç f

Çt
+p

Ç f

Çx
−E

Ç f

Çp
= 0, (4.15)
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which has been adapted to the quantum case for the Wigner equation (Reff. [6],

[7], [20]). In the study of plasma waves, the electric field E is also an unknown

quantity and it obeys the Poisson equation, which is included in the numerical

scheme. We do not have other unknowns but w . Furthermore, we need to

modify the method because of the decoherence term nature, which appears,

as seen in the previous chapter, as a p-convolution of the decoherence kernel

γλ(p) and the unknown.

In its original formulation [12] for the classical nonlinear Vlasov-Poisson

system, the splitting scheme performs the numerical integration along the

characteristics in the phase space. A discretized mesh

xl = l∆x and p j = j∆p −pM , for l = 0, ..., N ; j = 0, ..., M

is introduced in the phase space, and the solution is advanced in time from t

to t +∆t by alternating an integration along x for half time-step, an integration

along p for a whole time step and a final integration again along x for half

time-step. When integrating along x, the transport equation

Ç f

Çt
+p

Ç f

Çx
= 0 (4.16)

is solved from t to t +∆t/2 and the solution is given by

f (xl , p j , t +∆t/2) = f (xl −p j∆t/2).

This corresponds to a shift of the solution along x by the quantity p j∆t/2 for

each p j . The evaluation of f on the off-mesh points (xl −p j∆t/2, p j ) is best

done by Fourier transforming with respect to x, since a shift in the x variable

by p j∆t/2 amounts to a multiplication of the Fourier transform by the phase

factor exp(−i kp j∆t/2). When integrating along p, the equation

Ç f

Çt
−E

Ç f

Çp
= 0

is solved from t +∆t and the solution is given by

f (xl , p j , t +∆t ) = f (xl , p j +E∆t , t ).

This corresponds to a shift of the solution along p by the quantity p j∆t for

each xl . Again, the evaluation of f on the off-mesh points (xl , p j +E∆t ) is best

done by Fourier transforming with respect to p, and here the Fourier transform

is multiplied by the phase factor exp(i kp j∆t). The splitting is equivalent to
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replacing each actual characteristic curve, within a mesh cell, with a sequence

of three connected segments, the first and the last being parallel to the x-axis

while the second is parallel to the p-axis. For this reason, the integrations along

x are referred to as horizontal shifts and the integration along p as vertical

shift. It has also to be noted that, at each time step after the initial one, the

first horizontal shift can be combined with the second horizontal shift of the

previous time step in a unique horizontal shift, thus saving computational

time.

The splitting-scheme algorithm illustrated here above can be applied to the

numerical solution of the Wigner equation (1) for w(x, p, t ), even though there

are no characteristics in the quantum case. The differential term of the Vlasov

equation is replaced in equation (4.13) by a pseudo-differential term plus the

decoherence term. It can be easily again approached by Fourier transforming

with respect to the p variable and this is equivalent to apply the inverse Wigner

transform and solve the "potential-plus-decoherent" evolution on∆t and come

back to the Wigner function by Wigner transform. It would not be necessary to

transform at the first shift because we could use the advantages of the Wigner

formulation where a free transport term appears and, hence, interpolate on the

mesh, but we prefer to use twice a multiplicative form both for the transport

and the "potential-plus-decoherence" step. In the second shift it is absolutely

indispensable, because of convolution operator presence.

Horizontal shift The splitting sequence retains the same structure, because

the equation of the of horizontal shift is still like (4.16):

Çw

Çt
+p

Çw

Çx
= 0, (4.17)

which can be solved by Fourier transforms in position. If

ŵ(k, p, t ) = 1p
2π

∫
R

w(x, p, t )e i kxd x

is the (inverse) Fourier transform of w(x, p, t ) (with respect to x-to-k variable),

equation (4.17) becomes
Çŵ

Çt
+ i pŵ = 0, (4.18)

then

ŵ(ki , p j , t + ∆t

2
) = e−ıp ∆t

2 ŵ(ki , p j , t ). (4.19)
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The solution w(xl , p j , t + ∆t
2 ) is then obtained by the Fourier transform with

respect to k-to-x variable

w(x, p, t ) = 1p
2π

∫
ŵ(k, p, t )e−i xp dk. (4.20)

Vertical shift The vertical shift is intended to solve the equation

Çw

Çt
+

{
Θ [V ]+ 1−γλ∗p

τ

}
w = 0. (4.21)

We transform with respect to the p-to-k variable, obtaining

Çw̃

Çt
+δ(V )w̃ + 1− γ̃λ

τ
w̃ = 0, (4.22)

being

w̃(x,k, t ) = 1p
2π

∫
R

w(x, p, t )e i kp d p. (4.23)

Hence,

w̃(xl ,k j , t +∆t ) = e
−V +

1− γ̃λ
τ w̃

(
xl ,k j ,

∆t

2

)
. (4.24)

We Fourier transform again to obtain w(xl , p j , t +∆t ).

4.3 Numerical results

In this section, the numerical solution of the Wigner equation with decoherence

for the physical situation discussed in Section 4.1 with the choice1

Λλ(η) =
(
cosh

η

λ

)−1
(4.25)

is presented.

Three cases are discussed, corresponding to different values of the dimen-

sionless energy EK for which, in the quantum standard dynamics (i.e. λ−→∞),

the regime is

1. reflection-dominated, for EK = 0.5 ;

2. neutral, for EK = 1;

3. transmission-dominated, for EK = 1.5 and EK = 2.

1due to regularity reasons in the phase-space origin
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For each one, we vary the values of the decoherence parameter (or coherence

length) λ and we report the quantity which gives an approximated value of the

transmission coefficient, as in [53],

T = 1

2

(
1+ 〈p〉∞

p0

)
, (4.26)

where

〈p〉(∞) = lim
t→∞

∫
R

∫
R

p w(x, p, t )d x d p = lim
t→∞

∫
R

J (x, p)d x (4.27)

is the average momentum at the final time step, i.e. the asymptotic value of

the current (see (3.20)). Another parameter we take into account is τ, i.e. the

dimensionless equivalent of the collisional characteristic time.

4.3.1 First case

To begin we focus on the case in which the initial energy is one half of the po-

tential height and refection dominates in the standard case (λ−→∞). Figure

4.1 shows the density profile N (x) at 1
5 of the final time step (t = 60 in the di-

mensionless units) and Figure 4.2 at the final time step, both for seven different

values of λ (as indicated in the legends) and τ= 10. The initial gaussian packet

travels freely in the early stages of the evolution, moves towards the potential

region, with the average momentum staying constant before the bulk of the

packet reaches the potential. The packet (see the density figures) presents the

natural increasing spread, this effect becoming more pronounced at smaller

correlation lengths (see Figure 4.2). As the packet reaches the potential, os-

cillations are set on the density profile and the average momentum drops;

the oscillations appear to be smoothened as the correlation length becomes

shorter, and the drop in the average momentum is also less pronounced at

shorter values of λ (see Figure 4.3 where τ= 10).

After the interaction with the potential, a transmitted and a reflected packet

separate, travelling away from the origin in opposite directions; the transmitted

packet is broader and higher as λ becomes smaller. The average momentum

settles to a constant value, clearly larger for smaller values of λ; the transmis-

sion coefficient, reported in Tables 4.1 –4.3, also shows increasing values in this

case as λ becomes smaller. The Wigner function keeps oscillating indefinitely

near the potential region, although the contribution of these oscillations to

the density becomes negligible with time; as the correlation length becomes

smaller, the oscillations are seen to be damped away. This behaviour is in
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agreement with the results of [7], where the increased transmission due to the

decoherence was attributed to a reduced momentum exchanged between the

packet and the potential caused by the correlation damping.

Figure 4.1: Density profile as function of x in the first case EK = 0.5 (reflection-
dominated regime) at time t = 12 with τ= 10, σ0 = 0.1EK , p0 =

p
2EK , h̄ = 0.5

and different values of λ, as displayed in the legend, from λ= 4 to λ= 100 (i.e.
λ→∞). All quantities are in dimensionless units.
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Figure 4.2: Density profile as function of x in the first case EK = 0.5 (reflection-
dominated regime) at time t = 60 with τ= 10, σ0 = 0.1EK , p0 =

p
2EK , h̄ = 0.5

and different values of λ, as displayed in the legend, from λ= 4 to λ= 100 (i.e.
λ→∞). All quantities are in dimensionless units.

4.3.2 Second case

The initial energy is here at the same level of the potential height. As in the case

with EK = 0.5, the final time of simulation is t = 60 in dimensionless units. We

show again the density profile at the final time in Figure 4.4. The values for the

correlation length λ are the same. The early evolution of the initial gaussian

packet is similar to the evolution observed in the previous case, with the packet

becoming lower and broader and with the effect being again more pronounced

at smaller correlation lengths. The onset of oscillations on the density profile

is observed again, but a portion of the packet has already travelled past the

potential region before the oscillations stop. As the interaction with the poten-

tial becomes negligible, we observe again a transmitted and a reflected packet

travelling away from the origin in opposite directions; both the transmitted

and the reflected packets, however, become now broader and smaller as λ is

decreased. The overall effect is to favour transmission and the transmission

coefficients also show increasing values in this case as λ becomes smaller.
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Figure 4.3: Average momentum < p > as functions of time t , from t = 0 to
t = 45 for the case EK = 0.5 with τ = 10, σ0 = 0.1EK , p0 =p

2EK , h̄ = 0.5 and
different values of λ, as displayed in the legend, from λ = 4 to λ = 100 (i.e.
λ→∞). All quantities are in dimensionless units.

53



Figure 4.4: Density profile as function of x in the second case EK = 1 at time
t = 60 with τ= 10, σ0 = 0.1EK , p0 =

p
2EK , h̄ = 0.5 and different values of λ, as

displayed in the legend, from λ= 4 to λ= 100 (i.e. λ→∞). All quantities are in
dimensionless units.

4.3.3 Third and fourth cases

The initial energy is now higher than the potential one. The final time of

simulation is still t = 60 in dimensionless units. The values for the correlation

length λ are the same as in the previous cases. By comparing Figures 4.8 and

4.9 for the average momentum with the corresponding Figures 4.3 and 4.5, we

see that the effect of a decreasing λ on transmission is now much weaker; the

average momentum, after the drop from the initial value during the interaction,

settles to a constant which is almost independent of the coherence length λ.

The Tables 4.1–4.3 show that in this case the transmission coefficient remains

constant (to the second digit) as the correlation length λ is varied. The density

profiles show a similar behaviour as in the previous two cases, with the onset of

oscillations during the interaction of the packet with the potential, followed by

a separation into reflected and transmitted portions, which become lower and

broader as the value of λ is reduced. In the end we would like to point out that

the parameter τ influences immediately the transmission for high values of λ,

as we could imagine since it is related to the number of collision in a time unit.
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Figure 4.5: Average momentum < p > as functions of time t , from t = 0 to t = 45
for the case EK = 1 with τ = 10, σ0 = 0.1EK , p0 =p

2EK h̄ = 0.5 and different
values of λ, as displayed in the legend, from λ= 4 to λ= 100 (i.e. λ→∞). All
quantities are in dimensionless units.

The previous analysis and, in particular, the results in Tables 4.1–4.3 allow us

asserting that decoherence (low values of λ) favours transmission (T values

are incremented) in reflection-dominated regimes, while the effect is almost

irrelevant in transmission-dominated ones.
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Table 4.1: Transmission Coefficients table for τ= 3

Table 4.2: Transmission Coefficients table for τ= 10

Table 4.3: Transmission Coefficients table for τ= 15
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Figure 4.6: Density profile as function of x in the third case EK = 1.5
(transmission-dominated regime) at time t = 60 with τ = 10, σ0 = 0.1EK ,
p0 =

p
2EK , h̄ = 0.5 and different values of λ, as displayed in the legend, from

λ= 4 to λ= 100 (i.e. λ→∞). All quantities are in dimensionless units.
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Figure 4.7: Density profile as function of x in the third case EK = 1.5
(higher transmission-dominated regime) at time t = 60 with τ= 10, σ0 = 0.1EK ,
p0 =

p
2EK , h̄ = 0.5 and different values of λ, as displayed in the legend, from

λ= 4 to λ= 100 (i.e. λ→∞). All quantities are in dimensionless units.
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Figure 4.8: Average momentum < p > as functions of time t , from t = 0 to
t = 45 for the case EK = 1.5 with τ = 10, σ0 = 0.1EK , p0 =p

2EK , h̄ = 0.5 and
different values of λ, as displayed in the legend, from λ = 4 to λ = 100 (i.e.
λ→∞). All quantities are in dimensionless units.

Figure 4.9: Average momentum < p > as functions of time t , from t = 0 to
t = 45 for the case EK = 2 with τ = 10, σ0 = 0.1EK , p0 = p

2EK , h̄ = 0.5 and
different values of λ, as displayed in the legend, from λ = 4 to λ = 100 (i.e.
λ→∞). All quantities are in dimensionless units.
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Chapter 5

Large-time asymptotics for the

model

At this point, we would like to study the behaviour of our model for decoherence,

as presented in Chapter 3, for large values of t (i.e. t →+∞). It can be immedi-

ately observed that the solution w(x, p, t ) of the Wigner equation (3.11) tends

to be completely smoothed out to a constant value. Correspondingly, within

the density matrix formalism, the coherence length associated to ρ, i.e. the

decay of ρ(X ,Y , t ) along the correlation coordinate X −Y , tends to vanish. This

is an unphysical behaviour which was already pointed out by Joos and Zeh [32].

5.1 Large-time behaviour for a gaussian wave packet

Inspired by the approach adopted in Ref. [32], rather than embarking in a

general analysis which will be outlined in the next section, we shall discuss

the issue of large-time asymptotics by performing numerical simulation in a

very simple (but physically meaningful) situation, that is the case of a gaussian

distribution.

Let us work within the Wigner-Fokker-Planck approximation (3.17), and

assume that the potential is harmonic, namely

V (x) = κ

2
x2,

with κ≥ 0. Recalling Eq. (2.77), the resulting equation is

∂w

∂t
+ p

m

∂w

∂x
−κ∂w

∂p
= Λ0

τ

∂2w

∂p2
, (5.1)
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where for simplicity we have set

Λ0 =ħ2Λ2.

It is readily seen that (3.17) admits solutions of the form

w(x, p, t ) = e−[A(t ) p2+B(t ) px+C (t ) x2+D(t )], (5.2)

where 1/
p

2A(t ) is the momentum spread (and, therefore, ħp2A(t ) is the

coherence-length spread, according to the discussion closing Section 3.2),

B(t) is a covariance parameter, 1/
p

2C (t ) is the position spread and D(t) is

a normalization parameter. It is to be noticed that the corresponding den-

sity matrix still has a gaussian form, which is exactly the one considered by

Joos and Zeh. The substitution of (5.2) into the Wigner-Fokker-Plank equation

(3.17) leads straightforwardly to the following system of ODEs for the unknown

functions A(t ), B(t ), C (t ) and D(t ):

Ȧ =− 1

m
B − 4Λ0

τ
A2,

Ḃ =− 2

m
C − 4Λ0

τ
AB +2κA,

Ċ =−Λ0

τ
B 2 +κB ,

Ḋ = 2Λ0

τ
A.

(5.3)

This system for A, B and C (which is decoupled from the equation for D) pos-

sesses the unique, asymptotically stable, equilibrium point (A,B ,C ) = (0,0,0).

This means that, as expected, the Wigner function is completely smoothed out

towards a constant value (which is of course 0). Correspondingly, the coherence

length goes to zero. The model is therefore not satisfactory for large times, since,

as remarked by Joos and Zeh [32], the coherence must be maintained at least

at the length-scale of the thermal De Broglie wavelength

λth = ħ√
2mkB T

, (5.4)

where T is the temperature of the environment particle bath, and kB is the

Boltzmann constant.

By looking at the equilibrium conditions for system (5.3) we can guess that

the addition to the first equation of a linear term in A, with positive coefficient,
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is able to shift the equilibrium from A = 0 to a positive value. How such a term

could arise from Eq. (5.1)? If we want to preserve the gaussian form (5.2) of

the solution, we see that there are not many more possibilities than adding a

derivative of w with respect to p and multiply it by p. We realised that this is

provided by a “quantum friction” term proposed by Caldeira and Legget [13].

In fact, for high temperatures and in the density matrix formalism, this term

appears at the right-hand side of the von Neumann equation (3.6) as

iħη
2

(X −Y )

(
∂ρ

∂X
− ∂ρ

∂Y

)
,

where η ≥ 0 is a “friction” coefficient [13,21]. Translating this term into the

Wigner formalism, and adding it to the Wigner equation (5.1), we obtain

∂w

∂t
+ p

m

∂w

∂x
−κ∂w

∂p
= Λ0

τ

∂2w

∂p2
+η ∂

∂p
(pw), (5.5)

which has exactly the needed form. Substituting (5.2) in (5.5) yields the new

system of ODEs 

Ȧ =− 1

m
B − 4Λ0

τ
A2 +2ηA

Ḃ =− 2

m
C − 4Λ0

τ
AB +2κA+ηB ,

Ċ =−Λ0

τ
B 2 +κB ,

Ḋ = 2Λ0

τ
A−η,

(5.6)

possessing the asymptotically stable equilibrium point

(A0,B0,C0) =
(
τη

2Λ0
,0,

mτκη

2Λ0

)
. (5.7)

Note that the asymptotic coherence length is

ħ
√

2A0 =ħ
√
τη

Λ0
= ħ√

mkB T
,

where the last equality holds if one takes the relation

Λ0 = τmηkB T,

as it is done, e.g., in Ref. [21]. Hence, we obtain that the asymptotic coherence

length is of the order of the thermal De Broglie wavelength (5.4), exactly as
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physically expected. We also note that the simultaneous presence of the fric-

tion and of the harmonic potential stabilises the position spread towards the

asymptotic value

1p
2C0

=
√

Λ0

2τκη
=

√
kB T

κ

(where the last equality holds if one takesΛ0 as above).
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Figure 5.1: Evolution of the parameters A (continuous blue line), B (purple
dashed line) and C (red dot-dashed line) of the Wigner function (5.2) in absence
of friction (η= 0). The overall normalisation coefficient exp(−D) (dotted green
line) is also shown. We assume to work in arbitrary units in which m = 0.4,
τ= 1,Λ0 = 1 and κ= 1.
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Figure 5.2: The same as in Figure 5.1 but with the addition of the friction. The
values of the parameters are m = 0.4, τ= 1,Λ0 = 1, κ= 1 and η= 0.5.

In Figures 5.1–5.3 we show some solutions to system (5.6). In Figure 5.1 we

set η= 0 and we can see that in the absence of friction both A(t) and C (t) ap-

proach zero as t →∞. This means that the Wigner function becomes infinitely

spread out in both momentum and position, and tends to zero everywhere

(D(t ) →+∞). When a friction is added (Figure 5.2), both the momentum and

the position spread stabilise to their asymptotic values (5.7). In this case, the

Wigner function does not vanish, since D(t) tends to an asymptotic positive

value. When the harmonic trap is switched off by putting κ= 0, we can see that

friction is able to stabilise the momentum spread but not the position spread

(Fig. 5.3). Consequently, the Wigner function becomes completely spread out

in the x direction and, as in the case of Fig. 5.1, tends to vanish (D(t ) →+∞).

In the figures we use arbitrary units, where, in particular, τ= 1. The actual

decoherence time depends of course on the considered system (namely, the

size and mass of the particle, the scattering properties and the temperature of

the environment, and so on). We refer the reader to the accurate discussion

contained in Ref. [32].
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Figure 5.3: The same as in Figure 5.2 but with the harmonic potential removed.
The values of the parameters are m = 0.4, τ= 1,Λ0 = 1, κ= 0 and η= 0.5.

The dissipative character of the new term is clearly seen by computing its

moments:∫
R

∂

∂p
(pw)d p = 0,

1

m

∫
R

p
∂

∂p
(pw)d p =−J ,

1

2m

∫
R

p2 ∂

∂p
(pw)d p =−2E .

These bring dissipative contributions to the Euler system, which takes the new

form 

∂N

∂t
+ ∂J

∂x
= 0,

∂J

∂t
+ ∂JJ

∂x
+ 1

m
V ′N = ħΛ1

mτ
N −ηJ ,

∂E

∂t
+ ∂JE

∂x
+V ′ J = ħΛ1

mτ
J − ħ2Λ2

mτ
N −2ηE .

(5.8)
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5.2 The issue of the equilibrium trend

The asymptotic behaviour in non-homogeneous media is not trivial and should

require other long efforts, but the x-homogeneous case fits well with standard

techniques as entropy methods. At the same time Chapman-Enskog approxi-

mations and the diffusive limit would reveal important information about the

solution properties. Formal computations follow, starting from an equation

like (5.5), where the decoherence dynamics (3.11) is added a friction general

term

η
Ç

Çp
(pw). (5.9)

Hence, in absence of an external potential, we have

Ç

Çt
w + p

m

Ç

Çx
w = η Ç

Çp
(pw)−νγ ∗p w, (5.10)

with ν = 1
τ , as usual. In the x-homogeneous case, w = w(t , p) and Eq. (5.10)

becomes simply
Ç

Çt
w = η Ç

Çp
(pw)−νγ ∗w. (5.11)

If we Fourier-transform with respect to the p variable and set u(t ,ξ) =F {w(t , p)},

Eq. (5.11) reads

Ç

Çt
u(t ,ξ)+ηξ Ç

Çξ
u(t ,ξ) =−µΛ(ξ)u(t ,ξ), (5.12)

where µ= νp2π and Λ=Fγ. By the characteristic method for linear partial

differential equations we are able to find a solution of this kind

u(t ,ξ) = u0(ξeηt )e−µ
η

∫ ξe−ηt

ξ
Λ(k)

k dk , (5.13)

where u0(ξe−ηt ) is the solution of Eq. (5.12), once one has set ν= 0, i.e. τ→∞.

In the limit t →∞, u(t ,ξ) → u0(0) which, translated to w , is nothing but the

number density N∞ = N (t →∞) (see (3.20)) for the x-homogeneous case. We

get the final form of u(t ,ξ) as t →∞,

u∞(ξ) = N∞e−µ
η

∫ ξ
0
Λ(k)

k dk . (5.14)

From this we can outline that when friction is dominating (i.e. η >> µ), u∞
reduces to the constant particle density number N and our function w is there-

fore a δ(p) function, corresponding to motionless particles. On the contrary,

when η<<µ, then u∞ vanishes to zero, confirming the importance of a friction
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term in the equation. In the Fokker-Planck approximation Λ(k) = Λ2k2, we

obtain a gaussian

u∞(ξ) = Ne−µ
η
ξ2

2 ,

that is consistent with and bring us back to the results gained in the previous

Section 5.1. Dealing with the equilibrium issue, we ignore the time evolution

and solve the stationary equation

η
Ç

Çp
(pw) = νγ ∗w, (5.15)

which in terms of u reads as in (5.12)

ηξ
Ç

Çξ
u(t ,ξ) =µΛ(ξ)u(t ,ξ), (5.16)

leading to

u(ξ) = u(0)e−µ
η

∫ ξ
0
Λ(k)

k dk . (5.17)

The questions we should try to find an answer concern the regularity of

w∞ =F−1u∞ which would depend on η and ν, but also on the specific form

of the decoherence kernel γ. For instance, similarly to (3.18), if

Λ(ξ) =α
(
1−e

ξ2

2σ2

)
,

the integral in (5.17) is asymptotical to l og (ξ) for large values of ξ, and so

u∞(ξ) ≈ |ξ|−
αµ
η .

This suggests again the relevance of the ratio ν
η in order to make consistent our

computation in the sense of the Fourier analysis.
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Conclusions

We have seen how Wigner equation can be endowed with terms describing a

dynamical decoherence mechanism. This is not a novelty, of course, but, as far

as we know, this is the first time that the decoherence term has a fairly general

form, coming from basic quantum mechanics. In particular, we started from

the single-collision decoherence model derived in Ref. [3], which describes

the decoherence of a "heavy" particle as a consequence of the collision with a

much lighter one. By assuming the heavy particle to undergo multiple random

collisions in an environment of light particles, we (formally) derived the Wigner

equation (3.11). The latter admits two contributions from the collisions with

the environment: a Hamiltonian part, represented by the function Γ, and a

true decoherence part, represented by the function Λ, which is nothing but

the inverse Fourier transform of the convolution kernel γ appearing in the

right-hand side of Eq. (3.11). This picture allows for the interesting interpre-

tation that decoherence smooths out the oscillations of the Wigner function,

due to quantum interference, so that the Wigner function tends to a classical

distribution in phase-space.

Then, we have seen that when Λ assumes particular forms, our model

reduces to existing decoherence models. In particular, the largely-used Wigner-

Fokker-Planck equation (3.17) corresponds to the quadratic approximation of

Λ. Moreover, when 1−Λ is assumed to be a decaying exponential function,

our model shows analogies with the Jacoboni-Bordone model [31], in which

the exponential decay of the coherence length is embedded ab initio in the

definition of the Wigner function. Our analysis, however, allows us to deduce

some general features of decoherence (or, at least, of this kind of decoherence),

as for example its effects on the dynamics of the macroscopic quantities N , J

and E , i.e. the number, current and energy spatial densities (see Eq. (3.25)).

A big issue, already addressed in the classical paper by Joos and Zeh [32]

is the long time behaviour of decoherence. In Section 5.1 we have considered

the special case of a gaussian Wigner function, for which the Wigner equation

(3.11), in the particular form (5.1), comes down to an equivalent system if
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ODEs. In this way we realized that the addition of a Caldeira-Legget quantum

friction term [13] produces a physically meaningful behaviour in the long run,

since the momentum spread of the particle is stabilised to an asymptotic value.

Equivalently, the coherence length, reaches a corresponding asymptotic value.

The addition of the quantum friction fixes the issue of the long-time be-

haviour, yet it is not completely satisfactory. In fact, as remarked by Arnold

et al. [5,4], the friction + diffusion term (i.e. the right-hand side of Eq. (5.5)) is

not quantum mechanically “correct” (unless η= 0), since it does not satisfy the

Lindblad condition, assuring the complete positivity of the evolution [17]. We

believe, however, that our analysis indicates the right direction to search for a

model that is compatible with the fundamental laws of quantum mechanics

and keeps its validity for asymptotically long times. We have sketched few ideas

about this in Section 5.2 .

In Chapter 4 we had instead a satisfactory result from a physical point of

view. Indeed, by the means of very basic numerical schemes, it turned out

that decoherence, inhibiting reflection, favours transmission of low energy

electrons through the potential barrier in the scattering process. Not by chance

the effect is much weaker in a transmission-dominated regime.

The appropriateness of the language of mathematics for the for-

mulation of the laws of physics is a wonderful gift which we neither

understand nor deserve. We should be grateful for it and hope that

it will remain valid in future research and that it will extend, for

better or for worse, to our pleasure even though perhaps also to our

bafflement, to wide branches of learning,

Eugene Wigner, [59].
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Appendix 1

The following code is the one implemented to obtain Figure 3.2 in Matlab.

global xmax nx dx

%variables and domain
t = 0;
T = 1;
dt=T/50;

nx = 170;
np = nx;
nk = np;
xmax = 7;
x = linspace(-xmax,xmax,nx);
dx = 2*xmax/(nx-1);
y = x;
r = x;

[X,Y] = meshgrid(x,y);

p = linspace(-10,10,np);
[RR,P] = meshgrid(r,p);

k = linspace(-10,10,nk);
k = k’;
[R,K] = meshgrid(r,k);

%parameters
p0 = 5;
x0 = 2;
sigma = .7;
tau = .005;
lam = 7; % <----- this parameter is the major responsible for the fringes

% damping velocity

% density matrix definition
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phipX = exp(-(X-x0).^2/(4*sigma^2)).*exp(-1i*p0*X)/((2*pi)^(1/4)*sigma);
phimX = exp(-(X+x0).^2/(4*sigma^2)).*exp(+1i*p0*X)/((2*pi)^(1/4)*sigma);
phipY = exp(-(Y-x0).^2/(4*sigma^2)).*exp(+1i*p0*Y)/((2*pi)^(1/4)*sigma);
phimY = exp(-(Y+x0).^2/(4*sigma^2)).*exp(-1i*p0*Y)/((2*pi)^(1/4)*sigma);

N = sqrt(2)*(1 + exp(-x0^2/(2*sigma^2))*exp(2*sigma^2)*p0^2);
N=1/N;

rho = (N^2)*(phipX + phimX).*(phipY + phimY);

% rotation R of the superposition initial state rho
etapX = exp(-(R+K/2-x0).^2/(4*sigma^2)).*exp(-1i*p0*(R+K/2))/((2*pi)^(1/4)*sigma);
etamX = exp(-(R+K/2+x0).^2/(4*sigma^2)).*exp(+1i*p0*(R+K/2))/((2*pi)^(1/4)*sigma);
etapY = exp(-(R-K/2-x0).^2/(4*sigma^2)).*exp(+1i*p0*(R-K/2))/((2*pi)^(1/4)*sigma);
etamY = exp(-(R-K/2+x0).^2/(4*sigma^2)).*exp(-1i*p0*(R-K/2))/((2*pi)^(1/4)*sigma);

eta = N^2*(etapX + etamX).*(etapY + etamY);

%decoherence operator I definition
I = exp(-K.^2/(2*(lam^2)));

%%%%%% let’s start %%%%%

W0 = zeros(np,nx);
W = zeros(np,nx);
G = W;

lettera=1;
while t<T+dt

% decoherence step for eta function
eta = exp((I-1)*dt/tau).*eta;

% Wignerization
for j = 1:nx

for i = 1:np
f = eta(:,j);
phas = exp(-1i*k*p(i));
w = (1/2/pi)*trapz(k,f.*phas);
W(i,j) = w;

end
end

% Free transport step on Wigner function
for j = 1:nx

for i = 1:np
xtrasl = x(j) - dt*p(i);
jfloor = indj(xtrasl);
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alpha = (xtrasl - x(jfloor))/dx;
G(i,j) = W(i,jfloor)*(1-alpha) + W(i,jfloor+1)*alpha;

end
end
W = G;

% Coming back step to eta function
for j = 1:nx

for i = 1:nk
phas = exp(1i*k(i)*p);
g = G(:,j);
h = trapz(p,g’.*phas);
eta(i,j) = h;

end
end

% graphics
set(gcf,’color’,’white’)
surfl(RR,P,real(W))
axis([-5,5,-10,10,-0.07,0.07]);
colormap(winter)
shading interp
axis on
box off
grid off
xlabel(’x’)
ylabel(’p’)
zlabel(’w’)
title([’w(x,p,t) t = ’ num2str(t,2)])
shg
drawnow
saveas(gcf,strcat(’immaginedeco’,num2str(lettera),’.png’));

lettera=lettera+1;
t=t+dt;

end

function j = indj(x)
global xmax nx dx
r = floor((x+xmax)/dx +1);
if r < 1

j = 1;
elseif r > nx-1

j = nx-1;
else

j = r;
end
end
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Appendix 2

The following code is the one adopted for obtaining Tables 4.1, 4.2,4.3 in
Chapter 4.

global hbar tau ;
hbar=0.5;
tau = 1000;
Lambda=[3,4,7,10,12,15,40,100,900];
Energies = [.5, 1, 1.5, 2];
LL=length(Lambda);
LE=length(Energies);

tabellaTC = zeros(LE,LL);
for a=1:LE

for b= 1:LL
tabellaTC(a,b) = trasmcoeff(Lambda(b),Energies(a))

end
end

function TC = trasmcoeff(lambda,EK)

%Global Variables
global sigma0 x0 p0;
global kx kp;
global norm pav dx dp;
global tau hbar;
global filter;

%Quantities
sigma0 = 0.1*EK;
p0 = sqrt(2.0*EK);

%Domain and discretization
tinf=60.0;
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tf=60.0;
x0=-0.5*p0*tinf;
n=1024;
m=1024;
dt=0.02;
dtm=0.5*dt;
xmax=150;
pmax=10.0;
dx=2*xmax/n;
dp=2*pmax/m;
x=-xmax+(0:(n-1))*dx;
p=-pmax+(0:(m-1))*dp;
Fx=2*pi/dx;
Fp=2*pi/dp;
kx=(Fx/n)*(0:n/2);
kp=(Fp/m)*(0:m/2);

%barrier
filter=zeros(1,m);
for j= 1 : m/2+1

filter(j)=(1-ffilter(kp(j)/lambda))/tau;
end
for j= m/2+2 : m

filter(j)=filter(m-j+2);
end

%initialization
t=0.0;
it=1;
tt(it)=t;
f=zeros(n,m);
for i=1:n

for j=1:m
f(i,j)=finit(x(i),p(j));

end
end
dens=moments(p,f,n,m);
pavt(it)=pav;
normt(it)=norm;
% figure
% plot(x,dens);
plot(tt,pavt);
% hold on
%contours=[0.0005, 0.001, 0.02,0.2,0.4];
% contours=[0.02 0.2 0.4];
% figure;
% contour(x,p,f’,contours,’k’);
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% hold on;
[X,P]=meshgrid(x,p);
F=f’;
% figure
% surfl(X,P,F);
% shading interp;
% grid off;
% hold on
w=hshift(f, p, n, m, dtm);
dtprint=tf/5;
tprint=dtprint;
ifig=1;
tic
f=w;
while t <= tf

w=pshift(f, x, p, n, m, dt,lambda);
f=hshift(w, p, n, m, dt);
t=t+dt;
it=it+1;
tt(it)=t;
dens=moments(p,f,n,m);
pavt(it)=pav;
normt(it)=norm;

% if t>=tprint
% figure
% plot(x,dens);
% hold on
% figure;
% contour(x,p,f’,contours,’r’);
% hold on;
% F=f’;
% figure
% surfl(X,P,F);
% shading interp;
% grid off;
% hold on
% tprint=tprint+dtprint
% ifig=ifig+1
% end
end
% figure
% plot(x,dens);
% hold on
% figure;
% contour(x,p,f’,contours);
% hold on;
F=f’;
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% figure
% surfl(X,P,F);
% shading interp;
% grid off;
% hold on
% figure
% plot(tt,pavt);
% hold on;
% figure
% plot(tt,normt);
% axis([0 tf 0 1.2]);
% hold on;
toc

%calculus transmission coefficients

integranda=zeros(1,m);
for jj = 1:m

integranda(jj) = trapz(x,F(:,jj));
end
p_average=trapz(p,p.*integranda);
TC=(1+p_average/p0)/2;

end

function w=finit(x,p) %funzione initiale
global hbar sigma0 x0 p0;
arg=sigma0*(x-x0)^2+hbar^2*(p-p0)^2/(4*sigma0);
w=exp(-2*arg/hbar^2)/(pi*hbar);

end

function w=moments(p,f,n,m)
global norm pav dx dp;
w=zeros(1,n);
sum1=0.0;
sum2=0.0;
for i=1:n

sum=0.0;
for j=1:m

sum=sum+f(i,j);
sum1=sum1+p(j)*f(i,j);
sum2=sum2+f(i,j);

end
w(i)=sum*dx;

end
norm=sum2*dp*dx;
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pav=sum1*dp*dx/norm;
end
function f=ffilter (x) %potential

f=1/cosh(x);
end

function w=hshift(f, p, n, m, dt)
global kx;
w=zeros(n,m);
for j=1:m

y=zeros(1,n);
zr=zeros(1,n);
zi=zeros(1,n);
for i=1:n

y(i)=f(i,j);
end
z=fft(y);
pdt=p(j)*dt;
for i=1:n/2+1

kpdt=kx(i)*pdt;
tempr=real(z(i))/n;
tempi=imag(z(i))/n;
zr(i)=tempr*cos(kpdt)+tempi*sin(kpdt);
zi(i)=tempi*cos(kpdt)-tempr*sin(kpdt);

end
for i=n/2+2:n

zr(i)=zr(n-i+2);
zi(i)=-zi(n-i+2);

end
zi(n/2+1)=0.0;
z=complex(zr,zi);
y1=ifft(z*n);
w(1:n,j)=y1’;

end
end

function w=pshift(f, x, p, n, m, dt,lambda)
global kp filter;
global hbar;
global tau;
w=zeros(n,m);
for i=1:n

y=zeros(1,m);
for j=1:m

y(j)=f(i,j);
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end
z=fft(y);
zr=real(z(1:m/2+1))/m;
zi=imag(z(1:m/2+1))/m;
for j=1:m/2+1

tempr=zr(j);
tempi=zi(j);
sym=(pot(x(i)+0.5*hbar*kp(j))-pot(x(i)-0.5*hbar*kp(j)))/hbar;
zr(j)=exp(-filter(j))*(tempr*cos(sym*dt)-tempi*sin(sym*dt));
zi(j)=exp(-filter(j))*(tempi*cos(sym*dt)+tempr*sin(sym*dt));

end
for j=m/2+2:m

zr(j)=zr(m-j+2);
zi(j)=-zi(m-j+2);

end
zi(m/2+1)=0.0;
z=complex(zr,zi);
y1=ifft(z*m);
w(i,1:m)=y1’;

end
end
function f=pot(x)

f=exp(-x^2);
end

%density in time

%Global Variables
global hbar tau ;
global sigma0 x0 p0;
global kx kp;
global norm pav dx dp;
global filter;
hbar=0.5;
tau = 10;

tinf=60.0;
tf=60.0;

Lambda=[4,7,10,12,15,40,100];
Energies = [.5, 1, 1.5];
LL=length(Lambda);
LE=length(Energies);
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%Domain and discretization
n=1024*2;
m=1024*2;
dt=0.02;
dtm=0.5*dt;
xmax=550; %350
pmax=15.0; %10
dx=2*xmax/n;
dp=2*pmax/m;
x=-xmax+(0:(n-1))*dx;
p=-pmax+(0:(m-1))*dp;
Fx=2*pi/dx;
Fp=2*pi/dp;
kx=(Fx/n)*(0:n/2);
kp=(Fp/m)*(0:m/2);

for a=1:LE
EK=Energies(a);
figure
for b= 1:LL
lambda= Lambda(b);
%Quantities
sigma0 = 0.1*EK;
p0 = sqrt(2.0*EK);
x0=-0.5*p0*tinf;

%barrier
filter=zeros(1,m);
for j= 1 : m/2+1

filter(j)=(1-ffilter(kp(j)/lambda))/tau;
end
for j= m/2+2 : m

filter(j)=filter(m-j+2);
end

%initialization
t=0.0;
it=1;
tt(it)=t;
f=zeros(n,m);
for i=1:n

for j=1:m
f(i,j)=finit(x(i),p(j));

end
end
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dens=moments(p,f,n,m);
pavt(it)=pav;
normt(it)=norm;

w=hshift(f, p, n, m, dtm);
dtprint=tinf/5;
tprint=dtprint;
ifig=1;
tic
f=w;
while t <= tf

w=pshift(f, x, p, n, m, dt,lambda);
f=hshift(w, p, n, m, dt);
t=t+dt;
it=it+1;
tt(it)=t;
dens=moments(p,f,n,m);
pavt(it)=pav;
normt(it)=norm;

end
F=f’;
figure((a-1)*2+1)
plot(x,dens);
title ([’density profile with \tau=10, E_K=’ num2str(EK,2)])
legend(’\lambda = 4’,’\lambda = 7’,’\lambda = 10’,’\lambda = 12’,’\lambda = 15’,’\lambda = 40’,’\lambda = 100’)
hold on
figure(a*2)
plot(tt,normt);
axis([0 tf 0 1.2]);

hold on
toc
end

end
function w=finit(x,p) %funzione initiale

global hbar sigma0 x0 p0;
arg=sigma0*(x-x0)^2+hbar^2*(p-p0)^2/(4*sigma0);
w=exp(-2*arg/hbar^2)/(pi*hbar);

end
function w=moments(p,f,n,m)

global norm pav dx dp;
w=zeros(1,n);
sum1=0.0;
sum2=0.0;
for i=1:n

sum=0.0;
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for j=1:m
sum=sum+f(i,j);
sum1=sum1+p(j)*f(i,j); %rettangoli
sum2=sum2+f(i,j);

end
w(i)=sum*dx;

end
norm=sum2*dp*dx;
pav=sum1*dp*dx/norm;

end
function f=ffilter (x) %potential

f=1/cosh(x);
end
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[50] V. I. Tatarskĭi, The Wigner representation of quantum mechanics, Sov. Phys. Usp.,

vol. 26, pp. 311-327 (1983)

[51] G. Teschl, Mathematical Methods in Quantum Mechanics With Applications to

Schrödinger Operators. AMS (2009)

[52] A. Teta, Classical behavior in quantum systems: the case of straight tracks in a

cloud chamber. Eur. J. Phys., vol. 31, pp. 215-227 (2010)

[53] R. E. Turner, R. F. Snider, A comparison of local and global single Gaussian

approximation to time dynamics: One- dimensional systems, J. Chem. Phys. 87,

pp. 910–920 (1987)

[54] V. S. Vladimirov, Equations of mathematical physics. New York, M. Dekker (1971)

[55] H.Weyl, Gruppentheorie und Quantenmechanik. S. Hirzel (1928)

[56] H. Weyl, The Theory of Groups and Quantum Mechanics. Dover (1950)

[57] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys.

Rev., vol.40, pp. 749–759 (1932)

[58] E. Wigner, Review of the quantum mechanical measurement problem. In: P.

Meystre, M. Scully (eds.), Quantum optics, experimental gravity and measure-

ment theory, pp. 43–63. Plenum Press, New York (1983)

[59] E. Wigner, The Unreasonable Effectiveness of Mathematics in the Natural Sci-

ences. Richard Courant Lecture in Mathematical Sciences delivered at New York

University, May 11st, 1959. Communication on Pure and Applied Mathematics

13/1 , pp. 1–14 (1960)

[60] M.W. Wong, Weyl Transforms. Springer (1998)

[61] C. T. R. Wilson, On an expansion apparatus for making visible the tracks of

ionising particles in gases and some results obtained by its use. 87, Proc. R. Soc.

Lond. A (1912)

[62] C. K. Zachos, D.B. Fairlie, T.L. Curtright (eds.), Quantum mechanics in phase

space. An overview with selected papers. World Scientific, Hackensack (2005)

[63] W. H. Zurek, Decoherence and the Transition From Quantum to Classical, Phys.

Today 44(10), 36 (1991)

89



[64] W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical.

Rev. Mod. Phys., vol. 75, pp. 715–775 (2003)

[65] W. H. Zurek, Decoherence and the Transition from Quantum to Classical — Revis-

ited. In: Duplantier B., Raimond JM., Rivasseau V. (eds) Quantum Decoherence.

Progress in Mathematical Physics, vol 48. Birkhäuser Basel (2006)
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