
Università degli Studi di Firenze
Dipartimento di Ingegneria dell’Informazione (DINFO)

PhD Course in Information Engineering

Curriculum: Computer Engineering

Academic Discipline (SSD): ING-INF/05

Verification of Enterprise

Software Architectures

with

stateful managed components

Candidate

Dott. Jacopo Parri

Supervisors

Prof. Enrico Vicario

Prof. Alessandro Fantechi

PhD Coordinator

Prof. Fabio Schoen

cycle XXXIII, 2017-2020

Università degli Studi di Firenze, Dipartimento di Ingegneria

dell’Informazione (DINFO).

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Information Engineering. Copyright © 2021 by

Dott. Jacopo Parri.

Acknowledgments

I would like to acknowledge the efforts and input of my scientific supervisors,

Prof. Enrico Vicario and Prof. Alessandro Fantechi, and all my colleagues

of the Software Technologies Lab (STLAB), within the Information Engi-

neering Department (DINFO), who were of great help during the PhD. In

particular my thanks goes to Dott. Samuele Sampietro, trusted friend of

“pair programming”, who completely shared with me this PhD experience,

also collaborating on the main parts of this research.

Abstract

In the engineering of software applications designed with modular Enterprise

Architectures, the management of components and their dependencies is of-

ten delegated to an outer participant, named container, which assumes the

primary responsibility of taking care of creation, destruction and dependen-

cies resolution of all managed software components, realising the so called

Inversion of Control (IoC) principle.

This dissertation contributes to the area of Model-Based Testing, propos-

ing a methodology for verification of Enterprise Software Architectures with

stateful components, exploiting Dependency Injection (DI) and automated

contexts management.

The research addresses the problem of test case generation for Web Ap-

plications, implementing the IoC principle through the adoption of state of

the art DI containers and frameworks with contexts management capabili-

ties and with built-in contexts, defined according to client-server paradigm

and HTTP fundamentals.

At the core of the methodology a new abstraction, named Managed Com-

ponents Data Flow Graph (mcDFG) is proposed for supporting the test case

generation stage, addressing a fault model which identifies specific types of

fault affecting stateful applications. The mcDFG reinterprets classical Data

Flow Graph theory, combining structural information with navigational and

behavioural aspects of component-based applications. A set of coverage cri-

teria, applied over the mcDFG, supports the automated extraction of paths,

each one representing a reference description of a single test case, prescribing

the sequence of end-user interactions which must be implemented to exercise

the System Under Test in an end-to-end testing perspective.

The proposed methodology is also integrated with consolidated practices

of software development so as to leverage on common design and documen-

tary artefacts for enabling the automated generation of the mcDFG.

An evaluation of the applicability of the methodology, in support of its

convenience, is discussed for a prototype Web Application, implemented with

the Java™ Enterprise Edition ecosystem through the Contexts and Depen-

dency Injection (CDI) specification as the DI container, highlighting capa-

bilities in the generation of an effective test suite for the characterised fault

model.

Contents

Contents v

1 Introduction 1

1.1 Contributions . 4

2 Enterprise Architectures and Inversion of Control 7

2.1 Enterprise Software Architectures 8

2.2 Inversion of Control . 10

2.3 Automated Contexts Management 12

2.4 Technologies for Dependency Injection 14

2.4.1 Contexts classification for concrete DI frameworks . . 15

3 Literature review 21

3.1 Abstractions for modelling component-based applications . . 22

3.1.1 Structural design of components 22

3.1.2 Navigational and behavioural design 26

3.2 Model-Based Testing . 29

3.2.1 Structural Testing . 30

3.2.2 Functional Testing . 31

3.3 Non-Model-Based approaches 34

4 Running Case Study 37

4.1 Operative context . 38

4.2 Functional design . 40

4.3 Architecture . 41

4.4 Navigation design . 46

v

vi CONTENTS

5 Motivations and Problem Formulation 49

5.1 Motivations . 50

5.2 Problem Formulation . 54

5.3 Fault Model . 57

5.3.1 Fault Model conceptualisation 59

5.3.2 Fault Model concretisation 60

6 Verification of stateful Web Applications 73

6.1 Preamble . 74

6.1.1 The mcDFG abstraction 74

6.2 The Methodology . 76

6.2.1 Structural and behavioural preliminary analyses . . . 76

6.2.2 Robustness analysis 77

6.2.3 Robustness Diagram decoration 80

6.2.4 Managed Components DFG generation 82

6.2.5 Test Case generation 89

6.2.6 Summary . 94

7 Discussion 97

7.1 Evaluation of the methodology 98

7.1.1 Fault hunting within the Case Study 98

7.2 Final discussion . 106

8 Conclusion 109

8.1 Summary of contributions . 109

8.2 Directions for future work . 111

A Appendix 113

A.1 mcDFG generation algorithms 114

A.2 Further artefacts and abstractions 117

B Publications 121

Bibliography 123

Chapter 1

Introduction

In the engineering of a wide class of Web Applications, especially in the con-

struction of modular Enterprise Software Architectures, the management of

instantiated components, and their dependencies, becomes a crucial element

of the overall application complexity. To mitigate it in a productive way,

the control of components lifecycle and the runtime installation of required

dependencies are often delegated to an outer participant, named container.

In so doing, the container assumes the primary responsibility of taking care

of creation, destruction and dependencies resolution of all managed software

components, realising the so called Inversion of Control (IoC) principle.

A common and practical implementation of the IoC principle, in many high-

level programming languages, is often provided by advanced frameworks

which include ad hoc containers, complying with the Dependency Injection

(DI) mechanism and automated contexts management capabilities. These

solutions promote loose coupling and support application designers and de-

velopers automatically binding components lifecycle to built-in contexts and

scopes, thus defining and delimiting visibility boundaries as well as control-

ling related runtime object instances (i.e., the so-called contextual instances)

through adequate construction and destruction policies.

Although a DI container may solve, in background, runtime dependencies

and automatically manage contextual instances, so relieving developers from

this burden, the overall complexity of the implementation grows. In these

cases, dealing with the testing stage may become more difficult and exhaust-

1

2 Introduction

ing, also considering that the realised decoupling between components def-

initions (e.g., directly allowing meta-configurations within the source code)

and components instances slightly blurs the developer’s overview about the

overall application structure.

A lack of design control is unavoidable in medium-large size software ap-

plications, thus increasing the complexity in the definition of an effective test

suite.

Under the above premises, the research activity described in this dissertation

addresses the formulation of a verification methodology aimed at recognis-

ing potential faults within Web Applications designed and developed with a

stateful behaviour, controlled by a DI container and constrained to pattern-

oriented design approaches. The methodology also represents a guideline for

supporting designers, developers, and testing specialists in the generation of

effective test suites in end-users scenarios where several managed components

cooperate in realising a common use case.

The problem is exacerbated by the intrinsic nature of Web Applications

which is conditioned by the client-server paradigm, the HTTP protocol and

the interpretation given to the concepts of state, components scope and vis-

ibility : during end-users interactions, the server-side allocates some runtime

object instances, populates the visited view pages, and stores in-memory a

set of managed components with their dependencies.

Placing the state on the server-side, increases the server control over the

application behaviour; but, at the same time, the ability to control and de-

tect cases of wrong lifecycle management, unexpected end-user interactions,

or hidden dependencies is reduced, raising also the presence of potential im-

plementation defects, which could activate latent faults.

During the research, a review among widespread DI frameworks for main

programming languages (i.e., C#, Java™, and Python™) has been accom-

plished with the aim of understanding how they differently interpret the IoC

principle, providing several and specific scopes for managed components.

The review lays the foundation for a classification, in a general perspective,

of the available contexts within DI containers, thus offering a common vision

on state of the art technologies in modern stateful architectures.

An ad hoc fault model, accounting scenarios of collaborative components

3

has been characterised, identifying four types of fault, tailored on Web Ap-

plication scenarios which may produce unexpected cases of memory leakages,

data inconsistencies, race conditions, behavioural ambiguities or other kind

of failures.

The proposed methodology has been formalised as an artefact-driven ap-

proach, in a Model-Based Testing perspective, integrated in consolidated

practices for software development, exploiting preliminary stages of software

requirements specification, use cases design, and robustness analysis.

The methodology, inspired by classical Data Flow Testing (DFT) theory,

supports the test case generation process, extracting significant paths over a

new abstraction, named Managed Components Data Flow Graph (mcDFG),

which extends the classical Data Flow Graph (DFG) with redefined concepts

of defs and uses for component-based applications subject to DI as well

as including navigation information and end-user interactions. Also main

coverage criteria for the mcDFG have been redefined with respect to classical

ones for a DFG.

Finally, the methodology has been applied over an Online Flight Booking

IT System, developed in Java™ Enterprise Edition, offering a basis for the

discussion about how the methodology is able to support the detection of

faults identified within the proposed fault model through a test case gener-

ation stage applied over related mcDFG artefacts.

The rest of the dissertation is organised as follows: in Chapter 2, fundamen-

tal concepts about Enterprise Software Architectures and IoC principle are

provided. Furthermore, a comparative review of main technologies for DI is

addressed with a final classification of built-in contexts provided by reviewed

DI containers; in Chapter 3, the literature review about Model-Based Test-

ing techniques, both in structural and functional perspectives, is presented

together with structural and navigational abstractions for component-based

applications; in Chapter 4, a description of the main technical aspects (e.g.,

required design artefacts and architectural overview) of the running case

study is introduced for facilitating the presentation and argumentation of

the subsequent chapters; in Chapter 5, the motivations and a problem for-

mulation about testing of stateful component-based applications, exploiting

DI with automated contexts management, are addressed; besides, a concep-

tualisation of a fault model as well as its concretisation within the running

4 Introduction

case study are provided; in Chapter 6, the methodology for verification of

stateful Web Applications is presented, with a special focus on the definition

of the core abstraction, its construction process and its adoption in test case

generation stages with related coverage criteria; in Chapter 7, a discussion

about the applicability of the proposed methodology over the most significant

use cases of the running case study is provided, highlighting fault detection

capabilities for each fault type concretisation of the identified fault model;

finally, conclusions and future research plans are drawn in Chapter 8.

1.1 Contributions

The research described in this dissertation proposes a methodology for ver-

ification of Enterprise Software Architectures with stateful components, ex-

ploiting Dependency Injection (DI) and automated contexts management,

thus contributing to the area of Model-Based Testing.

The main contributions are here summarised:

• an artefact-driven methodology for test case generation tailored for

pattern-oriented Web Applications with stateful behaviour controlled

by a DI container providing automated contexts management;

• a review of DI frameworks in the stack of major programming lan-

guages (i.e., C#, Java™, Python™) comparing supported types of con-

text within which the components live and are managed by the DI

container;

• a characterisation of the fault model affecting applications with man-

aged components, leading to the identification of four specific types of

fault: vanishing components, zombie components, unexpected shared

components, and unexpected injected components;

• the definition of an abstraction that addresses the fault model by com-

bining a structural perspective, related to dependencies among com-

ponents, with a navigational and behavioural perspective, related to

end-users interactions. The abstraction, named mcDFG is based on

the classical Data Flow Graph, reinterpreted in the meaning of defs

and uses and enriched with salient characteristics of stateful Web Ap-

1.1 Contributions 5

plications (e.g., navigation actions, component injections, method in-

vocations, contexts management);

• a procedure for building the mcDFG abstraction starting from an en-

riched version of the UML Robustness Diagram, opening the way to au-

tomate the mcDFG construction, thus integrating the whole method-

ology with consolidated practices of software development;

• the identification of ad hoc coverage criteria, based on an implemen-

tation of the concepts of Data Flow Testing theory, adapted to the

characteristics of the proposed mcDFG, re-evaluating inclusion rela-

tionships among them;

• a qualitative discussion about the applicability of the methodology on

a middle-size application, implemented with the Java™ Enterprise Edi-

tion technological stack including Contexts and Dependency Injection

(CDI) specification as DI container, highlighting capabilities in the

generation of an effective test suite.

6 Introduction

Chapter 2

Enterprise Architectures and

Inversion of Control

In this Chapter a brief overview of main Enterprise Software

Architectures is provided, discussing also the adoption of Inver-

sion of Control principle for automatically manage components

dependencies and components lifecycles, focusing on Web Appli-

cations designed with a stateful behaviour.

A comparison of state of the art architectural styles for enterprise

solutions is reported in Sect. 2.1, highlighting the dichotomy be-

tween stateless and stateful applications.

In Sect. 2.2, the fundamentals of Inversion of Control with a

specific focus on Dependency Injection (DI) are described; while

in Sect. 2.3, mechanisms for automated contexts management are

presented with the aim of identifying salient traits of concrete pro-

duction frameworks, also proposing a conceptual classification of

common contexts, compared with main DI technologies for widely

adopted programming languages in Sect. 2.4.

7

8 Enterprise Architectures and Inversion of Control

2.1 Enterprise Software Architectures

Enterprise Architectures [97] have been widely advocated in the design and

implementation of complex and distributed information systems within en-

terprise and industrial areas, for realising software applications able of dy-

namically adapting to business models and internal processes, keeping aligned

the evolution of Information Technology (IT) systems with corporate mis-

sions and needs, thus facilitating maintenance, decision making, and plan-

ning operations.

Fundamental principles of Enterprise Software Architectures notably in-

clude concepts of reusability, flexibility, agility, and efficiency, leading to the

adoption of the so called component-based applications, leveraging on tech-

nological and functional decoupling among distinct “blocks” of software to

be used without implementation changes on their source code, as stated by

the Open Closed Principle [73]. Under this assumption, software compo-

nents may be directly bundled within client applications or may be remotely

invoked through specific communication standards and protocols.

In so doing, an Enterprise Software Architecture refers to a family of

architectural styles, designed in such a way as to ensure a weighted and

evolutionary growth of organisations’ IT systems, both in functional and

qualitative terms.

In the field of Software Architectures, especially for Web Applications built

over HyperText Transfer Protocol (HTTP) [10, 33], two main architectural

styles have become widespread and mature:

• monolithic architectures exploiting software components which are strictly

constrained to contexts residing on the server-side. These architectures

are usually characterised by a stateful behaviour with strongly coupled

backend and frontend modules;

• service-oriented architectures (SOA) exploiting software components

exposing a business logic through services or remote procedures. Emerg-

ing paradigms for these architectures are usually characterised by a

stateless behaviour with decoupled backend and frontend modules.

On the one hand, many applications monolithic-based are designed as N-tier

architectures [71], also known as N-layer architectures, often, requiring at

least 3-tiers: i) a presentation layer exposing Graphical User Interfaces for

2.1 Enterprise Software Architectures 9

end-users, also providing predefined events on user interactions; ii) a busi-

ness logic layer, concretely implementing exposed functionalities in reaction

to user-events, and iii) a data-access layer exploiting object-relational map-

pers [68] so as to guarantee compliance between domain model instances

and data schemes defined within underlying Relational Database Manage-

ment Systems. This behaviour is typical of applications developed under the

Model-View-Controller [25] architectural pattern and, in the specific case of

stateful applications each view is built and populated by the server-side, and

then transferred to the requesting clients.

The functional stratification promotes the separation of concerns and in-

formation hiding principles [29, 81, 82], while maintaining a strong coupling

among the components responsible of organising and populating the pre-

sentation tier (i.e., the views of the frontend module) and the components

responsible of implementing the business logic for each designed application

use case (i.e., the controllers of the backend module).

On the other hand, application SOA-based are designed so as to cope with

the concept of service (i.e., a self-contained and atomic activity to be ex-

ecuted in the business logic) and with the aim of encouraging Enterprise

Application Integration among heterogeneous applications. Under this per-

spective, clients interpret the application as a kind of black box, exposing and

exchanging resources under a defined data contract, a common transfer inter-

face which fixes the request parameters and the response data format (e.g.,

HyperText Markup Language, eXtensible Markup Language or JavaScript

Object Notation).

Among SOA-based applications, a relevant architectural style is the REp-

resentational State Transfer (REST) [34] which promotes the resource [95] as

a key concept: a server static or dynamic asset (e.g., a service, a document,

an image, a set of multiple of them) that is possible to find and retrieve

through its unique identifier.

The fundamental principles of RESTful architectures entail a shift of re-

sponsibilities, roles, and functionalities between a service layer, exposed by

the backend, and the business logic of a variety of clients with different needs

and purposes (e.g., a classical online application via web browser versus a

native mobile app) which may consume services in a variety of usage sce-

narios through decoupled frontends. These principles prescribe the adoption

of HTTP as the transport protocol and the exploitation of the deep seman-

10 Enterprise Architectures and Inversion of Control

tics of its verbs (e.g., POST, GET, PUT, DELETE) in CRUD operations

(i.e., Create, Retrieve, Update, and Delete), as well as the prescription of a

stateless behaviour (i.e., each request made by any client must therefore con-

tains all the information necessary for the server to generate a response). [96]

This dissertation, proposing a verification methodology for component-based

stateful applications, directly addresses the case of monolithic architectures,

which have been widely adopted for realising enterprise information systems,

inherited by legacy systems or developed within contexts where security, at

data-level, comprises a core requirement (e.g., bank transactions). Indeed,

the retention of data and contexts on the server-side simplifies the defini-

tion and the verification of authorisation policies with respect to the case

of stateless architectures, where the authorisation must be replicated by the

backend module at each received request.

In a wider perspective, both migration from legacy systems to SOA ap-

plications and the definition of methodologies to handle server-side data for

security constraints, may lead to the design of “hybrid” architectures exploit-

ing a stateful behaviour over SOA applications based on RESTful principles.

2.2 Inversion of Control

In the development practice of component-based Object-Oriented (OO) soft-

ware architectures, the Inversion of Control (IoC) principle [36,38] has been

widely adopted so as to automate components instantiation and dependen-

cies management, thus promoting loose coupling: in this way, software com-

ponents are relieved of the responsibility of installing references, automati-

cally resolving all the dependencies at runtime.

The etymology of IoC can be traced back to the paper of Johnson and

Foote [51], which literally says: “methods defined by the user to tailor the

framework will often be called from within the framework itself, rather than

from the user’s application code”.

The authors’ words can be interpreted as follows: a programming lan-

guage or library respecting the IoC principle should provide to the developer

a framework to automatically perform a set of specific actions.

Following the consolidated definition stated by the Gang of Four in [41],

2.2 Inversion of Control 11

a framework is a collection of cooperative classes providing a reusable skele-

ton useful to design and define the architecture and the general structure of

the application where is adopted, thus realising the IoC principle. In fact, a

significant characteristic of a framework consists in its ability of pre-defining

the general responsibilities and the interaction modalities among classes and

objects, also controlling and orchestrating activities (e.g., object instanta-

tions and control flow) rather than delegate them to developers which can

therefore focus on specific choices related to application business logic.

From this perspective, the framework offers a set of general purpose so-

lutions to developers which must tailor them in order to customise the final

application behaviour.

For all above considerations, it becomes quite clear the reason why the IoC

principle is also known as the Hollywood Principle, introduced by Sweet and

metaphorically explained in [111] as “Don’t call us, we’ll call you (Holly-

wood’s Law). A tool should arrange for Tajo1 to notify it when the user

wishes to communicate some event to the tool, rather than adopt an ‘ask the

user for a command and execute it ’ model.”.

In Software Engineering, various implementations of the IoC principle have

been proposed, notably including Service Locator [2] and Dependency Injec-

tion [89] patterns.

On the one hand, the basic idea behind the Service Locator, is the def-

inition of a singleton component, containing basic implementations for each

instantiable component, in a kind of factory method approach. In so doing,

the singleton instance acts as a central registry with all the responsibilities

about performing lookup of distributed services and their creations.

On the other hand, the Dependency Injection (DI) is based on the design

of an automated container, also known as assembler, with the responsibility

of constructing in background the runtime components, choosing the right

class/type, and installing dependencies (which, in turn, must be instantiated

and whose dependencies must be resolved). In so doing, the DI is a form of

the Dependency Inversion Principle (DIP) [72] which states that components

should depend upon abstractions and not on concretions [73].

1Tajo is the code-name of the User Interface of the Mesa project, a programming

environment described within the paper [111].

12 Enterprise Architectures and Inversion of Control

This dissertation primarily focuses on frameworks based on DI, which are

widespread in many state of the art programming languages (as described in

Sect. 2.4), but main considerations may be adapted so as to cope with the

Service Locator pattern.

2.3 Automated Contexts Management

Many practical implementations of the DI mechanism are commonly accom-

panied by automated control of the lifetime and the visibility of injected

components, further promoting decoupling by assigning to the DI container,

provided by the framework, the responsibility of creating, sharing, and de-

stroying managed objects.

In so doing, resolved dependencies (i.e., objects injected in dependent

components) are constrained to conceptual boundaries, delimiting compo-

nents lifecycle and admitted interactions within the stateful application op-

erative domain: these digital confined areas are named contexts.

All the objects managed by the DI container, living constrained within

available and active contexts, are named contextual instances of managed

components. In many cases, references are intermediated by runtime proxies,

decoupling the container control from their concrete contextual instances.

Contexts may take on different meanings depending on the way a DI frame-

work interprets them or on the way a software application has been designed

and distributed to the final end-users (e.g., desktop standalone versus online

services).

This dissertation focuses on Web Applications leveraging on the client-

server paradigm and exploiting inter-connectivity provided by Internet so

as to remotely offer functionalities, which may be enjoyed ubiquitously and

within different platforms. Most Web Applications adopt HTTP as the core

network protocol, guaranteeing the delivery throughout its underlying pro-

tocols (i.e., Transmission Control Protocol and Internet Protocol), for pack-

aging User Interfaces written as HyperText Markup Language (HTML) doc-

uments, supported by Cascading Style Sheets (CSS) for styling web pages

and JavaScript for client-side scripting.

In so doing, DI frameworks, specifically addressing the case of stateful

Web Applications, are based on a conceptualisation of contexts strictly de-

fined over the HTTP protocol and its basic features (e.g., request, session).

2.3 Automated Contexts Management 13

Despite HTTP is a stateless protocol and does not natively allow informa-

tion sharing among different HTTP requests for longer living data, through

the HTTP State Management Mechanism [7] the protocol overcomes these

limitations, enabling servers to store data along user sessions. Thanks to this

feature, developers are enabled in implementing applications with a short-

term memory maintained along use cases (e.g., exploiting server RAMs to

allocate runtime data without the constraint of persisting them into a long-

term database), thus offering a better experience to the end-users during

their interactions.

Taking into account above considerations, a classification and identification

of fundamental contexts for a Web Application is here addressed.

With reference to the built-in concepts of the HTTP protocol, two main

contexts have been identified:

• the HTTP request can be considered as the basic context, represent-

ing the minimum communication boundary between client and server,

implying that managed components with this scope are allocated and

maintained server-side only for the necessary time to generate a single

response;

• the HTTP session can be considered as the context including data

retention produced through the HTTP requests spanned from the “lo-

gin” use case, which allocates data after identification and authenti-

cation processes, to the “logout” use case, which releases server-side

per user memory. Session data are stored in each HTTP request and

accessed by the server through a unique session identifier provided by

the client, often specified inside HTTP Cookie and Set-Cookie header

fields or inside a query parameter or within the HTTP Authorization

header (e.g., adopting username and password credentials or JSON

Web Tokens [54]).

Instead, with reference to typical aspects of a software application, other two

contexts can be considered:

• the whole application lifespan can be embedded within an application

context, including component contextual instances conceptually equiv-

alent to singleton instances with a global visibility and not tied to single

user sessions;

14 Enterprise Architectures and Inversion of Control

• some data may be shared within a use case context, spanned among

several HTTP requests performing an atomic end-user unit of work,

whose boundaries should be manually managed by developers. As

with the session context, a use case context is associated with a unique

identifier exchanged between client and server.

By definition, all the above mentioned contexts are organised in a hierarchi-

cal fashion: application context wraps session contexts, which in turn, wrap

several use case contexts, which are composed by a set of request contexts.

Many DI frameworks also provide a kind of inherited context, named pro-

totype, which consists in the injection of a different contextual instance for

each dependent component, binding moreover the lifecycle of the injected

instance to the lifecycle of the dependent one. The prototype context, for a

managed component, can be interpreted as a “pseudo-scope”.

Besides, many DI frameworks expose Application Programming Inter-

faces or Service Provider Interfaces for enabling the programmatic definition

of custom contexts and their behaviours; so further built-in contexts exploit-

ing specific and advanced feature of Web Applications (e.g., WebSocket)

may be disposed. These types of contexts, being less commons and less

standardised, are out of scope for this dissertation.

2.4 Technologies for Dependency Injection

Inversion of Control becomes effective in concrete DI frameworks imple-

mentations provided by several programming languages (e.g., C#, Java™,

Python™), exploiting different approaches and perspectives driven by archi-

tectural intents. Indeed, DI is a key principle for many backend (e.g., CDI

specification in Java™) and frontend (e.g., Angular DI in TypeScript) frame-

works.

On the one hand, backend frameworks aim at supporting server-side state

management and data sharing within stateful applications, especially for

those based on monolithic architectures, widely exploiting web contexts.

On the other hand, frontend frameworks aim at supporting client-side

automated components injections within the User Interfaces which are de-

coupled by the state management and the data sharing, usually leveraging

on user-agents data storages (e.g., session and local storages of web browsers)

instead of relying on automated contexts management.

2.4 Technologies for Dependency Injection 15

In the following Sect. 2.4.1, a review of DI frameworks in majors enterprise

level technologies is addressed, focusing on backend frameworks.

2.4.1 Contexts classification for concrete DI frameworks

In this Section, a brief review of main technologies and frameworks for DI

and automated contexts management is reported, classifying them on the

basis of their reference programming language. At the end of the review, a

comparison table is reported highlighting, for each presented DI framework,

the contexts (e.g., request, session, application) managed by its DI container.

The review is useful to understand how state of the art frameworks inter-

pret the IoC principle and, specifically, which contexts are provided by DI

containers, thus becoming interesting for the methodology proposed within

this dissertation.

C#

In C#, the Autofac [103] framework represents the primary technological

solution for .NET, .NET Core, and ASP.NET Core based applications. The

framework enables configurations of components through a rich program-

matic API, starting from a common instance of builder, invoking the method

named RegisterType<...>() in chaining with one of the following methods:

• InstancePerRequest() binds a component to a single HTTP request. It

can be interpreted as a request context;

• SingleInstance() communicates to the container to instantiate and shar-

ing a single instance during the whole lifetime of an application. It can

be interpreted as an application context;

• InstancePerDependency() indicates to instantiate a single and different

instance of a component for dependency. It can be interpreted as a

prototype context;

• InstancePerLifetimeScope() binds a component to a programmatic scope,

also in a nested mode. It can be interpreted as a use case context, sup-

porting also the special case of the session context;

• InstancePerMatchingLifetimeScope() binds a component to a named

lifetime scope, facilitating the identification of scope boundaries. It

16 Enterprise Architectures and Inversion of Control

can be interpreted as an alternative way to access use case and session

contexts;

• InstancePerOwned() binds a component to a single dependent owner

type. It can be interpreted as a prototype context;

• InstancePerThread() binds a component to a single CPU thread. It

represents a custom context.

Spring.NET [87] is another C# open-source application framework, eas-

ing web development practices by enabling DI mechanisms with automated

contexts management. Components scopes may be declared within XML

configuration files (within the scope attribute). Built-in scopes include:

• “request” providing a single component instance for each HTTP re-

quest. It can be interpreted as a request context;

• “session” providing a single component instance for each HTTP ses-

sion. It can be interpreted as a session context;

• “application” providing a single component instance to the entire ap-

plication lifetime of a Web Application. It can be interpreted as an

application context;

• “singleton” providing a single component instance, as in the case of

“application”, but for standalone programs. It can be interpreted as

an application context;

• “prototype” providing a different component instance for each depen-

dent component. It can be interpreted as a prototype context.

.

Java™

In Java™, many DI frameworks enable configurations of components bindings

through decorations applied directly on classes (i.e., through annotations)

and/or with configuration files in eXtensible Markup Language (XML) doc-

uments.

Java™ Enterprise Edition (JEE) includes within its core modules the Con-

texts and Dependency Injection (CDI) specification, which is presently imple-

mented by various providers, notably including JBoss Weld [57] and Apache

2.4 Technologies for Dependency Injection 17

OpenWebBeans [4]. The specification is defined through a set of Java™

Specification Requests (JSRs), since JSR-299 [58] to JSR-365 [100]. A CDI

managed component, also called bean, is associated with one of a limited

number of built-in scopes, available through following class annotations:

• @RequestScoped binds a component to a single HTTP request. It can

be interpreted as a request context;

• @ConversationScoped binds a component to multiple HTTP requests

through a conversation id parameter (i.e., cid) inside a single HTTP

session. Conversation boundaries can be manually defined and man-

aged by the developer. It can be interpreted as a use case context;

• @SessionScoped binds a component to a single HTTP session. It can

be interpreted as a session context;

• @ApplicationScoped binds a component to the entire application life-

time. It can be interpreted as an application context;

• @Dependent, a pseudo-scope that binds a component inside a depen-

dent one injecting it. This means that making different injections of

the same dependent bean, in the same context, results in multiple not

shared contextual instances. It can be interpreted as a prototype con-

text.

The Spring Framework provides a custom implementation of DI within the

Spring IoC Container [53], complying with the JSR-330 [52] specification,

enhanced by the definition of built-in contexts:

• @RequestScope binds a component to a single HTTP request. It can

be interpreted as a request context;

• @SessionScope binds a component to a single HTTP session. It can

be interpreted as a session context;

• @ApplicationScope binds a component to the entire servlet-container

lifetime, sharing a single component also among different applications

running on the same server. It can be interpreted as an application

context;

• @Scope(value = ConfigurableBeanFactory.SCOPE SINGLETON) binds

a component to the entire application lifetime. It can be interpreted

as an application context;

18 Enterprise Architectures and Inversion of Control

• @Scope(value = ConfigurableBeanFactory.SCOPE PROTOTYPE) in-

dicates to the container to bind a single and different instance of the

component to each dependent one. It can be interpreted as a prototype

context;

• @Scope(scopeName = “websocket”) supports unique instantiations of

components in each websocket channel. It represents a custom context.

Google provides a lightweight DI framework for Java™ 6+, named Guice [115],

useful in applications that do not have an intensive use of stateful contexts.

This framework exposes a limited number of contexts:

• @RequestScoped binds a component to a single HTTP request. It can

be interpreted as a request context;

• @SessionScoped binds a component to a single HTTP session. It can

be interpreted as a session context;

• @Singleton communicates to the container to instantiate a single in-

stance during the whole lifetime of an application. It can be interpreted

as an application context;

• by default, in absence of explicit configurations, the container provides

a different instance at each injection. This behaviour can be interpreted

as a prototype context.

.

Python™

In Python™, for applications written in Object-Oriented perspective, the

main DI framework is Dependency Injector [64], which facilitates developers

in explicitly declaring dependencies and performing components injections.

The framework, unlike previous ones for other programming languages, does

not offer contexts representations, thus avoiding their automated manage-

ment. In so doing, each component lives in a prototype context.

Another Python™ library for DI, named Pinject [43], has been offered by

Google with the aim of supporting the assembly of components into graphs,

also providing two built-in scopes which control objects memoization strate-

gies (i.e., caching). These scopes are:

• PROTOTYPE, which does not allocate objects into a cache. It can be

interpreted as a prototype context;

2.4 Technologies for Dependency Injection 19

• SINGLETON, the default scope, which always binds object compo-

nents to a cache. It can be interpreted as an application context.

The Guice framework, introduced for Java™, has inspired a third Python™

framework, named Injector [112] which provides specific declarative anno-

tations (i.e., @inject) for defining inline injection points within the source

code, and a special class (i.e., Injector) for performing programmatic injec-

tions (in the framework terminology, this practice is named assisted injec-

tion). The Injector framework also provides two built-in scopes: NoScope,

corresponding to an unscoped provider interpretable as a prototype context,

and @singleton, corresponding to an application context. At the same time,

it is possible to define custom scopes, by sub-classing the Scope class and

defining a custom decorator annotation (e.g., @custom), so enabling the def-

inition of different contexts (e.g., request, session, use case).

.

Summary An interpreted mapping between frameworks built-in contexts

with the proposed conceptual classification of Sect. 2.3 is reported in Tab. 2.1.

request use case session application prototype

C# Autofac X X X X X
C# Spring.NET DI X X X X

J CDI X X X X X
J Spring DI X X X X
J Guice X X X X

P Dependency Injector X
P Pinject X X
P Injector X X X X X

Table 2.1: Comparison among available contexts for primary DI frameworks.

The first column contains a reference letter to the respective programming

language (i.e., C# := C sharp, J := Java™, P := Python™).

20 Enterprise Architectures and Inversion of Control

Chapter 3

Literature review

This Chapter gives a brief survey of related works about main ab-

stractions for modelling component-based software applications,

in Sect. 3.1, addressing two different perspectives: i) structural

abstractions, for modelling the internal organisation of a soft-

ware system in terms of components and existent relationships;

and ii) navigational and behavioural abstractions, for modelling

the internal business processes of a software system, capturing its

internal behaviour in terms of exposed functionalities, collabora-

tions among components and interaction sequences driven by use

cases.

The review also includes an overview of Model-Based Testing

approaches, in Sect. 3.2, leveraging on formal and semi-formal

models as primary documentation artefacts, leading the choice of

a stimulus to the System Under Test and its verification. Also

in this case, following the selected perspectives of modelling ab-

stractions, the dissertation distinguishes between structural test-

ing (i.e., white box) and functional testing (i.e., black box) ap-

proaches.

Finally, for the sake of completeness, a brief review of the main

non-model-based approaches is provided in Sect. 3.3.

21

22 Literature review

3.1 Abstractions for modelling

component-based applications

In this Section, a brief review of the main abstractions for modelling component-

based software systems is reported, focusing in two different perspectives.

On the one hand, abstractions capturing structural characteristics of a

system enable fine modelling of software components in isolation or in mutual

dependence, relying on knowledge extracted from the implementation.

On the other hand, navigational and behavioural abstractions provide

capabilities for reducing the complexity of the verification problem by rep-

resenting only feasible sequences of operations and system behaviours in

accordance also with functional requirements specifications and use cases.

3.1.1 Structural design of components

Many models and abstractions have been proposed in literature for cap-

turing structural characteristics of software programs, evolved in time so

as to adapt to emergent programming paradigms (e.g., procedural, Object-

Oriented, Aspect-Oriented), applications complexity, and innovative testing

techniques; in this subsection, the most significant ones for the research de-

scribed in the dissertation are mentioned.

In software analysis and design processes, probably, the reference standard

for designers and developers of Object-Oriented applications is the Uni-

fied Modeling Language (UML) [11], defined by OMG (Object Management

Group), providing a set of useful and extensible diagrams, supporting several

designing stages within different perspectives (i.e., structural or behavioural).

Component-based applications designed from a structural perspective

rely on diagrams with a static nature, such as: Class Diagrams, for mod-

elling set of classes, entities, and interfaces with existent relationships; Ob-

ject Diagrams, for modelling object instances referred to a subset of classes

within a possible runtime scenario; Package Diagrams, for modelling pack-

ages dependencies; Component Diagrams for modelling application compo-

nents focusing on organisation and dependencies; and Deployment Diagrams,

for modelling the the deployment architecture considering involved software

components, communication interfaces and also hardware items (e.g., Appli-

cation Servers, Database Management Systems).

3.1 Abstractions for modelling component-based applications 23

Salient characteristics of software components, in Object-Oriented applica-

tions, can be captured through UML standard abstractions, but advanced

features of Web Applications (e.g., managed contexts derivable from HTTP,

dynamic dependencies managed server-side) need for extensions in syntax

and semantics. For these purposes, UML notation provides extensibility and

customisability of representational graphic elements enabling the definition

of ad hoc languages for specific domains, through UML Profiles [40].

In [21, 22] is introduced and presented the Web Application Extension

(WAE) UML profile, supporting design activities for Web Applications through

the abstraction of ad hoc primitives about pages, forms, links, redirects,

scripts, and style sheets.

In [109], a UML profile named FrameWeb is proposed. It supports design-

ers in modelling web information systems based on specific types of frame-

work (i.e., Model-View-Controller frameworks, Object-Relational Mapping

frameworks, and Dependency Injection frameworks) providing four extended

UML Class Diagrams (i.e., Domain Model, Persistence Model, Navigation

Model and Application Model).

In the area of static and structural analysis of software programs, including

procedural and Object-Oriented paradigms; many graph based abstractions

have been formulated.

A Control Flow Graph (CFG) [1] is a classical model which provides a

structural perspective about the computational flow of a software program,

supporting structural testing techniques (e.g., Control Flow Testing). A

CFG is a directed graph whose nodes are considered as the basic blocks

of a software program (i.e., a linear sequence of instructions executed as

an atomic operation), and whose edges represent control flow paths (i.e.,

conditional jumps or accesses to locations associated with a label).

A Data Flow Graph (DFG), also known as Definition Use Graph [90],

is an abstraction for supporting structural Data Flow Testing techniques

through the identification of definitions and uses so as to exploit variables

occurrences within programs, statically analysing their values and produced

side effects. A DFG is a directed graph, interpretable as an annotated CFG,

whose nodes can be variable definitions (i.e., defs) as in the case of assign-

ment statements, or variable uses (i.e., uses), classifiable as read operations

of a variable within a predicate (i.e., p-use), as in the case of conditional

guards, or within computations (i.e., c-use), as in the case of a variable used

24 Literature review

in external assignments. A DFG edge represents a sequential execution and

it can be decorated with the expected side effect for a c-use or with the

conditional branch for a p-use.

These first two abstractions, despite being designed to primarily cover the

need for static analysis of procedural programs, opened the way to many

extensions and integrations focused on the concept of dependencies, and on

the Object-Oriented paradigm.

On the one hand, many works address the problem of representing soft-

ware structural dependencies among program slices (i.e., decompositions

in statements faithfully representing the original behaviour with respect to

analysed properties). Starting from the classical literature about structural

software testing, in [32,79] a Program Dependence Graph also known as Pro-

gram Dependency Graph (PDG) is described, as a graphical representation

of a program where nodes model regions of code or single statements, while

edges model information about either control dependencies (i.e., dependen-

cies among single statements or groups based on predicate evaluations for

conditional executions) within a control dependence subgraph, automatically

derivable by a CFG [46], or data dependencies (i.e., dependencies among

statements induced by data variables assignments) within a data dependence

subgraph, which can be obtained through a data flow analysis stage.

On the other hand, a variant of PDG has been proposed in [70] so as

to cope with Object-Oriented paradigm by defining an additional subgraph,

named class hierarchy subgraph, composed by program classes as nodes, con-

sidering that a class defines objects with data variables, and hierarchies

among objects as edges, considering class extensions and method signatures.

Also the control dependence subgraph and the data dependence subgraph

have been improved and merged within an Object-oriented Program Depen-

dence Graph (OPDG), addressing methods invocations among objects as

well as polymorphic attributes and calls.

Several approaches addressed the enrichment of aforementioned abstractions

so as to accomplish modelling requirements relate to inheritance, polymor-

phism, and dynamic binding mechanisms.

In [108], a reinterpretation of def and use concepts in a Object-Oriented

perspective for the DFG is proposed, including inter-class relationships among

distinct program objects, also describing an inter-class def-use analysis tech-

3.1 Abstractions for modelling component-based applications 25

nique subject to a partial representation of monitored classes.

Many language specific enhancements of PDG and OPDG abstractions

have been proposed for Object-Oriented programs in the area of program

slicing approaches [119]: for C++ [65] and for Java™ [60, 117,123].

The evolution of programming languages and the increase in functional com-

plexity exacerbate the need for further abstractions enabling representations

of dynamic and reusable components features also orientated towards dis-

tributed systems and web development, which usually is supported by frame-

works and libraries realising automated installation of components through

implementations of the Inversion of Control principle.

In [120] the Component Interaction Graph (CIG) is proposed to enable

representation of collaborative relationships and dependencies among soft-

ware components within component-based architectures. Data dependen-

cies are captured as the effects of an update process on runtime compo-

nents, considering that an interface invocation represents the triggering point

for executing a group of methods or functions, offered by involved compo-

nents. Specifically, a CIG is a graph abstraction able to provide a structural

overview of the interactions of a component-based system by depicting com-

ponents interfaces as nodes, and dependencies as edges, conceptually identi-

fiable as events (i.e., interface invocations, user actions, and exceptions).

In order to support reliability analysis processes over component-based

applications, in [122] a probabilistic model, adapted from the CFG prin-

ciples for capturing architectural dependencies among components, is pro-

posed. This abstraction, named Component-Dependency Graph (CDG), is a

directed graph whose nodes are components, decorated with their estimated

reliabilities and their average execution times, and whose directed edges are

transitions between components, each one in turn annotated with details

about its estimated reliability and its execution probability.

In [105] a Dependency Call Graph is proposed to represent key aspects

for the modernisation towards Service-Oriented Architectures of monolithic

legacy systems, developed within the Java™ Enterprise Edition ecosystem,

exploiting web servlets, JavaServer™ Pages, and JavaServer™ Faces speci-

fications on 3-tier architectures. A Dependency Call Graph depicts page

controllers as graph nodes, interconnected by edges figuring navigation tran-

sitions (i.e., links) among pages. Specifically, dependencies which commonly

remain hidden (due to various factors, such as connections among multiple

26 Literature review

tiers, configuration files with ad hoc syntax, heterogeneous source code frag-

ments) are expressed through a language-independent meta-model termed

Knowledge Discovery Meta-Model [83], enlightening dependencies related to

containers regulated through Remote Method Invocations.

Above all, these component-based graph abstractions are not sufficient for

modelling dependencies within applications exploiting Dependency Injection

(DI) and automated contexts management, lacking in expressiveness about

components scopes, their visibilities, and their lifecycles boundaries as well as

proxy and interceptor entities, automatically acting in background through

a DI container.

Finally, the Java™ Enterprise Edition ecosystem provides the so called

Contexts and Dependency Injection (CDI) specification [91,92], which comes

with the built-in concept of bean dependency graph (abbr, bean graph). This

abstraction is a directed graph showing dependency relationships among dis-

tinct components (i.e., beans contextual instances) managed in background

by the CDI container. The graph has been designed, specifically, for en-

lightening fine-grained characteristics of CDI components and for depicting

injection points, types, scopes as well as proxies, interceptors, qualifiers, and

producer methods (graph vertices may be contextual instances, type decla-

rations of injection points or effective injected types at runtime, while edges

represent dependency relationships). The graph can be built dynamically

at runtime, starting from source code and exploiting a reflection mechanism

offered by CDI, enabling software components introspection.

For the research presented in this thesis, the information provided by

the bean graph was a source of inspiration, considering the salient charac-

teristics of managed components within Web Application controlled by a DI

container.

3.1.2 Navigational and behavioural design

Many models and abstractions have been proposed in literature, also, for

capturing behavioural characteristics of software programs, representing de-

pendencies and relationships among runtime instances of classes or compo-

nents, with the aim of describing the expected behaviour from a functional

perspective.

The rise of Web Applications, subject to different Enterprise architec-

tural styles (e.g., monolithic, service-oriented, microservice-oriented), reg-

ulated by Internet protocols, and deployed on remote Application Servers

3.1 Abstractions for modelling component-based applications 27

(where backend and frontend modules may operate independently or as a

whole) exacerbates the need for modelling their navigational characteristics.

Consequently some semi-formal and formal standards have been introduced;

in this subsection, the most significant ones for the research of the thesis are

mentioned.

In the practical experience, functional aspects of Web Applications are ex-

pressed through a simple and intuitive abstraction, named Page Naviga-

tion Diagram (PND) [63], characterising navigation design salient features

through the definition of a finite state machine where web pages act as states,

while hyperlinks act as transitions.

Usually, in component-based Web Applications for each page exists a con-

troller (i.e., a component responsible of handling main interactions) which

maintains the state. In so doing, a PND can drive incremental design ap-

proaches defining controllers implementations from a navigational perspec-

tive or, vice versa, they can be automatically extracted starting from more

detailed artefacts (e.g., Object Relation Diagrams or UML Robustness Dia-

grams).

In [63], an approach for constructing a PND from an Object Relation

Diagram (ORD) [62] is presented; the ORD, originally introduced for mod-

elling Object-Oriented programs, is a directed graph where nodes represent

instantiated objects (e.g., the web page controllers), while edges represent

relationships among objects (e.g., the links among web pages).

In many design and development methodologies, functional aspects of soft-

ware programs are expressed through more useful and extensible diagrams

abstractions, frequently relying, also in this case, on UML [11] standard,

which offers a wide range of useful and extensible diagrams, enlightening key

behavioural aspects within different perspectives. Component-based applica-

tions privilege diagrams with a dynamic nature, such as: Activity Diagrams,

for modelling control flows among object instances; Statechart Diagrams, for

modelling state machines; Use Case Diagrams, for modelling application use

case scenarios, defining actors and functional aspects within the operative

context; State Machine Diagrams, for modelling different states of an object

instance during execution; Collaboration and Sequence Diagrams, for mod-

elling objects interactions driven by method invocations, and Robustness Di-

agrams, widely adopted within ICONIX-based Software Engineering devel-

28 Literature review

opment processes, for supporting designers in modelling interactions among

actors, pages and components complying with application use cases [98].

In particular, leading the robustness analysis, the Robustness Diagram

aims at discovering and identifying involved actors among use cases, bridging

the gap from analysis to design in order to define domain model, business

logic and pages reachability through its main elements: entities, representing

domain model objects; boundaries, representing web pages; and, controllers,

implementing the business logic of the application by representing invocable

page methods.

Each element of the diagram must be interconnected following four con-

nection rules: i) an actor interacts directly only with boundaries, ii) a bound-

ary interacts only with controllers or actors, iii) a controller can interact

with any other element, except for actors, and iv) an entity can interact

only with controllers, which manipulate the domain model. The Robust-

ness Diagram subtends a reachability graph, decorated with dependency re-

lationships, highlighting interactions among end-users and page controllers

and figuring all designed navigation rules for each modelled use case, thus

mixing information derived both from functional and structural perspectives.

The increasing interest in Web Applications development have led the re-

searchers in providing useful abstractions for modelling, in a static or dy-

namic perspective, internal behaviour of this family of softwares, also adopt-

ing structural models (e.g., UML Class Diagrams) with the aim of capturing

both structure and navigation data flows.

In [94], a meta-model for describing a Web Application is provided through

UML Class and Object Diagrams, identifying salient information of a web

site (i.e., web pages, hyperlinks, input forms, frames) distinguishing between

static or dynamic pages (i.e., considering that page content may depend on

end-users inputs, thus determining the presence of navigation conditional

rules). The proposed meta-model opens the way to a static analysis stage

of a web site, so as to understand its organisation (in terms of navigation

paths and allocated page variables), and to a dynamic validation stage, so as

to execute white box testing with ad hoc coverage criteria inspired by Data

Flow Testing (i.e., page testing, hyperlink testing, definition-use testing, all-

uses testing, and all-paths testing). In this work, the abstraction adopted

within test case selection is a graph abstraction derived from the UML Ob-

ject Diagram instances of the web site, whose nodes correspond to objects

3.2 Model-Based Testing 29

(e.g., pages or forms) and whose edges represent links between pages. This

work does not consider Web Applications built over a DI container or with

automated contexts management capabilities, which are instead within the

scope of this thesis.

In [84], a framework for supporting developers in the design of Web Ap-

plications is proposed; it focuses on user experience (e.g., usability), through

the definition of a UML extension, fitting stakeholders’ goals and adopting

a user-oriented semantics. Specifically, UML Class Diagrams have been en-

riched to model structural and navigational aspects of web pages through the

adoption of custom stereotypes (e.g., screen template, layout content, link)

under different perspectives (e.g., isolated views or the overall application).

3.2 Model-Based Testing

In many disciplines and software development methodologies, testing prac-

tices have become a standard within enterprise organisations to verify the

correctness of a System Under Test (SUT) with respect to expected be-

haviours. In Information Technology and Computing areas, a system can be

often considered as an application program based on a software implemen-

tation, thus is common the case of naming a SUT also as Implementation

Under Test (IUT).

Among the plethora of testing approaches, Model-Based Testing (MBT) [3,

28, 114] is a widely adopted technique, exploiting formal and semi-formal

models as primary documentation artefacts leading the choice of a stimulus

(or a sequence) to the SUT and its verification, also in conformance with cov-

erage criteria describing the confidence level in the absence of defects. MBT

uses models to describe the behaviour of a system and it can be consid-

ered as a specialisation of Model-Driven Engineering (MDE) [101], produc-

ing benefits in contribution to the quality of functional requirements, to the

(automated) generation of tests and systematic coverage of test suites. [66]

In so doing, MBT may demand for the collaboration of different tech-

nical experts for describing different aspects of the same SUT in different

perspectives with different level of granularities.

The research addressed in this dissertation adopts the following taxonomy,

inspired by the works in [5, 88]:

• an error is a runtime deviation of the system state from the expected

30 Literature review

one, bringing the system into an erroneous state which may, or may

not, disrupt the delivered service;

• a failure occurs when a delivered service deviates from the expected

behaviour; thus a failure can be considered as a manifestation of an

error of the SUT;

• a fault is the (internal or external) cause of an error. A fault at source

code level is called defect. In turn, a defect at implementation level is

called bug while at design level it is called flaw.

In this Section, a description and an evaluation of how presented structural

and behavioural abstractions are adopted as fundamental models within

main structural and functional testing approaches is reported.

3.2.1 Structural Testing

In a white box perspective, structural testing techniques verify correctness

of Implementations Under Test by exercising and comparing their behaviour

with respect to their concrete implementations and their expected behaviours,

exploiting the source code or some modelling abstraction for test case genera-

tion and selection (e.g., Control Flow Graph, Data Flow Graph). Note that

structural testing techniques, basing their foundations on how a software

program is effectively implemented, may suffer from a tautology problem:

when an implementation is defective, its defects may affect, in turn, the test

case selection so as to be ineffective in finding defects; in this case, tests may

not discover defects.

Among structural testing techniques based on Control and Data Flow Graph

abstractions, the most relevant in literature are Control Flow Testing (CFT)

and Data Flow Testing (DFT).

CFT techniques [9] aim at covering different paths of control flow, thus

exploiting a CFG abstraction, relying on some coverage criteria (e.g., All

Nodes, All Edges, All Conditions, All Paths). In so doing, CFT approaches

enable the identification of a coverage analysis measure representing an es-

timate in the absence of residual defects on the identified complexity under

the chosen coverage criterion.

The DFT methodology, proposed by Rapps and Weyuker [90] and later

enhanced in [39], extends the CFT approach by exercising data dependencies

3.2 Model-Based Testing 31

among variables, exploiting the DFG abstraction and defining new coverage

criteria (e.g., All Defs, All Uses, All DU-Paths, All Paths) within a single

procedure of a program. A first approach overcoming limitation of intra-

procedural DFT has been proposed by [48] as an inter-procedural DFT ap-

proach to capture dependencies derived by function invocations, thus imple-

mented within distinct procedures. Later, various solutions [27,47,107] have

been proposed so as to adapt DFT for the case of Object-Oriented program-

ming, thus covering def-use couples at different levels of granularity by mod-

elling also relationships among attributes and methods of different classes.

In [69], the approach is further extended to the case of web components

covering couplings occurring in web interactions due to values exchanged

in HTTP requests/responses, in XML documents, or stored within HTML

documents. In [67, 124] structural approaches based on Control and Data

Flow Testing focusing on aspect-oriented programs (specifically implemented

for AspectJ) have been presented, respectively, for unit or integration testing.

In [121], a methodology exploiting the CIG abstraction for testing component-

based applications, focusing on detecting integration faults which may be

activated by interactions among components, is presented. The methodol-

ogy provides a test case selection strategy for integration testing, assum-

ing that each component has been already tested through a unit testing

stage. It relies on a fault model which classifies faults in three typologies:

i) inter-components faults (i.e., faults resulting from combined uses of dis-

tinct components, indistinguishable when they operate separately), ii) inter-

operability faults (i.e., faults resulting from interactions among components

built under different infrastructures, operating systems, programming lan-

guages or specifications), and iii) traditional faults (i.e., faults which can be

isolated within a single component). In background, a CIG is adopted and

derived through a static analysis about components interactions, evaluating

events and data flow exchanged among components interfaces (e.g., method

invocations).

3.2.2 Functional Testing

In a black box perspective, functional testing techniques verify the confor-

mance between an Implementation Under Test and a specification, neglecting

structural aspects of a system (e.g., the source code) in favour of the adoption

of functional abstractions such as software requirements or use cases, describ-

32 Literature review

ing application business scenarios. In this context, navigational design ab-

stractions become even more relevant for testing component-based Web Ap-

plications, exploiting use cases information so as to model the expected ap-

plication behaviour beyond unconstrained end-user interaction flows, which

are driven by hyperlinks. In so doing, use cases represents the major source

of functional information. [113]

Among functional testing practices, a significant notation category is the

scenario-oriented, also known as interaction-oriented, which describes from

the end-user perspective all reasonable runtime interactions between the IUT

and the sequences of inputs or outputs.

In [24], Message Sequence Chart abstraction, whose information is quite

adaptable to UML Sequence Diagrams, is adopted to define a conformance

testing technique generating an ad hoc test suite. In [116], UML Activity

Diagrams, each one related to a single use case, are annotated with custom

test data requirements enabling the definition of a GUI testing approach

which relies also on custom coverage criteria (e.g., happy path, round trip).

In [76], the authors present a relevant work describing an approach automat-

ing the generation of test scenarios for Object-Oriented systems in embedded

environments, starting from formal requirements specifications and a cus-

tom extension of UML Use Case Diagrams and templates, thus proposing

a requirement-by-contract approach. In [55], the proposed test generation

approach adopts UML Use Case Diagrams in conjunction with UML Class

Diagrams, decorated with guards, invariants and post-conditions, as input

specifications in order to generate verification sequences over mutated UML

Object Diagrams within the IUT. In [56], UML Use Cases, more specifi-

cally textual use case templates, are the main abstraction proposed to apply

a Model-Based Testing methodology, leveraging a domain-specific modelling

language, empowered by special low-level keywords referred to User Interface

elements (e.g., click button X) and high-level action words (e.g., take pic-

ture), subtending the sequence of actions to be performed within a use case.

In [110], the automated generation of a suite of integration test cases is per-

formed through the combination of UML Collaboration Diagrams, logic con-

tracts capturing expected post-conditions, and an additional artefact named

execution tree of components. This enables an end-to-end testing approach

covering the activities along the entire testing process, but it does not ad-

dress dependencies managed by Dependency Injection containers or, more

in general, generated realising the Inversion of Control principle.

3.2 Model-Based Testing 33

Another significant notation category is the state-oriented, which describes

the IUT by reactions on inputs and outputs through finite state automata

abstractions, laying its foundations on the consideration that the behaviour

of a system can be fully abstracted by its state (i.e., the automaton current

state) and the invoked operation (i.e., the selected output of the current

state).

State-oriented testing techniques cannot be a priori classified as purely

functional testing, considering that its classification depends on how states

are derived and what they effectively model. In the frequent case where states

are derived through a functional analysis (e.g., from use case templates in

pre-conditions, post-conditions and behavioural descriptions), state-oriented

testing techniques can be considered as a special case of functional test-

ing. [49]

In [12,78] a technique for generating test cases from UML Statecharts are

presented; in both works test data have been generated adopting two differ-

ent tools (i.e., respectively Rational Rose and Leirios Test Designer). While

the first work adopts UML Statecharts in isolation, the second accompanies

them with UML Class and Objects Diagrams.

In [93] a Model-based Testing technique to test web frontends (i.e., to be

indented as standard web sites written in HTML without considering back-

end modules) is presented. A major contribution of the paper is the proposal

of a syntax leading the specification of UML Statecharts for Web Applica-

tions, resulting in a grey box perspective adopting a structural approach over

behavioural and navigational artefacts.

In [13,61], a functional test approach implemented as a tool (i.e., UniTesK)

to automatically derive test sequences by analysing paths over a finite in-

put/output state automaton, deduced by program contracts, is described.

In so doing, the approach enables automated generation of test scenarios on

the basis of relevant system operations, described in terms of pre-conditions,

post-conditions, parameter types, and invariants.

In [86], automated test case selection for RESTful web services is per-

formed in a model-based approach exploiting manually user defined UML

State Machine specifications of the expected behaviour, further decorated

with state invariants and state post-conditions.

34 Literature review

3.3 Non-Model-Based approaches

Several approaches and techniques have been proposed in literature for sup-

porting test case generation [3] exploiting not only models but also different

sources of information as input artefacts (e.g., the program structure, the

source code, the information about input/output data space, the dynamic

data generated during execution).

In this Section, for the sake of completeness, a brief overview of main

non-model-based test case generation approaches is reported.

A first category is represented by symbolic execution approaches [16,42,59],

directly exploiting source code analysis in order to automatically generate

test data, in a purely white box perspective. Program variables are repre-

sented as symbolic expressions whose inputs are symbolic values, instead of

concrete ones. During the execution, a state of the program under test is

maintained; the state includes the symbolic values of the instantiated pro-

gram variables, a so called path constraint (i.e., a Boolean formula which

has to be satisfied for executing the program over symbolic inputs exercised

during a path), and a program counter (i.e., a pointer to the next statement

of the program to be executed). All the available and enumerated states

contribute in the definition of a symbolic execution tree, representing the hi-

erarchy of execution paths encountered during the effective execution of the

program. Symbolic techniques applied over large-size programs may suffer

mainly of problems about path explosion, path divergence or complex con-

straints.

A second category is represented by combinatorial testing techniques [14,

20, 23, 30] which exploit heuristics to approximate parameters and inputs

modelling them as sets of factors and values, thus covering a subset of com-

binations of the elements characterising the SUT. In so doing, a software

program can be tested selecting a sample of possible input parameters (i.e.,

a specific subset of its available configurations, also called instances) which

have been combined together, also considering the available fields within the

User Interface. One of the most popular implementation of this category is

the so called combinatorial interaction testing [85], introducing the concept

of covering arrays for modelling the combinations of settings of a program,

where each row can be considered as a specific test case, thus supporting

the sampling stage. Mathematical and statistical research areas have con-

3.3 Non-Model-Based approaches 35

tributed in the definition of methods and algorithms for generating arrays of

samples, with suitable program features.

A third category is represented by search-based software testing techniques [45,

118], exploiting optimisation algorithms which automate the generation and

search for test data and inputs to final test cases. These approaches rely on

the definition of fitness functions, modelling the test objectives fixed for the

SUT and constituting a basis for the implementation of ad hoc search al-

gorithms, both in structural or functional perspectives, aiming at maximise

the goals and, simultaneously, minimising the costs (e.g., the oracle cost). [74]

A fourth category is populated by techniques based on random testing [44];

one of the most popular testing method which performs randomly the choice

of input test data, in a merely black box perspective. In such approaches,

the generation of independent inputs is usually delegated to a random or

pseudo-random generator whose output results - for each test case - are then

compared with the designed program specifications. Within this category,

adaptive random testing techniques [18] have been proposed as an enhance-

ment, aiming at distributing test cases more evenly within the input domain

space through the definition of ad hoc metrics.

Finally, two categories inspired by random testing theory have emerged.

On the one hand, mutation testing [50, 80] is a fault-based technique,

operating in a white box testing perspective, which leverages on the con-

cepts of mutation (i.e., a small syntactic change on the source code of the

SUT), mutant (i.e., a faulty version of the SUT affected by a mutation), and

mutation operator (i.e., a transformation rule which generates a mutant,

modifying variables and expressions by insertion, replacement, or deletion).

The primary intent of this technique is the evaluation of the effectiveness

of a test suite, in terms of fault detection capabilities, defining a mutation

adequacy score. In general when a same test suite is executed against a mu-

tant, it is possible to understand its robustness; a robust test suite should

catch injected faults within mutant version, by having at least one failing

test case. Mutation testing can be applied at different testing levels (i.e.,

unit, integration or specification).

On the other hand, another fault-based technique is metamorphic test-

ing [17,104], proposed as an approach for test case generation which exploits

36 Literature review

the input-output pairs of previous successful (or not) test cases with their

related types of errors for generating new test cases. In so doing, such tech-

niques base their test case generation strategies on the assumption that a

kind of evolution among test cases is the foundation for discover undetected

errors (i.e., all the possibly errors which have not been detected in previous

successful test cases), exploiting existing metamorphic relations (i.e., rela-

tionships generated among multiple executions of the SUT). This technique

may also help test result verification stages, alleviating the oracle problem [6],

and it can be applied in conjunction with test case selection strategies in black

box or white box perspectives [125].

Chapter 4

Running Case Study

For the sake of clarity and to support the reader in understanding

the problem and the examples presented within the dissertation, in

this Chapter, a prototype stateful Web Application, code-named

“Flight Manager”, is described.

Technical and design choices, leading the implementation of this

application will be also useful in defining salient characteristics

of Dependency Injection and automated contexts management

mechanisms, exemplifying the proposed fault model (Sect. 5.3)

and the proposed methodology (Sect. 6.2) applying it to a con-

crete state of the art application.

In particular, the operative context is described in Sect. 4.1, the

functional design in Sect. 4.2, the architecture in Sect. 4.3, and

the navigation design in Sect. 4.4.

37

38 Running Case Study

4.1 Operative context

Flight Manager1 is a Web Application accounting the operative context of

an online flight booking IT system, available through the Internet.

The platform has been designed to cover functional requirements of three

user classes:

• not registered users (i.e., visitors), exploiting offered services as “one-

time” accounts without the need for authentication;

• users with a premium account (i.e., registered), consuming exposed

services, only, after a login authentication process;

• administrators (i.e., admins), accessing a reserved area dedicated to

managing entities related to “for sale” products (i.e., flight tickets).

The application domain model, represented in Fig. 4.1 through an UML

Class Diagram, captures from a conceptual perspective the existing relation-

ships among the fundamental entities (i.e., User, Booking, and Flight).

A booked ticket (i.e., Booking) is characterised by its issuing date, its

price (i.e., by list or after a discount), an internal identifier (i.e., a secret

useful to unregistered users for retrieving and managing booked tickets at

any time, before the flight), a list of passengers (i.e., considering also the case

of a single applicant which buys more tickets in a single booking transaction),

and related outbound (and return) flights information.

An available and scheduled Flight represents a single travel from a source

Airport to a destination one, and it is characterised by an internal code, the

nominal timetable (i.e., the dates and times related to departure and arrival),

the availability in terms of seats (i.e., distinguishing between total capacity

and actual reserved quantity), and the suggested price per passenger.

Optionally, each booking can be associated with a buyer account, offer-

ing extra privileges to registered users in terms of future promotions and

discounts based on historical purchasing data. A User account is charac-

terised by some credentials (i.e., username and password) and a role (i.e.,

UserRole), distinguishing between premium customers (i.e., REGISTERED)

or administrators (i.e., ADMIN).

1Publicly available at https://github.com/STLAB-DINFO/flight-manager

https://github.com/STLAB-DINFO/flight-manager

4.1 Operative context 39

«entity»
Airport

-id: int
-name: String
-zipCode: int
-GMT: int

«entity»
Flight

-id: int
-code: String
-departureDatetime: LocalDateTime
-arrivalDatetime: LocalDateTime
-totalSeats: int
-bookedSeats: int
-pricePerPerson: double

+getFlightDuration(): Duration

«entity»
Booking

-id: int
-secret: String
-listPrice: double
-discountedPrice: double
-date: Date
-email: String
-confirmed: boolean

«entity»
Passenger

-id: int
-name: String
-surname: String
-taxCode: String
-birthDate: Date

«entity»
User

-id: int
-username: String
-password: String
-registrationDate: Date

-passengers

1..*

-source

-destination

«entity»
Place

-id: int
-name: String

«entity»
Country

-id: int
-name: String

-country

-city

-outbound 1 -return0..1

«enumeration»
UserRole

+ADMIN
+REGISTERED

0..*

-buyer0..1

-role

Figure 4.1: UML Class Diagram of Flight Manager domain model.

40 Running Case Study

4.2 Functional design

From a functional perspective, the use cases of Flight Manager have been

classified by user role.

Visitor

UC8 - Book Flight

UC8.1 - Select FlightUC7 - Search Flights

UC8.2 - Insert Passengers

Admin

UC1 - Login

UC2 - Logout

UC10 - Cancel Booking

UC8.3 - Pay

UC10.1 - Refund Booking

UC9 - View Booking UC9.1 - Print Booking

UC3 - CRUD Flight

UC3.1 - Create Flight

UC3.4 - Delete Flight

UC3.3 - Update Flight

Registered

UC3.2 - Retrieve Flight

«include»

«include»

«include»

«include»

UC4 - CRUD Airport

UC5 - CRUD Country

UC6 - CRUD Place

UC1 - Login
UC2 - Logout

«include»

«include»

«include»

«include»

«include»

Flight Manager

UC8.3.1 - Apply Discount
«include»

Figure 4.2: UML Use Cases diagram of Flight Manager administrator users.

On the one hand, see Fig. 4.2, an administrator is authorised to manage

through ad hoc CRUD (i.e., Create, Retrieve, Update, and Delete) oper-

ations all the available system entities (i.e., Flight, Airport, Country, and

Place).

On the other hand, see Fig. 4.3, the main use case for a customer (visitor

or registered) consists in booking a flight (i.e., UC8). This action, practically,

consists in searching a flight (i.e., UC7), selecting a starting and an arrival

airport, a departure date (and possibly a return one) and finally, declaring

the number of desired tickets. Once the system has returned the query

results, the user chooses a specific flight (i.e., UC8.1) and, after entering the

required data (i.e., UC8.2), the system presents the summary of the ongoing

reservation, in order to complete the payment (i.e., UC8.3). In case of user

confirmation, the system requires the specification of an email address which

can be used in combination with the secret booking code to later access a

reserved area, where to consult passengers and flight data (i.e., UC9), print

tickets (i.e., UC9.1) or activate a cancelling procedure (i.e., UC10).

4.3 Architecture 41

Visitor

UC8 - Book Flight

UC8.1 - Select FlightUC7 - Search Flights

UC8.2 - Insert Passengers

Admin

UC1 - Login

UC2 - Logout

UC10 - Cancel Booking

UC8.3 - Pay

UC10.1 - Refund Booking

UC9 - View Booking UC9.1 - Print Tickets

UC3 - CRUD Flight

UC3.1 - Create Flight

UC3.4 - Delete Flight

UC3.3 - Update Flight

Registered

UC3.2 - Retrieve Flight

«include»

«include»

«include»

«include»

UC4 - CRUD Airport

UC5 - CRUD Country

UC6 - CRUD Place

UC11 - Login as Customer

UC12 - Logout as Customer

«include»

«include»

«include»

«include»

«include»

UC8.3.1 - Apply Discount
«include»

Figure 4.3: UML Use Cases diagram of Flight Manager customers users.

Note that, from the use cases perspective, the only difference between a

visitor and a registered user consists in the ability of performing the authen-

tication process (and of course the logout process as well); but in practice,

the application will consider in different manners their navigation experi-

ences within the platform (i.e., some algorithms will change their behaviour

with respect to historical data stored for premium accounts).

4.3 Architecture

From an architectural perspective, Flight Manager has been designed as a

classical 3-tier stateful architecture developed through the Java™ Enterprise

Edition (JEE) ecosystem, with the following specifications:

• JavaServer™ Faces (JSF), defined within JSR-314 [15], for the pre-

sentation layer, building server-side User Interfaces (i.e., view pages)

populated with data provided by running stateful components (i.e.,

page controllers). JSF is the standard component-oriented UI frame-

work for JEE.

The underlying implementation of JSF is Oracle Mojarra;

42 Running Case Study

• Contexts and Dependency Injection (CDI), originally defined within

JSR-299 [58], for the business logic layer, with the responsibility of

DI framework, enabling type-safe resolution of managed components

(e.g., page controllers or collaborative ones) and automated injection

mechanisms, also binding their lifecycles to available built-in contexts

(i.e., @RequestScoped, @ConversationScoped, @SessionScoped, @Appli-

cationScoped, and @Dependent).

The underlying implementation of CDI is JBoss Weld ;

• Java™ Persistence API (JPA), defined within JSR-317 [26], for the

data-access layer, managing persistence and Object Relational Map-

ping (ORM) processes, bridging the gap between an Object-Oriented

model and a relational database schema.

The underlying implementation of JPA is JBoss Hibernate.

As can be observed in Fig. 4.4, the presentation layer is strongly coupled

with backend modules provided by the business logic layer, which in turn

is populated by a collection of page controllers (e.g., LoginController, Air-

portController, RegisteredBookingController) and other task-specific compo-

nents (e.g., BillingComponent, TemporaryReservationComponent, Discoun-

terComponent).

As standard in stateful applications, these managed components imple-

ment specific use cases and depend on the data-access layer in order to

interface database records and mapping them in the form of domain model

entities. For these purposes, an intermediary role is played by a group of

collaborative components (e.g., AirportDao, BookingDao, FlightDao, Pas-

sengerDao), named Data Access Objects (DAOs), providing an abstract in-

terface towards the underlying Database Management System (DBMS), also

exposing a set of methods to perform CRUD operations on the relational

tables. To accomplish these tasks, each DAO depends on a special JPA

component, named EntityManager, which allows querying of entities within

database transactions.

Three separate considerations must be spent for the following task-oriented

managed components: i) BillingComponent has the responsibility of deter-

mining the fee of each emitted flight ticket, applying a variable tax value

considering the country of arrival; ii) DiscounterComponent has the re-

sponsibility of applying dynamic discount strategies over listing prices of

flights, exploiting, in turn, external task-specific components which extend

4.3 Architecture 43

«Stateful JEE»
Flight Manager

PRESENTATION LAYER

BUSINESS LOGIC LAYER

«JPA»
Domain Model

DATA-ACCESS LAYER

DBMS

«JPA»
EntityManager

DAOs

«CDI»
UserDao

«depends»

Managed Components

«CDI»
LoginController

«depends»

«manages»

«creates»

«CDI»
BookingDao

«CDI»
AirportDao

«CDI»
CountryDao

«CDI»
PlaceDao

«CDI»
FlightDao

«CDI»
TemporaryReservationComponent

«interfaces»

«CDI»
DiscounterComponent

UI Views

Login

<<JSF>>

AirportsList

<<JSF>>

FlightsResult

<<JSF>>

BookingDetails

<<JSF>> etc...

«binds»

etc...

«CDI»
LoggedUserComponent

«CDI»
SearchFlightsController

«CDI»
BillingComponent

«CDI»
AirportController

«CDI»
RegisteredBookingController

«CDI»
PlaceController

«CDI»
PassengerDao

Figure 4.4: 3-tier architecture overview of Flight Manager, as stateful ap-

plication with a set of managed components responsible of business logic

(i.e., page controllers and task-specific components) and a set of data-access

components (i.e., Data Access Objects).

44 Running Case Study

a superclass named DiscountStrategyComponent2 (i.e., BaseUserDiscount,

BigGroupDiscount, CrazyWednesdayDiscount, GoldUserDiscount, and Sil-

verUserDiscount); iii) TemporaryReservationComponent has the responsi-

bility of keeping track of the ongoing booking processes, not yet confirmed,

so as to reserve the seats until the user completes the use case (in so do-

ing, seats cannot be stolen by other users). This component cooperates

with another task-specific component, named TemporaryReservationReposi-

tory which lives within the application context and has the responsibility of

maintaining an in-memory database of current total reservations of Flight

Manager.

In Tab. 4.1, the list of managed components, designed and implemented

within Flight Manager, is reported; for each component, the category (i.e.,

data-access, page controller, or task-specific) and the belonging context (dis-

tinguishing between the adopted CDI annotation and the interpreted con-

text) are documented.

2Each discount strategy, extending DiscountStrategyComponent, applies a custom pol-

icy; the BigGroupDiscount takes into account the number of passengers within a book-

ing and decides if they represent a “big group”, the CrazyWednesdayDiscount applies

a discount if and only if the day of the week is Wednesday, while BaseUserDiscount,

GoldUserDiscount, and SilverUserDiscount consider the purchasing history of a logged

user, thus rewarding the affiliation level.

4.3 Architecture 45

Component Category CDI scope Context

AirportController page controller @ConversationScoped use case

AirportDao data-access @RequestScoped request

BaseUserDiscount task-specific @RequestScoped request

BigGroupDiscount task-specific @RequestScoped request

BillingComponent task-specific @SessionScoped session

BookingDao data-access @RequestScoped request

BookingLoginController page controller @RequestScoped request

BookingSessionComponent task-specific @SessionScoped session

CountryController page controller @ConversationScoped use case

CountryDao data-access @RequestScoped request

CrazyWednesdayDiscount task-specific @RequestScoped request

DiscounterComponent task-specific @RequestScoped request

FlightController page controller @ConversationScoped use case

FlightDao data-access @RequestScoped request

FlightManagerComponent task-specific @ConversationScoped use case

GoldUserDiscount task-specific @RequestScoped request

LoginController page controller @RequestScoped request

LoggedUserComponent task-specific @SessionScoped session

PassengerDao data-access @RequestScoped request

PasswordManagerComponent task-specific @RequestScoped request

PlaceController page controller @ConversationScoped use case

PlaceDao data-access @RequestScoped request

RegisteredBookingController page controller @SessionScoped session

RouterComponent task-specific @ApplicationScoped application

SearchFlightsController page controller @SessionScoped session

SilverUserDiscount task-specific @RequestScoped request

TemporaryReservationComponent task-specific @Dependent prototype

TemporaryReservationRepository task-specific @ApplicationScoped application

UserDao data-access @RequestScoped request

VisitorBookingController page controller @ConversationScoped use case

Table 4.1: Overview of Flight Manager managed components, each one

with the indication of its category (i.e., data-access, page controller or task-

specific), its designed CDI scope and the related context.

46 Running Case Study

4.4 Navigation design

Many disciplined software development practices for Web Applications adopt

(semi-)formal design artefacts (e.g., Page Navigation Diagrams, UML Ro-

bustness Diagrams) describing end-users interactions and transitions among

views (i.e., web pages), thus leading the early design of use cases in a navi-

gational perspective which outlines expected and feasible navigation paths.

These abstractions include oriented edges, labelled with the indication of

actions leading the navigation, and more than one label may be present on

the same edge; in these cases, it means that two different operations, handled

differently by the starting page controller, forward to the same landing page.

The Page Navigation Diagram of Flight Manager is reported in Fig. 4.5.

Specifically, each end-user interfaces the application starting from the

Home page, which exposes a set of useful hyperlinks. An unauthenticated

user performs the authentication process from the Login page: on the one

hand, admin users can exploit administration functionalities, depicted in

the upper-part of the diagram, starting from the AdminPanel page; on the

other hand, registered customers can browse the pages in the lower-part

of the diagram, except from the BookingLogin page, which is dedicated to

visitor accounts using the secret booking code to access the reserved area for

managing their bookings.

The main use cases for a visitor or registered user are implemented within

these six pages: Login, Home, FlightsResult, FlightDetails, BookingDetails,

and Confirmation.

4.4 Navigation design 47

Home

Login

BookingLogin

AdminPanel

+viewBooking

ViewBooking

EditBooking

+login

+edit

+cancel || update

+delete || logout
+back

+loginAsAdmin

+login

+loginAsUser

FlightsList

AddFlightDetails

+viewFlights

+save

BookingsList

+myBookings

+view

+back

AirportsList

AddAirportDetails

+viewAirports +viewAirports

+back +back

FlightsResult BookingDetails

Confirmation

+search

+selectFlight

+confirm

+back

+cancel +cancel

FlightDetails

+viewDetails

+back || newSearch

AddFlight
+addFligth

+next

+back || saveAndAddFlight

AddAirport
+addAirport +next

+logout

+back || saveAndAddAirport

AdminPanel includes
also CRUD pages for
Country and Place
entities

+confirm

Figure 4.5: Page Navigation Diagram of Flight Manager.

48 Running Case Study

Chapter 5

Motivations and Problem

Formulation

In this Chapter foundations, leading the research in the defini-

tion of an effective methodology for the verification of Web Ap-

plications designed and developed within Enterprise Architectures

with a stateful behaviour exploiting Dependency Injection and au-

tomated contexts management mechanisms, are provided.

Specifically, a detailed description of motivations with respect to

common characteristics of stateful architectures and DI frame-

works is reported in Sect. 5.1, also enlightening salient consid-

erations about the HTTP protocol operating in the client-server

paradigm.

The problem formulation is reported Sect. 5.2, considering com-

ponents couplings across contexts, as well as underlying basic as-

sumptions.

Finally, the fault model at the core of the proposed methodology is

reported in Sect. 5.3, providing both a conceptualisation of identi-

fied faults and their concretisation within the running case study

of Chapter 4.

49

50 Motivations and Problem Formulation

5.1 Motivations

In the design and development of modular software architectures, dependen-

cies management of software components becomes a key aspect of the overall

application complexity. To mitigate it in a productive way, dependencies

management is often delegated to a container, assuming the responsibility

of taking care of components creation and dependencies installation by in-

jecting required components in dependent ones, in compliance with their

declared types.

This practice, commonly known as Dependency Injection (DI), is sup-

ported by many programming languages and provided in widely adopted

implementations and high-level DI frameworks with additional features and

responsibilities in facilitating components lifecycle management.

In particular, the container may bind components lifecycle to predefined

contexts (e.g., request, session, application), defining visibility boundaries,

handling construction and destruction policies, as well as controlling the

so called injection points (i.e., lines of code where dependencies have been

defined and the injection of component instances occurs within dependent

components, such as on their class attributes or on their method parameters).

For the sake of conciseness, this dissertation will refer to these responsibili-

ties as automated contexts management.

While mediating and facilitating interactions among components, the auto-

mated contexts management produces shared dependencies scenarios, where

several dependent components, living within different contexts, may depend

on the same contextual instances of injected components, thus sharing their

runtime states.

These kinds of couplings among distinct components should be evalu-

ated and considered for an exhaustive testing stage through the definition

of ad hoc strategies; indeed, on the one hand, standard unit testing does

not represent an effective solution in so that mocking dependencies inhibits

the manifestation of coupled behaviours and, on the other hand, it may

not be feasible to test all combinations of couplings considering dependency

chaining scenarios which may be generated according to ongoing end-users

interactions along available use cases, involving also more than two compo-

nents (also indirectly interconnected). Testing strategies specifically charac-

terised on Web Applications paradigms are required for reducing test efforts.

5.1 Motivations 51

Indeed, DI combined with automated contexts management is further em-

phasised in Web Applications designed as stateful architectures, where in-

teractions among end-users and software components are modelled through

client-server paradigm, usually laying on HTTP protocol, maintaining client

information in the server-side among multiple HTTP requests and realising

use cases within navigable web pages, interconnected via hyperlinks.

This behaviour, in contrast with stateless architectures (e.g., REST),

allows to store client information within dedicated server-side contexts, im-

proving network performance and decreasing repetitive data sent, exchanged

within a series of distinct HTTP requests. This may produce many advan-

tages in applications with a relevant computational effort or in applications

subject to strict security constraints.

In such a perspective, the state of an application is represented by alive

in-memory components; in particular, business logic is implemented through

specific managed components, named controllers, which are exploited by the

presentation layer (i.e., the view pages) to respond to events (e.g., a data

input stream) and user interactions (e.g., mouse click action) enabling page

transitions, constrained to designed page navigation rules, or internal state

modifications.

From the end-user point of view, the application state can be summarised,

in reference to each element of the Model-View-Controller [25] architectural

pattern, as:

• the runtime object instances of the domain logic allocated server-side

(i.e., Model);

• the actual visited HTML page (i.e., View);

• the instantiated dependencies hierarchy of the managed component

which controls in background the page (i.e., Controller).

Note that, according to the Page Controller pattern [35], each logical page

is handled by a single managed component of the Web Application. Thus,

a page controller subject to automated contexts management is effectively a

software object instance, constrained to a specific context and characterised

by several dependencies, which in turn may live in different contexts and de-

pend on other components, giving raise to a complex and recursive process

of objects creation and referencing, in many cases intermediated by proxy

objects.

52 Motivations and Problem Formulation

Placing the application state on the server-side, increases the server con-

trol over the application behaviour; but, at the same time, the ability to

control and detect cases of wrong lifecycle management, unexpected user

interactions, or hidden dependencies is reduced, raising also the presence

of potential implementation defects, which could lead to application faults

(e.g., memory leakages, data inconsistencies, and null pointer exceptions).

Inter alia, automated contexts management, usually, can be configured through

meta-information beyond the semantics of the adopted programming lan-

guage and DI framework (e.g., annotations decorators, as in the case of the

List. 5.1 for the JEE ecosystem exploiting the CDI framework) identifying

injection points and inferring components lifecycle and visibility within the

source code. In this way, although the DI container may solve, in back-

ground, dependencies at application initialisation time (e.g., compile-time,

build-time, or run-time), automatically binding components instances to pre-

defined contexts relieving developers from this burden (e.g., avoiding a “glue

code” style), the overall subtended implementation complexity grows.

The decoupling, realised by the DI container, between dependencies and

theirs configurations within source code implementation (i.e., between the

type specified in the injection point and the concrete object type instan-

tiated by the container, also exploiting polymorphism provided by many

programming languages) slightly blurs the developer’s overview about the

concrete overall structure of the application, thus exacerbating the complex-

ity in defining an effective test suite.

Finally, List. 5.1 practically highlights how configurations are scattered in the

application source code by reporting an example of an annotated CDI com-

ponent, named LoginController, related to UC11 of the case study presented

in Sect. 4, defined so as to live within a request context, injecting three

managed components as dependencies (i.e., LoggedUserComponent, User-

Dao, and PasswordManagerComponent), starting a new user session in the

case of successful authentication for registered users.

Note that belonging contexts and injections are defined through ad hoc

annotations (i.e., respectively @RequestScoped and @Inject) and the devel-

oper does not keep control of dependency characteristics of external com-

ponents (i.e., the developer can only see that runtime contextual instances

will be compliant with specified types without knowing belonging contexts,

5.1 Motivations 53

concrete implementations or eventual sharing scenarios), while operating on

the source code of the dependent component (i.e., LoginController), which

exposes two public methods (i.e., loginAsCustomer() and logout()).

1 @RequestScoped

2 public class LoginController {

3 private String username;

4 private String pwd;

5 private String toHome = "index?faces -redirect=true";

6

7 @Inject

8 private LoggedUserComponent loggedUser;

9 @Inject

10 private UserDao userDao;

11 @Inject

12 private PasswordManagerComponent pwdManager;

13

14 public String loginAsCustomer () {

15 User user = userDao.login(

16 this.username ,

17 pwdManager.encode(this.pwd)

18);

19

20 if(user != null)

21 this.loggedUser.initUser(user);

22

23 return (user == null) ? "" : this.toHome;

24 }

25

26 public String logout () {

27 this.loggedUser.shutDownUser ();

28

29 return this.toHome;

30 }

31 }

Listing 5.1: Java™ class definition of LoginController in Flight

Manager, handling the login page. Username and password fields are

supporting variables for an HTML form; userDao and pwdManager are

two injected components, representing dependency relationships, while

loggedUser is initialised only in the case of successful authentication; the

loginAsCustomer() method uses both dependencies for applying the right

query on the database. Only in the case of authentication, it redirects

the end-user to the Home page, returning a string (i.e., toHome attribute)

written in the JSF syntax.

54 Motivations and Problem Formulation

5.2 Problem Formulation

While Application Servers are designed so as to serve multiple requests to a

plethora of different concurrent clients, a human (not bot) end-user is, theo-

retically, only able to generate one request at a time. Under this assumption,

it can be stated that:

• a DI container will manage at most one request at time for each client,

inside a single session context;

• each request context managed by the container is related to a specific

use case, followed by the end-user.

Also considering that a client advances concurrently on two distinct use

cases, in the same moment (e.g., opening two different tabs in a browser

within a single user session), alternating click actions; it can be confidently

supposed that human reaction time is some order of magnitude higher than

a request resolution. In so doing, the Application Server always terminates

the processing of a request before the arrival of the subsequent request from

the same user.

For all these reasons, the rest of the dissertation adopts an intra-session

perspective, accounting in isolation each session context, which can be in-

terpreted as an ordered and non overlapping sequence of request contexts

related to the same user.

The DI container distinguishes contexts and related contextual instances

in two mutually exclusive sets:

• alive set, containing the contextual instances related to the components

actually stored in-memory. So, an alive context is populated only by

alive instances;

• dead set, containing the contextual instances related to the components

destroyed by the container, thus releasing the memory. So, a dead

context is populated only by dead instances.

5.2 Problem Formulation 55

Besides, the DI container has to discriminate contexts and contextual in-

stances according to components execution impact inside the use case, con-

sidering two types:

• active instances, the visible and referrable components inside the same

HTTP request. So, an active context manages and intermediates active

inner instances;

• inactive instances, the components alive but not active. So, an inactive

context hosts only unreachable instances.

From the intra-session perspective, request, session and application contexts

are always related to active instances, while use case contexts can also be

related to inactive instances.

To clarify, with a general example, these considerations see the conceptual

abstraction of Fig. 5.1 which depicts a simple scenario, extracted from the

Flight Manager case study (Sect. 4), describing two users (named α and β)

concurrently operating in the booking process (i.e., UC8). In particular, Sα
represents the session context of the user α and, in the same way, Sβ the

session context of the user β. In this scenario, while β is already logged-in, α

completes the authentication process (i.e., UC11) only through and within

the second request context UC11α, writing in the session context a data

object related to its logged user instance. Both users, along their main use

case contexts (i.e., UC8α and UC8β), have to read/write shared data (i.e.,

temporary reservations on flights) from/to the disposed application context

(i.e., A).

Note that this results in two cross-contexts components couplings: the

first one, in an intra-session perspective, between UC11α and UC8α with

Sα as the intermediary context for the logged user data; the second one, in

an inter-sessions perspective, between UC8α and UC8β with the application

context as the intermediary for the shared data, about temporary reserva-

tions, between Sα and Sβ .

This scenario includes only two contexts which are always active (i.e., A,

Sβ), while the session context Sα becomes active only after the first request

resulting from the login process of user α (previously, Sα was inactive because

it was originally set up, in background, by the web browser). The use case

contexts (i.e., UC8α, UC8β) alternate between active or inactive statuses,

in correspondence of performed end-user interactions.

56 Motivations and Problem Formulation

Sα

UC11α

A

R1 R2 R3 R4 R5

UC8α

Sβ

UC8β

active

inactive

context
ending

interaction
(e.g., read,

write)

managed
component

context
beginning

logged
user

reservation

Figure 5.1: Flight Manager components couplings scenario, involving two

concurrent user sessions. On the x axis, request contexts (e.g., Ri) are re-

ported in their sequential order. Considering that an HTTP request is the

basic context, containing instructions which are applied atomically, the se-

quence of requests may be considered as a temporal discretisation of server-

side computations. On the y axis, all the contexts greater than request (i.e.,

A, Sα, Sβ , UC8α, and UC8β) or special use cases, within an atomic request

(i.e., the login UC11α), involved in the scenario are reported. In summary,

each Cartesian point describe the state of the context, in the ordinate, within

the specific request, in the abscissa.

5.3 Fault Model 57

In general, while alive contexts of the same type may coexist within each

request, only one context for each built-in type (i.e., application, session,

use case or request) can be active, thus subtending that no overlapping

and concurrency is allowed for active contextual instances of the same type

within a single request context. As a consequence, any active contextual

instance will be able to directly interact only with instances belonging to: its

context, a higher level wrapping context, or a lower level wrapped context;

respecting the hierarchical organisation fixed by definition. Nevertheless,

contextual instances living in disjointed contexts (never active at the same

time) may still indirectly interact in a transitive perspective, exploiting alive

long running instances of higher level contexts.

In the worst case, as depicted in Fig 5.1, the past computation of a dead

component instance (i.e., UC11α generating logged user data) may affect a

future computation of another alive and active instance (i.e., UC8α reading

the allocated logged user data).

In this dissertation, it is considered only the case of a single user in iso-

lation, performing a single use case at a time, excluding residual and rare

cases of concurrent requests progressing on two distinct use cases in the same

moment, characterising its behaviour under an intra-session perspective.

In so doing, there is no overlap between contexts, focusing on faults which

may arise only in absence of concurrency among session or use case contexts.

5.3 Fault Model

Web Applications exploiting frameworks for DI and automated contexts

management rely on a DI container to handle components, constraining their

contextual instances to visibilities and lifecycles boundaries, hiddenly orches-

trating runtime interactions and data sharing.

In so doing, cross-contexts components couplings may be produced in

background, implying that past interactions on dead contexts may even af-

fect future computations on alive and active instances.

Inter alia, the DI container should ensure that injected components are

automatically selected in the proper type, through a type-safe resolution

mechanism. Also in this cases, plenty of possible faults and antipatterns

may arise due to error prone programming practices, producing uncontrolled

58 Motivations and Problem Formulation

aggregation of components with different lifetimes and visibility scopes.

The most evident defect may be the wrong definition of the component

context, assigning a narrower or a wider scope than necessary as well as

exchanging an HTTP built-in scope with the prototype one or vice versa.

In other cases, errors may be produced by programmatic bugs due to

wrong boundary definitions of use case contexts (e.g., beginning of a scope

is postponed, or the ending of a scope is declared lately) or by the injec-

tion of wrong typed components (e.g., wrong type declarations as well as

defects within instantiation algorithm implementations subject to program-

matic lookup practices1).

As a further consideration, most unpredictable faults may be activated

under complex combinations of contexts over direct and indirect dependen-

cies, also as a result of advanced dynamic programming practices [106] (e.g.,

memoization techniques), or as a result of pattern-oriented implementa-

tions [41, 102] (e.g., Strategy Pattern, Decorator Pattern, Interceptor Pat-

tern).

As a direct consequence, a lack of design control is unavoidable: compo-

nents configuration and implementation require to split meta-information

on both sides of a dependency relationship.

The most common meta-configuration foresees that every component

type specifies its own context, which is applied by default in every injec-

tion of its contextual instances. This implies that the dependent component

is unaware of the lifetimes of its dependencies and, in turn, an injected de-

pendency is unaware of components where it is installed. In this scenario,

design of injected components need to be tailored on the requirements of de-

pendent ones; but, this strong coupling implies that an injected dependency

could behave in an unexpected way if misused.

A variant of this arrangement could be to state the context boundaries

of any injected dependency inline on dependent component side. Counter-

intuitively, this inline approach exacerbates the introduced criticality: the

developer should guarantee that any injected component is structured in a

context-independent fashion, so as to be able to correctly operate in any

possible combination of dependency usages or, in a limit case, should guar-

antee that all dependent components declare the same context for injected

1Programmatic lookup is a practice consisting in the implementation of custom policies

exploiting low-level API (offered by DI frameworks) for resolving dependencies, dynami-

cally, at runtime.

5.3 Fault Model 59

dependencies, which leads back to the previous scenario (i.e., the simplest

way to assure that every component instance lives in the same context type

consists in annotating the component itself with the required information).

Otherwise inconsistency issues may arise.

In Sect. 5.3.1, on the above premises, a fault model conceptualisation is pro-

vided, while in Sect. 5.3.2 the fault model is concretised with some examples

contextualised in the case study scenario.

5.3.1 Fault Model conceptualisation

For stateful Web Applications, based on DI mechanisms and automated

contexts management, the proposed fault model identifies four types of fault:

• vanishing components (i.e., contextual instances whose lifetime is

early expired) produce dependencies over dead dangling references.

Usually, this type of fault may be caused by contexts narrower than

expected or by use case contexts prematurely closed by the developer

through programmatic practices.

Vanishing components may lead to data losses failures, such as null

pointer exceptions;

• zombie components (i.e., still alive contextual instances, as residual

memory, that should have been dead) produce unexpected couplings

over time. Usually, this type of fault may be caused by contexts wider

than expected or by temporary or wrong programmatic scope exten-

sions.

Zombie components may lead to memory leakage failures, exhaust-

ing available system memory and contributing to software ageing pro-

cesses;

• unexpected shared components (i.e., two or more components si-

multaneously depending on same contextual instances and operating

over their resources) produce race condition scenarios. Usually, this

type of fault may be caused by long-lived components (i.e., application

or session scoped) reused in several use cases.

Unexpected shared components may lead to unexpected shared data

and concurrent/un-synchronised accesses to methods and attributes;

60 Motivations and Problem Formulation

• unexpected injected components (i.e., injections of wrong typed

contextual instances) produce behavioural ambiguity on dependent

components executions, deviating the expected use case flow and gen-

erating a kind of unpredictability. Usually, this type of fault may be

caused by implementation defects of programmatic lookup practices,

but also by obsolete source of information adopted for driving the flow

of a decision algorithm (e.g., a managed component, maintaining data

useful for the dynamic injection of other components, which does not

update its data at runtime).

Unexpected injected components may lead to several failures which can

vary from fast fails to unrecognisable ones.

Note that the fault model is tailored over salient characteristics of stateful

managed components and, in so doing, it does not include common faults for

MVC patterns or Object-Oriented programming languages, whose literature

is rich and exhaustive [9, 75].

These identified four types of fault may be also generated in combination

and a same use case may hide more than one concretisation for each type,

so exacerbating the challenge in their detection.

5.3.2 Fault Model concretisation

In this Section the four types of fault have been concretised with reference to

some significant use cases of the Flight Manager case study (see Chapter 4

for further design details), enlightening how decoupling and reuse of state-

ful components may easily induce a lack of design control without proper

verification and testing strategies.

While these concrete fault implementations make tangible the problem in

a practical scenario, they also support the discussion about the applicability

and effectiveness of the proposed methodology presented in Chapter 7.

Vanishing components The first type of fault is hidden within the “Search

Flights” use case, identified as UC7, where the SearchFlightsController, liv-

ing in a session context, coordinates the whole procedure within the page

named FlightsResults, starting from the Home page and maintaining a state

about end-user’s search history, last inspected flights, and filters settings.

5.3 Fault Model 61

This page controller injects an instance of FlightManagerComponent, living

in a use case context starting within the query request and ending once

the list is no longer needed2, which is responsible for query executions and

data retrieving. The procedure is optimised so as to retrieve only basic in-

formation about flights results in the FlightsResults page, demanding for a

subsequent further query retrieving the whole flight data, in a kind of lazy

loading technique, in the case of navigation to a FlightDetails page.

In the specific case of triggering the “another search” action, directly from

the FlightDetails page, a vanishing component fault is activated: by design,

the previous use case context is closed, thus the FlightManagerComponent

living in it is destroyed by the DI container, and no new use case contexts

are instantiated. Such a case of managed components reuse (i.e., Flight-

ManagerComponent), exploring secondary navigation paths rarely traversed

by end-users, may lead to fault and eventually also to failure manifestations3.

The sequence of HTTP requests leading to the fault occurrence is repre-

sented in the conceptual abstraction of Fig. 5.2.

2Note that the UC7, retrieving flights from the database can be considered as a preced-

ing relationship for the “Book Flight” use case, identified as UC8. So the use case context

related to FlightManagerComponent will be closed when the end-user select a navigation

action forwarding to a booking confirmation or cancelling the research. Indeed, when the

flights list is visualised, the end-user could select a flight and begin the booking procedure

both from the results list page and the details page, thus ending the use case context and

redirecting to the appropriate page. Alternatively, the end-user could search a new flight

through a new query; also this option is doable from both pages.
3A manifestation of this failure is not always clear and evident: the FlightsResult page,

simply, does not show any results if the manged component responsible of data retrieving

does not respond. So the end-user may be confused, but with a forced page refresh he

can restart the use case context; in this way, however, his navigation experience has been

damaged.

62 Motivations and Problem Formulation

S

UC7

R1 R2 R3
Search
Flights

View
Detail

Another
Search

SearchFlightsController

vanishing component fault

FlightManagerComponent

Figure 5.2: Coupling scenario which produces a vanishing component fault,

both for a visitor and a registered user. In R1 the end-user starts search-

ing for flights (the SearchFlightsController living within the session context

S depends on the FlightManagerComponent living in the use case context

UC7); in R2 the end-user views the detail of a specific flight; finally in R3 the

end-user performs a new search (the use case context is programmatically

closed, then the SearchFlightsController tries to invoke the FlightManager-

Component living in UC7 which does not exist anymore).

Zombie components The second type of fault is hidden within the “Book

Flight” use case, identified as UC8, where two different procedures are pro-

vided, distinguishing between visitor and registered users, thus giving some

privileges or exploiting ad hoc discount strategies. The dedicated page

controllers (i.e., VisitorBookingController and RegisteredBookingController)

handling these two different procedures delegate the seats reservation pro-

cess4 to their injected instances of TemporaryReservationComponent, living

in a prototype context. Specifically, the TemporaryReservationComponent is

designed so as to allocate temporary reservations on demand and releasing

them just before it is destroyed.

Note that the two page controllers live in different contexts: the Visi-

torBookingController, handling the procedure for visitor users, lives within

the use case context, while the RegisteredBookingController, lives within the

4When a flight is selected for booking, the system temporarily reserves a number of

seats equal to the declared number of passengers by the end-user. This reservation mech-

anisms is handled in synergy by the TemporaryReservationComponent, which maintains

the reservation during the booking procedure, and by TemporaryReservationRepository,

which takes the total count of reserved seats within the whole application context.

5.3 Fault Model 63

session context.

The reuse of TemporaryReservationComponent, whose lifecycle is inher-

ited by its injector controller, may produce a zombie component fault in-

stance; indeed, while the expected behaviour of the temporary reservation

process for seats in the application is correctly achieved for visitor users, the

same process for registered users may lead to very insidious faults, difficult

to catch because not directly manifested during navigation and not directly

affecting final services. Faults occur in a temporal perspective (i.e., as not

permanent inconsistencies) in so that allocated temporary reservations of

registered users may be held for a time longer than the expected one (i.e.,

in a correct scenario the system releases the reserved seats when the end-

user confirms or aborts the booking procedure, but by design the system

releases them only when the TemporaryReservationComponent is destroyed,

thus when the session context ends with the logout of end-user. In this case,

a zombie instance of TemporaryReservationComponent is generated and the

reservation remains in-memory for too long).

The sequence of HTTP requests leading to the fault occurrence is repre-

sented in the conceptual abstraction of Fig. 5.3 for a visitor user and Fig. 5.4

for a registered user.

Unexpected shared components The third type of fault is again hid-

den within the “Search Flights” use case, identified as UC7, and it is due

to the reuse of BillingComponent, which lives in a session context. Billing-

Component is a managed component with the responsibility of calculating

the bill of a booking, as part of this, it also deals with the identification of

the fee that should be applied on a flight ticket, which depends on the arrival

country (e.g., a ticket for a flight from Italy to Germany has a fee of 19% of

its list price, while a fee in the case of return flight has a fee of 22%).

This component is injected at authentication time by the LoggedUser-

Component (also living in the session context), which initialises the Billing-

Component with the fee value of the country where the end-user lives-in

(i.e., retrieving information from its account); in this way, at any time, the

LoggedUserComponent is able to directly provide the bill calculation (i.e.,

through a getHomeCountryFee() method), acting as a proxy for the Billing-

Component. In this way, a registered user obtains additional benefits, based

64 Motivations and Problem Formulation

S

A

R1 R2 R3
Reserve
Seats

Confirm
Reservation

Back
Home

UC8

UC8

Rn
Reserve
Seats

R
eserve

R
eserve

Free

VisitorBookingController

TemporaryReservationComponent

TemporaryReservationRepository

Figure 5.3: Coupling scenario, for a visitor user, which does not produce

a zombie component fault. TemporaryReservationComponent lives within

the use case context UC8, inheriting from VisitorBookingController, and in

R2 it is destroyed by the DI container, thus updating reservation values of

TemporaryReservationRepository within application context A.

SUC8

A

R1 R2 R3
Reserve

Seats
Confirm

Reservation
Back
Home

Rn
Reserve

Seats

R
eserve

RegisteredBookingController

zombie component fault

TemporaryReservationComponent

TemporaryReservationRepository

R
eserve

Figure 5.4: Coupling scenario, for a registered user, which produces a zombie

component fault. TemporaryReservationComponent lives within the session

context SUC8, inheriting from RegisteredBookingController, and after R2 it

is always within an active context, thus falsifying reservation values of Tem-

poraryReservationRepository within application context A.

5.3 Fault Model 65

on the years of affiliation to the platform, when the fee related to his home

country is processed.

This configuration may bring the system into an error state, whenever a

registered user decides to navigate to the FlightDetails page just before buy-

ing the ticket, within the use case UC7, for a flight whose destination is a

country different from that where he lives. Indeed, the FlightDetails page is

controlled by SearchFlightsController which in turn configures the instance

of the BillingComponent by setting the country of arrival to the one chosen

for the flight; while, in the case of destination within the home country, it di-

rectly exploits the LoggedUserComponent. These three managed components

all live within the same long-running session context: they share their con-

textual instances (i.e., LoggedUserComponent and SearchFlightsController

share the BillingComponent). Thus, the last configuration of BillingCom-

ponent with a foreign country overwrites the initialisation done in the login

process by the LoggedUserComponent. So, the application enters in an error

state5, which however is not manifested.

Its manifestation may be produced in a subsequent execution of the same

use case, if the registered user searches for the return flight to come back to

his home country. Indeed, navigating again to the FlightDetails page, the

wrong country is exploited to calculate the fee to apply on the flight (i.e., it

is adopted the fee of the previous destination country instead of the home

country). Obviously, a failure is manifested if and only if the two fees are

different.

The sequence of HTTP requests leading to the fault occurrence is repre-

sented in the conceptual abstraction of Fig. 5.5.

5The error state concerns with the LoggedUserComponent, now referencing an instance

of the BillingComponent which is not configured with its expected country; thus, any

subsequent fee computation, based on this information, may be wrong.

66 Motivations and Problem Formulation

UC11

S

R1 R2 R3 R4 R5

SearchFlightsController unexpected shared
component fault

BillingComponentLoggedUserComponent

Login

set hom
e

country

Search Flight
Home-Foreign Flight Details

set foreign
country

Buy outbound
ticket

Search Flight
Foreign-Home

set fee

R6
Buy return

ticket

set wrong fee
by proxysearch

search

login

Figure 5.5: Coupling scenario, for a registered user, which produces an un-

expected shared component fault. LoggedUserComponent, BillingComponent,

and SearchFlightsController live within the session context S and the data

of BillingComponent are initialised after the authentication process in R1.

After R4 the system enters in a latent error state, considering the unexpected

sharing of BillingComponent contextual instance.

5.3 Fault Model 67

Unexpected injected components The fourth type of fault is again

hidden within the “Book Flight” use case, identified as UC8, and directly

affects the case of end-users interfacing with RegisteredBookingController

which is responsible of controlling the BookingDetails page. Specifically, the

dependencies hierarchy of this managed component involves other three task-

specific components, BillingComponent living in session context, Discoun-

terComponent living in request context, and LoggedUserComponent living in

session context.

The “Book Flight” use case has been designed so as to compute in back-

ground the final price of a flight ticket and this task is delegated to a chain of

responsibility split over the three managed components, mentioned above.

The BillingComponent is responsible of determining the final price of the

booking, applying a country fee on the ticket and asking to the Discounter-

Component to determine at runtime if a set of discounts is available for the

purchase.

In particular, the DiscounterComponent implements a dynamic program-

matic lookup algorithm (see List. 5.2 and List. 5.3) for instantiating at run-

time the right strategies of discount6, also basing the decision on some infor-

mation maintained within the LoggedUserComponent (i.e., on the purchasing

history of the current registered user).

6As described in Sect. 4.3, there are five managed components in the role of Dis-

countStrategyComponent : i) the BigGroupDiscount which takes into account the number

of passengers within a booking and applies a discount if they constitute a group of more

than five units, ii) the CrazyWednesdayDiscount which applies a discount only on Wednes-

day, iii) the BaseUserDiscount, iv) the SilverUserDiscount, and v) the GoldUserDiscount

which apply an incremental discount to registered users with respect to their affiliation

levels.

68 Motivations and Problem Formulation

1 @RequestScoped

2 public class DiscounterComponent {

3 @Inject

4 @Any

5 protected Instance <DiscountStrategyComponent > discountComponentSrc;

6

7 protected List <DiscountStrategyComponent > activeDiscountStrategies;

8

9 @Inject

10 private LoggedUserComponent loggedUserComponent;

11

12 public float apply(Booking booking) {

13 float totalDiscount = (float) 0.0;

14 // Initialisation of the array activeDiscountStrategies

15 initDiscountStrategy(booking);

16

17 for(DiscountStrategyComponent ds : activeDiscountStrategies) {

18 totalDiscount += ds.applyDiscount(booking);

19 }

20

21 return Util.round(totalDiscount , 2);

22 }

23

24 private void initDiscountStrategy(Booking booking) {

25 if(activeDiscountStrategies == null

26 || activeDiscountStrategies.size() == 0) {

27 activeDiscountStrategies = new ArrayList ();

28 // Programmatic Lookup

29 chooseDiscountStrategies(booking);

30 }

31 }

32

33 private void chooseDiscountStrategies(Booking booking) {

34 // See Listing 5.3 for the implementation

35 }

36 }

Listing 5.2: Java™ implementation of DiscounterComponent living in

the request context. This task-specific component also depends on

LoggedUserComponent and dynamically injects contextual instances of a

concrete type of DiscounterStrategyComponent (i.e., BigGroupDiscount,

CrazyWednesdayDiscount, BaseUserDiscount, SilverUserDiscount, and

GoldUserDiscount). The discount strategies selected by the algorithm

implemented through the chooseDiscountStrategies() method are allocated

within an array (i.e., activeDiscountStrategies) and applied in concatenation.

5.3 Fault Model 69

1 private void chooseDiscountStrategies(Booking booking){

2 Calendar calendar = Calendar.getInstance ();

3 calendar.setTime(booking.getDate ());

4 if(calendar.get(Calendar.DAY_OF_WEEK) == Calendar.WEDNESDAY) {

5 // CrazyWednesdayDiscount

6 activeDiscountStrategies.

7 add(discountComponentSrc

8 .select(new AnnotationLiteral <CrazyWednesdayDiscount >() {})

9 .get());

10 }

11

12 if(booking.getPassengers ().size() > 5) {

13 // BigGroupDiscount

14 activeDiscountStrategies

15 .add(discountComponentSrc

16 .select(new AnnotationLiteral <BigGroupDiscount >() {})

17 .get());

18 }

19

20 if(loggedUserComponent.isLoggedIn ()) {

21 int userBookingHistory = loggedUserComponent.getHistory ();

22

23 if(userBookingHistory > 20) {

24 // GoldUserDiscount

25 activeDiscountStrategies

26 .add(discountComponentSrc

27 .select(new AnnotationLiteral <GoldUserDiscount >() {})

28 .get());

29 }

30 else if(userBookingHistory > 10) {

31 // SilverUserDiscount

32 activeDiscountStrategies

33 .add(discountComponentSrc

34 .select(new AnnotationLiteral <SilverUserDiscount >(){})

35 .get());

36 }

37 else if(userBookingHistory > 0) {

38 // BaseUserDiscount

39 activeDiscountStrategies

40 .add(discountComponentSrc

41 .select(new AnnotationLiteral <BaseUserDiscount >() {})

42 .get());

43 }

44 }

45 }

Listing 5.3: Java™ implementation of chooseDiscountStrategies() method

of DiscounterComponent which performs programmatic lookup. The

dynamic discovery and injection of managed components is provided

by the CDI framework through the discountComponentSrc of type

Instance<DiscountStrategyComponent>, exposing a select() method for

programmatic lookup. Note the usage of LoggedUserComponent in the

business logic of the algorithm.

70 Motivations and Problem Formulation

In this scenario, the fault is not induced by defects within the programmatic

lookup implementation, but it may arise when the information owned by

LoggedUserComponent becomes obsolete and inconsistent during end-users

interactions. The stateful behaviour of the software promotes a kind of

“trust” among managed components, so the DiscounterComponent blindly

relies on the LoggedUserComponent to retrieve information about the pur-

chasing history of the logged user.

Obviously, stateful data may be subject to various types of faults which

can be caused by classical defects or antipatterns, also as a consequence

of previously presented fault types; in this case, the LoggedUserComponent

retrieves the history of purchasing at instantiation time, but it is not au-

tomatically updated when new bookings are accomplished within a same

user session. Thus, immediately after the completion of a UC8 use case,

LoggedUserComponent data may become obsolete, affecting in turn also the

programmatic lookup mechanism.

The sequence of HTTP requests leading to the fault occurrence is repre-

sented in the conceptual abstraction of Fig. 5.6.

5.3 Fault Model 71

UC11

S

R1 R2 R3 R4 R5

RegisteredBookingController DiscounterComponent

BillingComponentLoggedUserComponent

Login

get
purchase

history

Booking Details Confirm 1st
Flight ticket Booking Details Confirm 2nd

Flight ticket

R6
Logout

login

unexpected injected
component faultdata inconsistency

1st chain of
responsibility

confirm

confirm

2nd chain of
responsibility

UC12

logout

Figure 5.6: Coupling scenario, for a registered user, which produces an unex-

pected injected component fault. Within the session context S there are three

managed components (i.e., RegisteredBookingController, BillingComponent,

and LoggedUserComponent) and by design they also establish a chain of re-

sponsibility with DiscounterComponent which is injected only when invoked

inside a request (i.e., in R2 and R4). The programmatic lookup algorithm for

dynamic injection, implemented within DiscounterComponent, is disrupted

after R2 for the whole end-user session because a data inconsistency is in-

duced on LoggedUserComponent.

72 Motivations and Problem Formulation

Chapter 6

Verification of stateful Web

Applications

In this Chapter a complete description of the proposed verifica-

tion methodology is provided, characterising all its stages and

introducing, in Sect. 6.1, a formal description of the adopted ab-

straction for test case generation, named Managed Components

Data Flow Graph (mcDFG).

The methodology, inspired by Data Flow Testing approaches, ad-

dresses the fault model identified for Web Applications subject

to Dependency Injection and automated contexts management,

reusing preliminary analysis techniques of the common practice,

exploiting custom formalisms based on UML Robustness Diagram

and mcDFG, and providing ad hoc coverage criteria.

The main stages of the methodology, presented in Sect. 6.2, can be

summarised in: i) structural and behavioural preliminary analy-

ses; ii) robustness analysis; iii) robustness diagram decoration;

iv) mcDFG generation; v) test case generation.

73

74 Verification of stateful Web Applications

6.1 Preamble

So as to support verification of Web Applications exploiting DI and auto-

mated contexts management, a methodology focused on the fault model of

Sect. 5.3 is proposed.

The methodology also represents a guideline for supporting designers,

developers, and testing specialists in the generation of effective test suites at

architectural level on how user interactions affect the state and behaviour

of managed components. Specifically, since components of a System Under

Test (SUT) could interact with - and be dependent on the state of - other

components, the analysis of the admissible navigation paths generated by

end-users assumes a key role during the test case generation process.

In Sect. 6.1.1, a first formalisation of the core abstraction for the test

case generation is provided.

6.1.1 The mcDFG abstraction

Coverage of couplings across contexts occurring among components requires

a testing approach able to cover the execution paths interconnecting the

points where the state of each managed component is defined and used,

namely the injection points of in-dependence components and their method

invocations, thus capturing the runtime data flow produced by active con-

textual instances.

While, conceptually, the representation of these paths could be modelled

through the Object-Oriented Data Flow Graph abstraction [108], extending

the classical Data Flow Graph (DFG) [90]; concretely, this graph representa-

tion lacks in the ability of hiding low-level dynamics due to the interposition

of DI containers in managing contextual instances (e.g., components proxies,

aspect oriented programming techniques). These DFGs, by default, would

result in inadequate abstractions both for an explosion of the number of in-

volved edges and nodes within the graph, leading to unfeasible test suites,

and for difficulties arising in code interpretation while analysing the appli-

cation source code (as stated in Sect. 2, low-level DI behaviours are hidden

under a simplified syntax through the adoption of meta-information decora-

tions within the source code).

The desired abstraction should jointly depend both on structural charac-

teristics of individual components and on functional characteristics on the

6.1 Preamble 75

way how views (i.e., web pages) are designed to be navigated during user

interactions along use cases. To this end, the set of feasible behaviours of the

SUT can be abstracted as a variant of DFG, named Managed Components

Data Flow Graph (mcDFG), capturing structural and functional perspec-

tives, also taking related works [27,39,47,107] on Data Flow Testing (DFT)

as inspiration.

mcDFG The Managed Components Data Flow Graph is a directed graph,

defined by the following tuple 〈V, E , def, use,Nav,CB〉.
V is a set of vertices, where each element v represents an atomic set of oper-

ations that are always executed as a whole (e.g., components instantiations,

components method invocations), similarly to the concept of basic blocks in

the classical theory of DFT.

E ⊆ V × V is a set of edges, such that < vi, vj >∈ E if and only if there is a

possible execution where the last operation of vi can be followed by the first

operation of vj .

Each vertex can be annotated through the def and use annotation functions,

which can be formalised as: def : V → 2mc and use : V → 2mc, where mc

is the set of all designed managed components within the application and

2mc is the power set of mc. A vertex is decorated with a def with respect

to a managed component if, in the basic block, the corresponding contex-

tual instance is instantiated (i.e., the DI container performs the injection),

rather, a use is reported if any method of the related component is invoked.

Each vertex is marked with the set of possible defs or uses occurring in the

corresponding basic block, with the assumption that a node accepts either

all defs or all uses.

Finally, since edges could be labelled, two functions have been defined: Nav

and CB.

Nav : E → {nav page controller :: sign()}, which applies a label to an edge

with the indication of page controller method invoked after a navigation ac-

tion triggered from the User Interface. An edge < vi, vj > is annotated with

a nav label if an end-user interaction produces a transition from vi to vj
through the page controller method reported within the signature sign().

CB : E → {cb begin use case, cb end use case, cb end/begin use case}, which

applies a cb label to an edge respectively when starts, terminates or termi-

nates and immediately starts a use case context (modelling the behaviour of

a DI container in the management of programmatic contexts).

76 Verification of stateful Web Applications

6.2 The Methodology

The proposed methodology aims at supporting designers and developers in

the definition of an effective test suite “fighting” the fault model, presented

in Sect. 5.3, for the verification of component-based Web Applications con-

strained to frameworks for DI and automated contexts management.

The methodology leverages on the mcDFG abstraction, which can be

(semi-)automatically derived from software specifications emerging from well

known artefacts, commonly adopted within agile or ICONIX software devel-

opment processes [99].

In so doing, the methodology represents an artefact-driven approach char-

acterised by the following stages (which should not to be intended all as

mandatory but, in many cases, they can be considered intrinsic to consoli-

dated software development practices):

1. structural and behavioural preliminary analyses;

2. robustness analysis;

3. robustness diagram decoration;

4. mcDFG generation;

5. test case generation.

6.2.1 Structural and behavioural preliminary analyses

The first stage of the methodology aims at capturing structural and func-

tional aspects of the under-development application, exploiting documenta-

tion artefacts describing main features and expected behaviours, enabling

the preliminary design of the domain model and the definition of use cases.

The domain model design, usually depicted through UML Class Di-

agrams, represents the fundamental of the whole application design pro-

cess [31], establishing a rigorous vocabulary of the operative domain and a

conceptual definition of the entities of interest, which can be continuously

refined in compliance to software requirements and development needs.

While the domain model captures involved entities and their relation-

ships, UML Use Case Diagrams provide a functional perspective of the

designed application behaviours, in a graphical and compact format [37],

offering a general overview about the application functionalities.

6.2 The Methodology 77

However, these functional diagrams may be integrated with textual docu-

mentation written in the shape of the so called template formalism [19], de-

tailing for each use case: its unique identifier, a formal description (identify-

ing the final purpose), the involved actors (distinguishing between end-users

or system objects), the sets of expected pre-conditions and post-conditions

(from the methodology perspective, these information will help the definition

of the oracle verdict), the main success scenario, and the alternative execu-

tion flows extensions (from the methodology perspective, each flow will help

in the understanding of involved components and related method invocations

within single sub-step of a use case).

At the same time, through the definition of a Page Navigation Dia-

gram [63], characterising the navigation features of use cases, it will be

possible to support the identification of involved web pages and to presume

underlying transitions method invocations, exploiting hyperlinks.

Note that, these preliminary analysis stages offer a basis for the subse-

quent robustness analysis stage; providing (in input) a sufficient knowledge

to model boundary, controller and entity elements.

6.2.2 Robustness analysis

In ICONIX-based Software Engineering development processes, the robust-

ness analysis is a common practice which demands for the definition of a

UML Robustness Diagram for each identified use case [98].

This diagram is an artefact that leads to discover and to identify involved

actors among use cases, bridging the gap from analysis stage to design stage

so as to define relationships among the domain model, the components con-

trolling the business logic and the web pages through its elements:

entities, representing domain model objects;

boundaries, representing web pages;

controllers, representing managed components.

More in depth, entities can be extracted from the domain model produced

during structural and behavioural preliminary analyses stage, with respect

to referenced objects within the specific use case.

Boundary elements define a reachability relationship between distinct

web pages, further characterising the navigational design of the Web Appli-

78 Verification of stateful Web Applications

cation. In the role of web pages, boundaries are the only elements of direct

end-user interaction, and in turn, they assume the responsibility of interfaces

with controller objects.

Controller elements are managed components with the responsibility of

controlling a page and/or providing utility methods (e.g., components per-

forming queries on the Database Management System), implementing the

whole application business logic. By describing the underneath processes

behind an event or a end-user interaction, controllers can interact with each

others, also redirecting end-users to boundary elements and manipulating

entity objects.

Fig. 6.1 illustrates the UML Robustness Diagram produced after the anal-

ysis of the “Book Flight” use case, identified as UC8 in the running case

study (see Chapter 4). As a first remark, it should be noted that the dia-

gram is able to represent properly navigability between distinct boundaries

(i.e., Home, BookingDetails, and Confirmation) also providing an idea of in-

voked navigation buttons (e.g., click cancel). At the same time, the diagram

provides an explanation of what, in broad terms, happens behind a web

page, depicting its top level controller (e.g., within BookingDetails operates

a controller with responsibilities of initialisation and reservation).

6.2 The Methodology 79

BookingDetails

Confirmation

Home

Save

+click confirm

Cancel

+click cancel

+click cancel

Initialize

Registered

Booking User

Figure 6.1: UML Robustness Diagram of “Book Flight” use case, identified

as UC8 for a registered user.

80 Verification of stateful Web Applications

6.2.3 Robustness Diagram decoration

The UML Robustness Diagram, produced after the robustness analysis stage,

must be enriched so as to enhance its expressiveness about DI and automated

contexts management mechanisms in Web Applications. As a result, the di-

agram will be enriched generating a finer grained version named Enriched

Robustness Diagram1.

The enrichment copes with three enhancement processes:

• page controllers & nav method signatures identification;

• page controllers contexts extraction;

• page controllers dependencies discovery.

The page controllers & nav method signatures identification process consists

in specifying page controllers related to each boundary element (i.e., each

web page), decorating the boundary with a UML stereotype related to page

controller type (e.g., << ComponentClass >>) if relevant, and in outlin-

ing all methods bound to client events (i.e., actions explicitly invoked by

the end-user or automatically generated by the application) producing ex-

plicit routing, asynchronous communications, and partial page renderings.

In practical terms, this process marks each controller element with an infor-

mative label, such as ComponentClass::method(), describing the type of the

page controller (i.e., ComponentClass) followed by the navigational method

invoked on its instance (i.e., method()).

The page controllers contexts extraction process aims to define, for each

page controller, its lifecycle and scope. Controller elements are decorated

with UML stereotypes indicating belonging contexts (e.g., << request >>,

<< session >>). Note that this process could be applied before, during, or

after coding stage, pursuing different intents.

1The enrichment stage has the primary intent of decorating the main elements of the

diagram with ad hoc stereotypes or action edges; e.g., adding a special stereotype (i.e.,

<< init >>) to edges related to initialisation page actions performed at page loading

or adding subcall dashed edges, as described in the procedure. Note that, relationships

between controller and entity elements, for the purpose of the next stage described in

Sect. 6.2.4, can be hidden from the enriched version of the diagram.

6.2 The Methodology 81

Applying the process before or during coding may empower the Robust-

ness Diagram to relieve software developers of making structural choices,

also promoting Test-Driven Development (TDD) [8] practices.

Otherwise, applying the process after coding enables source code analy-

sis driving an (automated) a posteriori enrichment: although reducing the

manual effort for developers, this practice may increase the coupling between

the SUT and the generated test suite (e.g., defects introduced in the code

implementation are tautologically propagated to the diagram).

The page controllers dependencies discovery process collects, recursively, all

methods invocations within the identified controller elements (starting from

page controllers), modelling the hierarchy of invocations over their injected

contextual instances managed by the DI container (e.g., Data Access Objects

operations or utility classes methods).

In practical terms, for each managed component invocation within the

page controller, this process draws an outgoing dashed edge marked with a

sequential number (making explicit the calling order) and adds a new con-

troller element, representing the injected component (i.e., the discovered

dependency). Each discovered component is decorated with an informative

label, such as ComponentClass::method(), describing the type of the man-

aged component (i.e., ComponentClass) followed by the method invoked on

its instance (i.e., method()) and stereotyped with its context (as described

for the page controllers contexts extraction process). The procedure is recur-

sively applied to each discovered dependency, until each controller element

is fully investigated and decorated.

During the discovery, use case contexts boundaries must be determined,

decorating dependent controllers with: the UseCaseContext::begin() label

where the use case begins and the UseCaseContext::end() label where the

use case ends. The information related to contexts management characterise

the Robustness Diagram with respect to DI containers behaviour, capturing

also the cases of programmatic definition of components lifecycle boundaries.

Undoubtedly, this process requires a great effort when several components

are involved but it can be extensively mitigated by automation, implementing

source code analysis, searching for all designed managed component methods

executions within the involved pages of a use case.

82 Verification of stateful Web Applications

Fig. 6.2 represents the Enriched Robustness Diagram with respect to the dia-

gram in Fig. 6.1. This enriched artefact explicitly depicts, for each boundary

element relevant for the modelled use case, the indication of its page con-

troller type (e.g., the BookingDetails page is controlled by RegisteredBook-

ingController) and each controller element is decorated with its context and

its invoked primary method (e.g., the RegisteredBookingController is bound

to a session context and, on initialisation of the BookingDetails page, its

initialize() method is invoked).

At the same time, an indication of method subcalls (derivable after

page controllers dependencies discovery process) is reported, if necessary,

on dashed edges relationships among controller entities (e.g., the same Reg-

isteredBookingController includes in its initialize() method, a sequence of

subcalls related to other managed components, such as TemporaryReserva-

tionComponent or BillingComponent).

6.2.4 Managed Components DFG generation

The Enriched Robustness Diagram, produced after the robustness diagram

decoration stage, enables the construction of a mcDFG, whose syntax and

semantics are described in Sect. 6.1.1. This graph abstraction may be used

as the main artefact for supporting test case generation in the verification of

end-user interactions impact on the application state.

While in classic Data Flow Testing techniques, a DFG exploits coverage

criteria to identify testing paths, representing sequences of basic block thus

driving the sensitisation of parameters, the mcDFG emulates this behaviour

combining the architectural perspective, exploiting redefined concepts of def

and use to enlighten components dependency hierarchies, with the naviga-

tional perspective, driven by use cases and end-users choices.

In order to identify defs and uses within the mcDFG, the generation process

retrieves some useful information about managed components: dependency

hierarchies, associated contexts and chain of methods invocations (in re-

sponse to User Interface events). Considering that a def is associated to

a contextual instance creation (managed by the DI container) while a use

is associated to a method invocation of the related component, the genera-

tion process requires to “plumb” the overall Enriched Robustness Diagram

exploring all feasible navigation paths in order to label basic blocks of the

mcDFG.

6.2 The Methodology 83

BookingDetails

Confirmation

Home

RegisteredBookingController::save()

+click confirm

BookingDao::save()

#1

RegisteredBookingController::reserveTemporarySeats()

TemporaryReservationComponent::reserveTemporarySeats()

TemporaryReservationRepository::addTemporarySeats()

#1

#1

«init»

RegisteredBookingController::cancel()

+click cancel

+click cancel

RegisteredBookingController::initialize()

#1

BillingComponent::getFinalPrice()

#2

<<application>>

<<stereotype>>

<<session>>

<<request>>
Registered

<<session>> <<session>>

<<session>>

<<session>>

<<RegisteredBookingController>>

<<RegisteredBookingController>>

DiscounterComponent::apply()
<<request>>

#1

LoggedUserComponent::getHistory()

#1

<<session>>

Booking

Booking

User Booking

Figure 6.2: Enriched UML Robustness Diagram of “Book Flight” use case,

identified as UC8 for a registered user.

84 Verification of stateful Web Applications

Specifically, starting from the boundary element related to the use case start-

ing page2, creations and destructions of all page controllers (encountered

during a visit) are identified, in accordance with their contexts boundaries.

The same considerations must be recursively reiterated over dependency hi-

erarchies, retrievable through a straightforward analysis performed, again,

over the Enriched Robustness Diagram, registering all triggered actions over

their functions.

The dependency hierarchy of a managed component c of type Component-

Class, can be recursively defined as the set Hc:

Hc = ID(c)
⋃

∀ζ∈ID(c)

Hζ

where ID(c), abbreviation for Invoked Dependencies, is the set containing

all the controllers (iterated with the ζ variable) directly invoked by the con-

troller c.

Edges of the mcDFG are decorated with User Interface events, leading to

navigation actions, or control information about use case context boundaries

(i.e., cb begin use case, cb end use case or cb end/begin use case)3.

The algorithm producing in output the mcDFG is composed by two rou-

tines (see Alg. 1 in Sect. A.1 for details):

i) the first routine transforms the Enriched Robustness Diagram, here

indicated for brevity with the ERD acronym, in a temporary graph repre-

sentation named emcDFG which can be considered as an expanded version

of the final mcDFG, containing additional information specific for the algo-

rithm itself4;

ii) the second routine, reduces the emcDFG in the final mcDFG, remov-

ing unnecessary information, also merging nodes and edges where required.

2For the sake of simplicity, this dissertation is discussed over use cases owning a single

starting point; but the methodology is suitable for the case of multiple starting points too.
3From the intra-session perspective, the mcDFG does not need to explicitly represent

context boundaries for the other scopes. Indeed, application and session contexts are

considered as already initialised (i.e., usually, the login use case, opening a session con-

text, precedes other authorisation-based use cases), conversely a request context is strictly

related to each performed request.
4The emcDGF is defined as the mcDFG through the tuple 〈V, E, def, use,Nav,CB〉,

with the addition of the state σ := 〈page, ctrl, ctx,mc, def, use〉 for each node.

6.2 The Methodology 85

The first routine (see Algs. 2, 3, 4, 5, 6 in Sect. A.1 for details) is based

on the definition of a state σ for each node of the emcDFG, during the

construction.

The state is defined as the tuple: σ := 〈page, ctrl, ctx,mc, def, use〉,
where page is the current page (i.e., initialised with the starting boundary

element of the ERD), ctrl is the label of the higher-level ERD controller

responsible for the invoked method, ctx is the set of current active contexts,

mc is the set of all alive managed components, def is a definition of a man-

aged component, and use is a single use of a managed component. Besides,

a state σ cannot contain at the same time both a def and a use, while it

may be not associated to any def or use.

In so doing, the state of the Web Application can be abstracted through

the values maintained within σ; thus, the general idea of the first routine,

surrounding the transformation process, is to visit the ERD starting from

its starting pages (i.e., the boundary elements), exploiting any feasible path

traversing its edges (following available navigation methods and traversing

involved controller elements), continuously appending new nodes within the

emcDFG until reaching a vertex whose state σ is already present in the same

emcDFG graph (and in this case, a loop is generated and the ERD path is

not further analysed).

Two different sub-routines have been identified for handling boundary

elements and controller elements of the ERD. The first sub-routine is re-

sponsible for building nodes related to pages (without defs or uses) and for

interconnecting navigation edges (which are outgoing edges of the page).

The second sub-routine is responsible for defining a sequence of defs or uses,

retrieving information from the controller c associated to a boundary or

from its dependency hierarchy Hc (the graph requires that defs precede uses

within a sequence of nodes), as well as for identifying edges related to con-

texts.

The termination of the algorithm implemented by the first routine is as-

sured by the definition of the state σ itself in so that the recursive call of

sub-routines exploiting single paths is terminated whenever a preexisting

node is reached (i.e., with a state σ equals to the computational one); con-

sidering that the number of possible states is limited (indeed, the tuple σ

may assume values within a limited set), also the number of the emcDFG

86 Verification of stateful Web Applications

nodes is limited and the algorithm will terminate.

The second routine5 aims at reducing the complexity of the emcDFG, visiting

all its nodes and edges along available paths, applying a set of transforma-

tion/reduction rules for merging nodes and edges.

With its execution, superfluous information is removed, maintaining only

navigation labels (i.e., derived from the adoption of the Nav function), con-

text boundary labels (i.e., derived from the adoption of the CB function),

as well as def and use markers. The emcDFG graph is then simplified by

applying transformation/reduction rules over identified patterns.

Specifically:

• a sequence composed by an unlabelled edge preceding a node without

defs or uses is removed, and the outgoing edges (if present) of the

removed node are attached to the node preceding the removed one;

• a sequence composed by an unlabelled edge following a node without

defs or uses is removed, and the incoming edges (if present) of the

removed node are attached to the node following the removed one;

• a sequence composed by nodes with only def, interconnected by unla-

belled edges, is transformed in a unique node reporting on it all defs,

in the traversing order;

• a sequence composed by nodes with only use, interconnected by unla-

belled edges, is transformed in a unique node reporting on it all uses,

in the traversing order.

Finally, in order to include within the final mcDFG representation the as-

sumption that all the application and session managed components are alive

when a use case starts, a new starting node containing all their defs must be

appended to the graph6, interconnecting it to all previous starting nodes7

through unlabelled edges.

In Fig. 6.3, the mcDFG generated starting from the Enriched Robustness

5In Alg. 1 (Sect. A.1), the second routine corresponds to the reduceToMCDFG()

method invocation. Only textual rules are provided to understand its functioning.
6In Alg. 1 (Sect. A.1), this task is accomplished by the appendFirstDefsNodeMCDFG()

method. Only textual rules are provided to understand its functioning.
7If the use case modelled by the Enriched Robustness Diagram has more than one

starting boundary element, the mcDFG has the same quantity of starting nodes.

6.2 The Methodology 87

Diagram of Fig. 6.2 is reported. The dark grey node represents the last

appended vertex, containing all defs associated to managed components of

application and session contexts. Some edges have been labelled with nav-

igation actions (e.g., nav RegisteredBookingController::save()) and two of

them are coloured in green and depicted with a dashed line to highlight

that, when a path traverses them, the use case ends.

When a node is labelled with a use related to a managed component, it

means that the method (or the methods) invoked is known, although this

information is not directly visible in the graph abstraction for readability

purposes.

88 Verification of stateful Web Applications

1

nav RegisteredBookingController::save()

BookingDetails
use RegisteredBookingController
use TemporaryReservationComponent
use TemporaryReservationRepository
use BillingComponent
use DiscounterComponent
use LoggedUserComponent

4 def BookingDao

Confirmation
use RegisteredBookingController
use BookingDao

na
v

R
eg

is
te

re
dB

oo
ki

ng
C

on
tro

lle
r::

ca
nc

el
()

Home

def TemporaryReservationRepository
def RegisteredBookingController
def TemporaryReservationComponent
def BillingComponent
def LoggedUserComponent

nav RegisteredBookingController::cancel()

6 use RegisteredBookingController

5

23

2 def DiscounterComponent

Figure 6.3: Managed Components Data Flow Graph generated from enriched

UML Robustness Diagram of Fig. 6.2. The dark grey node represents the

vertex decorated with all the defs associated to managed components of

application and session contexts. This special node has been appended to the

starting page node (i.e., BookingDetails), while dashed green edges represent

transitions or actions which terminate the use case.

6.2 The Methodology 89

6.2.5 Test Case generation

The mcDFG abstraction, produced after the Managed Components DFG

generation stage, combined with the fault model (described in Sect. 5.3) and

ad hoc coverage criteria enables the identification of relevant paths leading

to the test case generation.

On these premises, the identified test cases will simulate end-user se-

quences of interaction, aiming to achieve a use case goal to verify both final

outcomes and underlying states of the application.

Inspired by Data Flow Testing [90], the mcDFG coverage criteria are re-

defined as follows:

• All Nodes criterion verifies that every reachable basic block is tested at

least one time, exercising each def (i.e., a managed component instan-

tiation) and each use (i.e., a managed component method invocation)

of a managed component;

• All Edges criterion verifies that every edge is tested at least one time,

exercising each nav use (i.e., each end-user interaction) at least one

time;

• All Paths criterion verifies that every path is tested at least one time,

exercising any possible sequence of nav uses (i.e., each feasible combi-

nation of end-user interactions derived from navigation design) at least

one time;

• All Defs criterion verifies that every def is tested at least one time,

exercising each managed component instantiation, reaching one of its

uses (i.e., one of component method invocation), without traversing

intermediate defs of the same component;

• All Uses criterion verifies that every def is tested one time for each pos-

sible use, excluding the paths with many intermediate defs of the same

component related to a method invocation associated to the tested use;

• All DU-Paths criterion verifies that every du path is tested at least one

time, exercising every path connecting each def of a managed com-

ponent with all its uses (i.e., testing any feasible combination of user

interactions from all possible instantiations of each managed compo-

nent to all possible operations exploiting it).

90 Verification of stateful Web Applications

Redefinition of the concepts of nodes and edges as well as of defs and uses

over the proposed DFG abstraction, with respect to the classical DFT the-

ory, implies that also classical inclusion criteria among coverage criteria must

be reconsidered (see Fig. 6.4).

All Paths

All Edges

All Nodes

All Uses

All Defs

All DU-Paths

Figure 6.4: Inclusion criteria among coverage criteria for the mcDFG ab-

straction.

Notably, the inclusion criteria strictly related to the graph theory, synthe-

sised by DFG’s literature remain in effect [90].

It remains true that:

• All Paths includes All Edges;

• All Edges includes All Nodes.

Relationships among criterion involving defs and uses have to be newly

evaluated. Following inclusion criteria have been identified:

• All Paths includes All DU-Paths.

This inclusion criterion remains in effect also for the mcDFG ; indeed,

visiting all paths within the graph implies that all edges have been

traversed and so all nodes, including associated defs and uses in any

possible path and combination;

• All DU-Paths includes All Edges.

This inclusion criterion, which is true also for classical literature of

6.2 The Methodology 91

DFT by the composition of “All DU-Paths includes All Uses” and, in

turn, “All Uses includes All Edges”, is here also valid. Indeed, con-

sidering that All DU-Paths has to exercise each def and each use for

each managed component in any possible interconnecting path, it is

directly evident that each navigation path must be exercised at least

one time, thus including All Edges. As a remark, every test case begins

from a starting node and terminates on a final node, also traversing

edges marked with contexts boundary (automatically produced by the

DI container or by programmatic management of contexts) or a navi-

gation action;

• All DU-Paths includes All Uses.

This inclusion criterion remains in effect also for the mcDFG by defini-

tion; indeed, visiting all du path within the graph implies that for every

def-use couple at least one path is exercised, thus including All Uses;

• All Uses includes All Defs.

This inclusion criterion remains in effect also for the mcDFG by def-

inition; indeed, visiting at least one du path for each def-use couple

implies also that at least one du path is exercised for every def, thus

including All Defs.

Note that inclusion criteria slightly differ from classical theory; this is al-

most unavoidable in so that while DFT approaches operate under a purely

structural perspective, the approach presented in this dissertation operates

over a mcDFG representing both structural and functional aspects of a Web

Application. Specifically, the difference descends from a different seman-

tics of mcDFG branches. Indeed, mcDFG ’s branches does not represent

conditional guards (i.e., p-use applied on source code variables exploited

by predicates) but rather model navigation control choices over managed

components, which are determined by user interactions; this invalidates the

assumption that each branch necessarily involves at least one use as in the

classical context.

In so doing, two main classical inclusion criteria decayed: no inclusion

relationship can be defined between All Uses and All Edges neither between

All Uses and All Nodes.

Let N be the number of nodes within the mcDFG abstraction, while C

the number of distinct managed components, and F the maximum degree of

92 Verification of stateful Web Applications

freedom in choosing a nav action within a use case, the complexities theo-

retical limits are reported in Tab. 6.1.

Complexities of the coverage criteria reflect that of classical theory; more

precisely, the complexity of All Paths is exponential (if cycles are not con-

sidered, elsewhere the complexity is infinite); the complexity of All Edges is

linear with the number of mcDFG edges which can be always less than or

equal to the multiplication of the number of mcDFG nodes with the max-

imum number of navigation choices; the complexity of All Nodes is linear

with the number of the mcDFG nodes; the complexity of All DU-Paths is

dominated by a worst case, leading to the same complexity of All Paths,

an exponential number of generated test cases; the complexity of All Uses

is dominated by a worst case where each couple of mcDFG nodes has to

be exercised, leading to a quadratic complexity; finally, the complexity of

All Defs is linear with the number of the mcDFG nodes multiplied by the

maximum number of managed components.

While affordable for All Defs, All Uses, All Edges and All Nodes cover-

age criteria, complexity may become heavy for All DU Paths, and All Paths

criteria applied in scenarios composed by many use cases.

All Paths All Edges All Nodes

O(2N) O(N · F) O(N)

All DU-Paths All Uses All Defs

O(2N) O(N2) O(N · C)

Table 6.1: Complexities of coverage criteria for the mcDFG abstraction.

While the above definitions of coverage criteria well fit the verification of a

single use case in isolation, the methodology can be generalised to collabo-

rative long-running scenarios where an end-user exercises a sequence of use

cases, also sharing some managed component (e.g., a session component)

by concatenating execution paths identified in isolation, according to the

adopted coverage criterion.

In this dissertation, the verification of a single use case in isolation is

named single run test case and consists of an ordered sequence of navigation

actions within a use case scenario related to a feasible path in the mcDFG,

while the chaining of k single runs is named k-run, stressing the execution

of ordered sequences spread among several use cases. Considering that pre-

6.2 The Methodology 93

cedes relationships may exist among distinct use cases, representing a kind of

prerequisite (e.g., to access the functionalities of a restricted area, an appli-

cation may require to perform an authentication process), the methodology

prescribes to apply a k-run, complying with precedes relationships.

The application of a coverage criterion on a k-run must be intended

as the generation of a test suite composed by all possible combinations of

test cases selected in the single run of each use case adopting the same

coverage criterion. Thus, the complexity of coverage criteria on the mcDFG

abstraction under k-run strategies, obviously, increases.

Indeed, in theory, the number of test cases to be executed for a k-run

sequence of k uses cases8 can be derived as the following product of a se-

quence:
k∏
i=1

MUCi

where MUCi
is the number of single run tests for the ith use case of the

sequence.

Furthermore, an upper-bound is provided as a function of the number of

runs. Let UC be the set of all use cases and let MUCi
be the number of

single run tests for the ith use case UCi, then M =
∑
UCi∈UCMUCi is the

total number of prescribed single run tests.

This implies that Mk is the upper-bound for k-run tests, considering all

possible sequences of k single run tests for each possible sequence of use

cases.

Within k-run scenarios, for feasibility purposes, All Edges, All DU Paths,

and All Paths criteria shouldn’t stress each possible combination of use cases

but apply some heuristics to detect and group highly coupled use cases in

terms of shared components, limiting k-run over these cases.9

Finally, mcDFG diagrams may present cycles (also within a single use case in

isolation) which can be handled exploiting boundary-interior strategies [77].

8The methodology does not impose a constraint in the chaining of use cases, so a same

use case can be present more than one time in the sequence.
9A first heuristic may consider to apply k-runs test cases only to page controllers with

a dependency hierarchy involving managed components operating over the same specific

entity of the domain model (e.g., in CRUD operations it is frequent the case of adopting

the same DAO contextual instance).

94 Verification of stateful Web Applications

6.2.6 Summary

The proposed methodology has been summarised through the data flow di-

agram (dfd) formalism in Fig. 6.5, where nodes represent single stages of

the methodology and edges describe outcomes produced by these processes

in terms of artefacts (i.e., requirements specification, UC diagrams and tem-

plates, domain model, page navigation diagram, robustness diagram, enriched

robustness diagram, and mcDFG) and meta-information about managed

components (i.e., use cases contexts boundaries, page controllers, invoked

methods, defs, and uses).

Black nodes identify processes inherited by the methodology from structural

and behavioural preliminary analyses stages in major software development

practices. These processes have not to be considered as an additional effort

due to the adoption of the methodology, but as a reuse of artefacts already

generated.

Specifically, inherited processes are:

• P1 (i.e., requirements analysis), producing in output the software re-

quirements specification useful to derive information about operative

domain specification and functional aspects of the application;

• P2 (i.e., preliminary design), producing in output a preliminary rep-

resentation of the domain model, including main entities and their

relationships;

• P3 (i.e., use case analysis), producing in output a complete description

of use cases through diagrams and templates, highlighting required

interactions for the primary execution flow and all its alternatives,

with fixed pre-conditions and post-conditions;

• P4 (i.e., preliminary navigational analysis), producing in output a Page

Navigation Diagram;

• P5 (i.e., robustness analysis), producing in output a UML Robustness

Diagram which captures a preliminary version of involved boundaries,

controllers and entities.

White nodes identify light-weight processes that may be applied manually

(dashed edges represent the possibility to automate partially or fully these

6.2 The Methodology 95

P5

P9

P7

P12

Use Cases
Diagrams

& templates

P1 ::= Requirements analysis
P2 ::= Preliminary design
P3 ::= Use Case analysis
P4 ::= Preliminary navigational design
P5 ::= Robustness analysis
P6 ::= Page controllers & nav methods identification
P7 ::= Page controllers contexts extraction
P8 ::= Page controllers dependencies discovery
P9 ::= Robustness Diagram decoration
P10 ::= mcDFG generation
P11 ::= mcDFG paths extraction
P12 ::= Test Case generation

Source Code

P6

Page controllers
&

navigation
signatures

Page controllers
contexts

P8

P10

defs / uses
&

UC contexts boundaries

mcDFG

P11

Robustness
Diagram

Coverage
criteria

Fault Model

mcDFG paths

A description of
Test suite

P2 P3

Domain Model

Requirements
Specification

Robustness
Diagram

Robustness
Diagram

Enriched
Robustness

Diagram

P1 Requirements
Specification

automated process

manual process

inherited process

P4
Page

Navigation
Diagram

Use Cases
Diagrams

& templates

Figure 6.5: Data flow diagram of the proposed methodology.

96 Verification of stateful Web Applications

steps through source codes analysis exploiting a posteriori strategies), re-

quired to software designers so as to enable the enrichment of the Robustness

Diagram.

Specifically, these processes are:

• P6 (i.e., page controllers & nav methods identification), identifying

page controllers and their methods, raising navigation events;

• P7 (i.e., page controllers contexts extraction), detecting managed con-

trollers living contexts.

Finally, grey nodes identify heavy-weight processes that must be fully au-

tomated, representing the core of the proposed methodology based on the

mcDFG abstraction.

Specifically, these processes are:

• P8 (i.e., page controllers dependencies discovery), identifying for each

page controller the hierarchy of dependencies and their belonging con-

texts;

• P9 (i.e., robustness diagram decoration), producing the enrichment of

the Robustness Diagram in order to mark each controller with method

invocation labels and related dependency hierarchy subcalls;

• P10 (i.e., mcDFG generation), mapping the Enriched Robustness Di-

agram into a Managed Components Data Flow Graph;

• P11 (i.e., mcDFG paths extraction), highlighting paths by applying the

fault model and the coverage criteria over the mcDFG abstraction;

• P12 (i.e., test case generation), mapping the mcDFG paths to a de-

scriptive test case, which must be interpreted by developers for apply-

ing sensitisation and oracle verdict stages (with respect to designed use

cases).

Note that, processes based on automated background source code analy-

sis must be implemented as kinds of adapters for specific technologies and

languages, while the overall proposed methodology has general value.

Chapter 7

Discussion

In this Chapter, an evaluation of fault detection capabilities of

the presented methodology is discussed with reference to most

significant use cases of the running case study (see Chapter 4)

and with reference to presented fault model concretisations (see

Sect. 5.3.2).

Specifically, in Sect. 7.1, evaluation results as well as costs of

coverage criteria applied over generated mcDFG abstractions are

reported. In particular, for each use case the minimum number

of mcDFG paths is identified for each coverage criterion; fur-

ther, a discussion about the characteristics of relevant paths and

the minimum number of required runs for each fault type con-

cretisation is addressed.

While, in Sect. 7.2, a conclusive discussion supported by qualita-

tive arguments is provided about the required effort for the adop-

tion of the methodology in enterprise-level applications.

97

98 Discussion

7.1 Evaluation of the methodology

In this Section, the applicability of the proposed methodology has been eval-

uated in order to understand resultant benefits: an evaluation of its fault

detection capabilities, applied over the case study (presented in Chapter 4)

as well as a discussion of resultant costs are reported in Sect. 7.1.1.

For the sake of concreteness, the methodology has been exercised on the

main use cases of Flight Manager which concretise and hide all the fault

types defined within the fault model (see Sect. 5.3.2 for details), under the

assumption of considering the end-user logged in as a customer (i.e., a reg-

istered user) or as a simple visitor.

Note that, the provided test case generation strategy identifies a test case as

a mcDFG path, going from the starting page to the exit page of a specific use

case. Such a path, can be translated in an ordered list of navigation actions

performed by the end-user, so driving a further test case implementation

where sensitisation and oracle verdicts have to be manually defined for the

test, relying on information provided by pre-conditions and post-conditions

reported within UML Use Case templates.

7.1.1 Fault hunting within the Case Study

The use cases of Flight Manager considered for the evaluation are:

• UC7 - “Search Flights”;

• UC8 - “Book Flight”;

• UC11 - “Login as Customer”.

In some scenario, as described for the fault model concretisation, a fault

is activated only if the end-user is a registered user, meaning that the au-

thentication process must be performed before the use case, as an implicit

precedes in the UML Use Cases Diagram. For this reason, the methodol-

ogy exercises a test case generation through a k-run path extraction on the

mcDFG, where the first use case of the sequence is the “Login as Customer”.

A dedicated mcDFG diagram has been generated for each investigated use

case: UC7 (see Fig. 7.1), UC8 (see Fig. 6.3), and UC11 (see Fig. 7.2).

7.1 Evaluation of the methodology 99

4

5

6

7

def BillingComponent
def LoggedUserComponent
def SearchFlightsController

nav SearchFlightsController::searchFlights()

use SearchFlightsController
use FlightManagerComponent
use FlightDao

cb begin use case

def FlightManagerComponent
def FlightDao

nav SearchFlightsController::cancel()

use SearchFlightsController

cb end use case

Home

8

9

10

nav SearchFlightsController::getFlightDetails()

def FlightDao

FlightsResult

FlightDetails

nav SearchFlightsController::back()

11

12

nav SearchFlightsController::searchAnotherFlight()

cb end use case

use FlightManagerComponent
use FlightDao

14

15

nav SearchFlightsController::confirmFlights()

use SearchFlightsController

cb end use case

BookingDetails
use SearchFlightsController

use FlightManagerComponent
use FlightDao

use LoggedUserComponent
use BillingComponent

def FlightDao

1

FlightsResult

nav SearchFlightsController::confirmFlights()
17

18

nav SearchFlightsController::getFlightDetails()

def FlightManagerComponent
def FlightDao

use SearchFlightsController

use SearchFlightsController
use FlightManagerComponent

use FlightDao
use LoggedUserComponent

use BillingComponent

19

nav S
earch

FlightsC
ontroller::b

ack(
)

20
nav SearchFlightsController::searchAnotherFlight()

21

use FlightManagerComponent
use FlightDao

cb end use case

def FlightDao

FlightDetails

2

3

use SearchFlightsController

cb end use case

use SearchFlightsController

nav SearchFlightsController::cancel()

16

13

Figure 7.1: Managed Components Data Flow Graph generated from enriched

UML Robustness Diagram of Fig. A.4 in Appendix A.

100 Discussion

def RouterComponent
def LoggedUserComponent
def BillingComponent

nav RouterComponent::navigate()

Home

1

2

3
Login

4

nav LoginController::loginAsCustomer()

def LoginController
def PasswordManagerComponent
def UserDao

5

use LoginController
use PasswordManagerComponent
use UserDao
use LoggedUserComponent
use BillingComponent

Figure 7.2: Managed Components Data Flow Graph generated from enriched

UML Robustness Diagram of Fig. A.2 in Appendix A.

7.1 Evaluation of the methodology 101

All Paths All Edges All Nodes All DU-Paths All Uses All Defs

UC7 12 4 3 4 3 3

UC8 2 2 1 2 1 1

UC11 1 1 1 1 1 1

Table 7.1: Minimum number of test cases to be generated for testing the

main use cases of the case study in isolation (i.e., executing a single run).

The number of single run test cases required to satisfy each coverage cri-

terion over each mcDFG diagram are reported in the comparison Tab. 7.1.

Note that, for UC11 only a test case is sufficient for the complete coverage,

thus implying that this use case, substantially, will have a “no impact” in

the cost of a sequence of use cases in a k-run perspective.

In the following paragraphs, for each fault type concretisation (i.e., van-

ishing components, zombie components, unexpected shared components, and

unexpected injected components), qualitative arguments are provided about:

• identification of relevant mcDFG paths describing the sequence of nav-

igation actions able to activate the fault, thus leading the generation

of effective test cases;

• evaluation of minimum number of runs (i.e., the k parameter of a k-

run) required to detect relevant paths;

• discussion about which coverage criteria guarantee to generate at least

one of these paths;

• estimation of the minimum number of generated test cases to ensure

that at least one path is relevant.

Vanishing components The first type of fault is hidden within the “Search

Flights” use case, identified as UC7, whose mcDFG is depicted in Fig. 7.1.

The vanishing component of this scenario is represented by the FlightMan-

agerComponent, living in the use case context. A classical unit testing stage,

which exercises it in isolation, is not sufficient to identify the faulty be-

haviour, caused by an early death of the component itself subject to the

programmatic definition of use case context boundaries.

102 Discussion

The test case generation process, applied over the mcDFG, includes the

relevant paths for the testing stage through a single run (i.e., k = 1).

Considering that the fault is caused by a defect in the early ending of

the use case context, represented in the mcDFG by the edge interconnect-

ing nodes n12 and n13 labelled with cb end use case, so paths emphasising

the vanishing component fault must reach the node n13. In particular, each

path exploiting a use of FlightManagerComponent after that node, may ac-

tivate the fault after executing the navigation action nav SearchFlightsCon-

troller::getFlightDetails(). In so doing, all the suspected paths must includes

in their sequence one of these two cycles:

• . . .→ n13 → n17 → n18 → n19 → n13 → . . .

• . . .→ n13 → n17 → n18 → n20 → n21 → n13 → . . .

Thus, each coverage criterion, also All Nodes and All Defs, is able to define

at least one effective test case, capturing the defective behaviour of Flight-

ManagerComponent.

The minimum number of test cases required to satisfy coverage criteria

are reported in Tab. 7.2, highlighting that a limited quantity of test cases

(i.e., in a range between 3 and 12 test cases) is required by any of the

criterion, whose values however are far from their theoretical limits.

All Paths All Edges All Nodes

12 4 3

All DU-Paths All Uses All Defs

4 3 3

Table 7.2: Minimum number of test cases required to satisfy coverage criteria

for the “Search Flights” use case, identified as UC7, which does not require

to be logged in.

Zombie components The second type of fault is hidden in the sequence

of “Login as Customer” and “Book Flight” use cases (i.e., in a k-run with

k = 2), identified as UC11 and UC8, whose mcDFGs have been presented,

respectively, in Fig. 7.2 and Fig. 6.3. This specific concretisation of the fault

7.1 Evaluation of the methodology 103

cannot be identified by classical unit testing techniques applied over the

zombie TemporaryReservationComponent. Indeed, this managed component

has a prototype context, whose implementation is not a priori defective but

may lead to residual memory if injected by components with extended scopes

(e.g., as in case study scenario with RegisteredBookingController in session

context) which blindly rely on its implementation.

On the contrary, by analysing the mcDFG paths, capturing components

behaviours over sequence of end-user interactions within the use case, it is

possible to catch the error produced by zombie component fault at runtime.

Considering that the fault is activated whenever a registered end-user ex-

its from the BookingDetails page, by cancelling or by confirming the book-

ing, and considering also that each path of the mcDFG1 reaches this page

(traversing the node n3), then each path is able to detect the fault by veri-

fying post-conditions about the number of allocated temporary reservations

(with respect to their quantity before the execution of the use case).

Specifically, this use case contains only two alternative paths both effective

as test cases:

• confirmation case

n1 → n2 → n3 → n4 → n5 → n6

• cancelling case

n1 → n2 → n3 → n6

The minimum number of test cases required to satisfy coverage criteria are

reported in Tab. 7.3, highlighting that the number of required test cases is

very small; indeed, All Paths and All DU-Paths criteria are satisfied with

only 2 test cases.

Unexpected shared components The third type of fault is hidden in

the sequence of “Login as Customer” and “Search Flights” use cases, iden-

tified as UC11 and UC7, whose mcDFGs has been presented, respectively,

in Fig. 7.2 and Fig. 7.1. This specific fault concretises itself whenever a reg-

istered user selects a ticket for a flight, indeed on this action an update of

1Each path which starts in the node n1 and arrives in the node n6.

104 Discussion

All Paths All Edges All Nodes

1 · 2 = 2 1 · 2 = 2 1 · 1 = 1

All DU-Paths All Uses All Defs

1 · 2 = 2 1 · 1 = 1 1 · 1 = 1

Table 7.3: Minimum number of test cases required to satisfy coverage crite-

ria, for the k-run composed by one execution of the “Login as Customer” use

case, identified by UC11, and an execution of the “Book Flight” use case,

identified as UC8.

the BillingComponent fee is performed, overriding configurations installed

at login time.

The above behaviour cannot be identified through classical unit testing

techniques applied over the BillingComponent, whose instance sharing within

session context may generate runtime errors, neither it is identifiable with

this methodology applied in isolation for UC11 or UC7 (i.e., analysing the

mcDFG separately).

In these circumstances, only the selection of test cases evaluating col-

laborative long-running scenarios where a sequence of use cases is exercised

becomes effective; thus, evaluating indirect couplings generated among dif-

ferent use cases through shared components. This concrete fault instance can

be identified by firstly executing the “Login as Customer” use case and then

two times the “Search Flights” use case (i.e., one for search the outbound

flight and another for the return flight): the first overwrites the configura-

tion over the BillingComponent by entering in the FlightDetails, while the

second uses the end-user home country fee through LoggedUserComponent,

acting as a proxy for the same BillingComponent, that however has been

overwritten.

A k-run application of the methodology with k ≥ 3, according to any

coverage criterion, is able to detect the fault concretisation. Knowing that a

k-run test suite prescribes a number of test cases equal to the product of a

sequence of the number of test cases prescribed for each single run (related

to a single use case among chosen k ones), considering also that the mcDFG

of the UC11 contains a single path2, and taking into account costs for the

use case UC7 (reported in Tab. 7.2), the number of expected test cases per

2The mcDFG of UC11, in Fig. 7.2, contains a single path thus implying that the

number of prescribed test cases for each coverage criterion is equal to 1.

7.1 Evaluation of the methodology 105

coverage criterion is reported in Tab. 7.4.

All Paths All Edges All Nodes

1 · 12 · 12 = 144 1 · 4 · 4 = 16 1 · 3 · 3 = 9

All DU-Paths All Uses All Defs

1 · 4 · 4 = 16 1 · 3 · 3 = 9 1 · 3 · 3 = 9

Table 7.4: Minimum number of test cases required to satisfy coverage cri-

teria, for the k-run composed by one execution of the “Login as Customer”

use case, identified by UC11, and two executions of the “Search Flights” use

case, identified as UC7.

Obviously, long-running scenarios may take into account less-costly coverage

criteria; indeed in this scenario also All Nodes, All Defs and All Uses are

able to detect the fault.

Unexpected injected components The fourth type of fault occurs in

the same scenario of the zombie components fault, thus it is hidden in the

sequence of “Login as Customer” and “Book Flight” use cases, identified

as UC11 and UC8, whose mcDFGs have been presented, respectively, in

Fig. 7.2 and in Fig. 6.3. In general, this type of fault is determined by wrong

choices in programmatic lookup practices (i.e., a programmatic injection of

component instances, resolving dependencies at runtime) which can be due

either to defective algorithms implementations3 or to runtime hidden errors

over the “state” adopted by choosing algorithms. Specifically, this disserta-

tion presented a fault concretisation in Sect. 5.3.2 of this latter case, where

the programmatic injection algorithm implemented within the Discounter-

Component is correct, but it relies on a potentially obsolete state contained

into the LoggedUserComponent.

Considering that the fault is activated whenever a registered user per-

forms the UC8 use case a second time, after having already and successfully

booked a first flight in the same session, then each path of a k-run (with

k ≥ 3) application of the methodology is effective if and only if it traverses

3Note that the case of defective implementations of the algorithm logic is less interesting

for this research because fault of this type can be easily identified through classical unit

testing in isolation.

106 Discussion

all nodes of the mcDFG of UC11, the n4 and n5 nodes of the first run over

the mcDFG of UC8, and finally the n3 node in its second run.

The minimum number of test cases required to satisfy coverage criteria

are reported in Tab. 7.5, highlighting that the number of required test cases

is small for each criterion (also All Paths is feasible). This is primarily

due to the linearity of the mcDFGs, built over use cases designed with less

alternative flows4.

All Paths All Edges All Nodes

1 · 2 · 2 = 4 1 · 2 · 2 = 4 1 · 1 · 1 = 1

All DU-Paths All Uses All Defs

1 · 2 · 2 = 4 1 · 1 · 1 = 1 1 · 1 · 1 = 1

Table 7.5: Minimum number of test cases required to satisfy coverage cri-

teria, for the k-run composed by one execution of the “Login as Customer”

use case, identified by UC11, and two executions of the “Book Flight” use

case, identified as UC8.

In so doing, the simplest coverage criteria in a 3-run are able to catch the

fault, by requiring the definition of at least one effective test case.

7.2 Final discussion

Methodology evaluation shows promising results in “hunting” the concrete

fault implementations injected in the Flight Manager case study: in Sect. 7.1.1

a characterisation of relevant mcDFG paths activating each fault is provided,

enlightening in a purely theoretical perspective how the methodology may

drive verification stages, prescribing only relevant sequences of end-user in-

teractions (i.e., only feasible sequences of method invocation driven by nav-

igation actions within use cases). These promising results should be better

investigated through an actual experimentation, considering the whole soft-

ware development lifecycle from the design stage to the release stage.

The future adoption of the proposed methodology in concrete operative

enterprise-level contexts would demand for a complete cost-benefit analysis,

4In particular, UC8 includes a single alternative flow (i.e., cancel) to the main success

scenario (i.e., confirm) while the login process does not provides alternatives.

7.2 Final discussion 107

which should consider not only its effectiveness but also the required ad-

ditional work load in the generation of input design artefacts, and in the

implementation of final test cases. For this purpose, a more extensive em-

pirical work on third-party Web Applications, involving professional team of

developers and Software Engineers, is advisable. This is out of scope of this

dissertation, which provides qualitative arguments basing on the maturated

experience over the case study.

On the one hand, in concreteness, the methodology requires to produce

only a single type of artefact (i.e., the Enriched Robustness Diagram) useful

for the automated generation of the mcDFG, which is the core abstraction

for the test case generation process. The other mentioned artefacts (i.e.,

requirements specification, domain model, UML Use Cases Diagrams with

templates, Page Navigation Diagram, and UML Robustness Diagrams) have

to be considered as standard artefacts of a well disciplined software develop-

ment process, with the only exception of the robustness analysis stage, which

is a typical stage in ICONIX-based practices. Therefore, only the enrichment

step of Robustness Diagrams is really a mandatory step, but it is quite clear

that it simply prescribes of decorating boundaries and controller elements

with detailed information about managed components, their belonging con-

texts, and their dependencies hierarchies (for distinguishing among compo-

nents instantiations and methods invocations). In general, it can be stated

that the effort required by the methodology is quite feasible and may be fur-

ther lightened adopting heuristics for selecting only critical use cases, mainly

managed and orchestrated by the underlying DI framework.

On the other hand, as reported in the results of Sect. 7.1.1, the number of

test cases to be exercised depends on the adopted coverage criterion. With

respect to theoretical limits presented in Sect. 6.2.5 for each coverage cri-

terion, the quantity of effective test cases is lower; indeed, considering that

possible end-user interactions and navigation actions are driven by the User

Interface and subjected to a specific use case flow, it is very rare reaching

the theoretical limits. The mcDFG is an abstraction where alternative nav-

igation actions represent alternative execution flows of a use case, then the

mcDFG is, in most cases, a sparse graph; thus, the number of edges and pos-

sible paths within the mcDFG is very far from their theoretical maximum.

So, the number of expected test cases is usually affordable for single run

executions of the methodology and may increase only over k-runs exploited

with heavy coverage criteria.

108 Discussion

Chapter 8

Conclusion

This Chapter summarises the contribution of the thesis and discusses avenues

for future research.

8.1 Summary of contributions

This dissertation contributes to the area of Model-Based Testing, propos-

ing a methodology for verification of Enterprise Software Architectures with

stateful components, exploiting Dependency Injection (DI) and automated

contexts management.

Specifically, the research addresses the problem of test cases generation

for modular Web Applications, realising the Inversion of Control principle

through the adoption of DI containers which automatically resolve at runtime

components dependencies, also managing components lifecycle, according to

client-server paradigm and HTTP fundamentals.

A review of DI frameworks for major programming languages (i.e., C#,

Java™, Python™) has been accomplished for comparing common types of

context within which the components live and are managed by a DI con-

tainer, thus enabling the characterisation of a fault model which identifies

four specific types of fault, affecting stateful applications.

At the core of the methodology a new abstraction, named Managed Com-

ponents Data Flow Graph (mcDFG), has been defined for addressing the

fault model by reinterpreting the concepts of defs and uses of a classical Data

Flow Graph, combining structural information (e.g., modelled component

109

110 Conclusion

dependencies, components instantiations, components injections, method in-

vocations) with navigational and behavioural aspects of component-based

applications (e.g., navigation actions, contexts management).

In so doing, classical coverage criteria of Data Flow Testing have been

inherited and reintrepreted to cope with the mcDFG, describing inclusion

relationships among them and evaluating their theoretical complexities. The

application of a coverage criterion supports the automated extraction process

of mcDFG paths, each one representing a reference description of a single

test case. Thus, a test suite may account a use case in isolation as well as

a chain of use cases, prescribing the sequence of end-user interactions which

must be implemented to exercise the System Under Test in an end-to-end

testing perspective and within intra-session scenarios (i.e., accounting in

isolation each session context, which can be interpreted as an ordered and

non overlapping sequence of request contexts related to the same end-user).

The final implementation of a test case is delegated to the developer, who

must tailor the test in compliance to the adopted programming language, DI

frameworks, and available technologies, manually dealing with sensitisation

and oracle verdict stages for concretising pre-conditions and post-conditions

designed within UML Use Case Diagrams and templates.

The proposed methodology has been integrated with consolidated prac-

tices of software development and interpreted as an artefact-driven approach,

leveraging on intermediate abstractions for supporting the automated gen-

eration of the mcDFG. In so doing, a procedure for building the mcDFG ab-

straction starting from an enriched version of a UML Robustness Diagram

has been introduced, extracting page controllers from boundary elements,

navigation method invocations, belonging contexts of each managed compo-

nent, and dependencies call hierarchies from controller elements.

A qualitative discussion about the applicability of the methodology has

been reported for a prototype Web Application, implemented with the Java™

Enterprise Edition ecosystem through Contexts and Dependency Injection

(CDI) specification as the DI container and reference framework.

The practical application of the methodology within designed case study

scenarios, showed promising results in the capability of deriving effective

test suites, from generated mcDFG abstractions, for detecting fault type

concretisations of the characterised fault model, with acceptable effort and

costs for its adoption.

8.2 Directions for future work 111

8.2 Directions for future work

Ongoing research activities are pursuing two different perspectives.

In the theoretical perspective, future activities will led the research in ad-

dressing also inter-sessions scenarios, enabling the joint verification of com-

ponents living in session contexts associated to different end-users. In so

doing, it will be possible to consider and detect race conditions scenarios

produced by concurrent use case executions led by distinct end-users, inter-

facing with the Web Application. At the same time, this extension of the

methodology may also support the verification of cases of race conditions

produced by a same client executing in parallel two or more use cases within

a single session (e.g., a human end-user opens two tabs in its web browser,

a bot agent or a web-scraper agent “crawls” a sequence of pages).

The fault model will be enriched and accompanied with the identification

of common anti-patterns for stateful applications, highlighting components

configurations which are admissible by design but which may produce un-

expected faults at runtime. In so doing, the information provided by the

identified anti-patterns will help in reducing or avoiding the lack of design

control intrinsically latent within Web Applications where several software

components cooperate and maintain server-side a dynamic state during use

cases execution.

Furthermore, the proposed methodology could be extended to consider

also stateless Web Applications (e.g., realising a RESTful architecture) de-

coupling backend and frontend modules and adopting Inversion of Control

within their implementations, thus focusing on managed components mod-

elling client-side a stateful behaviour and interfacing server-side endpoints.

In the practical perspective, with the aim of enabling the automation of

salient stages of the proposed methodology, a Java™ library will be imple-

mented. The main stages which need for automation are essentially related

to the core mcDFG abstraction which drives the test case generation; so

the construction of the mcDFG starting from the enriched version of the

UML Robustness Diagram should be automated, implementing the two pre-

sented routines, as well as, the test suite generation and selection stages,

which should automatically extract the feasible paths from the mcDFG for

each coverage criterion. In general, also the support offered by source code

analysis tools or testing libraries may be useful in pursuing this objective.

112 Conclusion

Appendix A

Appendix

This Appendix includes the listings (as pseudo-code) of the algorithms, in-

troduced in Sect. 6.2.4, for generating an mcDFG, and the set of intermediate

artefacts and abstractions1 produced during the application of the proposed

methodology over the Flight Manager case study (see Chapter 4), for the

four types of fault concretisations, described in Sect. 5.3.2.

1For completeness of information, only the artefacts and abstractions which have not

been previously reported in the dissertation are here included.

113

114 Appendix

A.1 mcDFG generation algorithms

In this Section, the algorithms for generating an mcDFG starting from an

Enriched Robustness Diagram (described in Sect. 6.2.4) are listed as pseudo-

codes.

Algorithm 1: ERD to mcDFG Mapper

input : erd (the Enriched Robustness Diagram)

output: mcDFG (the Managed Component DFG)

// 1st routine

1 emcDFG ← doMapERDtoEMCDFG(erd)

// 2nd routine

2 mcDFG ← reduceToMCDFG(emcDFG)

// Add a first defs node with all application and session components

3 mcDFG ← appendFirstDefsNodeMCDFG(mcDFG)

4 return mcDFG

Algorithm 2: mapERDtoEMCDFG()

input : erd (the Enriched Robustness Diagram)

output: emcDFG (the extended Managed Component DFG)

// Global variables initialisation

1 emcDFG with sets V ← ∅ and E ← ∅
// Allocates global contexts

2 CTX ← {application, session}
// Retrieves managed components from global contexts,

// considering them as already alive and thus already defined

3 MC ← extractSessionApplicationMCs()

// Local variables initialisation

4 SP ← extractStartingPages(erd)

5 while SP is not empty do

6 etmp ← pull an element from SP

7 mapNode(etmp, null, null)

8 end

9 return emcDFG

A.1 mcDFG generation algorithms 115

Algorithm 3: mapNode()

input: e (the analysed ERD element)

input: currentNodemcDFG (the last mcDFG node, to hook to)

input: edgeLabelmcDFG (the label to apply on interconnecting edge)

1 switch getElementType(e) do

2 case BOUNDARY: do

3 mapBoundaryNode(e, currentNodemcDFG, edgeLabelmcDFG)

4 end

5 case CONTROLLER: do

6 mapControllerNode(e, currentNodemcDFG, edgeLabelmcDFG)

7 end

8 end

Algorithm 4: mapBoundaryNode()

input: eb (the current boundary element)

input: currentNodemcDFG (the last mcDFG node, to hook to)

input: edgeLabelmcDFG (the label to apply on interconnecting edge)

1 PAGE ← getBoundaryLabel(eb)

2 CTRL ← null

3 σ ← 〈 PAGE, CTRL, CTX, MC, ∅, ∅ 〉
4 preExistingNode ← findAndGetNode(σ)

5 if preExistingNode is not null then

6 node ← new Node(σ)

7 add node to set V of emcDFG

8 edge ← new Edge(currentNodemcDFG, edgeLabelmcDFG, node)

9 add edge to set E of emcDFG

10 Eout ← getOutgoingEdges(eb) // With following order (init, nav)

11 while Eout is not empty do

12 tmpEdge ← pull an element from Eout
// Applies the Nav function

13 tmpNavLabel ← getNavEdgeLabel(tmpEdge)

14 mapNode(eb, node, tmpNavLabel)

15 end

16 end

17 else

18 edge ← new Edge(currentNodemcDFG, null, preExistingNode)

19 add edge to set E of emcDFG

20 end

116 Appendix

Algorithm 5: mapControllerNode()

input: ec (the current controller element)

input: currentNodemcDFG (the last mcDFG node, to hook to)

input: edgeLabelmcDFG (the label to be applied on interconnecting edge, if

necessary)

1 CTRL ← getControllerLabel(ec)

2 beginnedUseCaseContext ← determineContextBoundaryOpening(MC)

3 if beginnedUseCaseContext is not null then

4 add beginnedUseCaseContext to set CTX

// Applies the CB function

5 edgeLabelmcDFG ← getCbEdgeLabel(beginnedUseCaseContext)

6 end

7 sortedManagedComponents ← CTRL
⋃
HCTRL

8 forall mctmp ∈ sortedManagedComponents do

9 if mctmp /∈ MC then

// def

10 add mctmp to MC

11 σ ← 〈 PAGE, CTRL, CTX, MC, mctmp, ∅ 〉
12 [currentNodemcDFG,edgeLabelmcDFG] ←

appendNewNodeOrPreExisting(σ, currentNodemcDFG,

edgeLabelmcDFG)

13 end

14 if currentNodemcDFG is null then

15 return // Termination Rule

16 end

17 end

18 forall mctmp ∈ sortedManagedComponents do

// use

19 σ ← 〈 PAGE, CTRL, CTX, MC, ∅, mctmp 〉
20 [currentNodemcDFG,edgeLabelmcDFG] ← appendNewNodeOrPreExisting(σ,

currentNodemcDFG, edgeLabelmcDFG)

21 if currentNodemcDFG is null then

22 return // Termination Rule

23 end

24 end

25 closedUseCaseContext ← determineContextBoundaryClosing(MC)

26 if closedUseCaseContext is not null then

27 remove closedUseCaseContext from set CTX

28 remove all getContextualInstances(closedUseCaseContext) from MC

// Applies the CB function

29 edgeLabelmcDFG ← getCbEdgeLabel(closedUseCaseContext)

30 end

31 enext ← getNextERDelement (ec)

32 mapNode(enext, currentNodemcDFG, edgeLabelmcDFG)

A.2 Further artefacts and abstractions 117

Algorithm 6: appendNewNodeOrPreExisting()

input: σ (the status of appending node)

input: currentNodemcDFG (the last mcDFG node, to hook to)

input: edgeLabelmcDFG (the label to be applied on interconnecting edge, if

necessary)

1 preExistingNode ← findAndGetNode(σ)

2 if preExistingNode is not null then

3 node ← new Node(σ)

4 add node to set V of emcDFG

5 edge ← new Edge(currentNodemcDFG, edgeLabelmcDFG, node)

6 add edge to set E of emcDFG

7 currentNodemcDFG ← node

8 end

9 else

10 edge ← new Edge(currentNodemcDFG, null, preExistingNode)

11 add edge to set E of emcDFG

12 currentNodemcDFG ← null

13 end

14 edgeLabelmcDFG ← null

15 return [currentNodemcDFG,edgeLabelmcDFG]

A.2 Further artefacts and abstractions

In this Section, the UML Robustness Diagrams and their enriched versions

are reported, so as to better understand how some mcDFG of Sect. 7.1.1

have been generated starting from these previous artefacts.

Specifically:

• Fig. A.1 depicts the UML Robustness Diagram of “Login as Customer”

use case, identified as UC11;

• Fig. A.2 depicts the Enriched UML Robustness Diagram of “Login as

Customer” use case, identified as UC11, starting from the artefact of

Fig. A.1 and useful for generating the mcDFG of Fig. 7.2;

• Fig. A.3 depicts the UML Robustness Diagram of “Search Flights” use

case, identified as UC7;

• Fig. A.4 depicts the Enriched UML Robustness Diagram of “Search

Flights” use case, identified as UC7, starting from the artefact of

Fig. A.3 and useful for generating the mcDFG of Fig. 7.1.

118 Appendix

Home

Forward

Login

+click login

Authenticate

+loginAsCustomer

Registered

Figure A.1: UML Robustness Diagram of “Login as Customer” use case,

identified as UC11.

Home

RouterComponent::navigate()

Login

+click login

LoginController::loginAsCustomer()
<<request>>

+loginAsCustomer

UserDao::login()
<<request>>

#2

LoggedUserComponent::initUser()
<<session>>

#3

Registered <<application>>

BillingComponent::setCountry()
<<session>>

#1

UserDao::getUserHistory()

#2

<<request>>

PasswordManagerComponent::encode()
<<request>>

#1

Figure A.2: Enriched UML Robustness Diagram of “Login as Customer” use

case, identified as UC11 leading the generation of the mcDFG of Fig. 7.2.

A.2 Further artefacts and abstractions 119

Home

FlightsResult

BookingDetails

FlightDetails

Search Flights

+click search

Flight Details

Back

+click back

Another Search

Confirm

+click confirm

+click cancel
+click selectFlight

User

+click newSearch

Cancel

+click viewDetails

Flights

Flight

Flights
Booking

Country

Figure A.3: UML Robustness Diagram of “Search Flights” use case, identi-

fied as UC7.

120 Appendix

Home

FlightsResult

BookingDetails

FlightDetails

SearchFlightsController::searchFlights()
<<session>>

UseCaseContext::begin()
#1

FlightManagerComponent::searchFlights()
<<use case>>

#2

FlightDao::getFlights()
<<request>>

#1

+click search

SearchFlightsController::getFlightDetails()

+click viewDetails
FlightManagerComponent::fetchFlight()

#1
<<use case>>

SearchFlightsController::back()

+click back

SearchFlightsController::searchAnotherFlight()

FlightManagerComponent::searchFlights()

FlightDao::getFlights()

#1

UseCaseContext::end()

#1 #2

SearchFlightsController::confirmFlights()

UseCaseContext::end()

#1

+click confirm

+click selectFlight

User

+click newSearch

SearchFlightsController::cancel()

+click cancel

UseCaseContext::end()

#1

FlightDao::getFlightData()

#1

<<session>>

<<session>>

<<session>>

<<session>>

<<session>>

<<request>>

<<request>>

<<use case>>

<<SearchFlightsController>>

<<SearchFlightsController>>

<<SearchFlightsController>>

LoggedUserComponent::getHomeCountry()

BillingComponent::getFee()

<<session>>

<<session>>

#2

BillingComponent::setCountry()
<<session>>

#3

#4

LoggedUserComponent::getHomeCountryFee()

#5

<<session>>

#1

Flights

Flights

Booking

Country

Flight

Figure A.4: Enriched UML Robustness Diagram of “Search Flights” use

case, identified as UC7 leading the generation of the mcDFG of Fig. 7.1.

Appendix B

Publications

Research activity, carried out during the PhD Course, exploited experimen-

tation opportunities offered by several “Research & Development” projects,

which I was involved in with research grants, leading to the following publi-

cations in International Journals and Conferences.

International Journals

1. J. Parri, S. Sampietro, E. Vicario. “Deploying digital twins in a lambda

architecture for industry 4.0”, ERCIM News, vol. 115, 2018. (Special Issue:

Digital Twins)

2. J. Parri, F. Patara, S. Sampietro, E. Vicario,. “A framework for Model-

Driven Engineering of resilient software-controlled systems”, Springer Com-

puting Journal, 2020. [DOI: 10.1007/s00607-020-00841-6]

3. L. Carnevali, A. Fantechi, G. Gori, J. Parri, M. Pieralli, S. Sampietro.

“A heuristic approach for predictive diagnosis of wheels wear based on a

low cost track-side equipment”, IF-Ingegneria Ferroviaria, Collegio Ingeg-

neri Ferroviari Italiani, 2021.

International Conferences and Workshops

1. J. Parri, F. Patara, S. Sampietro, E. Vicario. “JARVIS, A Hardware/Soft-

ware Framework for Resilient Industry 4.0 Systems”, in Proc. of XI Interna-

tional Workshop on Software Engineering for Resilient Systems (SERENE),

Naples (Italy), 2019. [DOI: 10.1007/978-3-030-30856-8 6]

121

122 Publications

Bibliography

[1] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5, no. 7, pp.

1–19, 1970.

[2] D. Alur, J. Crupi, and D. Malks, Core J2EE patterns: best practices and

design strategies. Prentice Hall Professional, 2003.

[3] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,

M. Harman, M. J. Harrold, P. Mcminn, A. Bertolino et al., “An orchestrated

survey of methodologies for automated software test case generation,” Jour-

nal of Systems and Software, vol. 86, no. 8, pp. 1978–2001, 2013.

[4] Apache Software Foundation, “Apache OpenWebBeans,” 2020. [Online].

Available: http://openwebbeans.apache.org/

[5] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts

and taxonomy of dependable and secure computing,” IEEE transactions on

dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[6] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The ora-

cle problem in software testing: A survey,” IEEE transactions on software

engineering, vol. 41, no. 5, pp. 507–525, 2014.

[7] A. Barth, “Rfc 6265-http state management mechanism,” Internet Engineer-

ing Task Force (IETF), pp. 2070–1721, 2011.

[8] K. Beck, Test-driven development: by example. Addison-Wesley Profes-

sional, 2003.

[9] B. Beizer, Software testing techniques. Dreamtech Press, 2003.

[10] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext transfer protocol–

http/1.0,” 1996.

[11] G. Booch, The unified modeling language user guide. Pearson Education

India, 2005.

[12] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Ut-

ting, “A subset of precise uml for model-based testing,” in Proceedings of the

123

http://openwebbeans.apache.org/

124 BIBLIOGRAPHY

3rd international workshop on Advances in model-based testing, 2007, pp.

95–104.

[13] I. B. Bourdonov, A. S. Kossatchev, V. V. Kuliamin, and A. K. Petrenko,

“Unitesk test suite architecture,” in International Symposium of Formal

Methods Europe. Springer, 2002, pp. 77–88.

[14] R. Brownlie, J. Prowse, and M. S. Phadke, “Robust testing of at&t pmx/s-

tarmail using oats,” AT&T Technical Journal, vol. 71, no. 3, pp. 41–47, 1992.

[15] E. Burns and R. Kitain, “Jsr 365: Javaserver faces 2.0,” 2010. [Online].

Available: https://jcp.org/en/jsr/detail?id=314

[16] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic

generation of high-coverage tests for complex systems programs.” in OSDI,

vol. 8, 2008, pp. 209–224.

[17] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new

approach for generating next test cases,” arXiv preprint arXiv:2002.12543,

2020.

[18] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in Annual

Asian Computing Science Conference. Springer, 2004, pp. 320–329.

[19] A. Cockburn, Writing effective use cases. Addison-Wesley Professional,

2000.

[20] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, “The combinatorial

design approach to automatic test generation,” IEEE software, vol. 13, no. 5,

pp. 83–88, 1996.

[21] J. Conallen, “Modeling web application architectures with uml,” Communi-

cations of the ACM, vol. 42, no. 10, pp. 63–70, 1999.

[22] ——, Building Web applications with UML. Addison-Wesley Professional,

2003.

[23] S. R. Dalal, A. Jain, G. Patton, M. Rathi, and P. Seymour, “Aetg/sup

sm/web: a web based service for automatic efficient test generation from

functional requirements,” in Proceedings. 2nd IEEE Workshop on Industrial

Strength Formal Specification Techniques. IEEE, 1998, pp. 84–85.

[24] H. Dan and R. M. Hierons, “Conformance testing from message sequence

charts,” in 2011 Fourth IEEE International Conference on Software Testing,

Verification and Validation. IEEE, 2011, pp. 279–288.

[25] J. Deacon, “Model-view-controller (mvc) architecture,” Online][Citado em:

10 de março de 2006.] http://www. jdl. co. uk/briefings/MVC. pdf, 2009.

[26] L. Demichiel, “Jsr 317: Javatm persistence 2.0,” 2009. [Online]. Available:

https://www.jcp.org/en/jsr/detail?id=317

https://jcp.org/en/jsr/detail?id=314
https://www.jcp.org/en/jsr/detail?id=317

BIBLIOGRAPHY 125

[27] G. Denaro, A. Gorla, and M. Pezzè, “Contextual integration testing of

classes,” in International Conference on Fundamental Approaches to Soft-

ware Engineering. Springer, 2008, pp. 246–260.

[28] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A survey

on model-based testing approaches: a systematic review,” in Proceedings of

the 1st ACM international workshop on Empirical assessment of software

engineering languages and technologies: held in conjunction with the 22nd

IEEE/ACM International Conference on Automated Software Engineering

(ASE) 2007, 2007, pp. 31–36.

[29] E. W. Dijkstra, E. W. Dijkstra, E. W. Dijkstra, E.-U. Informaticien, and

E. W. Dijkstra, A discipline of programming. prentice-hall Englewood Cliffs,

1976, vol. 613924118.

[30] I. S. Dunietz, W. K. Ehrlich, B. Szablak, C. L. Mallows, and A. Iannino,

“Applying design of experiments to software testing: experience report,”

in Proceedings of the 19th international conference on Software engineering,

1997, pp. 205–215.

[31] E. J. Evans and E. Evans, Domain-driven design: tackling complexity in the

heart of software. Addison-Wesley Professional, 2004.

[32] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence

graph and its use in optimization,” ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[33] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “Hypertext transfer protocol–http/1.1,” 1999.

[34] R. T. Fielding and R. N. Taylor, Architectural styles and the design of

network-based software architectures. University of California, Irvine Irvine,

2000, vol. 7.

[35] M. Fowler, Patterns of enterprise application architecture. Addison-Wesley

Longman Publishing Co., Inc., 2002.

[36] ——, “Inversion of control containers and the dependency injection pattern,”

2004.

[37] ——, UML distilled: a brief guide to the standard object modeling language.

Addison-Wesley Professional, 2004.

[38] ——, “Inversion of control,” Martin Fowler’s Bliki, 2005.

[39] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow testing

criteria,” IEEE Transactions on Software Engineering, vol. 14, no. 10, pp.

1483–1498, 1988.

[40] L. Fuentes-Fernández and A. Vallecillo-Moreno, “An introduction to uml

profiles,” UML and Model Engineering, vol. 2, no. 6-13, p. 72, 2004.

126 BIBLIOGRAPHY

[41] E. Gamma, Design patterns: elements of reusable object-oriented software.

Pearson Education India, 1995.

[42] S. R. Ganov, C. Killmar, S. Khurshid, and D. E. Perry, “Test generation for

graphical user interfaces based on symbolic execution,” in Proceedings of the

3rd international workshop on Automation of software test, 2008, pp. 33–40.

[43] Google, “Pinject,” 2020. [Online]. Available: https://github.com/google/

pinject

[44] R. Hamlet, “Random testing,” Encyclopedia of software Engineering, 2002.

[45] M. Harman and P. McMinn, “A theoretical and empirical study of search-

based testing: Local, global, and hybrid search,” IEEE Transactions on Soft-

ware Engineering, vol. 36, no. 2, pp. 226–247, 2009.

[46] M. J. Harrold, B. Malloy, and G. Rothermel, “Efficient construction of

program dependence graphs,” ACM SIGSOFT Software Engineering Notes,

vol. 18, no. 3, pp. 160–170, 1993.

[47] M. J. Harrold and G. Rothermel, “Performing data flow testing on classes,”

ACM SIGSOFT Software Engineering Notes, vol. 19, no. 5, pp. 154–163,

1994.

[48] M. J. Harrold and M. L. Soffa, “Interprocedual data flow testing,” ACM

SIGSOFT Software Engineering Notes, vol. 14, no. 8, pp. 158–167, 1989.

[49] F. Ipate and R. Lefticaru, “State-based testing is functional testing,” in Test-

ing: Academic and Industrial Conference Practice and Research Techniques-

MUTATION (TAICPART-MUTATION 2007). IEEE, 2007, pp. 55–66.

[50] Y. Jia and M. Harman, “An analysis and survey of the development of mu-

tation testing,” IEEE transactions on software engineering, vol. 37, no. 5,

pp. 649–678, 2010.

[51] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of object-

oriented programming, vol. 1, no. 2, pp. 22–35, 1988.

[52] R. Johnson and B. Lee, “Jsr 330: Dependency injection for java,” 2009.

[Online]. Available: https://jcp.org/en/jsr/detail?id=330

[53] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, T. Risberg,

A. Arendsen, D. Davison, D. Kopylenko, M. Pollack et al., “The spring

framework-reference documentation,” interface, vol. 21, p. 27, 2004.

[54] M. Jones, B. Campbell, and C. Mortimore, “Json web token (jwt) pro-

file for oauth 2.0 client authentication and authorization grants,” May-

2015.[Online]. Available: https://tools. ietf. org/html/rfc7523, 2015.

https://github.com/google/pinject
https://github.com/google/pinject
https://jcp.org/en/jsr/detail?id=330

BIBLIOGRAPHY 127

[55] M. Kaplan, T. Klinger, A. M. Paradkar, A. Sinha, C. Williams, and C. Yil-

maz, “Less is more: A minimalistic approach to uml model-based confor-

mance test generation,” in 2008 1st International Conference on Software

Testing, Verification, and Validation. IEEE, 2008, pp. 82–91.

[56] M. Katara and A. Kervinen, “Making model-based testing more agile: a use

case driven approach,” in Haifa Verification Conference. Springer, 2006,

pp. 219–234.

[57] G. King et al., “Weld-jsr-299 reference implementation jsr-299: The new java

standard for dependency injection and contextual lifecycle management,”

Nov, vol. 11, pp. 1–120, 2009.

[58] G. King, L. Red Hat Middleware, and P. F. Draft, “Jsr-299: Contexts and

dependency injection for the java ee platform,” 2009.

[59] J. C. King, “A new approach to program testing,” ACM Sigplan Notices,

vol. 10, no. 6, pp. 228–233, 1975.

[60] G. Kovács, F. Magyar, and T. Gyimóthy, “Static slicing of java programs,”

in University. Citeseer, 1996.

[61] V. V. Kuliamin, A. K. Petrenko, A. S. Kossatchev, and I. B. Burdonov,

“The unitesk approach to designing test suites,” Programming and Computer

Software, vol. 29, no. 6, pp. 310–322, 2003.

[62] C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Yoyoshima, “Design recovery for

software testing of object-oriented programs,” in [1993] Proceedings Working

Conference on Reverse Engineering. IEEE, 1993, pp. 202–211.

[63] D. C. Kung, C.-H. Liu, and P. Hsia, “An object-oriented web test model for

testing web applications,” in Proceedings First Asia-Pacific Conference on

Quality Software. IEEE, 2000, pp. 111–120.

[64] E. Labs, “Dependency injector,” 2020. [Online]. Available: https:

//python-dependency-injector.ets-labs.org/

[65] L. Larsen and M. J. Harrold, “Slicing object-oriented software,” in Proceed-

ings of IEEE 18th international conference on software engineering. IEEE,

1996, pp. 495–505.

[66] B. Legeard and M. Utting, “Model-based testing-next generation functional

software testing,” SoftwareTech News, vol. 12, no. 4, pp. 9–18, 2010.

[67] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, and P. C. Masiero,

“Control and data flow structural testing criteria for aspect-oriented pro-

grams,” Journal of Systems and Software, vol. 80, no. 6, pp. 862–882, 2007.

[68] P. C. Linskey and M. Prud’hommeaux, “An in-depth look at the architecture

of an object/relational mapper,” in Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, 2007, pp. 889–894.

https://python-dependency-injector.ets-labs.org/
https://python-dependency-injector.ets-labs.org/

128 BIBLIOGRAPHY

[69] C.-H. Liu, D. C. Kung, P. Hsia, and C.-T. Hsu, “Structural testing of web

applications,” in Proceedings 11th International Symposium on Software Re-

liability Engineering. ISSRE 2000. IEEE, 2000, pp. 84–96.

[70] B. Mallo, J. D. McGregor, A. Krishnaswamy, and M. Medikonda, “An ex-

tensible program representation for object-oriented software,” ACM Sigplan

Notices, vol. 29, no. 12, pp. 38–47, 1994.

[71] P. D. Manuel and J. AlGhamdi, “A data-centric design for n-tier architec-

ture,” Information Sciences, vol. 150, no. 3-4, pp. 195–206, 2003.

[72] R. C. Martin, “The dependency inversion principle,” C++ Report, vol. 8,

no. 6, pp. 61–66, 1996.

[73] ——, “Design principles and design patterns,” Object Mentor, vol. 1, no. 34,

2000.

[74] P. McMinn, “Search-based software testing: Past, present and future,” in

2011 IEEE Fourth International Conference on Software Testing, Verifica-

tion and Validation Workshops. IEEE, 2011, pp. 153–163.

[75] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software

testing. Wiley Online Library, 2004, vol. 2.

[76] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel, “Automatic test

generation: A use case driven approach,” IEEE Transactions on Software

Engineering, vol. 32, no. 3, pp. 140–155, 2006.

[77] S. C. Ntafos, “A comparison of some structural testing strategies,” IEEE

transactions on software engineering, vol. 14, no. 6, pp. 868–874, 1988.

[78] J. Offutt and A. Abdurazik, “Generating tests from uml specifications,” in

International Conference on the Unified Modeling Language. Springer, 1999,

pp. 416–429.

[79] K. J. Ottenstein and L. M. Ottenstein, “The program dependence graph in

a software development environment,” ACM Sigplan Notices, vol. 19, no. 5,

pp. 177–184, 1984.

[80] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,

“Mutation testing advances: an analysis and survey,” in Advances in Com-

puters. Elsevier, 2019, vol. 112, pp. 275–378.

[81] D. L. Parnas, “On the criteria to be used in decomposing systems into

modules,” in Pioneers and Their Contributions to Software Engineering.

Springer, 1972, pp. 479–498.

[82] ——, “Information distribution aspects of design methodology,” 1971.

[83] R. Pérez-Castillo, I. G.-R. De Guzman, and M. Piattini, “Knowledge dis-

covery metamodel-iso/iec 19506: A standard to modernize legacy systems,”

Computer Standards & Interfaces, vol. 33, no. 6, pp. 519–532, 2011.

BIBLIOGRAPHY 129

[84] V. Perrone, L. Mainetti, and P. Paolini, “A uml extension for designing

usable user experiences for web applications,” IWWOST. 05, p. 25, 2005.

[85] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical combinatorial in-

teraction testing: Empirical findings on efficiency and early fault detection,”

IEEE Transactions on Software Engineering, vol. 41, no. 9, pp. 901–924,

2015.

[86] P. V. P. Pinheiro, A. T. Endo, and A. Simao, “Model-based testing of restful

web services using uml protocol state machines,” in Brazilian Workshop on

Systematic and Automated Software Testing. Citeseer, 2013, pp. 1–10.

[87] M. Pollack, R. Evans, A. Seovic, F. Spinazzi, R. Harrop, G. Caprio, and

C. Rim, “The spring .net framework reference documentation,” 2008.

[88] B. Potter and G. McGraw, “Software security testing,” IEEE Security &

Privacy, vol. 2, no. 5, pp. 81–85, 2004.

[89] D. R. Prasanna, “Dependency injection,” 2009.

[90] S. Rapps and E. J. Weyuker, “Selecting software test data using data flow

information,” IEEE transactions on software engineering, no. 4, pp. 367–375,

1985.

[91] Specification: JSR-346 Contexts and Dependency Injection for the Java EE

platform (CDI) (”Specification”), Red Hat, Inc., April 2014, version: 1.2.

[92] Specification: JSR-365 Contexts and Dependency Injection for Java 2.0, Red

Hat, Inc., March 2017, version: 2.0.

[93] H. Reza, K. Ogaard, and A. Malge, “A model based testing technique to

test web applications using statecharts,” in Fifth International Conference

on Information Technology: New Generations (itng 2008). IEEE, 2008, pp.

183–188.

[94] F. Ricca and P. Tonella, “Analysis and testing of web applications,” in Pro-

ceedings of the 23rd International Conference on Software Engineering. ICSE

2001. IEEE, 2001, pp. 25–34.

[95] L. Richardson and S. Ruby, RESTful web services. ” O’Reilly Media, Inc.”,

2008.

[96] A. Rodriguez, “Restful web services: The basics,” IBM developerWorks,

vol. 33, p. 18, 2008.

[97] M. A. Rood, “Enterprise architecture: definition, content, and utility,” in

Proceedings of 3rd IEEE Workshop on Enabling Technologies: Infrastructure

for Collaborative Enterprises. IEEE, 1994, pp. 106–111.

[98] D. Rosenberg and K. Scott, use case driven object modeling with uml.

Springer, 1999.

130 BIBLIOGRAPHY

[99] D. Rosenberg, M. Stephens, and M. Collins-Cope, “Agile development with

iconix process,” New York, Editorial Apress, 2005.

[100] A. Sabot-Durand, “Jsr 314: Contexts and dependency injection for javatm

2.0,” 2017. [Online]. Available: https://jcp.org/en/jsr/detail?id=365

[101] D. C. Schmidt, “Model-driven engineering,” Computer-IEEE Computer So-

ciety, vol. 39, no. 2, p. 25, 2006.

[102] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented

Software Architecture, Patterns for Concurrent and Networked Objects.

John Wiley & Sons, 2013, vol. 2.

[103] M. Seemann, Dependency injection in. NET. Manning, 2012.

[104] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey on

metamorphic testing,” IEEE Transactions on software engineering, vol. 42,

no. 9, pp. 805–824, 2016.

[105] A. Shatnawi, H. Mili, G. El Boussaidi, A. Boubaker, Y.-G. Guéhéneuc,

N. Moha, J. Privat, and M. Abdellatif, “Analyzing program dependencies

in java ee applications,” in 2017 IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR). IEEE, 2017, pp. 64–74.

[106] M. Sniedovich, Dynamic programming: foundations and principles. CRC

press, 2010.

[107] A. L. Souter and L. L. Pollock, “The construction of contextual def-use

associations for object-oriented systems,” IEEE Transactions on Software

Engineering, vol. 29, no. 11, pp. 1005–1018, 2003.

[108] A. L. Souter, L. L. Pollock, and D. Hisley, “Inter-class def-use analysis with

partial class representations,” in Proceedings of the 1999 ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools and engineering,

1999, pp. 47–56.

[109] V. E. S. Souza, R. Falbo, and G. Guizzardi, “A uml profile for modeling

framework-based web information systems,” in 12th International Workshop

on Exploring Modelling Methods in Systems Analysis and Design EMMSAD,

vol. 782007, 2007, pp. 153–162.

[110] Y. Sun, X. Yang, J. Liu, T. Yu, Z. Xu, Z. Wu, and Z. Chen, “Automatic

integration testing through collaboration diagram and logic contracts,” in

Journal of Physics: Conference Series, vol. 1187, no. 4. IOP Publishing,

2019, p. 042043.

[111] R. E. Sweet, “The mesa programming environment,” ACM SIGPLAN No-

tices, vol. 20, no. 7, pp. 216–229, 1985.

[112] A. Thomas, “Injector,” 2020. [Online]. Available: https://injector.

readthedocs.io/en/latest/index.html

https://jcp.org/en/jsr/detail?id=365
https://injector.readthedocs.io/en/latest/index.html
https://injector.readthedocs.io/en/latest/index.html

BIBLIOGRAPHY 131

[113] S. Tiwari and A. Gupta, “A systematic literature review of use case specifica-

tions research,” Information and Software Technology, vol. 67, pp. 128–158,

2015.

[114] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based

testing approaches,” Software testing, verification and reliability, vol. 22,

no. 5, pp. 297–312, 2012.

[115] R. Vanbrabant, Google Guice: agile lightweight dependency injection frame-

work. APress, 2008.

[116] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, and J. Kazmeier, “Au-

tomation of gui testing using a model-driven approach,” in Proceedings of

the 2006 international workshop on Automation of software test, 2006, pp.

9–14.

[117] N. Walkinshaw, M. Roper, and M. Wood, “The java system dependence

graph,” in Proceedings Third IEEE International Workshop on Source Code

Analysis and Manipulation. IEEE, 2003, pp. 55–64.

[118] J. Wegener and O. Bühler, “Evaluation of different fitness functions for the

evolutionary testing of an autonomous parking system,” in Genetic and Evo-

lutionary Computation Conference. Springer, 2004, pp. 1400–1412.

[119] M. Weiser, “Program slicing,” IEEE Transactions on Software Engineering,

vol. SE-10, no. 4, pp. 352–357, 1984.

[120] Y. Wu, D. Pan, and M.-H. Chen, “Techniques of maintaining evolving

component-based software,” in Proceedings 2000 International Conference

on Software Maintenance. IEEE, 2000, pp. 236–246.

[121] ——, “Techniques for testing component-based software,” in Proceedings

Seventh IEEE International Conference on Engineering of Complex Com-

puter Systems. IEEE, 2001, pp. 222–232.

[122] S. Yacoub, B. Cukic, and H. H. Ammar, “A scenario-based reliability analysis

approach for component-based software,” IEEE transactions on reliability,

vol. 53, no. 4, pp. 465–480, 2004.

[123] J. Zhao, “Applying program dependence analysis to java software,” in Pro-

ceedings of Workshop on Software Engineering and Database Systems, 1998

International Computer Symposium, 1998, pp. 162–169.

[124] ——, “Data-flow-based unit testing of aspect-oriented programs,” in Proceed-

ings 27th Annual International Computer Software and Applications Confer-

ence. COMPAC 2003. IEEE, 2003, pp. 188–197.

[125] Z. Q. Zhou, D. Huang, T. Tse, Z. Yang, H. Huang, and T. Chen, “Meta-

morphic testing and its applications,” in Proceedings of the 8th International

Symposium on Future Software Technology (ISFST 2004). Software Engi-

neers Association Xian, China, 2004, pp. 346–351.

