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ABSTRACT
A well-configured spare parts supply chain (SC) can reduce costs and increase the competitive-
ness of spare parts retailers. A structured method for configuring spare parts SCs should be used
to determine whether to centralise or decentralise inventory management, also considering hybrid
configurations. Moreover, such a method should define whether or not to switch the production
of spare parts from Conventional Manufacturing (CM) technologies to Additive Manufacturing (AM)
ones. Indeed, AM is considered the next revolution in the field of spare parts, and the adoption of AM
technologies strongly affects the characteristics of SCs. However, the choice between centralisation
and decentralisation is not the subject of much scientific research, and it is also not clear when AM
would be the preferable manufacturing technology for spare parts. This paper aims to assist man-
agers and practitioners in determining how to design their spare parts SCs, thus defining both the
spare parts SC configuration and themanufacturing technology to adopt through the development
of a decision support system (DSS). The proposedDSS is a user-friendly decision tree, and, for the first
time, it allows comparisonof the total costs of SCs characterisedbydifferent degrees of centralisation
with both AM and CM spare parts.
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1. Introduction

Over the last decade, factors like globalisation, competi-
tion, reduced time-to-market, and high productivity have
made the impact of logistics on supply chain (SC) prof-
its greater than in the past (Dominguez, Cannella, and
Framinan 2021). Consequently, researchers have started
investigating how to improve logistics activities, and act-
ing on the SC configuration has proved to be an effective
way to do so. However, changes in the SC configuration
profoundly influence not only the logistics activities, but
also other aspects such as capital investments (Jiang and
Nee 2013), sustainability (Tsao et al. 2021), and customer
service (Fathi et al. 2021). For this reason, optimising the
SC configuration represents a challenging task (Vlajic,
Van Der Vorst, and Haijema 2012).

When dealing with spare parts, it becomes even
more challenging to optimise the SC configuration. In
fact, in spare parts SCs, a high customer service level
is required as the effects of inventory stock-outs on
spare parts SC performance can be financially signifi-
cant (Stoll et al. 2015; Tapia-Ubeda et al. 2020). Hence, a
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customer-centred perspective should be adopted (Gian-
nikas, McFarlane, and Strachan 2019), and spare parts
retailers should configure their SCs to locate distribution
centres (DCs) close to the end customers and align stocks
to meet their demand (a.k.a. decentralised SC configura-
tion) (Cohen, Agrawal, and Agrawal 2006). Decentrali-
sation usually ensures a rapid response to demand, fast
deliveries (which result in reduced maintenance time),
low transportation costs, and high flexibility (Alvarez and
van der Heijden 2014). However, the demand for spare
parts is usually unpredictable, sporadic, and slow-moving
(Van der Auweraer and Boute 2019). Therefore, having
many decentralised DCs and expecting to guarantee a
high service level implies keeping a large amount of stock,
thus experiencing high holding costs and reduced inven-
tory turnover. In this sense, adopting a centralised SC
configuration with a single warehouse that serves the
entire customer population could help benefit from the
risk-pooling effect (Milewski 2020). A single DC will be
more profitable than several DCs also in terms of facility
costs (e.g. lighting and heating) (Wanke and Saliby 2009).
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However, a centralised SC configuration loses the bene-
fits of the rapid response to demand, fast deliveries, and
low transportation costs of decentralised SCs. Accord-
ing to Cavalieri et al. (2008), the advantages of the two
basic SC configurations (centralisation and decentralisa-
tion) could be balanced by building hybrid SCs, where
spare parts are stocked at different holding points, and the
number ofDCs serving customers represents an interme-
diate solution between centralisation and decentralisa-
tion. Given the wide range of possible configurations and
the contrasting advantages of different degrees of central-
isation, it is becoming both a strategic opportunity and a
challenge to find methodologies for configuring optimal
spare parts SCs. In this perspective, as stated byAvventur-
oso et al. (2018) and Khajavi, Partanen, and Holmström
(2014), a cost–benefit analysis should be performed to
identify a solution that ensures high-quality responses to
customers and improved asset utilisation while reducing
expenses.

As stated by Milewski (2020) and Tapia-Ubeda et al.
(2020), although it has been known for a long time that
efficient spare parts SC configuration strongly impacts
the SC’s economy, the choice between centralisation and
decentralisation is still overlooked in the literature. As
better described in Section 2, in fact, many scientific
studies focus on topics such as optimising inventory con-
trol policies in a single DC, maximising the performance
of a specific SC configuration (that is initially chosen
and not compared with others), or performing qualita-
tive comparisons between SC configurations, but quan-
titative methods to compare different SC configurations
are not yet the subject of much scientific research. As
things stand today, many spare parts retailers are hence
far from a proper implementation of structured meth-
ods to optimise their SC configurations and the choice
between centralisation and decentralisation continues to
be arbitrary and based on experience. In this context, a
quick and easy-to-use tool that supports managers and
practitioners in optimising spare parts SC configurations
is highly claimed (Cohen, Agrawal, and Agrawal 2006;
Graves andWillems 2005). This work aims to address this
need by developing a decision support system (DSS) that
will answer the following research question:

RQ1) Under which conditions is it economically prof-
itable to have a centralised, decentralised, or hybrid spare
parts SC configuration?

In addition to this, the world of spare parts has recently
investigated the possibility of producing spare parts via
Additive Manufacturing (AM), since this technology
offers the opportunity to fundamentally revolutionise
spare parts SC configurations (Heinen and Hoberg
2019). Indeed, AM allows the production of spare parts

on-demand, thus enabling the configuration of spare
parts SCs with no inventories (Knofius, van der Heijden,
and Zijm 2016). Moreover, AM enables product delivery
and repair times to be reduced by allowing the installa-
tion of AM printers close to (or even inside) customers’
facilities (Pour et al. 2016). In light of this, spare parts
SCs where items are produced via AM (in the following
referred to as ‘AMspare parts SCs’) have started to be con-
sidered a valid substitute for the traditional spare parts
SC where items are produced with Conventional Man-
ufacturing (CM) technologies (in the following referred
to as ‘CM spare parts SCs’) (Kilpi, Töyli, and Vepsäläinen
2009; Zijm, Knofius, and van der Heijden 2019). Hence,
managers andpractitioners need to understandwhenone
is more economically profitable than the other (Baines
et al. 2007; Davies 2004), considering also that AM spare
parts SCs have some drawbacks with respect to the CM
counterparts (e.g. higher costs of spare parts). As better
described in Section 2, so far, this topic has been dis-
cussed only qualitatively (Holmström et al. 2010), and
managers and practitioners are left alone in this deci-
sion. In fact, the available quantitative works dealing with
AM spare parts focus either just on the production phase,
trying to understand when it is convenient to switch
from CM to AM technologies for producing items (Sgar-
bossa et al. 2021), or on the optimal configuration of
the SCs considering only AM as the production technol-
ogy (Khajavi, Partanen, and Holmström 2014) and not
evaluating its benefits or drawbacks with respect to CM.
As reported by Ghadge et al. (2018), the extant litera-
ture lacks methods to quantitative capture the differences
between CM and AM SCs, also providing more robust
evidence on when the adoption of AM SCs could ensure
higher performance compared to a CM one. Therefore, a
comparison between AM and CM spare parts SCs, trying
to understand when one is more economically profitable
than the other, is still missing. In this work, we aim to
fill this gap, thus supporting managers and practition-
ers in deciding which spare parts SCs (AM or CM) to
adopt. Since the decision of whether to embrace an AM
spare parts SC or a CM one influences the spare parts SC
configuration to adopt, this choice will be integrated into
the DSS mentioned above. Therefore, the DSS developed
hereinwill not only answer RQ1 (underwhich conditions
is it economically profitable to have a centralised, decen-
tralised, or hybrid spare parts SC configuration?) but also
the following research question:

RQ2) For the same case study, is it better to procure spare
parts made with AM or CM?

Specifically, the proposed DSS is a decision tree devel-
oped by feeding and training a machine learning
algorithm (decision tree algorithm) with the results of
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a parametric analysis where 10,000 different spare parts
SC scenarios were considered (see Section 3 for more
details). Specifically, we have limited the scenarios anal-
ysis to already existing SCs, where investments in new
assets and facilities are not necessary, and only variable
costs can be considered to optimally reconfigure the SC.
Besides, we have investigated SCs of spare parts retailers,
where only the storage and distribution of Stock-Keeping
Units (SKUs) are owned by the company, while items pro-
duction is entrusted to an external firm. This choice is
made because, as stated by Zijm, Knofius, and van der
Heijden (2019), most components in service companies
are usually purchased from external suppliers and not
produced internally. Finally, we have referred to the opti-
misation of two-echelon spare parts SC configurations,
where spare parts replenishment comes from the external
supplier to one ormoreDCs (first echelon). Then (second
echelon), the DCs satisfy customer demand by deliver-
ing spare parts (Alvarez and van der Heijden 2014). This
choice fits with Cohen, Zheng, and Agrawal (1997), in
whose work a high number of echelons is reported to
rarely occur in practice, rather indicating two-level SCs as
more frequent. Anyway, no generality is lost by consider-
ing two-echelon SCs because they can easily be extended
into multi-level ones if the depot of one layer is consid-
ered the base of the previous one (Ding and Kaminsky
2018).

The remainder of the present paper is as follows. In
Section 2, a literature review is provided regarding mod-
els for configuring an SC (Section 2.1) and the impact
of AM technologies on spare parts SCs (Section 2.2). In
Section 3, the methodology followed to obtain the DSS
is described. In Section 4, the DSS achieved is presented,
and a discussion on the results is given, also showing its
application to two case studies. Finally, in Section 5, some
conclusions on this study are offered.

2. Literature review

In Section 2.1, existing methods for configuring an SC
will be summarised. Due to the volatility and uncertainty
of spare parts demand, we will focus on methods that
are flexible against demand fluctuations, i.e. the so-called
Dynamic Asset Deployment (DAD) methods (Cohen,
Agrawal, andAgrawal 2006). Then, in Section 2.2, studies
on AM deployment in spare parts SCs will be reviewed,
showing advantages and disadvantages over CM.

2.1. Dadmethods for SC configuration

DAD methods for configuring SCs are structured tech-
niques to define what stocks to allocate throughout
the geographical hierarchy of companies’ DCs (Cohen,

Agrawal, and Agrawal 2006), thus leading to centralised,
decentralised, or hybrid SC configurations (Pyke and
Cohen 1993). They differ from static methods in being
flexible against demand fluctuations; hence they lead to
a more effective SC configuration in the case of SKUs
whose demand is difficult to forecast (Persson and Sac-
cani 2007). As a result of applying DAD methods, the
optimal distribution of each individual SKU is ensured,
thus keeping near the customers the most critical articles
while benefiting from risk pooling for the remaining ones
(Stoll et al. 2015). Existing DAD methods for configur-
ing SCs can be ranked into three categories: optimisation,
simulation, and heuristic methods (Abdul-Jalbar et al.
2003; Muckstadt 2004). In DAD optimisation methods,
an objective function is usually solved respecting some
constraints by means of either exact or approximate ana-
lytical models, or algorithms (Roundy 1985). Initially,
DAD optimisation methods were based on exact analyti-
cal models. An example of these is the METRIC method
proposed by Sherbrooke (1968), which was also the first
DAD optimisation method developed (Cavalieri et al.
2008; Muckstadt 2004). METRIC optimises stock levels
of recoverable items in multi-item and multi-warehouse
systems by minimising the sum of expected backorders.
Several extensions and modifications of METRIC have
been proposed over the years (e.g. (Muckstadt 1973;
Muckstadt and Thomas 1980; Alfredsson and Verrijdt
1999)), as well as other DAD optimisation methods to
configure SCs with null or non-null lead time (Feder-
gruen and Zipkin 1984; Sherbrooke 1968), with or with-
out backlogs (Alvarez and van derHeijden 2014), with an
infinite or finite horizon of analysis (Zangwill 1966), with
or without lateral transshipments (Patriarca et al. 2016),
and nested or non-nested (Veinott 1969). An extended
review of DAD optimisation methods is offered by Ding
and Kaminsky (2019). Although accurate, DAD opti-
misation methods based on exact analytical models are
difficult to solve since they are usually formulated as non-
linear, integer, combinatorial, stochastic, non-stationary
models (Cohen, Agrawal, and Agrawal 2006). Over the
years, managers and practitioners have pointed out the
need formore user-friendly and time-savingways of con-
figuring SCs (Cohen et al. 1990; Mintzberg 1989; Xie
et al. 2008). For this reason, DAD optimisation methods
based on approximate analytical models or algorithms
were developed, allowing near-optimal solutions to be
provided in a time-efficient way (Cohen, Kleindorfer, and
Lee 1988;Daskin, Coullard, and Shen 2002;Graves 1985).

However, DAD optimisation methods based on algo-
rithms or approximate analytical models were reported
to not always lead to the optimal solution (Alvarez and
van der Heijden 2014). To overcome this weakness, the
second (simulation) and the third (heuristics) categories
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of DAD methods were developed. In DAD simulation
methods, simulative models are developed, then carry-
ing out ‘what if’ scenarios analyses (Xie et al. 2008). First,
different SCs configurations are hypothesised (i.e. cen-
tralised, decentralised, or hybrid configurations). Then,
the costs and benefits of each configuration are evalu-
ated. Finally, the optimal case is selected among those
considered based on simulation results. Some resolutions
of DAD simulation methods are shown in Confessore,
Giordani, and Stecca (2003) andMofidi, Pazour, and Roy
(2018). Xie et al. (2008) report that building a simula-
tion model is often time-consuming and computation-
ally challenging. Therefore, the use of simulation models
should be reserved mainly to design complex SCs, such
as those with many levels, where it is strictly necessary
to reproduce and emulate all the control conditions and
the variables impacting the real-life system (Lee, Pad-
manabhan, andWhang 1997). For the other SCs, instead,
the last category of DAD methods (heuristic methods)
can be used. Here, a near-optimal SC configuration solu-
tion (trade-off between costs, revenues, and service level)
is achieved (Schwarz 1973) by using spare parts classifi-
cation (Persson and Saccani 2007; Roda et al. 2014) or
big data analytics (Cohen and Lee 1990). DAD heuristic
methods based on spare parts classification use a range
of criticality criteria to rank and group items (Teunter,
Babai, and Syntetos 2010). Then, group membership is
exploited to guide rules for asset deployment and inven-
tory replenishment, as shown by Lee et al. (2014) and
Stoll et al. (2015). Conversely, DAD heuristic methods
based on big data analytics typically use machine learn-
ing techniques to predict the performance of different SC
configurations and identify the most profitable solution,
as shown by Xie et al. (2008).

According to Gregersen and Hansen (2018), what-
ever category of DADmethods is chosen, DADmethods
for configuring SCs are usually composed of two steps.
First (Step 1), the asset deployment policy is defined,
determining for each SKU whether to opt for a cen-
tralised, decentralised, or hybrid SC configuration (Can-
tini et al. 2021). Then (Step 2), the inventory control
policy is decided, planning which spare part to supply
and which to order on-demand, and also establishing
how many items to replenish and how often (Caron and
Marchet 1996). The existing literature on SC configura-
tion is mainly focused on optimising Step 2, determining
optimal (or near-optimal) reordering policies for each
SKU byminimising operational costs (Abdul-Jalbar et al.
2003; Cohen, Zheng, andWang 1999; Roundy 1985). On
the contrary, fewer investigations were carried out con-
cerning Step 1, especially when dealing with spare parts
SCs. Indeed, Milewski (2020) reports that, although it
has been known for a long time that efficient spare parts

logistics strongly affects the SC’s economy, the choice
between centralised, decentralised or hybrid SC configu-
rations is still overlooked in the literature. Farahani et al.
(2015) state that the first paper to deal with this topic
was by Eppen (1979). However, this study focuses only on
centralised and decentralised SC configurations, neglect-
ing hybrid SC configurations. Moreover, it cannot be
applied in the case of spare parts SCs since it addresses
products whose demand has a normal distribution, while
spare parts demand follows a Poisson distribution. Other
recent efforts to compare spare parts SC configurations
(Holmström et al. 2010; Liu et al. 2014) are also affected
by some shortcomings. In fact, Holmström et al. (2010)
give a qualitative discussion, while, according to Khajavi,
Partanen, and Holmström (2014), the analysis should be
quantitative and based on the minimisation of SC costs.
On the other hand, the study by Liu et al. (2014) consid-
ers only centralised and decentralised SC configurations,
neglecting hybrid configurations. Moreover, the compar-
ison among the two configurations is carried out only
in terms of theinventory level, neglecting, for example,
inventory and transportation costs.

As confirmed byTapia-Ubeda et al. (2020), the topic of
choosing between centralised, decentralised, and hybrid
SC configurations is not the subject of much scientific
research, and there is potential for further studies. This
literature gap is the starting point of the present study,
in which a heuristic DSS is proposed to assist in the
process of configuring spare parts SCs. The presented
DSS compares different SC configurations, choosing the
optimal solution between centralisation, decentralisa-
tion, or hybrid configurations, and including in the analy-
sis the costs of purchasing spare parts, inventory costs, the
costs of sending out replenishment orders, transportation
costs, and backorder costs.

2.2. AM deployment in spare parts SCs

The deployment of AM technologies for manufactur-
ing spare parts has recently attracted great interest, get-
ting the spotlight in scientific research (Li et al. 2019).
In fact, according to several authors (Holmström et al.
2010; Pérès and Noyes 2006; Silva and Rezende 2013;
Zijm, Knofius, and van der Heijden 2019), AM has the
potential to revolutionise spare parts SCs thanks to two
main benefits over CM technologies. The first is that
spare parts manufacturing is allowed to be on-demand
(Berman 2012). Hence, there is no need for downstream
stocks across the SC, and the holding costs incurred are
low, thus enabling AM spare parts SCs to be more cost-
effective thanCMones (especially decentralised CMSCs,
where there would be several DCs, each with high inven-
tory levels). The second benefit is that transportation lead
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times can be reduced since production is enabled to be
near consumers (moving AM printers near or inside cus-
tomers’ facilities). As a result, shorter lead times could be
ensured, thus obtaining a decentralised SC where design
and production are closely intertwined. This characteris-
tic reduces the time-to-market, transportation costs, and
downtime costs for broken machines, providing benefits
over CM, especially for configuring SCs in geographically
or temporally isolated systems (Westerweel et al. 2021).

However, according to Pour et al. (2016) and Zijm,
Knofius, and van der Heijden (2019), AM spare parts SCs
are characterised by twomain disadvantages compared to
CM counterparts. The former is that high initial invest-
ment costs need to be paid to buy AM printers (although
these are decreasing due to the development of AM tech-
nology). This aspect could make AM spare parts SCs less
cost-effective than the CM ones, especially in the case of
decentralised SC configurations, since at least one AM
printer should be installed in each DC. The second dis-
advantage is that production costs are often higher than
the CM ones, and the production time is longer. Indeed,
the speed of AM technologies is slower compared to CM,
while longer post-processing and inspection times are
required to ensure the reliability and quality of the spare
parts. Consequently, SC costs and lead times could be
higher, especially in centralised SC configurations where
the central DC is not very close to customers’ facilities.

Besides, when considering the labour cost in the eco-
nomic analysis to decide the most cost-effective man-
ufacturing technology, it is not yet clear whether AM
would lead to benefits over CM or not. On the one hand,
when deploying AM technologies, one operator can con-
trol more AM printers. Therefore, fewer operators are
needed, and a reduction of the manual labour cost as a
percentage of the overall product price is ensured. On
the other hand, highly trained operators are required to
use digital AM technologies, thus increasing the average
labour cost per hour.

Up to now, when evaluating the possibility of adopt-
ing AM spare parts SCs, many studies have focused only
on the production phase, investigating the convenience
of manufacturing AM rather than CM items (Costabile
et al. 2017; Knofius, van der Heijden, and Zijm 2016;
Sgarbossa et al. 2021) and which AM technologies to use
(Khajavi et al. 2018; Zhang, Zhang, andHan 2017). Other
activities, such as logistics, have so far been neglected,
while the impacts of AM in all areas of spare parts
SCs should be considered before deciding whether to
adopt it or not. This becomes even more important if we
include in the analysis different SC configurations (cen-
tralised, decentralised, and hybrid), since the choice of
a specific spare parts SC configuration might be affected
by the costs and characteristics of the manufacturing

technology considered (Li et al. 2019). To date, however,
only two works have tried to integrate the choice of the
manufacturing technology with the selection of the spare
parts SC configuration (Li et al. 2017; Liu et al. 2014).
These works only consider centralised or decentralised
configurations without focusing on hybrid spare parts SC
configurations. Moreover, they select the optimal spare
parts SC design (fromnowon, wewill refer to ‘spare parts
SC design’ as the activity to decide the optimal spare parts
SC configuration together with the choice of the manu-
facturing technology) based on the results of simulation
models. Therefore, their considerations refer to a spe-
cific case study and cannot be generalised. To the best of
our knowledge, there is no structured method to support
managers and practitioners in the process of designing
spare parts SCs. This problem is overcome in this paper,
where a DSS is developed to solve the literature gap iden-
tified in Section 2.1 (assistingmanagers and practitioners
in the process of configuring spare parts supply chains),
also including the choice of the optimal manufacturing
technique (AM or CM).

3. Methodological framework

The main objective of this paper is to develop a DSS to
assistmanagers and practitioners in designing spare parts
SCs (which means deciding both the spare parts SC con-
figuration and the manufacturing technology). The pro-
posed DSS is a decision tree that is derived from a cost-
based comparison of over 10,000 different spare parts
SCs scenarios (i.e. spare parts SCs characterised by differ-
ent spare parts demand, purchasing costs, transportation
costs, backorder costs, and required service level) of ten
different supply chain designs. To this end, four main
steps were performed. However, before describing these
steps, it is useful to clarify some key characteristics of the
DSS and some assumptions made.

Dealing with the key characteristics, the DSS is devel-
oped for managers and practitioners interested in two-
echelon SCs, where spare parts are bought from an exter-
nal supplier (not produced internally), stored in one or
more DCs, and distributed to fulfil the product demand
at multiple customer locations. Hence, the control vol-
ume underlying this study is shown in Figure 1, where
the final customer may also be a subsequent retailer, as
reported by Fathi et al. (2021).

The proposed DSS supports managers and practi-
tioners in choosing between ten spare parts SC designs,
derived by combining two manufacturing technologies
(AM and CM) with five spare parts SC configurations
(ranging from centralisation to decentralisation passing
through three hybrid configurations). A schematic rep-
resentation of the five SC configurations considered is
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Figure 1. Control volume considered to develop this study
(within the dashed rectangle).

depicted in Figure 2, considering the example of a com-
pany purchasing spare parts from a supplier and serving
six customers. The different spare parts SC configura-
tions are identified through a parameter called ‘degree of
centralisation’ (Deg). Such parameter, based on the paper
by Gregersen and Hansen (2018), is equal to one in the
case of full centralisation, while it is the ratio between the
number of DCs (#DC) able to answer customers’ demand
and the number of customers to be served (#customers)
in hybrid and decentralised SC configurations (Equation
(1)).

Deg = degree of centralisation

=
{

1 full centralised SC configuration
1 − #DC

#customers else
(1)

As can be seen from Figure 2, the five different spare
parts SC configurations considered in this work are those
with Deg equal to 0 (decentralised configuration), 0.25
(hybrid configuration), 0.50 (hybrid configuration), 0.75
(hybrid configuration), and 1 (centralised configuration),
and this choice was made to cover the range of possible
SC configurations well. As an example, Figure 2 pro-
vides a schematic representation of the SC configurations
considered in the case of a two-echelon SC serving six
customers. In Figure 2, different locations are analysed
for spare partsDCs. Instead, the supplier of theDCs is not
shown, being represented by dashed arrows to indicate
that it is out of control volume, and that we are not inter-
ested in its geographical location, but only in its average
lead time.

Figure 3, then, summarises the ten different spare
parts SC designs considered by the DSS.

Concerning the assumptions made in the develop-
ment of the DSS, these are listed below.

(1) A single external supplier is assumed based on the
work by Farahani et al. (2015), who, based on the fact
that several suppliers offer similar products, indi-
cated that it is more efficient to consider a single
supplier to serve subsequent DCs;

(2) Spare parts are assumed to be purchased from
an external supplier (not produced in-house); this
means that the costs of purchasing spare parts
include all the costs that the supplier incurs. These
costs include the costs of producing spare parts (also
considering quality control activities), the fixed costs
of AM/CM equipment, the costs of digitalising AM
items, thus converting 2D drawings into 3D designs,
and the profit margins that suppliers want to achieve
(Pour et al. 2016);

(3) Based on Tapia-Ubeda et al. (2020), no capacity con-
straints are considered for the supplier’s warehouse
and the DCs. Hence, it is assumed that each facility
is able to keep inventories without space limitations;

(4) Lead times are deterministic, as suggested by
Schwarz (1973) and Cohen, Kleindorfer, and Lee
(1988), while spare parts demand is stochastic, fol-
lowing a Poisson distribution as suggested, e.g. by
Stoll et al. (2015) and Sherbrooke (1968);

(5) Decentralised DCs are considered to be geograph-
ically equidistant from the customer: in such a way
that theDCs are characterised by the same lead times
and transportation costs. Moreover, the transporta-
tion costs in decentralised SC designs are considered
negligible since each decentralised DC is supposed
to be positioned close to the specific customer that it
serves;

(6) No reverse logistics (possibility of repairing and
reusing broken spare parts) is considered, as sug-
gested by Zijm, Knofius, and van derHeijden (2019),
since the focus of this study is not the problem of
sustainability in the SCs, but rather the SC design;

(7) No lateral transhipments are admitted, as shown by
Schwarz (1973);

Figure 2. Schematic representation of the five SC configurations considered.Deg equal to 0 corresponds to a decentralised SC config-
uration,Deg equal to 1 is a centralised configuration, and the values in between are hybrid SC configurations. The picture considers an
example of a two-echelon SC serving six customers.
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Figure 3. Matrix of the spare parts SC designs considered in the DSS.

(8) Since the focus of this study is not the problem of
sustainability in the SCs, but rather the SC design,
no environmental effects of different SC designs are
assessed. For example, CO2 emitted during trans-
portations is neglected;

(9) Only variable costs are considered (see Section 1),
not assessing initial investment costs in facilities, or
assets;

(10) Spare parts transportation costs are calculated by
assuming that only one spare part is distributed
per trip. This hypothesis is considered acceptable
because spare parts demand follows a Poisson dis-
tribution, also known as the law of rare events.

In addition, to develop the DSS, some modelling and
spare parts management choices were taken, which are
listed in the following remarks.

(1) Warehouses are managed according to a continuous
inventory control policy. Given the nature of lead
times and demand, the selected inventory policy is
(s,Q), where s is the reorder level and Q is the eco-
nomic order quantity. Indeed, Fathi et al. (2021),
Ivanov (2021), and Sapna Isotupa (2006) suggest
such an inventory control policy as the optimal one
in the case of stochastic demand and deterministic
lead time;

(2) The average annual demand of one customer is
known, as well as the number of customers to be
served, as shown by Cohen, Kleindorfer, and Lee
(1988);

(3) The duration of the period considered to develop the
analysis is one year, as done byDaskin, Coullard, and
Shen (2002). It is worth mentioning that this infor-
mation is not a simplifying assumption, but it is here
listed to underline that the total costs of SCs are cal-
culated over a time horizon of one year, as well as
the values of (s, Q) needed to control the inventory
replenishment of DCs. Themathematical model and
the analysis provided below could also be repeated
by considering smaller or larger time horizons;

(4) The risk of obsolescence is considered included
within the holding cost rate. This choice is in
line with what reported by Khajavi, Partanen, and

Holmström (2014), who showed that the inventory
obsolescence cost in a DC can be calculated as a
function of the inventory level and of an annual part
obsolescence rate. Therefore, in the present study,
the annual part obsolescence rate is considered con-
tained within the holding cost rate;

(5) SKUs are supposed to be producible with both AM
and CM. This assumption is introduced to allow
the comparison between SCs where the distributed
spare parts are of AM or CM type, thus answering
the second research question (RQ2). However, in the
case that some parts are not producible with AM
technologies (as shown by Zijm, Knofius, and van
der Heijden (2019)), it is possible to use the math-
ematical model here proposed only by comparing
SC designs with CM items (numbers 2, 4, 6, 8, and
10 in Figure 3). Viable method for selecting spare
parts suitable for AM are offered by Chaudhuri et al.
(2021) and (Frandsen et al. 2020);

(6) A single-itemapproach is adopted, choosing for each
individual SKU the optimal SC design. This derives
from the works by Stoll et al. (2015) and Cohen,
Agrawal, and Agrawal (2006), who suggested that
an effective SC configuration should adopt a single-
item approach to ensure the optimal distribution of
each individual SKU.

Now that the key characteristics of the proposed DSS
and the assumptions made have been described, the four
main steps followed to develop the DSS can be discussed.
In Step 1, a mathematical model to compare the cost-
effectiveness of the ten spare parts SC designs was devel-
oped. Then, in Step 2, an analysis of variance (ANOVA)
was performed to determine the most relevant input
parameters of the mathematical model, thus checking if
any of them have a negligible impact on the selection of
the optimal SC design. In Step 3, a parametric analysis
was performed to investigate a sample of 10,000 realistic
spare parts SC scenarios (i.e. spare parts SCs charac-
terised by different spare parts demand, purchasing costs,
transportation costs, backorder costs, and required ser-
vice level) collected by varying the most relevant input
parameters of the mathematical model (emerging from
Step 2). Finally, in Step 4, the DSS was obtained in the
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Table 1. Input parameters for the mathematical model.

Input parameter Description Unit measure

i Considered SC design. i can assume
integer values between 1 and 10
according to Figure 3

[–]

j Manufacturing technology of the
purchased spare parts. j can be AM
or CM

[–]

#customers Number of customers served by the
company

[–]

ELTSL Desired expected lead time service
levelELTSL

[–]

D̄1customer Average annual demand for SKU
emitted by one customer

[units/time]

Degi Degree of centralisation in SC
configuration i. It assumes a specific
value according to Figure 3a

[–]

etcentrali Unitary external transportation cost
from the central DC to customers.
It only refers to centralised SC
configurations (i = 9 ori = 10)

[e/transportation]

uback Unitary cost of one backorder of SKU [e/backorder]
Lj Lead time needed by the supplier to

deliver the j-th SKU to DCs
[time]

ucj Unitary cost of purchasing the j-th SKU
from the supplier

[e/unit]

mh Hourly labour cost [e/time]
ot Average time needed to send one

replenishment order
[time]

h% Holding cost rate for keeping inventory
of SKU

[e/time∗unit]

aDegi is 0 if i is equal to 1 or 2, is 0.25 if i is equal to 3 or 4, is 0.5 if i is equal to 5
or 6, is 0.75 if i is equal to 7 or 8, while is 1 if i is equal to 9 or 10.

form of a decision tree by leveraging a machine learn-
ing algorithm (specifically a decision tree algorithm) fed
with the results of the parametric analysis. Each step is
described in detail below in a specific section.

3.1. Mathematical model

In Step 1 of the development of the DSS, a mathemat-
ical model was established to compare the costs of the
considered spare parts SC designs, thus allowing the opti-
mal design to be identified. Table 1 lists the model input
parameters.

According to the assumption, the costs are related to
a single item, and therefore the optimal spare parts SC
design is the one that minimises the spare parts SC total
costs (Ctoti) for a single SKU (Equation (2)).

min[Ctoti] with i = 1, 2, . . . , 10 (2)

where Ctoti is calculated according to Equation (3) as the
sum of the costs of purchasing spare parts (PCi,j), placing
supply orders (OCi,j), holding inventory (HCi,j), trans-
porting spare parts from DCs to customers (ETCi), and
backorders (BCi).

Ctoti = PCi,j + OCi,j + HCi,j + ETCi + BCi (3)

Specifically:

PCi,j (the total cost of purchasing spare parts from the
external supplier for a specific SC design i), according to
Equation (4), is given by the product between the unitary
cost of the spare part (ucj), the number of DCs in the SC
(#DCi, Equation (5)), and the average annual demand in
each DC (Dtoti, Equation (6)).

PCi,j = ucj∗Dtoti∗#DCi (4)

#DCi =
{

[(1 − Degi)∗#customers]+ if i = 1, 2, . . . , 8
1 if i = 9, 10

(5)

Dtoti =
{ (

D̄1 customer∗#customers
#DCi

)
if i = 1, 2, . . . , 8

(#customers∗D̄1 customer)if i = 9, 10
(6)

OCi,j (the total cost of placing orders for replenishing
DCs’ inventories), according to Equation (7), is given
by the product between the unitary cost of placing one
order (oc, Equation (8)), the average number of orders
(#ordersi,j, Equation (9)), and the number of DCs (#DCi).

OCi,j = (oc∗#ordersi,j)∗#DCi (7)

oc = mh∗ot (8)

#ordersi,j = Dtoti
Qi,j

(9)

where Qi,j is the economic order quantity for replenish-
ing SKUs in DCs calculated usingWilson’s formula (Stoll
et al. 2015) (Equation (10)), and hj is the unitary holding
cost in each DC (Equation (11)).

Qi,j =
√
2∗Dtoti∗oc

hj
(10)

hj = ucj∗h% (11)

HCi,j (the total holding cost), according to Equation (12),
is given by the product between the unitary holding cost,
the average inventory in eachDC (Ii,j, Equation (13)), and
the number of DCs (#DCi).

HCi,j = (hj∗Ii,j)∗#DCi (12)

Ii,j = Qi,j

2
+ SSi,j (13)

Where SSi,j are the safety stocks in each DC, correspond-
ing to the smallest value that satisfies Equation (14), thus
compensating demand fluctuations (Equation (15)) and
avoiding stock-outs at least to ensure the desired service
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level.

1 −
SSi,j−1∑
n=0

[
(Dtot in lead timei,j)

n

n!
∗e−Dtot in lead timei,j

]

≥ (1 − ELT SL) (14)

Dtot in lead timei,j = Dtoti∗Lj (15)

ETCi (the total transportation cost to deliver spare parts
from DCs to customers), according to Equation (16), is
given by the product between the unitary external trans-
portation costs (eti, Equation (17)), the average demand
(Dtoti), and the number of DCs (#DCi).

ETCi = (eti∗Dtoti)∗#DCi (16)

eti =
{

et decentrali if i = 1, 2, . . . , 8
et centrali if i = 9, 10 (17)

where the unitary external transportation costs for
decentralised and hybrid configurations (etdecentrali) is
defined according to Equation (18) (for more informa-
tion on Equation (18) see Appendix A).

et decentrali = et centrali∗f (Degi) (18)

Finally, BCi (the total cost of backorders), according to
Equation (19), is given by the product between the uni-
tary backorder cost (uback), the average number of back-
orders (#backordersi,Equation (20)), and the number of
DCs (#DCi).

BCi = (uback∗#backordersi)∗#DCi (19)

#backordersi = [(1 − ELT SL)∗Dtoti]+ (20)

3.2. ANOVA analysis

In Step 2 of the development of the DSS, an analysis of
variance (ANOVA) was used to define if all the input
parameters (Table 1) strongly impact the selection of the
optimal SC design or if any of them have a negligible
effect. To this end, a preliminary parametric analysis was
first carried out. In the preliminary parametric analy-
sis, the parameters mhmh, ot, and h% in Table 1 were
assumed fixed and equal to 30 e/h, 10min, and 25%
respectively, while the remaining independent variables
of Table 1 (excluding i, which already had predefined val-
ues, and differentiating cost items in the case of AM or
CMmanufacturing) were associated with a range of real-
istic discrete admissible values (Table 2). As shown in
Table 2, three values were considered for each parameter,
where two of them (the extremes) were defined by con-
sulting the sources in the last column of Table 2, while the
third value was taken as the intermediate number. This

resulted in a total of 729 different combinations of the
input parameters (each combination of input parameters
is what we refer to as ‘scenario’), which were then used in
the mathematical model of Step 1 to determine the opti-
mal spare parts SC design for each scenario. Finally, the
results were subjected to an ANOVA using Minitab soft-
ware, where the parameters listed in the first column of
Table 2 were indicated as input factors, while the opti-
mal SC design outcomes were indicated as responses. It
is worth mentioning that the ANOVA was performed
allowing variables to assume only three discrete values to
obtain easily understandable graphs in which the trend of
the curves could be immediately recognised, thus reveal-
ing the impact of the parameters on the decision.

3.3. Parametric analysis

After performing the ANOVA, parameters whose impact
is negligible concerning the suggestion of the optimal
SC design were excluded from the study. Conversely,
the input parameters with a significant influence on the
results were considered in Step 3 of the development of
the DSS.

Aiming to obtain a DSS in the form of a decision tree,
a dataset was required to feed and train the decision tree
algorithm. For this reason, in Step 3, another parametric
analysis was developed to collect and investigate a sample
of 10,000 realistic spare parts SC scenarios (with different
demands, costs, and service levels). Overall, the process
of obtaining the data used to conduct this parametric
analysis can be summarised as follows. First, the param-
eters mh, ot and h% in Table 1 were again assumed fixed
(considering the same values mentioned in Section 3.2),
while the independent non-negligible parameters result-
ing from Step 2 were associated with a range of realistic
admissible values defined within upper and lower lim-
its. As upper and lower limits, the same extreme values
of the ranges in Table 2 were chosen. However, unlike
the parametric analysis of Step 2, here the parameters
were not allowed to take on only three values, but rather
intermediate values were assigned using the Sobol quasi-
random low discrepancy sequence (Burhenne, Jacob, and
Henze 2011). Hence, each parameter (par) was repre-
sented as a set of values uniformly distributed over a
range determined according to Equation (21).

par = parlower limit + Sobol · (parupper limit − parlower limit)

(21)
Table 3 reports the range of admissible values for the
Sobol-based parametric analysis.

Then, by randomly mixing the values of the input
parameters, a sample of 10,000 scenarios was collected,
where, for each scenario, the mathematical model of Step
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Table 2. Parameters and values of discretised parametric analysis.

Input parameter Admissible values Unit measure

Source used to
define the

admissible values

#customers 5; 53; 100 [–] Authors’ experiencea

ELTSL 0.85; 0.92; 0.99 [–] Authors’ experience
D̄1customer 1; 4; 7 [units/year] (Knofius et al. 2021)
etcentrali 100; 1,050; 2,000 [e/transportation] Authors’ experience
uback 1,000; 50,500; 100,000 [e/backorder] (Peron et al. 2021)
LAM 1; 2.5; 4 [weeks] (Knofius et al. 2021)
LCM 4; 15; 26 [weeks] (Knofius et al. 2021)
ucAM 100; 1,300; 2’500 [e/unit] (Knofius et al. 2021)b

ucCM 10; 1,255; 2,500 [e/unit] (Knofius et al. 2021)c

aThe over twenty years’ experience of some of the authors in the field of logistics and spare parts man-
agement combinedwith the consultationof expert staff fromspareparts distribution companiesmake
these assumptions reliable.
bKnofius et al. (2021) considered 1197e/unit. We have assumed a wider range.
cKnofius et al. (2021) reported that the cost of CM parts is typically lower than AM ones, but this does
not always hold true (it depends on the part complexity). Hence, we assumed aminimum value lower
than AM, but the same upper limit.

Table 3. Values considered in the Sobol-based parametric analy-
sis. The range extreme values are based on Table 2.

Input parameter Range of admissible values Unit measure

#customers integers between 5 and 100 [–]
ELTSL floats between 0.85 and 0.99 [–]
D̄1customer integers between 1 and 7 [units/year]
etcentrali floats between 100 and 2,000 [e/transportation]
uback floats between 1,000 and 100,000 [e/backorder]
LAM integers between 1 and 4 [weeks]
LCM integers between 4 and 26 [weeks]
ucAM floats between 100 and 2,500 [e/unit]
ucCM floats between 10 and 2,500 [e/unit]

1 (Section 3.1) was applied, determining the optimal SC
design.

It should be noted that the Sobol quasi-random low
discrepancy sequence was chosen based on the study
by Burhenne, Jacob, and Henze (2011), who report that,
when studying problems with a large number of input
variables, the Sobol sequence is expected to be more
effective in exploring the input variable space in compar-
ison to other sampling strategies (i.e. discrete sampling,
Monte Carlo, or Latin Hypercube).

3.4. Decision tree

Finally, in Step 4, the DSS in the form of a decision
tree was generated, constituting a guideline for managers
and practitioners to understand which spare parts SC
design is the optimal (more cost-effective) for them. To
develop such DSS, a decision tree algorithm was used. A
decision tree algorithm is a supervised classification tech-
nique, and it predicts the class to which an item belongs
based on a given set of attributes (Nugroho, Adji, and
Fauziati 2015).Here, the results of the parametric analysis
(Step 3) were used as the dataset for training the decision
tree algorithm (using Python’s Sklearn library), where for
each scenario:

• The values of the non-negligible input parameters
were given as input attributes.

• The optimal spare parts SC design determined by
applying the mathematical model was indicated as the
final class label that the decision tree algorithm should
learn to predict.

Therefore, the decision tree was obtained as follows.
Starting at a root node, the dataset was recursively split
into binary subsets (branches) based on the Gini diver-
sity index (gdi, Equation (22)), where K is the number
of class labels (the ten spare parts SC designs defined
in Figure 3), and p(k) is the probability of picking the
data point with the classk (Shaheen, Zafar, and Ali Khan
2020). gdimeasures the probability of a given data point
from the dataset being wrongly classified when it is ran-
domly chosen (Arena et al. 2022). Hence, gdi = 0 means
that all data points of the dataset belong to a certain class,
while gdi = 1 implies that the data points are randomly
distributed across different classes.

gdi = 1 −
K∑

k=1

p(k)2 (22)

At each node of the tree, an attribute and its cut point
were chosen to generate two branches with the aim
of minimising Equation (23), thus identifying the split
which provided the maximum purity.

min
(nleft

n
gdileft + nright

n
gdiright

)
(23)

In Equation (23), n is the number of data points in the
original node, nleft is the number of data points in the
new node on the left branch, nright is the number of data
points in the new node on the right branch, gdileft is the
Gini diversity index in the new node on the left branch,
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and, finally, gdiright is the Gini diversity index in the new
node on the right branch (Sgarbossa et al. 2021). The
elements at the end of the tree, obtained after the last
branch split, are called leaves, and the number of splits
performed coincides with the number of levels (depth)
of the tree.

Seeking to generate a user-friendly DSS, the decision
tree was pruned by imposing a maximum depth (Dmax,
maximum number of splits of the starting dataset into
sub-branches before reaching a leaf). This pruning activ-
ity was also useful to avoid the over-fitting problemwhen
generating the tree (Morgan et al. 2003). For the prun-
ing purpose, a sensitivity analysis of the total accuracy
(A) of the decision tree was performed by imposing dif-
ferent values for Dmax, and determining the resulting
A calculated as the ratio between the number of cor-
rect predictions (#correctpredictionstree) and the number
of total predictions (#predictionstree, initial dataset size)
(Equation (24)).

A = #correct predictionstree
#predictionstree

(24)

The decision tree representing a trade-off between the
accuracy of predictions and user-friendliness was then
proposed as a DSS. Finally, the effectiveness of the
selected decision tree was evaluated based on three key
performance indicators (KPIs) related to the leaves of
the tree. The first KPI is the accuracy of each leaf (a,
Equation (25)), given by the ratio between the num-
ber of correct predictions (#correctpredictionsleaf ) and the
number of total predictions in the leaf (#predictionsleaf ).
The second KPI is the number of elements reach-
ing each leaf (p, Equation (26)), given by the ratio
between the number of elements classified within that
leaf (#predictionsleaf ) and the number of total elements to
be classified (#predictionsleaf ). The last KPI is the average
percentage increase in cost that occurs when the wrong
option is selected in the leaf (c, Equation (27)), obtained
as the arithmetic mean of the cost increase generated by
each wrong prediction.

a = #correct predictionsleaf
#predictionsleaf

(25)

p = #predictionsleaf
#predictionstree

(26)

c =

∑#wrong predicionsleaf
k=1(∣∣∣ costof wrong prediction −cost of correct predictionk

cost of correct predictionk

∣∣∣ ∗100)
#uncorrect predictionsleaf

(27)

4. Results and discussion

As mentioned in Section 3, having developed the math-
ematical model to compare the costs of different SC
designs (Step 1, Section 3.1), the next step conducted
was the development of an ANOVA (Step 2, Section 3.2),
whose results are shown in Figure 4.

Figure 4 proves that three out of the nine input param-
eters considered (Table 2) have a negligible impact on the
process of selecting the optimal spare parts SC design.
In fact, when varying the three discrete values assumed
by LAM , LCM , and ELTSL, the curve obtained in the
Main Effects Plots relative to the mean of the optimal SC
designs is almost horizontal. Therefore, the effect of the
parameters LAM , LCM , and ELTSL on the selected spare
parts SC design can be considered null. On the contrary,
the remaining parameters show a non-negligible impact
on this decision-making process.

Given the ANOVA results, the LAM , LCM , and ELTSL
parameters were not considered for building the DSS,
being excluded from the implementation of the paramet-
ric analysis (Step 3 in Section 3.3). Instead, the remaining
six parameters were associated with Sobol values as indi-
cated in Table 3. Then, such values were randomly joined
together to create a sample of 10,000 realistic spare parts
SC scenarios, and for each scenario the optimal spare
parts SC design was determined through the mathemati-
cal model of Section 3.1. As described in Section 3.4, the
results were then used to feed a decision tree algorithm,
where the values assumed by the input variables in the
different scenarios were used as input attributes, while
the identifier of the optimal spare parts SC designs was
indicated as the final class label.

Aiming to obtain a DSS that is both easy-to-use (that
corresponds to an easy-to-read decision tree) and accu-
rate, we carried out a sensitivity analysis of the total
accuracy A of the decision to determine how to prune
the branches (Figure 5). Based on the results depicted
in Figure 5, we decided to use as DSS the decision tree
with Dmax = 4 (red circle in Figure 5) since it repre-
sents a trade-off between user-friendliness and accuracy.
Figure 6 shows the decision tree with Dmax = 4.

It is interesting noting that not all the six non-
negligible parameters identified from the ANOVA anal-
ysis are used in the decision tree (D̄1customer is missing),
suggesting that some parameters are more important on
the optimal SC design choice than others. This is con-
firmed by Figure 7, that shows the relative importance of
the independent parameters on the choice of the optimal
SCdesign (the relative importance is calculated first com-
bining the changes in the Gini Diversity Index weighted
by the node probability due to splits at each parameter,
then dividing the sum by the number of branch nodes



12 A. CANTINI ET AL.

Figure 4. Results of the ANOVA (Main Effects Plots) for the optimal SC design.

(Lolli et al. 2022)). From the relative importance, in fact, it
emerges that ucCM and ucAM are the two parameters that
influence the most the choice of the optimal SC design
(the first decision on the decision tree is in fact made
on ucCM), followed by uback and etcentrali. The relative
importance of D̄1customer is instead low, meaning that this
parameter has aweaker impact on the SCdesign decision,
and for this reason, when pruning the tree, D̄1customer
does not appear in Figure 6.

Moreover, the decision tree in Figure 6, shows that the
most recommended spare parts SC designs in the DSS

are those with AM/CM and Degi = 0.25 (spare parts SC
designs 3–4), which are suggested in eleven out of sixteen
leaves of the tree. Given the frequent cost-effectiveness of
such spare parts SC designs, this study demonstrates the
importance of considering hybrid spare parts SC config-
urations in the analysis, not only comparing centralised
and decentralised spare parts SC configurations. In par-
ticular, spare parts SC design 3 with AM andDegi = 0.25
is more cost-effective than the others whenever ucCM
is higher than 1,490 e/unit and the cost of one backo-
rder (uback) is higher than 38,175 e/backorder. In fact,
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Figure 5. Sensitivity analysis on the accuracy (A) of the decision
tree.

in such a case, the unitary cost of purchasing AM spare
parts is similar to or lower than the CM one, so an AM
spare part SC design is usually preferable. In addition, in

such a case, a hybrid spare parts SC configuration with
a low degree of decentralisation (0.25%) reduces back-
orders by benefiting from the risk-pooling effect (the
demand is aggregated in a few DCs) while keeping deliv-
ery times and costs lower than in fully centralised SC
configurations.

Conversely, the leaves of the decision tree in Figure 6
donot include spare parts SCdesigns 5–9, indicating that,
generally, SCs with Degi of 0.50 and 0.75 are not cost-
effective, as well as the total centralisation of AM spare
parts. Moreover, Figure 6 shows the KPIs (a, p, and c,
Section 3.4) of the decision tree withDmax = 4, demon-
strating that some leaves have very high accuracy (a >

90%), which guarantees the reliability of the predictions,
while others have low accuracy (a < 50%), which seems
insufficient to trust theDSS.However, the increase of cost
(c) thatmanagers and practitioners should pay in the case
of a wrong decision is always less than 10% (often even
below 5%) and this means that an incorrect prediction of

Figure 6. Decision tree with a maximum depth of 4 levels (Dmax = 4).

Figure 7. Relative importance of the independent parameters on the decision of the optimal SC design.
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the decision tree has an impact on the company’s econ-
omy which is almost negligible in respect to the one that
the optimal spare parts SC design (correct prediction)
would imply. Hence, the low value of c makes it easier
for managers and practitioners to accept the decisions
suggested by the decision tree with Dmax = 4, even if
the accuracy of the leaves is not very high. Meanwhile,
in the Supplemental Material attached to this study, we
also provide a second decision tree (with Dmax = 15),
which guarantees more accurate predictions (A = 97%),
thus being useful formanagers and practitioners to check
the results of the DSS in Figure 6. We do not provide the
decision tree with 100% accuracy (withDmax = 26), but
rather the tree on fifteen levels because, as reported by
Morgan et al. (2003), a pruning reduces the overfitting
problem, even if a slight reduction in the accuracy of the
decision tree should be accepted.

The tree with Dmax = 15is less easy-to-use than the
one with Dmax = 4, since fifteen concatenated ques-
tions should be answered before reaching a leaf, and
the decision tree is split into several branches, making
it difficult to identify the one relating to some specific
input parameter conditions. For this reason, the Supple-
mental Material shows the decision tree with Dmax =
15 not in graphical form but rather as a Python code.
In this way, managers and practitioners can incorporate
the script into their company systems, thus automating
the process of answering questions and quickly achiev-
ing the optimal spare parts SC design. In the Supple-
mental Material, spare parts SC designs 1, 2, 3, 4, and
10 are the most frequently suggested, confirming the
accuracy of the decision tree with Dmax = 4. Moreover,
the decision tree with Dmax = 15 finds some specific
cases where designs 5, 6, 7, 8, and 9 are economically
profitable.

Overall, aiming to providemanagers and practitioners
with an easy-to-use and reliable DSS, the decision tree
with Dmax = 4 is selected as the main tool to support
the choice process. However, the benefits of the two alter-
natives (both the decision tree with Dmax = 4 and the
one withDmax = 15) can be reaped as follows, using the
decision treewithDmax = 15 onlywhen the reliability of
the tree withDmax = 4 is not sufficient. At first, the DSS
constituted by the decision tree with Dmax = 4 can be
consulted to receive an initial suggestion on the optimal
spare parts SC design. Then, managers and practitioners
can check the accuracy of the leaf in which the SKUman-
aged by their company falls. Hence, two circumstances
can occur:

• If the accuracy of the considered leaf is high, the result
of the easy-to-use decision tree withDmax = 4 can be
trusted.

• Conversely, if the accuracy of the leaf is low, thenman-
agers and practitioners can proceed as follows. First,
they should check the KPI c and evaluate the increase
of cost that they would have to pay in the case of a
wrong decision. If they consider the increase of cost
acceptable (it is often very low), then they can accept
the decision tree prediction even if the accuracy is not
very high. If, instead, they do not consider the increase
of cost acceptable, they can then consult the decision
tree with Dmax = 15 to get a more reliable result and
be sure about the optimal spare parts SC design.

4.1. DSS application

The following case studies show the DSS application
on the data provided by an Italian company which dis-
tributes bus spare parts to fivemain customers. Four DCs
are currently available to stock more than 3,000 types
of SKUs, and warehouse managers are in charge of the
supply of items in each DC, for which they define the
inventory control policies based on their algorithms and
experience. The service level required by the company
to meet customer requests for each spare part is equal
to 95%. The company is an official partner of a well-
known manufacturer of bus components, from whom it
purchases all the stocks in the form of CM finished prod-
ucts (i.e. a single supplier serves all DCs). The company is
recently considering performing a reconfiguration of its
SC design, thus optimising the management of each SKU
and the economic performance. Moreover, the company
is interested in evaluating the possibility of buying AM
spare parts instead of CM ones.

Here two case studies (A and B) are provided to illus-
trate different use cases of the DSS, referring to two dif-
ferent SKUs. For the selected SKUs, the lead-time (LAM)
and unitary cost (ucAM) that the respective items would
have if they were manufactured with AM were estimated
by consulting AM experts from a company skilled in 3D
printing. The results of both case studies are described
below, showing: (i) the current SC design adopted by
the company for the analysed SKU (AS-IS situation); (ii)
the SC design recommended by the DSS; (iii) the SC
design suggested by applying the mathematical model;
(iv) the comparison of the previous information (i-iii)
and a discussion on the results.

4.1.1. Case study A
Spare part A is an anti-particulate filter that is managed
according to a hybrid SC design, where we can consider
Deg = 0.25. Indeed, A-stocks are currently contained in
three out of four DCs, since the remaining DC is small
in size, and it is used to store only a few selected spare
parts. The average demand of a customer for SKU A is 3
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units/year and the cost of transporting one item from the
DCs to a customer was estimated to be etcentral = 225
e/trip (based on the average distance between the DCs
and the customers and the type of vehicle used for the
deliveries, i.e. truck). Any stock-out of the warehouse for
this SKU causes problems of unavailability to the cus-
tomer’s buses, which by law cannot travel without this
filter. Therefore, the cost of a backorder was estimated at
around 35,000e/backorder in accordance with the com-
pany’s staff. The average lead time (LCM) guaranteed by
the supplier for this SKU is 5 weeks, while the unitary
purchase cost of this SKU (uCM) is 1,057e. On the other
hand, LAM and uAM , were estimated to be 1.5 weeks and
1,370 e/unit, respectively.

Applying the decision tree with Dmax = 4 (DSS), the
optimal SC design was identified as the number 4, cor-
responding to a hybrid configuration with Deg = 0.25
and CM spare parts. This choice was also confirmed by
the mathematical model, which suggested as optimal the
SC design characterised by Deg = 0.25, CM spares, and
a total cost of around 37,000 e/year. Therefore, regard-
ing the analysis of A-SKU, both the accuracy of the
DSS (whose results matched those of the mathematical
model), and the company choices (AS-IS situation) were
validated.

4.1.2. Case study B
Spare part B is a specific type of connecting rod, currently
managed according to an SC design of full centralisa-
tion (Deg = 1). Indeed, only one DC stocks inventory
of B-items, serving the demand of all the customers.
For SKU B, the average demand in the DC is equal
to 5 units/year and the external transportation cost is
still assumed equal to 225 e/trip. A stock-out of B-
inventory causes problems of unavailability of the cus-
tomer’s vehicles. Hence, the cost of a backorder was esti-
mated according to the know-how of the company’s staff
equal to uback = 50,500 e/backorder. The average lead
time (LCM) guaranteed by the supplier for this SKU is 4.5
weeks, while the unitary purchase cost of B (uCM) is 594
e. Finally, LAM and uAM were estimated to be 2.5 weeks
and 1,052 e/unit, respectively.

The decision tree with Dmax = 4 suggests as opti-
mal the SC design 1 (that is Deg = 0 and AM spares).
Such a prediction is characterised by a risk percentage
of cost increase due to an incorrect prediction equal to
6%, which is considered too high by the company. There-
fore, to obtain a more accurate result, the decision tree
with Dmax = 15 was also consulted. This decision tree
suggests 4 as the optimal SC design (hybrid centralisa-
tion of CM spare parts and Deg = 0.25). Applying the
mathematical model, the same result was achieved, rec-
ommending the SC design with Deg = 0.25 and CM

items, which has a total cost of 77,942e/year. Hence, the
mathematical model gave the same result as the decision
tree with Dmax = 15 and the DSS was validated. Ulti-
mately, the company’s AS-IS policy was not confirmed by
the results of the case study, showing that the firm should
consider adopting a hybrid SC configuration (instead of a
centralised one), thus allocating B-stocks in three out of
four DCs. However, the analysis revealed that the com-
pany is justified in sourcing CMB-parts because, for such
a SKU, AM technology is less cost-effective than the CM
one.

5. Conclusions

This paper proposes a DSS to support managers and
practitioners in deciding on the optimal spare parts SC
design (i.e. the decision about the optimal spare parts
SC configuration combined with the choice of the man-
ufacturing technology). The developed DSS guides the
decision between five different spare parts SC configu-
rations (centralisation, decentralisation, and three hybrid
configurations) where spare parts could bemanufactured
either in AMor in CM, thus considering a total of ten dif-
ferent spare parts SC designs. To develop such aDSS, four
main steps were followed: (i) a novelmathematicalmodel
was developed for determining and comparing the total
costs of the different spare parts SC designs (including
the cost of purchasing spare parts from external suppli-
ers, cost of placing replenishment orders, holding costs,
outbound transportation costs, and backorder costs); (ii)
the most relevant input parameters for the mathemati-
cal model were determined through the development of
an ANOVA; (iii) an extensive parametric analysis was
performed where 10,000 different spare parts SC scenar-
ios were developed, assigning values to the most relevant
input parameters of the mathematical model (through
the Sobol quasi-random low discrepancy sequence) and,
for each scenario, the optimal spare parts SC design was
identified using the mathematical model mentioned in
(i); (iv) the parametric analysis was used to feed a deci-
sion tree algorithm to obtain the aforementioned DSS.
Based on a sensitivity analysis, the decision tree was
pruned by imposing a maximum depth of four levels to
ensure a trade-off between user-friendliness and accu-
racy of predictions and avoid overfitting. The results of
the decision tree show that some leaves have high accu-
racy, while others not. However, the results prove that
even when the accuracy of the leaves is low, the average
percentage of cost increase that managers and practi-
tioners should pay in the case of incorrect prediction is
always less than 10% (often below 5%). Therefore, the
DSS leads to a robust choice since it selects the opti-
mal spare parts SC design or, in the case of a wrong
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prediction, it always ensures opting for a spare parts SC
design that does not have a negative impact on business
economies (implying a total cost similar to that of the
correct prediction). Meanwhile, as an additional tool for
improving the accuracy of the decision-making process,
this study also provides a supplementary decision tree
with a maximum depth of fifteen levels (Supplemental
Material), which is less easy-to-use than the four-level
tree but has higher accuracy (A = 97%), allowing man-
agers and practitioners to verify the DSS results when
needed.

The DSS developed herein represents the main con-
tribution of this study, since nothing similar has been
done before. In fact, to the best of our knowledge, no
tool supporting managers and practitioners in deciding
the optimal spare part SC design (i.e. spare parts SC
configuration and manufacturing technology) has been
developed so far. A decision tree algorithm is chosen
here to build the DSS since it is renowned as a rapid and
easy-to-use tool (Arena et al. 2022; Sgarbossa et al. 2021)
and it allows the robustness of decisions to be measured
with proper KPIs. Moreover, we have chosen to develop
the DSS by exploiting a machine learning algorithm and
data mining techniques since these are particularly use-
ful when there are many variables impacting the system
(Morgan et al. 2003; Orrù et al. 2020).

The main findings of the present study can be sum-
marised as follows:

• The developed DSS is based on six input parameters
(#customers, D̄1customer, etcentrali, uback, ucAM , and
ucCM), whose strong impact on the selection of the
optimal spare parts SC design is demonstrated by the
ANOVA. In contrast, the parameters LAM , LCM , and
ELTSL were found to be negligible concerning the
decision process investigated.

• The DSS is provided in the form of a decision tree
with a maximum depth of four levels. Given the large
number of parameters (six) impacting the choice of
the optimal spare parts SC design, such a tree has a
total accuracy of 77%. However, it guarantees to iden-
tify the spare parts SC design with the minimum cost
or, in the case of a wrong prediction, a solution that
deviates from the minimum cost by less than 10%
(often less than 5%).Meanwhile, if this four-level deci-
sion tree is not considered sufficiently reliable as a
DSS, the use of such a tree can be combined with
that of a more complex and more reliable one (with
fifteen levels), consulting this second tree only when
the KPIs a (leaf accuracy) and c (cost increase due
to incorrect prediction) of the four-level tree are low
and high, respectively. The fifteen-level decision tree
is provided here in the form of a Python code instead

of a graphical diagram representation so that man-
agers and practitioners can easily implement it in their
company systems, thus automating its consultation.

• The spare parts SC designs most frequently suggested
by the DSS are those with Degi = 0.25 (designs 3 and
4), proving the importance of considering hybrid SC
configurations in the analysis instead of focusing only
on centralised and decentralised spare parts SC con-
figurations. On the contrary, spare parts SC designs
5–9 are profitable only in very specific cases that the
four-level tree does not consider.

It is worth noting that the results achieved are strictly
related to spare parts SCs where the following assump-
tions can be considered valid: the spare parts demand fol-
lows a Poisson distribution, lead times are deterministic,
warehouses have unlimited capacities, DCs are managed
with (s,Q) inventory policy, and lateral transhipments,
environmental impacts, reverse logistics, and spare parts
obsolescence can be neglected. Besides, it is important
to remember that the proposed DSS aims at optimis-
ing the allocation of individual SKUs considering only
the variable costs of two-echelon SCs. However, all the
mathematical formulas used to calculate the total costs
of SC designs are reported in the present study. For this
reason, if managers and practitioners do not consider
the aforementioned simplifying assumptions compatible
with the reality of their company, this problem can be
overcome. In fact, although managers and practition-
ers cannot exploit the results of the DSS, they can be
supported in their decisions by using the mathemat-
ical model herein provided and introduce or remove
proper constraints, thus evaluating the real situation of
their companies. For example, the assumption of decen-
tralised DCs equidistant to the end customers can be
easily removed by using the mathematical formulas of
Section 3.1 and associating each DC with the specific
transport cost calculated based on the exact distance that
separates that DC from its end customer.

5.1. Theoretical and practical contributions

An efficient spare parts SC configuration improves the
performance of a company in terms of economy, sus-
tainability, and service level. Despite the importance of
optimising the SC configuration, up to now, the prob-
lem of choosing between centralisation, decentralisation,
and hybrid configurations has been overlooked in the lit-
erature. Specifically, the lack of quantitative methods to
compare different SC configurations has led many spare
parts dealers to optimise their SCs configurations based
on their experience rather than on structured methods.
Besides, recently, consideration has been given to the
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possibility of producing spare parts via AM, rather than
CM, since AM technology can bemore convenient under
specific conditions. However, the decision on the opti-
mal spare parts manufacturing technology has been hard
to take for managers and practitioners since the existing
literature lacks methods to quantitatively capture the dif-
ferences between CM and AM SCs, providing evidence
on when the adoption of AM spare parts can guarantee
higher performance than the CM ones. In this context,
the theoretical contribution of this paper is to overcome
both these issues by providing a DSS and a mathemat-
ical model to understand under which conditions it is
economically advantageous to have a centralised, decen-
tralised, or hybrid SC configuration, also selecting the
optimal manufacturing technology (AM or CM spare
parts). As a corollary, the present work also lays the foun-
dation for deeper scientific research regarding both the
choice of the most cost-effective spare parts SC con-
figuration (among centralisation, decentralisation, and
hybrid SCs) and the choice between AM and CM spare
parts.

At a practical level, the contribution of this study is
to provide companies with a quick and user-friendly sys-
tem (the DSS) for determining how to design spare parts
SCs. The results of this study will help managers and
practitioners in optimising for each SKU two aspects at
the same time: the allocation of stocks inside company
warehouses (choosing between centralisation, decentral-
isation, and hybrid configuration) and the items’ manu-
facturing technology (AM or CM).

An example of how managers and practitioners can
benefit from the results of this study is the following.
Considering the company’s most critical SKUs, by estab-
lishing their optimal SC design through the proposed
DSS (consulting the 4-depth decision tree once for each
SKU), managers and practitioners can rapidly compare
their actual SC management policy with the ideal situa-
tion recommended by the DSS. In case of discrepancies
between the current policies and the optimal situation
suggested by the DSS, managers and practitioners can
change the management of spare parts within the SC.
Hence, immediate economic benefits with a limited effort
can be obtained, since the company can first check only
its critical spare parts (for example those in class A of an
ABC analysis), and then verify the other SKUs in a sec-
ond moment. Moreover, only four questions need to be
answered to compare the current company situation with
the optimal SC design suggested by the decision tree.

5.2. Future research developments

Future developments of this research could be three-
fold: first, to repeat the study considering companies

which produce spare parts internally, instead of purchas-
ing them from external suppliers. Second, to optimise
SC designs considering multiple SKUs instead of indi-
vidual SKUs, thus introducing fixed costs (i.e. economic
investments in facilities and assets such as AM printers)
in the analysis. Finally, to consider using Random Forest
instead of a decision tree algorithm to interpret the results
of the Sobol-based parametric analysis, thus making the
machine learning trainingmore accurate andminimising
overfitting issues.

In addition to this, some assumptions underlying the
mathematical model could be relaxed or eliminated in
future works. For instance, lead times could be con-
sidered stochastic instead of deterministic, obsolescence
costs of spare parts could be considered as separate
costs instead of being included in the holding cost rate,
and sustainability issues could be included in the analy-
sis. Moreover, the possibility to distribute multiple spare
parts during each transportation could be considered, as
well as the facilities capacity constraints.
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Appendix A

The unitary transportation cost in hybrid or decentralised SC
configurations (etdecentral in Equation (17)) depends on the
unitary transportation cost in centralised SC configurations
(etcentral). Indeed, in centralised configurations, the only DC
is typically in a central location concerning the population of

customers to be served. On the contrary, in hybrid or decen-
tralised configurations, each of the several DCs is positioned
close to its specific customers. Consequently (as aforemen-
tioned in Section 1), hybrid and decentralised SC configu-
rations imply travelling shorter distances to distribute spare
parts, thus leading to lower transportation costs than in cen-
tralised configurations. Therefore, the relationship between the
unitary transportation cost in hybrid or decentralised SC con-
figurations (etdecentral) and the unitary transportation cost in
centralised SC configurations (etcentral) follows Equation A1.

et decentral = et central∗f (Deg) (A1)

To determine the function f (Deg) the following procedure was
followed. Eight case studies related to eight different SCs with
eight different SKUs were selected from the literature (Ivanov
2021; Liu et al. 2014). For each case study, the data on demand,
the number of customers, and geographical location of cus-
tomers were collected and entered into the Anylogistix sim-
ulation software. Based on these data, Green Field Analyses
(GFAs) were conducted to determine how transportation costs
decrease when reducing the degree of centralisation. Specif-
ically, several GFAs were run for each case study, gradually
increasing the number of DCs imposed (starting from one and
covering the whole range of possible SC configurations, from
centralised to decentralised and passing by hybrid SC config-
urations), and the respective transportation costs were then
calculated. For example, in a case study with ten customers, the
number of DCs was varied from one to ten (with increments
of one) and the respective transportation costs were identified.
The results of all case studies were graphed (Figure A1), putting
on the x-axis Deg, while on the y-axis the normalised trans-
portation cost (that is, for each case study, the ratio et

etcentral ).
Finally, interpolating the curve, it was possible to determine

f (Deg) (Equation A2).

f (Deg) = 0.7644∗Deg2 + 0.2009∗Deg + 0.0161 (A2)

Figure A1. Relationship between centralised and decentralised transportation costs.
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