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ABSTRACT: 

 

The interest in high-resolution semantic 3D models of historical buildings continuously increased during the last decade, thanks to 

their utility in protection, conservation and restoration of cultural heritage sites. The current generation of surveying tools allows the 

quick collection of large and detailed amount of data: such data ensure accurate spatial representations of the buildings, but their 

employment in the creation of informative semantic 3D models is still a challenging task, and it currently still requires manual time-

consuming intervention by expert operators. Hence, increasing the level of automation, for instance developing an automatic semantic 

segmentation procedure enabling machine scene understanding and comprehension, can represent a dramatic improvement in the 

overall processing procedure. In accordance with this observation, this paper aims at presenting a new workflow for the automatic 

semantic segmentation of 3D point clouds based on a multi-view approach. Two steps compose this workflow: first, neural network-

based semantic segmentation is performed on building images. Then, image labelling is back-projected, through the use of masked 

images, on the 3D space by exploiting photogrammetry and dense image matching principles. The obtained results are quite promising, 

with a good performance in the image segmentation, and a remarkable potential in the 3D reconstruction procedure. 

 

 

1. INTRODUCTION 

In recent years, the high level of automation achieved by the 

latest 3D acquisition technologies, like laser scanner or 

photogrammetry, allows to collect a large amount of data in a 

short time, and to obtain a high level of details in shape, geometry 

and semantic information (Shan and Toth, 2018). Thanks to these 

continuous technological developments, the use of such 

surveying methods had a significant increase, in particular for the 

study of heritage buildings, with the main aim of documentation, 

interpretation, protection, conservation and restoration of cultural 

heritage (Yastikli, N., 2007)). Certain of the most advanced 

applications also deals with virtual reality and Building 

Information Modelling (H-BIM) (López et al., 2018). 

Given the huge amount of 3D data that are usually collected 

nowadays to properly describe the sites of interests, automatic 

processing procedures shall be preferable in order to reduce the 

processing times. Nevertheless, automatic raw data processing 

for the creation of as-built 3D models still faces several 

significant challenges, often causing the need of time-consuming 

manual intervention, in particular to deal with the complexity of 

heritage buildings.  

One of the key points to enable automation in 3D data processing 

is the development of a semantic segmentation procedure. This 

procedure involves the task of classifying each point of a 3D 

point cloud into classes or categories according to its semantic 

meaning, for example according to the constructive element 

typology (e.g., wall, columns, vaults, etc.) (Matrone et al., 2020). 

Certain of the main issues related to working with 3D point 

clouds are: the large data size, which implies long computing 

time, the unordered structure of point clouds, and the low 

availability of shared datasets and tools, which may be the basis 

of a common processing strategy, e.g. based on the use of 

properly developed artificial intelligence tools (Malinverni et al., 

2019). 

As a basic step for scene understanding and comprehension, 

several semantic segmentation techniques have already been 

tested in a wide range of different applications. Nowadays 

machine learning (ML) and deep learning (DL) techniques are 

the most extensively investigated and the most promising (Zhang 

et al., 2019). The main approaches to face semantic segmentation 

of 3D point clouds can be divided in two main groups: (i) 

projection-based methods and (ii) point-based methods.  

Projection based methods leverage on an intermediate 

representation of the cloud in order to face with the unordered 

structure of 3D points, then they apply standard 2D approaches 

to perform the segmentation (Badrinarayanan et al., 2015), (Chen 

et al., 2017), (Cordts et al., 2016), and finally they re-project the 

extracted features on the starting shape or point cloud (Su et al., 

2015), (Boulch et al., 2018).  

Differently, point based methods work directly with the 3D 

points and they leverage of the full use of the characteristic of the 

raw point cloud data, considering all the spatial and geometrical 

information (Qi et al., 2017a). 

This paper focuses on the development of a workflow for the 

classification of 3D point clouds based on a multi-view approach, 

exploring and testing the use of state-of-the-art neural networks 

on heritage scenarios, with the main aim of improving 

automation in 3D heritage model generation. 

 

2. RELATED WORK 

Semantic analysis has become a central topic in several 

applications, such as computer vision, robotics, or remote 

sensing. Numerous approaches have been developed to automate 

this task, including algorithmic, machine learning and deep 

learning approaches. Despite the increasing demand in heritage 

survey data processing, few works focus on dealing with the 

classification of 3D heritage point clouds. 
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Malinverni et al. (2019) described a method to label and cluster 

automatically a point cloud based on a supervised Deep Learning 

approach, using a state-of-the-art neural network called 

PointNet++ (Qi et al., 2017b). The results are promising but they 

still face several challenges due to the complexity of the training 

scene. Further developments of this research should include the 

association to the Neural Netowork of a structured ontology for 

the semantic parsing, the future specification of more detailed 

classes and the creation of a synthetic dataset to overcome he 

problem of very poor-annotated training data. 

Matrone et. al (2020) make a comparison between machine 

learning and deep learning methods working directly with point 

cloud, and then, they proposed a new architecture named 

DGCNN-Mod+3DFeat that combined the positive aspects and 

advantages of Machine Learning and Deep Learning techniques, 

and they test it on the ARCH dataset benchmark with promising 

results. Both ML and DL proved to be approximately equally 

valuable: each of the two techniques alternatively outperformed 

the other one. 

In their work, Grilli et al. (2019) presented a research for the 

classification of 3D heritage data (point clouds or polygonal 

mesh models) using different supervised learning approaches, 

including Machine Learning and Deep Learning. Their method 

works on 2D data (“texture-based approach) or directly the 3D 

data (“geometric-based approach) depending on the needs and 

scope of classification. The method was applied and validated on 

four different archaeological scenarios, proving its reliability and 

replicability, being effective in providing metric information as 

well. 

Murtiyoso et al. (2021) developed an approach to semantically 

segment building façades in 6 categories using Deep Learning on 

rectified images by deploying pre-existing and pre-trained 

networks. The network outcome is back-projected into the 3D 

space by exploiting a depth map to generate a semantically 

segmented point cloud. The obtained overall accuracy is quite 

promising, yielding to a value of 79,8%. A mask-based approach 

has also been presented in Murtiyoso et al. (2022), investigating 

the use of back-projection into 3D space to more complex 

scenarios. 

This work proposes the combined use of deep learning based 

semantic image segmentation with photogrammetric 3D 

reconstruction. The main aim is to introduce the semantic 

classification at the beginning of the classical photogrammetric 

workflow. The initial results obtained in our tests are quite 

promising, experimentally proving the potential effectiveness of 

using projection-based techniques for the generation of 

semantically segmented building point clouds. 

 

3. DEVELOPED METHODOLOGY 

In this paper we propose a multi-view based methodology to 

perform semantic segmentation of the heritage 3D point clouds. 

This approach is based on the segmentation of a 2D intermediate 

representation of the cloud, and then on the re-projection of the 

extracted features on the initial cloud. Despite working directly 

with 3D data provides an opportunity for a better understanding 

of the spatial and geometrical information, dealing with 2D 

images is usually a quite effective strategy. On one hand, it 

allows to exploit the tried-and-tested results in 2D image 

processing, in particular with Convolutional Neural Networks 

(CNNs), and, on the other hand, it allows to develop an automatic 

procedure for the creation of a directly-segmented cloud starting 

from photogrammetric images. In addition, at this time, a multi-

view approach for heritage buildings semantic segmentation has 

never been tested. 

Our methodology is composed of two main steps: (i) at first, the 

images are processed by a neural network to perform the 

semantic segmentation directly on the images, and (ii) secondly, 

a back-projection procedure allows to transfer the image features 

on the 3D point cloud. 

 

3.1 The dataset 

To train the various networks we used an ongoing image-based 

dataset, proposed by Pellis et al. (2021), specifically designed for 

heritage semantic segmentation. Datasets play an indispensable 

role in the Neural Network training phase and few datasets are 

freely available in heritage scenarios. Two of the most important 

datasets in this context are Architectural Elements Dataset (AHE 

dataset), a collection of 10,000 images classified in 10 types of 

architectural elements for the task of classification, and ARCH 

dataset (Matrone et al., 2020b), a benchmark for large scale 

heritage point cloud semantic segmentation, composed of 17 

annotated scenes in 10 categories.  

The proposed dataset (Pellis et al., 2021) will be composed by 9 

heritage buildings, built in different period and characterized by 

different architectural style. It is an ongoing project, and, at the 

current stage, the dataset is composed by 5 buildings: (1_SC) 

Spedale del Ceppo, Pistoia, (2_OSA) Ospedale Sant’Antonio, 

Lastra a Signa, (3_SSA) Basilica della Santissima Annunziata, 

Firenze e (4_CG) Certosa del Galluzzo, Firenze, (5_CB) 

Cappella Buontalenti, Firenze. The segmentation categories 

considered in this dataset are structured following the guidelines 

defined in the ARCH dataset, which refers to the Industry 

Foundation Class (IFC) file format, to the CityGML (LOD3/4) 

and to the Art and Architecture Thesaurus (AAT). Hence, the 

dataset has been segmented in 10 classes, which correspond to 

certain BIM constructive elements, including arch, column, 

moulding, floor, door/window, wall, stair, vault, roof, other and 

background. Table 1 shows the percentage of pixels in each of 

the ten classes. For each building, a set of representative images 

from various perspective and angles, and their corresponding 

pixel-level ground truth are available. The total number of 

available images is currently about 4,700. All such images were 

collected during photogrammetric surveys, hence their alignment 

information is available as well, and it is possible to calculate the 

3D point corresponding to each pixel. 

 

 
Table 1: General workflow of the developed methodology. 

 

3.2 Image Segmentation 

The first step of the workflow consists in the segmentation of the 

intermediate images according with the conventions of the 

ARCHdataset. Image segmentation is a key topic in a lot of 

computer vision application and various algorithms have been 

developed in literature including thresholding methods, k-means 

clustering, region growing and other. However, over the past few 

years, deep learning networks have yielded a new generation of 

models, achieving the highest accuracy on the most popular 

benchmarks. The most performing architecture are Fully 
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Convolutional Networks (FCN), U-Net, SegNet and the DeepLab 

family. 

In this paper for the task of image segmentation we used one of 

the most popular network architectures, DeepLabv3+. This 

network is an improvement of the previous DeepLab and it 

employs atrous convolution with upsampled filters to extract 

dense feature maps and to capture long range context. The 

network has been implemented with MATLAB using ResNet18 

as a base classification architecture. Training a deep learning 

model from scratch is often unfeasible due to the dataset size 

required and due to long time for the initial tuning of the network. 

For these reasons we used transfer learning, a technique that 

allows to grab a model trained on a certain task and dataset and 

employ it on a different task. We used a pretrained version of 

ResNet18 trained on ImageNet dataset, one of the most popular 

and largest benchmarks for image semantic segmentation. 

 

3.3 Back-projection procedure 

The second step involves the back-projection of the classified 

pixels into the 3D point cloud. This is the most challenging step 

of the procedure because feature propagation on 3D space 

involves inevitably a loss of geometrical and spatial information, 

a loss of detail of shapes and the propagation of errors. In our 

proposed methodology we leverage on the photogrammetry 

principles using a masking method for the creation of a directly 

labelled point cloud starting from the images.  The back-

projection workflow starts from the initial segmentation of the 

survey images performed by a trained neural network. Secondly, 

according with the segmentation results, for each image and for 

each segmentation class a binary mask is created. The masked 

images were then employed during dense image matching in 

order to constrain the point cloud creation process. The results of 

this process are a separate dense 3D point clouds for each class.  

In the next section we are going to show some results of the 

developed procedure on our ongoing dataset. 

 

4. RESULTS 

4.1 Image Semantic Segmentation Results 

This section reports some results on the semantic segmentation 

of the 2D images of historical buildings.  

It is worth to notice that deep neural network training require 

thousands of images and case studies in order to ensure a proper 

and reliable performance. Given the current size of the ongoing 

dataset and the mentioned requirements, several quite simple 

tests with different data combinations are considered. 

 

4.1.1 Test 1 

In the first test, a small portion of the dataset is used, including 

just one building, in this case Spedale del Ceppo. For the purpose 

of training, all the labelled images of the building were randomly 

divided in 60% for the training (896 images), 20% as validation 

test (300 images), and 20% as test set (300 images). The training 

was performed for 30 epochs, yielding a validation accuracy of 

94.5%. Once trained, the network was deployed to obtain the 

prediction on the entire test set. Table 2 reports some of the most 

significant results. Since just one building was used, the images 

of training and test set are quite similar, hence this task is very 

simple and not really significant for the network generalization. 

 

 
Table 2: DeepLabv3+ results on the test set (Test 1). 

 

The performance of the network on the test set is remarkable, 

yielding to an overall accuracy of 93.4% and an Intersection Over 

Union (IoU) of 82.8%.  

Figure 1 shows a comparison between the input images (A), the 

ground-truth (B) and the prediction (C) obtained on three of the 

test set images. Figure 2 shows the confusion matrix. 

 

 
Figure 1: DeepLabv3+ results on the test set (Test 1): A) input 

image, B) ground-truth, C) prediction. 

 

 

 
Figure 2: Confusion Matrix for Test 1 - Spedale del Ceppo 

 

This test was repeated for all the other buildings of the dataset, 

obtaining the results reported in Table 3. 

 

 
Table 3: DeepLabv3+ results on the test set for all the other 

buildings (Test 1).  

Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BFScore

84,2%93,4% 94,1% 82,8% 87,1%

Global Accuracy Mean Accuracy

2_OSA 75% 66%

3_SS 91% 76%

4_CG 80% 55%

5_CB 74% 49%
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4.1.2 Test 2 

Test 2 considers all the five buildings currently available in the 

dataset, picking 500 images for each building. The images were 

randomly shuffled and divided in three sets: 60% as training test 

(1400), 20% as validation test (466), and 20% as test set (466). 

As expected, in this case the performance of the network is lower 

than in Test 1, yielding to an overall accuracy of 88.1% and a IoU 

of 71.8% (Table 4). Test and training set are still quite similar, 

but it is remarkable that the model could well generalize the 

solution even when dealing with several buildings. 

 

 
Table 4: DeepLabv3+ results on the test set (Test 2). 

 

Figure 3 shows a comparison between the input images, the 

ground-truth and the prediction obtained on three test set images. 

Figure 4 shows the confusion matrix obtained in Test 2. 

 

 
Figure 3: DeepLabv3+ results on the test set (Test 2): A) input 

image, B) ground-truth, C) prediction. 

 

 
Figure 4: Confusion Matrix for Test 2. 

4.1.3 Test 3 

Finally, in Test 3 the network is tested on the prediction of an 

unseen scene. Four buildings are used to train the network, 

picking 500 images for each building, whereas the remaining 

building is used as test set (1_SC). Being more challenging, the 

performance in this test is clearly worse than in Test 1 and 2: the 

model reached a global accuracy of 54.2% and a IoU of 27.7%.  

 

 
Table 5: DeepLabv3+ results on the test set (Test 3). 

 

 
Figure 5: DeepLabv3+ results on the test set (Test 3): A) input 

image, B) ground-truth, C) prediction. 

 

 
Figure 6: Confusion Matrix for Test 3. 

 

The confusion matrix, in Figure 6, shows that the most common 

classes like “floor”, “vault”, “wall” and “column” are well 

segmented. This proves that the strong class imbalance, which 

characterize the ongoing dataset, is a critical factor for the 

network performance. 

Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BFScore

88,1% 88,6% 71,8% 80,9% 72,1%

Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BFScore

34,0%54,2% 41,1% 27,7% 37,3%
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4.2 Back-projection procedure 

Finally, this subsection shows the results of the back-projection 

procedure on two dataset buildings, (1_SC) Spedale del Ceppo 

and (2_OSA) Ospedale Sant’Antonio. Two back-projection cases 

are considered for comparison. 

First, a point cloud is built using a set of masks created directly 

from the ground truth images used for the training phase of the 

network. Secondly, a point cloud is built using the set of masks 

created from the prediction output by the network. In both the 

cases the image prediction is obtained by means of the neural 

network trained in Test 1.  

The comparison between such two reconstructions allows to 

evaluate the correct functioning of the procedure and the 

influence of the prediction accuracy on the final result.  

Figure 8 shows A) the ground-truth point cloud, B) the point 

cloud reconstruction from the image ground-truth, and C) the 

point cloud reconstruction from the image prediction output by 

the neural network for the Spedale del Ceppo building.  

 

 

 
 

Figure 8: Back-Projection results for 1_SC: A) ground-truth 

cloud, B) image ground-truth reconstruction, C) prediction 

reconstruction. 

 

 

Table 6 reports the Global Accuracy, the Mean Intersection Over 

Union and the DICE coefficient for the two reconstructions. 

 

 

 
Table 6: Evaluation metrics for the back-projection of 1_SC. 

 

 

Figure 8 shows that the projection procedure works quite well 

with the ground-truth images, but its performance degrades when 

working with the prediction images. 

Figure 9 shows the results for the Ospedale Sant’Antonio 

building. 

 
Figure 9: Back-Projection results for 2_OSA: A) ground-truth 

cloud, B) image ground-truth reconstruction, C) prediction 

reconstruction. 

Table 7 reports some of the most remarkable evaluation metrics. 

 

 
Table 7: Evaluation metrics for the back-projection of 2_OSA. 

 

In this second case, the projection procedure reached a lower 

overall accuracy, but the performance on the cloud built with the 

prediction images has less degradation compared with the 

previous case. As expected, the results strictly depend on the 

quality of image segmentation prediction and hence on the 

accuracy of the neural network.  

Table 8 compares the image segmentation with the 3D point 

cloud segmentation results.  

 

 
Table 8: Comparison between the neural network-based image 

segmentation results and the corresponding results on the 3D 

point cloud. 

 

Despite the high value of the accuracy in the image prediction for 

the first case (1_SC) the Global Accuracy on the back-projection 

is quite low, with a percentage loss of 60%. On the second case 

the accuracy on the images is lower, but the percentage loss on 

the back-projection is less than 20%. Considering only these two 

case studies is not possible to correctly evaluate and generalize 

the performance of the procedure: future tests will be performed 

to this aim. 

However, these issues are related at least to two critical aspects: 

(i) the lack of accuracy of the prediction, in particular for what 

concerns object edges, and (ii) the problem of label overlapping. 

Issue (i) is related also to the dataset characteristics: a larger 

number of buildings and images should be considered, and the 

class imbalance should be reduced. In addition to increasing the 

dataset size increasing the number of the buildings, using data 

augmentation and class weighting during training should be 

useful as well.  

TYPE OF RECONSRUCTION Global Accuracy Mean IoU Mean DICE

Ground Truth Images 82,6% 56,7% 68,9%

Prediction Images 33,4% 25,6% 29,7%

TYPE OF RECONSRUCTION Global Accuracy Mean IoU Mean DICE

Ground Truth Images 69,7% 49,7% 61,2%

Prediction Images 57,3% 37,7% 52,7%

Prediction Global AccuracyMean IoU

Images 93,4% 82,8%

Point Cloud 33,4% 25,6%

Images 75,0% 66,0%

Point Cloud 57,3% 37,7%

1_SC

2_OSA
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Instead, the label overlapping issue (ii) should be at least partially 

compensated by introducing a regularization step in the back-

projection procedure. 

Since the results obtained using the ground truth segmented 

images are promising (low percentage loss: 10% for Spedale del 

Ceppo and 6% for Spedale Sant’Antonio), an improvement in the 

automatic image segmentation shall lead to a significant increase 

of the overall point cloud classification performance. 

 

5. CONCLUSIONS 

This paper presented a procedure for the semantic segmentation 

of 3D point clouds of heritage buildings The procedure is 

composed by two main steps: (i) the labelling of the intermediate 

images, using a pre-trained (deep learning-based) neural 

network, and then (ii) the projection of the image features on the 

3D point cloud, thanks to a masking method. The results are quite 

promising, but more in depth tests shall be performed to assess 

the general performance of the entire workflow. Furthermore, the 

foreseen generalization and size increase of the training dataset 

shall improve the performance of the automatic image 

segmentation step. Finally, an improvement of back-projection 

procedure, in particular to better deal with the label overlapping 

issue, will be investigated as well. Such changes are expected to 

improve the point cloud segmentation results. 
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