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ABSTRACT

Nuclear magnetic resonance spectroscopy was applied 
to investigate the association between milk metabolome 
and udder quarter health status in dairy cows. Mam-
mary gland health status was defined by combining 
information provided by traditional somatic cell count 
(SCC) and differential SCC (DSCC), which expresses 
the percentage of neutrophils and lymphocytes over total 
SCC. Quarter milk samples were collected in triplicate 
(d 1 to 3) from 10 Simmental cows, 5 defined as cases 
and 5 defined as controls according to SCC levels at d 
0. A total of 120 samples were collected and analyzed 
for bacteriology, milk composition, SCC, DSCC, and 
milk metabolome. Bacteriological analysis revealed the 
presence of mostly coagulase-negative staphylococci in 
quarter milk samples of cows defined as cases. Nuclear 
magnetic resonance spectra of all quarter samples were 
first analyzed using the unsupervised multivariate ap-
proach principal component analysis, which revealed a 
specific metabolomic fingerprint of each cow. Then, the 
supervised cross-validated orthogonal projections to 
latent structures discriminant analysis unquestionably 
showed that each cow could be very well identified ac-
cording to its milk metabolomic fingerprint (accuracy 
= 95.8%). The comparison of 12 different models, built 
on bucketed 1-dimensional NOESY spectra (noesygp-
pr1d, Bruker BioSpin) using different SCC and DSCC 
thresholds, corroborated the assumption of improved 
udder health status classification ability by joining in-
formation provided by both SCC and DSCC. Univariate 
analysis performed on the 34 quantitated metabolites 
revealed lower levels of riboflavin, galactose, galactose-
1-phosphate, dimethylsulfone, carnitine, hippurate, 

orotate, lecithin, succinate, glucose, and lactose, and 
greater levels of lactate, phenylalanine, choline, acetate, 
O-acetylcarnitine, 2-oxoglutarate, and valine, in milk 
samples with high somatic cells. In the 5 cases, results 
of the udder quarter with the highest SCC compared 
with its symmetrical relative were in line with quarter-
level findings. Our study suggests that increased SCC is 
associated with changes in milk metabolite fingerprint 
and highlights the potential use of different metabolites 
as novel indicators of udder health status and milk 
quality.
Key words: nuclear magnetic resonance, metabolome, 
mastitis, biomarker

INTRODUCTION

In recent decades, the ability to monitor udder health 
in lactating cows, especially in terms of mastitis and 
milk somatic cells, has become one of the key points 
for the entire dairy chain. This issue is of particular 
interest for (1) farmers, to increase profit through milk 
quality payment systems and reduction of veterinary 
interventions; (2) processing industries, as optimal 
cheese-making properties and cheese yields are favored 
by low milk somatic cells; and (3) consumers, due to in-
creased sensibility and awareness toward animal health 
and welfare (Halasa et al., 2007).

In general, mastitis can be diagnosed in 2 main forms. 
The first, namely clinical mastitis, is accompanied by 
typical inflammation symptoms at udder level (swell-
ing, redness, and pain) and visual alteration of secreted 
milk (clumpy, watery, bloody, or yellowish). Pathogens 
are usually found in the milk of cows with clinical 
mastitis, together with augmented SCC and altered 
milk composition (Xi et al., 2017). The second, namely 
subclinical mastitis, is an inflammation without evident 
symptoms on mammary gland or visual indicators in 
milk. Inflammation may occur even without detection 
of the presence of intramammary pathogens; nonethe-
less, subclinical mastitis is associated with increased 
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milk SCC and decreased milk yield and quality (Xi et 
al., 2017).

In these circumstances, the development of large-scale 
tools for identification of animals affected by subclinical 
mastitis is of great interest, as this would help farmers 
in the management of this disease and in the preven-
tion of serious clinical outcomes. For this purpose, milk 
SCC has been widely adopted as an indicator to screen 
for subclinical mastitis at population level (Harmon, 
2001; Pyörälä, 2003) and to perform indirect selection 
for animals endowed with lower susceptibility toward 
mastitis (Weigel and Shook, 2018). Most recently, dif-
ferential somatic cell count (DSCC), which expresses 
the percentage of neutrophils and lymphocytes over 
total SCC, has been proposed as a novel trait to screen 
for udder health on a wide scale (Damm et al., 2017). 
Joint SCC and DSCC information provide a more 
detailed depiction of dairy cows’ udder health status, 
which allows identification of healthy cows with greater 
accuracy, and also to distinguish susceptible animals 
from those with acute or chronic mastitis (Bobbo et 
al., 2020).

The analysis of metabolome through proton nuclear 
magnetic resonance (1H NMR) spectroscopy has been 
extensively adopted in the field of human medicine 
to identify candidate biomarkers able to discriminate 
between healthy and diseased organs or tissues, and 
ultimately to develop specific fine-tuned diagnostic 
tests (Emwas et al., 2013; Meoni et al., 2019). Such 
know-how and expertise have been transferred to the 
fields of veterinary and animal sciences (Jones and 
Cheung, 2007; Caboni et al., 2017; Basoglu at al., 
2020). In the case of bovine milk, previous authors have 
hypothesized that the metabolome is likely the result 
of different sources of metabolites released into milk by 
microorganisms (Hettinga et al., 2008; Hettinga et al., 
2009), live or dead immune cells (Azzara and Dimick, 
1985), blood (Basoglu et al., 2018), and mammary 
epithelial cells (Shennan and Peaker, 2000). Milk and 
dairy products’ metabolomes have been studied in rela-
tion to animal health, milk quality, geographical origin, 
and cheese-making processes (Tenori et al., 2018; Scano 
et al., 2019). In particular, the study of the metabolic 
profile of cow milk with high and low SCC is a quite 
novel approach in the livestock sector, which is shed-
ding light on the physiologic pathways at the basis of 
mastitis onset (Sundekilde et al., 2013).

To the authors’ knowledge there is still a lack of 
studies investigating the metabolomic profile of milk 
with high and low SCC and DSCC, especially at udder 
quarter level. This research question is addressed in 
the present study, which aimed at investigating the as-
sociation between milk metabolome and udder quarter 

health status in dairy cows through an NMR-based 
approach.

MATERIALS AND METHODS

Animal Enrollment and Sampling Procedures

The experimental procedures used in this trial were 
performed during routine milking procedures and were 
not invasive; therefore, animal welfare committee autho-
rization was not required. Milk samples were collected 
from Simmental cows of the experimental farm of the 
University of Padova (Legnaro, Italy). Animals were 
housed in freestall barns, fed TMR, and milked twice a 
day, in the morning (0600 h) and in the evening (1800 
h). The study was designed to collect information (stage 
of lactation and parity order) of the lactating cows that 
were present in the herd at the day of the first visit (d 
0) and to characterize their daily milk production and 
composition. Samples collected in the morning milking 
of d 0 were analyzed the same day in the laboratory of 
the Breeders Association of Veneto Region (Padova, 
Italy) for fat, protein, casein, and lactose percentages 
using a MilkoScan FT6000 (Foss Analytical A/S); and 
SCC (cells/mL) and DSCC (%) using a Fossomatic 7 
DC (Foss Analytical A/S). Among the 26 lactating cows 
present in the herd at d 0, 5 cows with the highest SCC 
values were defined as cases (SCC between 114,000 and 
193,000 cells/mL), and 5 cows with the lowest SCC 
values were chosen as controls (SCC between 7,000 and 
33,000 cells/mL). Out of the 26 cows, 3 were previously 
treated for mastitis with antibiotics and were excluded 
from the trial to avoid any possible effect on milk me-
tabolites. Among the remaining 23 cows, the 5 animals 
selected as cases were those with the highest SCC. By 
contrast, because we had different cows with similar low 
SCC value, controls were selected to maintain a similar 
average parity and DIM values compared with cases: 
219 DIM (103–356) and 3.8 parities (2–6) for cases, and 
155 DIM (70–219) and 3.4 parities (2–5) for controls. In 
the 3 subsequent days (d 1–3), milk samples were col-
lected during morning milking at quarter level from the 
5 cases and the 5 controls (40 quarters were sampled 
each day for a total of 120 samples across the 3 d). 
Sampling protocol was as follows: (1) after cleaning the 
teats with individual disposable towels and discarding 
the first streams of milk, sterile quarter milk samples 
were collected for bacteriological analysis; (2) quarters 
were drained simultaneously using a vacuum system 
connected to 4 different buckets (Figure 1); (3) after 
milking, each bucket was weighted to obtain individual 
milk production. From each bucket, multiple milk ali-
quots of 50 mL were collected.

Bobbo et al.: MILK METABOLITES AND UDDER HEALTH
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Milk Bacteriological Analysis and Milk Composition

The first milk aliquot was used for bacteriological 
examination, which was performed in the laboratory of 
the Istituto Zooprofilattico Sperimentale delle Venezie 
(Legnaro, Italy). Samples were cultured and identi-
fied according to National Mastitis Council guidelines 
(NMC, 1999). Briefly, 10 μL of each quarter milk 
sample were cultured on the surface of 5% sheep blood 
agar and MacConkey agar plates, followed by incuba-
tion at 37°C for 16 to 24 h. Bacteria were identified 

according to NMC (1999), which includes morphol-
ogy, Gram staining, catalase and coagulase reactions, 
oxidase reaction, biochemical properties, and hemolysis 
pattern. Gram-positive bacteria were differentiated as 
staphylococci and streptococci by the catalase reac-
tion. The coagulase tube test in rabbit plasma was 
used to distinguish Staphylococcus aureus from CNS. 
Gram-negative bacteria were identified by oxidase test 
as well as by growth features on MacConkey agar and 
eosin methylene blue agar. A sample was considered 
contaminated when 3 or more dissimilar colony types 
were observed with no single colony type predominat-
ing (NMC, 1999).

The second milk aliquot was transferred at 4°C to 
the laboratory of the Breeders Association of Veneto 
Region (Padova, Italy). Milk samples were warmed at 
room temperature, gently mixed by inversion and ana-
lyzed within 12 h for fat, protein, casein, and lactose 
(%) using a MilkoScan FT6000 (Foss Analytical A/S). 
Somatic cell count (cell/mL) and DSCC (%) were de-
termined using the Fossomatic 7 DC (Foss Analytical 
A/S).

Nuclear Magnetic Resonance

The third aliquot of milk was set aside for NMR 
analysis. Milk samples were dissolved in dichlorometh-
ane (CH2Cl2), 1:1 (vol/vol; Tenori et al., 2018). The 
mixture was homogenized by vortexing and then was 
incubated for 10 min at room temperature. The mix-
ture was then centrifuged at 5,000 × g at 4°C for 30 
min, and 350 µL of the supernatant were added to 350 
µL of sodium phosphate buffer [70 mM Na2HPO4; 20% 
(vol/vol) H2O, 6.1 mM NaN3; 4.6 mM sodium trimeth-
ylsilyl (2,2,3,3-H4)-propionate; pH 7.4]. A total of 600 
µL of this mixture was transferred into a 5-mm NMR 
tube (Bruker BioSpin) and stored at −80°C for the sub-
sequent analysis performed at the Magnetic Resonance 
Center (Sesto Fiorentino, Italy).

One-dimensional (1D) 1H NMR spectra of milk 
extracts were recorded on a Bruker spectrometer op-
erating at 600.13 MHz proton Larmor frequency and 
equipped with a 5-mm PATXI 1H-13C-15N probe includ-
ing a z-axis gradient coil, automatic tuning-matching, 
and an automatic refrigerated sample changer (Sample-
Jet). A BTO 2000 thermocouple provided temperature 
stabilization at the level of approximately 0.1 K at the 
sample. Before measurement, samples were kept for 
at least 5 min inside the NMR probe for temperature 
equilibration (310 K). For each sample two 1D 1H NMR 
spectra were acquired with NOESY sequence (noesygp-
pr1d, Bruker BioSpin), using 64 scans, 98 k data point, 
a spectral width of 18,028 Hz, an acquisition time of 
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Figure 1. Vacuum system connected to 4 different buckets used in 
the study to simultaneously drain the 4 quarters.
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2.7 s, a relaxation delay of 4 s, and a mixing time of 
10 ms. Both molecules with low molecular weight and 
macromolecules are visible in 1D NOESY spectra.

Free induction decays were multiplied by an expo-
nential function equivalent to a 0.3-Hz line-broadening 
factor before applying Fourier transformation. Trans-
formed spectra were automatically corrected for phase 
and baseline distortions using TopSpin (Bruker). 
The α-lactose doublet (5.24 ẟ1H ppm) was used to 
calibrate spectra. For multivariate analysis, each 1D 
spectrum in the range between 0.02 and 10.00 ẟ1H ppm 
was segmented into 0.02-ẟ1H ppm chemical shift bins 
(buckets). The water (4.61–4.77 ẟ1H ppm) and dichlo-
romethane (5.30–5.33 and 5.42–5.65 ẟ1H ppm) regions 
were removed from the buckets of NOESY spectra. 
Normalization using probabilistic quotient normal-
ization was applied to the bins before any statistical 
analysis. A total of 34 metabolites were identified in 
the NMR spectra. Signal identification was performed 
using a library of NMR spectra of pure organic com-
pounds (Assure NMR 2.2 software, Bruker BioSpin), 
public databases (FooDB, https:​/​/​foodb​.ca/​, and Milk 
Composition Database, http:​/​/​www​.mcdb​.ca/​) storing 
references, and literature data (Tenori et al., 2018). The 
resulting matrix was used to perform univariate data 
analyses.

Statistical Analyses

All data analyses were performed using R (version 
3.5.3; R Core Team, 2020), an open-source software for 
statistical analysis. Principal component analysis was 
used as the first exploratory unsupervised analysis at 
quarter level. Orthogonal projections to latent struc-
tures discriminant analysis, applied to quarter data, was 
chosen as a supervised technique to extract latent and 
hidden variation characteristics of udder health status. 
The accuracies and the confusion matrices for the dif-
ferent cows (Animal ID) classifications were assessed by 
means of 100 cycles of a Monte Carlo cross-validation 
scheme (R script developed in-house). In this case, 90% 
of the data were randomly chosen at each iteration as 
a training set to build the model. Then the remaining 
10% were tested, and sensitivity, specificity, and ac-
curacy of the classification were assessed. Two sets of 
analyses were performed, depending on whether the aim 
was to classify animals or single quarters. In the first 
case all samples collected from cows defined as cases 
(or controls) were labeled as cases (or controls); that is, 
all samples from quarters of the same cow were treated 
the same. This strategy was chosen to distinguish dis-
eased animals from healthy ones. In the other cases 
individual quarters were classified as high or low risk 
of mastitis, depending on selected thresholds of SCC 

and DSCC in the collected samples. The accuracies and 
the confusion matrices reported for the classification 
of samples collected from case or control cows, and for 
quarters of cows at low or high risk of mastitis based on 
several SCC and DSCC thresholds were assessed using 
a cross-validation scheme. In this procedure a valida-
tion set was iteratively created by randomly removing 
from the training set all the 4 samples belonging to 
the same cow, to avoid a classification bias due to the 
similarity of the samples from the same animal. Then 
the classification model was built on the training set, 
and the removed samples were used to assess the model 
performances by generating a confusion matrix that ex-
presses sensitivity, specificity, and accuracy. The whole 
procedure was repeated 100 times for each model, and 
the results were averaged.

Univariate analysis was performed on quantitated 
metabolites. The Wilcoxon test was chosen to assess 
differences between 2 groups, and false discovery rate 
correction was applied using the Benjamini and Hoch-
berg correction method. An adjusted P < 0.05 was con-
sidered significant. Furthermore, for each metabolite, 
the Cliff’s delta effect size was calculated by means of 
the R package “effsize” (Torchiano, 2020).

RESULTS AND DISCUSSION

Milk Composition, SCC, and DSCC

Cows defined as cases and controls averaged 12.2 and 
12.9 kg of milk per milking, respectively. Milk of cases 
was characterized on average by 3.06% fat, 3.48% pro-
tein, and 4.74% lactose, with a mean SCC of 187,000 
cells/mL. Controls had average fat, protein, and lactose 
contents of 2.90%, 3.27%, and 4.84%, respectively, and 
a mean SCC of 21,000 cells/mL. The effects of high 
SCC on milk production and composition have been 
extensively described in the literature (Le Maréchal et 
al., 2011). Although data on the effects of high SCC 
on the total content of protein and fat are controver-
sial, a clear decrease of lactose has been reported (Le 
Maréchal et al., 2011). At the time of analysis, the Fos-
somatic 7 DC (FOSS Analytical A/S) did not provide 
DSCC values for milk samples with SCC <50,000 cells/
mL, due to accuracy and repeatability issues of the 
instrument (Damm et al., 2017). Therefore, in samples 
with SCC <50,000 cells/mL, DSCC was set to 45% for 
subsequent analysis, following the approach of Wall et 
al. (2018) and Bobbo et al. (2020).

Bacteriological Analysis

Bacteriological analysis revealed the presence of 
mostly CNS in quarter milk samples of cows defined 

Bobbo et al.: MILK METABOLITES AND UDDER HEALTH

https://foodb.ca/
http://www.mcdb.ca/


Journal of Dairy Science Vol. 105 No. 1, 2022

Bobbo et al.: MILK METABOLITES AND UDDER HEALTH

T
ab

le
 1

. 
So

m
at

ic
 c

el
l 
co

un
t 

(S
C

C
),

 d
iff

er
en

ti
al

 S
C

C
 (

D
SC

C
),

 a
nd

 b
ac

te
ri

ol
og

ic
al

 r
es

ul
ts

 o
f 
m

ilk
 s

am
pl

es
 c

ol
le

ct
ed

 f
ro

m
 u

dd
er

 q
ua

rt
er

s 
of

 5
 c

ow
s 

de
fin

ed
 a

s 
ca

se
s 

du
ri

ng
 t

he
 3

 d
 

of
 s

am
pl

in
g

C
ow

 
id

en
ti
fic

at
io

n 
nu

m
be

r
 

Q
ua

rt
er

1

D
ay

 1

 

D
ay

 2

 

D
ay

 3

SC
C

, 
no

./
m

L
D

SC
C

, 
%

P
at

ho
ge

n
SC

C
, 

no
./

m
L

D
SC

C
, 

%
P
at

ho
ge

n
SC

C
, 

no
./

m
L

D
SC

C
, 

%
 

P
at

ho
ge

n

27
 

L
F

22
,0

00
45

.0
 

 
21

,0
00

45
.0

 
 

21
,0

00
45

.0
C

or
yn

eb
ac

te
ri

u m
 s

pp
.

 
 

R
F

12
3,

00
0

77
.1

C
N

S
 

93
,0

00
76

.0
C

N
S

 
96

,0
00

76
.4

C
N

S
 

 
R

R
32

,0
00

45
.0

 
 

37
,0

00
45

.0
 

 
32

,0
00

53
.2

 
 

 
L
R

34
5,

00
0

81
.6

 
 

23
3,

00
0

80
.3

C
N

S
 

15
8,

00
0

79
.0

C
N

S
7

 
L
F

28
,0

00
45

.0
 

 
23

,0
00

45
.0

 
 

16
,0

00
45

.0
 

 
 

R
F

79
,0

00
86

.6
 

 
56

,0
00

82
.0

 
 

75
,0

00
78

.9
 

 
 

R
R

50
0,

00
0

77
.0

C
an

di
da

 
36

4,
00

0
82

.2
C

an
di

da
 

49
8,

00
0

83
.0

C
an

di
da

 
 

L
R

30
,0

00
45

.0
 

 
24

,0
00

45
.0

 
 

22
,0

00
45

.0
 

38
 

L
F

14
,0

00
45

.0
 

 
13

,0
00

45
.0

 
 

12
,0

00
45

.0
 

 
 

R
F

83
1,

00
0

81
.8

 
 

67
9,

00
0

82
.2

 
 

72
8,

00
0

82
.2

 
 

 
R

R
14

9,
00

0
80

.2
 

 
94

,0
00

68
.5

 
 

13
9,

00
0

71
.7

 
 

 
L
R

14
,0

00
45

.0
 

 
17

,0
00

45
.0

 
 

23
,0

00
45

.0
 

54
 

L
F

69
3,

00
0

69
.0

 
 

60
2,

00
0

69
.5

 
 

47
4,

00
0

69
.9

 
 

 
R

F
12

4,
00

0
70

.3
 

 
11

7,
00

0
70

.1
 

 
13

0,
00

0
75

.4
B

ac
ill

us
 s

pp
.

 
 

R
R

16
3,

00
0

72
.2

C
N

S
 

12
0,

00
0

73
.1

 
 

10
2,

00
0

75
.0

 
 

 
L
R

12
8,

00
0

74
.7

C
N

S
 

20
0,

00
0

82
.7

C
N

S
 

12
5,

00
0

80
.4

C
N

S
44

 
L
F

33
,0

00
45

.0
 

 
30

,0
00

45
.0

 
 

32
,0

00
45

.0
C

on
ta

m
in

at
ed

 
 

R
F

32
8,

00
0

79
.5

C
N

S
 

24
0,

00
0

79
.8

C
N

S
 

23
4,

00
0

80
.9

C
N

S
 

 
R

R
67

,0
00

67
.9

 
 

54
,0

00
73

.4
 

 
56

,0
00

74
.7

 
 

 
L
R

89
,0

00
82

.2
C

N
S

 
10

8,
00

0
79

.4
E

sc
he

ri
ch

ia
 c

ol
i

 
1,

35
5,

00
0

89
.4

 
1 L

F
 =

 l
ef

t 
fr

on
t;
 R

F
 =

 r
ig

ht
 f
ro

nt
; 
R

R
 =

 r
ig

ht
 r

ea
r;

 L
R

 =
 l
ef

t 
re

ar
.



Journal of Dairy Science Vol. 105 No. 1, 2022

Bobbo et al.: MILK METABOLITES AND UDDER HEALTH

Figure 2. Principal component analysis (PCA) score plot of milk nuclear magnetic resonance (NMR) spectra. Each dot represents an NMR 
milk spectrum. Colors describe different cows (Cow ID), and udder quarters are numbered from 1 to 4, starting from the left front, clockwise 
up to the left rear. LF = left front; RF = right front; RR = right rear; LR = left rear. Days of milk sampling are coded with different symbols: 
first day of sampling, circles; second day of sampling, squares; third day of sampling, diamonds. PC1 = principal component 1; PC2 = principal 
component 2.

Table 2. Confusion matrix of cross-validated orthogonal projections to latent structures discriminant analysis model built to classify different 
cows1

Cow identification 
number

Cow identification number

7 27 33 35 38 44 50 54 56 61

7 100 0 0 0 0 0 0 0 0 0
27 0 97.4 0 0 0 0 0 0 2.6 0
33 0 4.8 84.6 10.5 0 0 0 0 0 0
35 0 0.7 9.3 88.9 0 1 0 0 0 0
38 0 0 0 0 100 0 0 0 0 0
44 1.9 0 0 0 0 98.1 0 0 0 0
50 0 0 0 0 0 0 100 0 0 0
54 0 0 0 0 0 0 0 100 0 0
56 0 0 0 0 0 0 0 0 100 0
61 0 0 0 0 0 0 0 0 0 100
1The diagonal of the confusion matrix reports the sensitivity (%) for the classification of each animal. Overall predictive accuracy = 95.8%.
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as cases (Table 1). In particular, CNS strains were 
detected in at least 2 out of 3 consecutive quarter 
samples in 3 cows. In this regard, the National Mastitis 
Council guidelines recommend that the same pathogen 
be isolated from 2 out of 3 samples before labeling a 
quarter as positive (Oliver et al., 2004). Previous stud-
ies (Tomazi et al., 2015; Bobbo et al., 2017) reported 
that intramammary infections caused by CNS had no 
detrimental influence on milk production. Indeed, mi-
nor pathogens cause less damages to the udder tissue 
than major pathogens, such as Staphylococcus aureus, 
Escherichia coli, Streptococcus spp., and Klebsiella spp. 
(Reyher et al., 2012). One cow was infected with yeast 
of the genus Candida, and in another cow no bacterial 

growth was observed, despite the relatively high SCC 
and DSCC values in both front and rear quarters of the 
right side (Table 1). According to Bobbo et al. (2017), 
the absence of bacterial growth in milk samples with 
high SCC can have 2 possible explanations: (1) the cow 
was in the healing process, so even if the inflammatory 
response was still active (high SCC), the pathogens 
were already spontaneously cleared (Smith et al., 1985); 
or (2) the inflammatory process was at the maximum 
level, and the pathogens, engulfed by phagocytes, could 
not be isolated (Newbould and Neave, 1965). Conta-
gious pathogens were not detected. Results from the 
control group are summarized in Supplemental Table 
S1 (https:​/​/​doi​.org/​10​.6084/​m9​.figshare​.16670497​.v1).

Bobbo et al.: MILK METABOLITES AND UDDER HEALTH

Figure 3. Score plot of a cross-validated orthogonal projections to latent structures discriminant analysis (OPLS-DA) model built on buck-
eted one-dimensional NOESY spectra (noesygppr1d, Bruker BioSpin). The model was trained to discriminate milk samples classified as controls 
(in yellow, n = 60) from those classified as cases (in red, n = 60).

https://doi.org/10.6084/m9.figshare.16670497.v1
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Classification of Samples and Cows  
Based on NMR Spectra

Nuclear magnetic resonance spectra (buckets) of all 
120 quarter milk samples were first analyzed using the 
unsupervised multivariate approach principal compo-
nent analysis to gain an overview of the samples under 
study and possibly identify outliers. As shown in Figure 
2, the principal component analysis score plot on 1D 
NOESY revealed a specific metabolomic fingerprint of 
different cows corresponding to cow ID (each animal 
is coded with a specific color). Then, cross-validated 
orthogonal projections to latent structures discriminant 
analysis was applied as a supervised method to deter-
mine the classification accuracy for each animal, based 
on their 1H NMR spectra, collected at 3 different time 
points for each udder quarter (Table 2). For the 10 
animals we obtained an average individual discrimina-
tion accuracy of 95.8% (range 84.6–100%). This result 
unquestionably shows that each cow can be very well 
identified according to its milk metabolomic fingerprint.

Subsequently, the orthogonal projections to latent 
structures discriminant analysis approach was employed 
to extract latent and hidden variation characteristics of 
the health status of cows and individual udder quarters. 
First, we tried to classify udder quarters of animals pre-

viously defined as cases from those defined as controls, 
treating all quarters of the same animal as cases or 
controls (Figure 3; Table 3, model 1). Second, we tried 
to classify individual quarters of animals according to 
their SCC, choosing 100,000 and 200,000 cells/mL as 
thresholds to create distinct groups (Table 3, models 
2 and 3): quarters of cows at low risk (<100,000 and 
<200,000 cells/mL) and at high risk (≥100,000 and 
≥200,000 cells/mL) of developing mastitis. Finally, we 
tried to classify quarters of animals according to their 
DSCC, choosing 50, 60, 65, 70, and 80% as thresholds 
to create the 2 groups described (Table 3, models 4–8). 
Among the models tested, model 3 was the most ac-
curate (76.8%) to discriminate milk samples of cows at 
low or high mastitis risk based on an SCC threshold 
of 200,000 cells/mL, suggesting a major influence of 
this trait on the metabolomic profile of the cow’s milk. 
Our findings further support the 200,000 cells/mL cut-
off as the optimal threshold to minimize udder health 
classification errors (Dohoo and Leslie, 1991; Schukken 
et al., 2003). By contrast, models built to discriminate 
udder health status according to DSCC values were un-
able to correctly classify milk samples. Furthermore, a 
model to discriminate milk samples with DSCC >80% 
from milk samples with DSCC <50% was attempted 
without reaching a satisfactory discrimination (accu-
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Table 3. Cross-validated orthogonal projections to latent structures discriminant analysis models built on bucketed one-dimensional NOESY 
spectra (noesygppr1d, Bruker BioSpin)

Model1   True classes  

Confusion matrix, predicted classes

 
Pred. 
acc., %Cases   Controls

1 73.3
    Cases (n = 60) 73.3% 26.7%  
    Controls (n = 60) 26.7% 73.3%  
2     SCC <100,000 cells/mL SCC ≥100,000 cells/mL 64.6
    SCC <100,000 cells/mL (n = 91) 62.6% 37.4%  
    SCC ≥100,000 cells/mL (n = 29) 33.3% 66.7%  
3     SCC <200,000 cells/mL SCC ≥200,000 cells/mL 76.8
    SCC <200,000 cells/mL (n = 104) 73.1% 26.9%  
    SCC ≥200,000 cells/mL (n = 16) 19.6% 80.4%  
4     DSCC <50% DSCC ≥50% 60.9
    DSCC <50% (n = 74) 57.5% 42.4%  
    DSCC ≥50% (n = 46) 35.6% 64.4%  
5     DSCC <60% DSCC ≥60% 58
    DSCC <60% (n = 76) 54.2% 45.6%  
    DSCC ≥60% (n = 44) 37.7% 62.2%  
6     DSCC <65% DSCC ≥65% 59.9
    DSCC <65% (n = 78) 59.1% 40.9%  
    DSCC ≥65% (n = 42) 39.1% 60.9%  
7     DSCC <70% DSCC ≥70% 55.4
    DSCC <70% (n = 83) 52.5% 47.5%  
    DSCC ≥70% (n = 37) 41.7% 58.3%  
8     DSCC <80% DSCC ≥80% 55.4
    DSCC <80% (n = 102) 42.4% 56.7%  
    DSCC ≥80% (n = 18) 48.2% 51.8%  
1Model 1: confusion matrix and predictive accuracy (pred. acc.) of the model trained to discriminate controls from cases. Models 2 and 3: confu-
sion matrices and predictive accuracies of models built to predict milk samples below or above predefined SCC thresholds. Models 4–8: confu-
sion matrices and predictive accuracies of models built to predict milk samples below or above predefined differential SCC (DSCC) thresholds.
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racy: 60%). Four additional models (Table 4, models 
9–12) were then created by combining the best SCC 
threshold (200,000 cells/mL) and 4 DSCC thresholds 
(60, 65, 70, and 80%). Combining the 2 traits, the most 
accurate model was model 9 (78.4%), and the increase 
of DSCC from 60 to 80% led to a progressive decrease 
of the accuracy of the models. These findings corrobo-
rate the assumption of an improved udder health status 
classification ability by joining information provided by 
both SCC and DSCC.

Milk Metabolites in Cows’ Udder Quarters  
with Low or High SCC

Milk metabolites can originate from different path-
ways, including (1) release from microorganisms, (2) 
active secretion or leaking from immune cells, (3) blood 
transfer, and (4) metabolic activity of mammary epi-
thelial cells (Sundekilde et al., 2013). Indeed, previous 
research studies have demonstrated the association 
between presence of bacteria in milk and altered profile 
in terms of volatile compounds (Hettinga et al., 2009). 
Also, the number of somatic cells in milk (in quantita-
tive terms) and their specific composition (in qualita-
tive terms) are known as factors affecting the metabolic 
fingerprint of milk (Sundekilde et al., 2013).

In the present study, 34 metabolites were identified 
in milk 1H NMR spectra. Univariate analyses were per-
formed to compare metabolite levels in quarter milk 
samples with SCC ≥200,000 cells/mL versus samples 
with SCC <200,000 cells/mL (Figure 4), and in samples 
with SCC ≥200,000 cells/mL and DSCC ≥60% versus 
samples with SCC <200,000 cells/mL and DSCC <60% 
(Figure 5). The combination of SCC and DSCC thresh-
olds allowed us to better distinguish healthy quarters 
(those with low SCC and DSCC) from mastitic quarters 
(those with high SCC and DSCC), excluding quarters 
susceptible to mastitis (with low SCC but high DSCC, 
indicating the presence of increased neutrophils levels, 
i.e., of an inflammatory response) and chronically in-
flamed quarters (where high SCC levels are mostly due 
to a high content of macrophages).

Milk samples with SCC ≥200,000 cells/mL were 
characterized by lower levels of riboflavin, galactose, 
galactose-1-phosphate, dimethylsulfone, carnitine, 
hippurate, orotate, lecithin, succinate, glucose, and 
lactose (Figure 4). Similar findings were observed for 
milk samples with SCC ≥200,000 cells/mL and DSCC 
≥60%, which were also characterized by lower levels 
of glutamate compared with milk samples with SCC 
<200,000 cells/mL and DSCC <60% (Figure 5). By 
contrast, milk samples with SCC ≥200,000 cells/mL 
and with combined SCC ≥200,000 cells/mL and DSCC 
≥60%, had greater levels of lactate, phenylalanine, 

Bobbo et al.: MILK METABOLITES AND UDDER HEALTH

T
ab

le
 4

. 
C

ro
ss

-v
al

id
at

ed
 o

rt
ho

go
na

l 
pr

oj
ec

ti
on

s 
to

 l
at

en
t 

st
ru

ct
ur

es
 d

is
cr

im
in

an
t 

an
al

ys
is

 m
od

el
s 

bu
ilt

 o
n 

bu
ck

et
ed

 o
ne

-d
im

en
si

on
al

 N
O

E
SY

 s
pe

ct
ra

 (
no

es
yg

pp
r1

d,
 B

ru
ke

r 
B

io
Sp

in
):

 c
on

fu
si

on
 m

at
ri

ce
s 

an
d 

pr
ed

ic
ti
ve

 a
cc

ur
ac

ie
s 

(p
re

d.
 a

cc
.)

 o
f 
m

od
el

s 
bu

ilt
 t

o 
pr

ed
ic

t 
m

ilk
 s

am
pl

es
 b

el
ow

 o
r 

ab
ov

e 
pr

ed
ef

in
ed

 S
C

C
 a

nd
 d

iff
er

en
ti
al

 S
C

C
 (

D
SC

C
) 

th
re

sh
ol

ds

M
od

el
 

T
ru

e 
cl

as
se

s
 

C
on

fu
si

on
 m

at
ri

x,
 p

re
di

ct
ed

 c
la

ss
es

 
P

re
d.

 
ac

c.
, 
%

9
 

 
SC

C
 <

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 <
60

%
SC

C
 ≥

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 ≥
60

%
78

.4
 

 
SC

C
 <

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 <
60

%
 (

n 
=

 7
6)

73
.4

%
26

.6
%

 
 

 
SC

C
 ≥

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 ≥
60

%
 (

n 
=

 1
6)

16
.5

%
83

.5
%

 
10

 
 

SC
C

 <
20

0,
00

0 
ce

lls
/m

L
 a

nd
 D

SC
C

 <
65

%
SC

C
 ≥

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 ≥
65

%
77

.1
 

 
SC

C
 <

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 <
65

%
 (

n 
=

 7
8)

72
.6

%
27

.4
%

 
 

 
SC

C
 ≥

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 ≥
65

%
 (

n 
=

 1
6)

18
.5

%
81

.5
%

 
11

 
 

SC
C

 <
20

0,
00

0 
ce

lls
/m

L
 a

nd
 D

SC
C

 <
70

%
SC

C
 ≥

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 ≥
70

%
75

.5
 

 
SC

C
 <

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 <
70

%
 (

n 
=

 8
0)

71
.7

%
28

.3
%

 
 

 
SC

C
 ≥

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 ≥
70

%
 (

n 
=

 1
3)

20
.6

%
79

.4
%

 
12

 
 

SC
C

 <
20

0,
00

0 
ce

lls
/m

L
 a

nd
 D

SC
C

 <
80

%
SC

C
 ≥

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 ≥
80

%
75

.1
 

 
SC

C
 <

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 <
80

%
 (

n 
=

 9
6)

71
.2

%
28

.8
%

 
 

 
SC

C
 ≥

20
0,

00
0 

ce
lls

/m
L
 a

nd
 D

SC
C

 ≥
80

%
 (

n 
=

 1
0)

21
%

79
%

 



Journal of Dairy Science Vol. 105 No. 1, 2022

choline, acetate, O-acetylcarnitine, 2-oxoglutarate, and 
valine compared with milk samples with SCC <200,000 
cells/mL (Figure 4; Figure 5). In addition, pairwise uni-
variate analysis was also performed for each of the cows 
defined as cases, by comparing the udder quarter with 
the highest SCC (average of the 3 sampling times) with 
its symmetrical relative (Table 5). Results of within-
cow analyses were in line with quarter-level findings. In 
fact, significantly higher levels of lactate, 2-oxogluta-
rate, malonate, methanol, and phenylalanine were ob-
served in udder quarters with elevated SCC compared 
with contralateral healthy quarters. Inflamed quarters 
also showed the lowest levels of lactose, galactose, and 
orotate.

The results of the present study partially agree with 
those of Sundekilde et al. (2013), who studied the asso-
ciation between milk metabolites and SCC, considering 
2 groups of cows with very low (<14,000 cells/mL) and 

very high (>720,000 cells/mL) SCC in milk. Indeed, 
decreased hippurate and fumarate levels in milk with 
high SCC were observed by Sundekilde et al. (2013), al-
though the biochemical and physiological mechanisms 
underlying this phenomenon are still unclear. In addi-
tion, increased levels of lactate, butyrate, isoleucine, 
acetate, and BHB were reported by the same authors in 
milk with high SCC. Lactate and acetate, as well as bu-
tyrate, have been previously demonstrated to increase 
in milk with high SCC (Davis et al., 2004; Hettinga et 
al., 2008; Hettinga et al., 2009; Sundekilde et al., 2013). 
Indeed, lactate and acetate represent the end products 
of bacterial metabolism. Dervishi et al. (2017) reported 
alteration in amino acid metabolism before, during, 
and after diagnosis of subclinical mastitis in transition 
dairy cows, and suggested blood serum valine and phe-
nylalanine as good predictors of mastitis. Luangwilai 
et al. (2021) characterized the metabolite profiles of 
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Figure 4. Logarithmic fold change [Log2(FC)] of identified metabolites. Negative Log2(FC) bars refer to higher metabolite levels in samples 
with SCC ≥200,000 cells/mL, and positive Log2(FC) bars refer to lower levels in samples with SCC ≥200,000 cells/mL. Significant metabolites 
are colored as light gray (P < 0.05) and dark gray (P < 0.05 and false discovery rate <0.05). Cliff’s delta effect size is also reported as large 
(***), medium (**), or small (*).
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milk samples collected from healthy cows and animals 
affected by subclinical and clinical mastitis using an 
1H-NMR metabolomic approach. Lactate, acetate, 
valine, and phenylalanine were suggested as potential 
biomarkers for diagnosing mastitis, as a significant rise 
in their levels in milk was observed in raw milk of cows 
with clinical and subclinical mastitis. In our study, a 
lower riboflavin (vitamin B2) content was detected in 
milk of cows with high SCC. In a previous study, in-
tramuscular injection of vitamin B2 has been reported 
to stimulate neutrophil function and phagocytic bacte-
ricidal activity (Osame et al., 1995). In addition, intra-
venous injection of vitamin B2 in cows with high milk 
SCC led to a rapid decrease of SCC in udder quarters 
infected by Staphylococcus aureus (Sato et al., 1999). 

Although the process underlying the SCC decrease 
following injection of vitamin B2 is not yet clear, the 
activation of host-defense mechanisms against bacterial 
infection in the mammary gland seems to be involved, 
including regulation of cytokine production (Sato et 
al., 1999). The decreased orotate content in milk with 
high SCC reported in the present study is in contrast 
with findings of Karatas et al. (2008), who reported 
that milk orotate level increased in cows affected by 
subclinical mastitis. Lower levels of glutamate in high-
SCC milk can be related to its use by the immune 
system, which requires a supply of glutamine for lym-
phocyte proliferation and cytokine production (Chang 
et al., 1999; Newsholme, 2001). In addition, glutamate 
metabolism has been demonstrated to be altered by 
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Figure 5. Logarithmic fold change [Log2(FC)] of identified metabolites. Negative Log2(FC) bars refer to higher metabolite levels in samples 
with SCC ≥200,000 cells/mL and differential SCC (DSCC) ≥60%, and positive Log2(FC) bars refer to lower levels in samples with SCC 
≥200,000 cells/mL and DSCC ≥60%. Significant metabolites are colored as light gray (P < 0.05) and dark gray (P < 0.05 and false discovery 
rate <0.05). Cliff’s delta effect size is also reported as large (***) or medium (**).
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subclinical mastitis caused by Streptococcus agalactiae 
(Tong et al., 2019). In the present study, decreased lac-
tose content in milk with high SCC was confirmed by 
both chemical and NMR analyses. This phenomenon is 
well described in the literature. Indeed, in concurrence 
with high SCC and inflammation, the functionality of 
mammary cell membranes is altered: blood constituents 
flow into the milk, and lactose is decreased as a result 
of (1) augmented transfer from milk to blood, to keep 
osmotic pressure constant, and (2) lower biosynthe-
sis at the mammary gland level (Costa et al., 2019). 
Changes in carbohydrate metabolism during mammary 
gland inflammation can further explain lower levels of 
galactose, galactose-1-phosphate, and glucose. A corre-
lation between variation in the levels of lactose, choline, 
carnitine, and citrate, and milk technological properties 
has been reported in a previous study with an NMR-

based metabolomic approach (Sundekilde et al., 2011). 
In particular, a tendency toward a higher citrate con-
centration in samples with poor clotting ability, as well 
as a higher choline concentration and lower carnitine 
concentration in good-coagulating milk samples, have 
been observed. Although the important role of choline 
and carnitine in nutrition is well established, little is 
known about the effects of choline and carnitine on 
milk coagulation properties, as well as on udder health 
status. For the remaining milk metabolites, compari-
son with literature was not possible, due to the lack 
of studies that have investigated the variations of such 
molecules in relation to udder health.

CONCLUSIONS

Our study suggests that increased SCC is associated 
with changes in the milk metabolite fingerprint. In 
particular, NMR-based metabolomics reveals that the 
levels of several metabolites (e.g., riboflavin, galactose, 
galactose-1-phosphate, dimethylsulfone, carnitine, hip-
purate, orotate, lecithin, succinate, glucose, lactose, lac-
tate, phenylalanine, choline, acetate, O-acetylcarnitine, 
2-oxoglutarate, and valine) are significantly different in 
milks characterized by low or high SCC. Our findings 
confirm the role of lactose as a possible biomarker for 
subclinical mastitis screening and highlight the possible 
use of other metabolites as novel indicators of udder 
health status and milk quality. Results of the present 
study are a first step for the development of rapid cow-
side tests able to detect milk metabolites, which have 
been shown to vary significantly according to SCC. The 
possibility of collecting such phenotypes during routine 
recording procedures would allow consideration of 
these traits for breeding purposes. Further studies are 
required to better elucidate the relationship between 
milk metabolites and SCC, as well as the role of specific 
metabolites in association with animal physiology.
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Table 5. Pairwise calculation of Wilcoxon P-values and false discovery 
rates

Metabolite P-value

False 
discovery 

rate Level1

Valine 6.8 × 10−1 0.768
Lactate 6.10 × 10−5 0.001* ↑
Alanine 1.35 × 10−1 0.224
Acetate 2.29 × 10−1 0.34
N-Acetyl carbohydrates 1.81 × 10−2 0.059
Methionine 7.20 × 10−1 0.793
2-Oxoglutarate 2.62 × 10−3 0.015* ↑
Acetone 8.90 × 10−1 0.890
Glutamate 3.59 × 10−1 0.482
Carnitine 4.54 × 10−1 0.558
Succinate 9.46 × 10−2 0.177
Citrate 9.46 × 10−2 0.177
Sarcosine 2.15 × 10−2 0.062
Creatine 3.59 × 10−1 0.482
Malonate 6.10 × 10−5 0.001* ↑
Lecithin 2.15 × 10−2 0.062
Dimethyl sulfone 4.21 × 10−1 0.537
O-Acetylcarnitine 1.51 × 10−1 0.241
Choline 8.04 × 10−1 0.864
Glycerophosphocholine 3.89 × 10−1 0.507
Glucose 4.13 × 10−2 0.093
Betaine+glucose 1.21 × 10−1 0.207
Methanol 6.71 × 10−3 0.032* ↑
Mannose 3.02 × 10−2 0.076
Lactose 6.10 × 10−4 0.005* ↓
Galactose 2.62 × 10−3 0.014* ↓
Galactose-1-phosphate 1.88 × 10−1 0.288
Cis-aconitate 2.56 × 10−2 0.069
Orotate 1.03 × 10−2 0.040* ↓
Fumarate 6.37 × 10−2 0.130
Phenylalanine 3.05 × 10−4 0.004* ↑
Hippurate 1.81 × 10−2 0.059
Riboflavin 1.03 × 10−1 0.184
Formate 8.90 × 10−1 0.890  
1Upward arrows (↑) indicate higher metabolites levels in quarters with 
high SCC; downward arrows (↓) indicate lower levels in quarters with 
high SCC.
*P < 0.05.
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