
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Theory and Algorithms for Sparsity

Constrained Optimization Problems

Matteo Lapucci

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Theory and Algorithms for Sparsity

Constrained Optimization Problems

Matteo Lapucci

Advisor:

Prof. Marco Sciandrone

Head of the PhD Program:

Prof. Paolo Frasconi

Evaluation Committee:
Prof. Christian Kanzow, Universität Würzburg
Prof. Veronica Piccialli, Sapienza Università di Roma

XXXIV ciclo — October 2022

Alla mia famiglia

ii

Acknowledgments

I tried really hard to keep this Section short this time, I swear. But in the end, I
miserably failed: there are too many people I have to thank, from the bottom of my
heart.

First and foremost, I have had an extraordinary mentor for the last four years; a
special teacher that made me get passionate about his subject, which is now also
mine; a great researcher that led me to embrace the challenges of the academic
world; most of all, an amazing person, a selfless gentleman that I dare to consider a
friend. I want Prof. Marco Sciandrone to know that I am aware of how lucky I have
been for all of that.

Then,mygratitude also goes to Prof. Fabio Schoen for having built andpreserved
for more than 25 years a stimulating environment where people can carry out high
quality and interesting work in an incredibly positive atmosphere. Also, the enthu-
siasm and the trust he shows towards his research group do not go unnoticed.

I have to thank two international caliber researchers, namely Prof. Chih-Jen Lin
andProf. Francesco Rinaldi, that I have had the honor toworkwith and the privilege
to learn from, during these three years. I also have to thank Prof. Stefano Lucidi and
Dr. Giampaolo Liuzzi for spending their time as my Supervisory Committee.

Now, here comes the dream team I have been part of. I hope you guys know how
much I am indebted to all of you. Tommaso L., Luca, Guido, Alessandro, Giulio and
Leonardo G.: each one of you left me an invaluable legacy, both on the professional
and, most importantly, on the human level. Pierluigi, Tommaso A. and Simone, I
hope I repaid, at least a little bit, the undeserved trust you have often shown to have
in me. Leonardo D., you’re the best person I have had the opportunity to meet by
doing the doctorate; even though you “are not educated”, you have given me much
more than I did to you. Enrico, my friend, I really don’t care about your complaints:
you have been the best pal for me both inside and outside the lab for these three
years, so your PhD won’t be “a complete waste of time” in any case. Last, but def-
initely not least, in order to complete the institutional credits I have to thank my
“slimy” partner-in-crime, Alessio; we have faced a ton of challenges for eight long
years at university, I certainly wouldn’t have won most of them without you by my
side.

Doing a PhD is not only a scientific and professional growth path, but it also tests
you on the human level.

This journey has been heavily eased by Matteo, Alessandra, Pietro, Vishal, Luca
and again Enrico and Alessio, who have been a formidable group of friends to share
both the happy and the difficult timeswith. I surely believe that the bond that unites
us will last long and strong.

I cannot forget of my volleyball court brothers, Niccolò, Tommaso, Tommaso,

iii

Corrado, Andrea, Leonardo, Bernardo, Dario, Lorenzo, Carlo, Devid, Filippo and
the rest of the gang at Sales Volley, that welcomedme from day one, making me feel
at home. I owe them many successes, not just in sports competition but also in my
life. I will always be grateful.

I was spending my time reasoning about optimization problems when, totally
unexpected, a blond avalanche fell on me, changing my life for the better and some-
how giving a sense to years of sacrifice and doubts. Giulia, there is no question, you
are the highlight of my PhD years. I hope you’ll be patient enough to keep bringing
me joy for the times to come.

Finally, when I graduated, I thanked mom, dad, grandmas, aunt and uncles for
everything they have done and represent for me. Their merits still stand high, but
this time I feel I achieved the goal with my own strengths; in fact, being quite far
away from them has been one of the hardest hurdles to overcome and I know that
this feeling is mutual. Thus, instead of giving thanks, I feel free in this occasion to
dedicate this manuscript to my wonderful family. I don’t care if they don’t under-
stand my work, because of the language or the mathematics. Every single word is
for them.

Oh, yeah, and many greetings of course to my two favorite youngsters, that have
grown up already. I can see you laughing right now, not worried at all, as youwatch
me trying again to set the bar higher. I can’t blame you for being rightfully conscious
that you are already much better persons than I am.

Florence, October 31, 2021,
Matteo

iv

Abstract

This dissertation is concerned with mathematical optimization problems
where a sparsity constraint appears. The sparsity of the solution is a valu-
able requirement in many applications of operations research. Several classes
of very different approaches have been proposed in the literature for this sort
of problems; when the objective function is nonconvex, in presence of difficult
additional constraints or in the high-dimensional case, the problem shall be ad-
dressed as a continuous optimization task, even though it naturally has an in-
trinsic combinatorial nature.

Within this setting, we first review the existing knowledge and the theoret-
ical tools concerning the considered problem; we try to provide a unified view
of parallel streams of research and we propose a new general stationarity con-
dition, based on the concept of neighborhood, which somehow allows to take
into account both the continuous and the combinatorial aspects of the problem.

Then, after a brief overview of the main algorithmic approaches in the re-
lated literature, we propose suitable variants of some of these schemes that can
be effectively employed in complex settings, such as the nonconvex one, the
derivative-free one or the multi-objective one. For each of the proposed algo-
rithms we provide a detailed convergence analysis showing that these methods
enjoy important theoretical guarantees, in line with the state-of-the-art algo-
rithms.

Afterwards, exploiting the newly introduced concept of stationarity, we pro-
pose a completely novel algorithmic scheme that, combining continuous local
searches and discrete moves, can be proved to guarantee stronger theoretical
properties than most approaches from the literature and to exhibit strong ex-
ploration capabilities in a global optimization perspective.

All the proposed algorithms have finally been experimentally tested on a
benchmark of relevant problems from machine learning and decision science
applications. The computational results show the actual quality of the proposed
methods when practically employed.

Contents

Contents 1

1 Introduction 3

2 Optimality Conditions for Sparsity-Constrained Optimization Problems 7
2.1 Preliminaries . 8
2.2 Conditions for Optimality . 11
2.3 A Unified View . 19
2.4 A General Condition: N -stationarity 22

3 Review of State-of-the-art Algorithms 31
3.1 Iterative Hard Thresholding Method 31
3.2 Greedy-Sparse Simplex Method . 32
3.3 Regularization Method . 33
3.4 Penalty Decomposition Approach . 34

4 A Convergent Inexact Penalty Decomposition Method for Cardinality
Constrained Optimization 37
4.1 An Inexact Penalty Decomposition Method 37
4.2 Convergence Analysis . 40
4.3 Future Work . 46

5 ADerivative-Free PenaltyDecompositionAlgorithm forBlack-BoxSparse
Optimization 47
5.1 A Derivative-Free Penalty Decomposition Method 47
5.2 Convergence Analysis . 48

6 A General Algorithm for Sparsity-Constrained Optimization Problems
based on Discrete Neighborhoods 55
6.1 The Algorithm . 56
6.2 Neighborhood Continuity . 57
6.3 Convergence Analysis . 60

1

2 CONTENTS

6.4 Convergence Guarantees under Constraint Qualifications 67
6.5 Concluding Remarks . 70

7 Multi-Objective Sparsity-Constrained Optimization: Optimality Con-
ditions and an Algorithmic Approach 71
7.1 Preliminaries . 72
7.2 The Problem . 74
7.3 Optimality conditions . 76
7.4 A Penalty Decomposition Scheme . 80
7.5 Convergence analysis . 82
7.6 Concluding Remarks . 89

8 Computational Experiments 91
8.1 Benchmark . 91
8.2 Comparison of PD Approaches: Convex Case 94
8.3 Comparison of PD Approaches: Nonconvex Case 96
8.4 Sparse Neighborhood Search Performance 98
8.5 Effectiveness of the Multi-objective PD Scheme 101

9 Conclusions 107

A On the Relationship Between Stationarity Conditions and KKT Condi-
tions 109

B Multi-Objective Projected Gradient Descent Method 113

C Publications 119

Bibliography 123

Chapter 1

Introduction

Mathematical optimization has represented, for more than half a century already,
an indispensable tool for the amazing progress many disciplines have experienced.
The most sensational example of this phenomenon is arguably given by the boom
of data science and artificial intelligence, which would not have been possible with-
out at least thirty years of optimization groundwork. Anyhow, many other fields
could be cited where mathematical programming represented a decisive cog for the
development of new technologies.

On the one hand, it is thus clear to the operations research community that the
study of new models, algorithmic approaches and theoretical tools, even those that
shall appear quite abstract and useless, may have an unpredictably great impact in
the most different disciplines at a later time. On the other hand, once employing
optimization techniques has become common practice for a particular application,
researchers from that area constantly pose new demands and consequently new
challenges to optimizers.

Nowadays, one of these challenges concerns the sparsity requirements that can
be found in many applications of optimization models. Indeed, solutions to opti-
mization problems with a low cardinality of the decision variables vector are often
required, for example, in finance and decision science (Bertsimas and Cory-Wright,
2018; Cesarone et al., 2013; Di Lorenzo et al., 2012; Gao and Li, 2013; Teng et al.,
2017), in signal processing (Blumensath and Davies, 2009; Candès andWakin, 2008;
Donoho, 2006; Foucart and Rauhut, 2013), in statistics (Bertsimas et al., 2016; Bertsi-
mas and King, 2017; Civitelli et al., 2021; Di Gangi et al., 2019; Friedman et al., 2008;
Guillot et al., 2012; Miller, 2002) and inmachine learning (Bertsimas et al., 2017; Car-
lini and Wagner, 2017; Carreira-Perpinán and Idelbayev, 2018; d’Aspremont et al.,
2008; Mairal et al., 2014; Zou et al., 2006). For a thorough review of applications of
sparse optimization we refer the reader to the survey by Tillmann et al. (2021) and
references therein.

In data science in particular, a sparse model shows important features such as

3

4 Introduction

high generalization capabilities, enhanced interpretability, efficiency and lowermem-
ory requirements (Bach et al., 2012; Weston et al., 2003).

The need for sparse solutions has been addressed in the most diverse ways by
the optimization community. The cardinality of the variables vector can bemodeled
by using the `0 pseudo-norm, whose formal definition is recalled hereafter.

Definition 1.1 (`0 pseudo norm). Let x ∈ Rn. The zero pseudo-norm of x, also referred
to as `0 pseudo-norm and denoted by the notation ‖x‖0, is defined as:

‖x‖0 = |{i | xi 6= 0, i = 1, . . . , n}| .

Based on the way the `0 term is inserted into the optimization problem to induce
sparsity, we can distinguish three general classes of sparse optimization problems:

(i) Cardinality Minimization Problems, where the `0 pseudo-norm of the variables
vector is minimized subject to some constraints;

(ii) Cardinality Constrained Problems, where an objective function isminimized sub-
ject to some constraints, amongwhich there is anupper boundon the `0 pseudo-
norm;

(iii) Cardinality Regularized Problems, where the objective function is a weighted
sum of the `0 pseudo-norm and some other general function of the variables
vector.

Now, optimization problems with `0 elements are well-known to be NP-hard (Bi-
enstock, 1996; Natarajan, 1995; Nguyen et al., 2019). This should not be surprising,
as the sparsity requirement hides the combinatorial task of selecting the best subset
of variables. The diversity of approaches that have been explored in recent years
comes from the complexity of the task itself: indeed, various paths have been fol-
lowed trying to tackle the problem hardness.

Awide stream of research has focused on possible ways to approximate the non-
convex discontinuous `0 element. Families of approaches are based on `1 (Bach et al.,
2012; Beck and Teboulle, 2009; Chen et al., 2001; Donoho and Tsaig, 2008; Foucart
and Rauhut, 2013; Malioutov et al., 2005; Tibshirani, 1996; Yin et al., 2008) and `p

(Chartrand, 2007; Chen et al., 2010; Ge et al., 2011; Mourad and Reilly, 2010) sur-
rogates, concave programming (Di Lorenzo et al., 2012; Mangasarian, 1999; Rinaldi
et al., 2010), DC techniques (Gotoh et al., 2018; Le Thi et al., 2015). In addition,
heuristic approaches based on evolutionary algorithms (Anagnostopoulos and Ma-
manis, 2010), particle swarm methods (Boudt and Wan, 2020; Deng et al., 2012),
genetic algorithms, tabu search and simulated annealing (Chang et al., 2000) have
been considered.

5

The aforementioned classes of methods suffer from drawbacks; in particular, the
solutions retrieved either do not satisfy theoretical optimality conditions in the gen-
eral case or are bad from a global optimization perspective.

The impressive recent advances ofmixed-integer programming (MIP) algorithms
allowed to define schemes designed to obtain exact solutions with a certificate of
global optimality. Sparse optimization problems can be cast into MIP problems
by introducing binary variables and big-M constraints (Belotti et al., 2016; Civitelli
et al., 2021; Di Gangi et al., 2019; Ben Mhenni et al., 2021; Miyashiro and Takano,
2015) or complementarity-type constraints (Burdakov et al., 2016; Feng et al., 2013;
Yu et al., 2019) and then using efficient branch-and-bound or branch-and-cut pro-
cedures; an alternative is given by the approach from Bertsimas et al. (2019) where
a suitable change of variables makes the problem efficiently solvable by an outer
approximation scheme.

In highly nonlinear or in nonconvex settings, however, exact approaches quickly
become computationally unviable. For this reason, approaches to directly tackle
problems with `0 terms based on classical tools from local continuous optimization
theory have been proposed.

In this thesis, we specifically consider nonconvex nonlinear optimization prob-
lems with sparsity constraints, i.e., problems of the form

min
x

f (x)

s.t. ‖x‖0 ≤ s,
x ∈ X,

(1.1)

where f : Rn → R is a continuously differentiable function, X ⊆ Rn is a closed and
convex set, and s < n is a properly chosen integer value. When possible, the convex
set X will also be analytically expressed as X = {x ∈ Rn | g(x) ≤ 0, h(x) = 0},
where hi, i = 1, . . . , p are affine functions and gi, i = 1, . . . , m are convex functions.
We further use X to indicate the overall feasible set X ∩ {x ∈ Rn | ‖x‖0 ≤ s}.

The interest of this thesis lies in the analysis of problem (1.1) as a continuous
optimization problem, both on the theoretical and algorithmic sides. More in detail,
the rest of the manuscript concerns the following novel contributions:

• In Chapter 2, we review the optimality conditions theory for problem (1.1),
providing a unified view of the literature; moreover, a new theoretical point
of view is proposed, based on a tailored concept of stationarity, that allows to
recast most of the known theory as special cases of a more general and pow-
erful framework.

• InChapter 3, we briefly reviewand compare themain computational approaches
from the literature to tackle problem (1.1). For each considered algorithm,
we report the main theoretical convergence properties and highlight practical
strengths and weaknesses.

6 Introduction

• In Chapter 4, we focus on the approach of the Penalty Decomposition (PD)
methods and propose a convergent algorithm of this family performing inex-
act minimizations by an Armijo-type line search along gradient-related direc-
tions. The algorithm is shown to enjoy the same convergence results as the
base scheme, but can practically be applied without convexity assumptions on
the objective function.

• In Chapter 5, we provide the definition of a derivative-free PD method for
sparse black-box optimization. The algorithm is again shown to possess the
convergence properties as its gradient-based counterparts.

• In Chapter 6, we propose an algorithmic framework, based on the concept of
neighborhood, to tackle sparsity constrained problems and prove its conver-
gence to points satisfying the previously introduced new concept of station-
arity. We further show that, by suitably choosing the neighborhood, other
well-known optimality conditions from the literature can be guaranteed for
the limit points of the sequence produced by the algorithm.

• In Chapter 7, we focus on sparsity-constrained problems in themulti-objective
setting. We carry out an analysis of optimality conditions for this family of
problems. Then, we define a PD-type method to solve these problems and
provide a thorough theoretical analysis showing that the algorithm possesses
convergence properties to feasible points satisfying first-order optimality con-
ditions.

• In Chapter 8, we report the results of computational experiments, carried out
on a benchmark of real world relevant problems and aimed at assessing the
empirical performance of all the algorithmic approaches proposed in this the-
sis.

• In Chapter 9, we finally draw some concluding remarks and suggest possible
themes for future research.

Chapter 2

Optimality Conditions for
Sparsity-Constrained Optimization
Problems

Even though problem (1.1) is an optimization problem with continuous decision
variables, it has an intrinsic combinatorial nature and in applications the interest
often lies in finding a good, possibly globally optimal configuration of active vari-
ables.

Being (1.1) a continuous problem, x? ∈ X is a local minimizer if there exists
an open ball B(x?, ε) such that f (x?) = min{ f (x) | x ∈ X ∩ B(x?, ε)}. In some
works from the literature (e.g., Burdakov et al. 2016; Lu and Zhang 2013) necessary
conditions of local optimality have been proposed.

However, for this particular problem, every local minimizer for a fixed active set
of s variables is also a local minimizer of the overall problem. Hence the number of
local minimizers grows as fast as (n

s) and is thus of low practical usefulness.
In other works (Beck and Eldar, 2013; Beck and Hallak, 2016), the authors pro-

pose necessary conditions for global optimality that go beyond the concept of local
minimizer, thus allowing to consider possible changes to the structure of the solu-
tion and reducing the pool of optimal candidates. However, these conditions are
either tailored to the “unconstrained case”, or limited to moderate changes in the
active set of nonzero variables, or involve hard operations, such as exact minimiza-
tions or projections onto nonconvex sets.

In this Chapter, we analyze necessary optimality conditions for sparsity con-
strained optimization problems. We begin by considering the simpler case where
X = Rn, which allows us to gradually make the reader familiar with basic concepts
and issues of sparse optimization. We then turn to the more general case, reviewing
in detail the necessary optimality conditions proposed in the literature for prob-
lem (1.1). As an important contribution of this work, we thoroughly clarify how

7

8 Optimality Conditions for Sparsity-Constrained Optimization Problems

these quite diverse conditions relate to each other. Next, we introduce a general and
affordable necessary optimality condition that also takes into account the combina-
torial nature of the problem. We finally show that most of the existing conditions
can be recast as special cases of the newly introduced one. Before getting into the
details, we begin by recalling terminology and basic definitions that will recurrently
be used throughout the thesis.

2.1 Preliminaries

Basic Definitions and Notation
Concerning problem (1.1), one of the most basic concepts is given by the support set
of a solution and its complement.

Definition 2.1 (Support set). Let x̄ ∈ X be a feasible solution of problem (1.1). The
support set of x̄ is the index set I1(x̄) ⊂ {1, . . . , n} of the nonzero variables of x̄, i.e.,

I1(x̄) = {i | x̄i 6= 0}.

Similarly, we can define the complement I0(x̄) of I1(x̄), constituted by the indices of
zero variables:

I0(x̄) = {i | x̄i = 0} = {1, . . . , n} \ I1(x̄).

A point x̄ ∈ X is a full-support solution for problem (1.1) if

‖x̄‖0 = |I1(x̄)| = s,

whereas it has an incomplete support if ‖x̄‖0 < s.

Example 2.1. Consider problem (1.1) with n = 4, s = 2 and X = R4. Let x =

(2, 0, 0, 2) and y = (0, 3, 0, 0). We have

I1(x) = {1, 4} I0(x) = {2, 3},
I1(y) = {2} I0(y) = {1, 3, 4}.

The vector x has full support, whereas y has an incomplete support set.

In order to enrich the characterization of solutions of the problem, a further con-
cept can be defined (Beck and Hallak, 2016).

Definition 2.2 (Super support set). Let x̄ ∈ X be a feasible solution of problem (1.1).
A set J ⊆ {1, . . . , n} is referred to as a super support set for x̄ if it is such that

• I1(x̄) ⊆ J,

2.1 Preliminaries 9

• |J| = s.

We denote the set of all super support sets at x̄ by J (x̄).

A super support set substantially identifies a subset of components of x̄ that
could be moved jointly without breaking the cardinality constraint. Clearly, if x̄
has full support, then the only super support set for x̄ is I1(x̄) itself.

Example 2.2. Consider the setting of Example 2.1. Then we have:

J (x) = {I1(x)},
J (y) = {JA, JB, JC}, JA = {1, 2}, JB = {2, 3}, JC = {2, 4}.

Additional Notation

Throughout the entire work, we will denote by xI the subvector of x ∈ Rn identified
by the components contained in an index set I and by XI the convex feasible set
associated with the active set of variables identified by I:

XI = {x ∈ X | xi = 0 for all i /∈ I}.

Projection onto Feasible Sets
In this work, we indicate by ΠX the classical orthogonal projection operator over the
closed convex set X ⊂ Rn; given x ∈ Rn, we have

ΠX(x) = arg min
z∈X

‖z− x‖2
2.

In addition, we also define the sparse projection operator (Beck andHallak, 2016):

Definition 2.3 (Sparse projection operator). Consider the feasible set X of problem
(1.1) and let x̄ ∈ Rn. The sparse projection operator ΠX : Rn → X maps x̄ to a feasible
solution of (1.1) as follows:

ΠX (x̄) ∈ arg min{‖z− x̄‖2 | z ∈ X}.
Since X is closed, the set ΠX (x) is always nonempty; however since X is non-

convex, it is not necessarily a singleton. In general, finding the sparse projection set
is a difficult task.

However, in the case where X = Rn, the sparse projection can be computed in
closed form. To formally characterize the solution, let us define the index set G(x)
of the largest nonzero variables (in absolute value) at a generic point x̂ ∈ Rn:

G(x̂) ∈ arg max
S⊆{1,...,n}

|S|

s.t. |S| ≤ s, S ⊆ I1(x̂),

|x̂i| ≥ |x̂j| ∀ i ∈ S, ∀ j /∈ S.

(2.1)

10 Optimality Conditions for Sparsity-Constrained Optimization Problems

In general, the index set G(x̂) is not uniquely defined. Also, note that G(x̂) = I1(x̂)
if ‖x‖0 ≤ s. Then, the sparse projection x? = ΠX of x̂ is given by

x?i = x̂i for i ∈ G(x̂), x?i = 0 for i /∈ G(x̂), (2.2)

i.e., the sparse projection can be obtained by zeroing all the variables except for the
s largest ones in absolute value.

Example 2.3. Consider the setting of Example 2.1 and let x̂ = (−2, 1, 3, 0) and ẑ =

(−1, 0.5, 1, 1.5). Then we have

ΠX (x̂) = (−2, 0, 3, 0),

while for ẑ we can choose either

ΠX (ẑ) = (−1, 0, 0, 1.5) or ΠX (ẑ) = (0, 0, 1, 1.5).

A Complementarity-Constrained Mixed-Integer Reformulation
An alternative way of characterizing problem (1.1) is based on an equivalent mixed-
integer reformulationwith complementarity-type constraints (Burdakov et al., 2016):

min
x,y

f (x)

s.t. e>y ≥ n− s,

xiyi = 0, ∀ i = 1, . . . , n,

x ∈ X,

y ∈ {0, 1}n.

(2.3)

We will detailedly address later the properties of this reformulation. However, we
can immediately observe that only variables xi corresponding to a null yi are allowed
to be nonzero and that at most s elements of the binary vector y can be equal to zero.

Thus, given a feasible point (x̄, ȳ) for problem (2.3), the components I0(ȳ) give
an active subspace for x, i.e., those components identify the subspace where the com-
ponents of x are allowed to be nonzero. We thus have that I1(x̄) ⊆ I0(ȳ).

Note that if |I0(ȳ)| = s, then I0(ȳ) identifies a super support set for x̄; on the
other hand, if |I1(x̄)| = |I0(ȳ)|, then I0(ȳ) is obviously equal to the support of x̄.

Example 2.4. Consider the setting of Example 2.1. To exploit reformulation (2.3), we
introduce variables y ∈ {0, 1}4 and the constraints

e>y ≥ 2, xiyi = 0, ∀i = 1, . . . , n.

So, let
v = (2, 0, 0, 2), z = (0, 3, 0, 0).

2.2 Conditions for Optimality 11

Corresponding feasible values for the binary variables are respectively given by

yv = (0, 1, 1, 0)

and

yza = (1, 0, 1, 1), yzb = (0, 0, 1, 1), yzc = (1, 0, 0, 1), yzd = (1, 0, 1, 0).

We can observe that, since z has incomplete support, many vectors yz exist such
that (z, yz) is feasible for the mixed-integer reformulation. Moreover, we note that
|I0(yzb)| = |I0(yzc)| = |I0(yzd)| = s, so that the three sets identify super support sets
for z, whereas |I0(yza)| = |I1(z)|, thus yza defines the support of z.

In the following, when referring to reformulation (2.3), we will use the following
notation:

Y = {y | y ∈ {0, 1}n, e>y ≥ n− s},
X (y) = {x ∈ X | xiyi = 0 ∀ i = 1, . . . , n}.

Note that if y ∈ Y , then X (y) = XI0(y).

2.2 Conditions for Optimality
As typically done with continuous optimization problems, necessary conditions of
local optimality have also been analyzed for problem (1.1).

In this Section we first analyze the properties of optimal solutions of the prob-
lem in the case X = Rn, i.e., when the cardinality constraint is the only constraint.
This setting allows us to present in depth the crucial aspects of sparse optimization
problems. Afterwards, we turn to the general, yet less intuitive setting, which can
be analyzed from diverse perspectives.

The Case X = Rn

Aswe have outlined at the beginning of this Chapter, the concept of local minimizer
itself is rather weak from a practical point of view when delaing with problems of
the form (1.1). For this reason, necessary conditions of global optimality, that are not
necessarily conditions of local optimality Beck has directly analyzed, have directly
been analyzed (Beck and Eldar, 2013).

The simplest optimality condition for problem (1.1) is the following.

Definition 2.4 (BF vectors, case X = Rn). Let X = Rn. We say that a point x̄ ∈ X is
a basic feasible (BF) vector, if:

12 Optimality Conditions for Sparsity-Constrained Optimization Problems

• when ‖x̄‖0 = s, it holds ∇i f (x̄) = 0 for all i ∈ I1(x̂);

• when ‖x̄‖0 < s, it holds ∇i f (x̄) = 0 for all i = 1, . . . , n.

The basic feasibility property is a local optimality condition; in practice, for a
basic feasible point, there is not a feasible descent direction: basic feasibility is the
most direct extension of the classical stationarity concept to problemswith a sparsity
constraint. However, being a local optimality condition, the BF property does not
characterize the quality of the specific support. In order to get over this limitation,
the following concept can firstly be introduced.

Definition 2.5 (L-stationarity, case X = Rn). Let X = Rn. A vector x? ∈ X is called
an L-stationary point if it satisfies the relation

x? ∈ ΠX

(
x? − 1

L
∇ f (x?)

)
.

L-stationarity resembles the stationarity condition commonly employed with
convexly-constrained problem (see Appendix A), where the sparse projection op-
erator is used in place of the standard projection. Since, as remarked in Section 2.1,
the operator ΠX is easily accessible when X = Rn, checking for L-stationarity is a
simple way to assess whether small steps along the full gradients allow to identify
a better support or not.

However, L-stationarity is again a very local property; moreover, as we will re-
mark in the following, it requires Lipschitz-continuity assumptions to be employ-
able. A stronger optimality condition, that can be practically employed with convex
objectives, is the following.

Definition 2.6 (CW-minimum). Let X = Rn. A vector x? is a component-wise (CW)
minimum if one of the following cases holds true:

• ‖x?‖0 < s and for every i = 1, . . . , n one has

f (x?) = min
t∈R

f (x? + tei);

• ‖x?‖0 = s and for every i ∈ I1(x?) and j = 1, . . . , n one has

f (x?) ≤ min
t∈R

f (x? − x?i ei + tej).

For a CW-optimal solution, there is no way of improving the objective function
changing the value of a single variable, or, when the support is full, performing a
swap operation, i.e., one variable in the support is zeroed while a variable out of
the support is moved away from zero. It is clear that a globally optimal solution

2.2 Conditions for Optimality 13

is necessarily a CW point, but this is not necessarily true for a local optimizer; in-
deed, CW-optimality allows to take into account changes in the support in the form
of swaps. Moreover, the condition is based on global information on the objective
function, as it requires to check global optimality w.r.t. single variables. For this rea-
son, it is indeed a quite strong condition, but it is not practically employable without
convexity assumptions on the objective function.

The formal relationships existing between the three above optimality conditions
are summarized in the following proposition.

Proposition 2.1 (Beck and Eldar 2013). Let X = Rn and x? ∈ X . The following state-
ments hold:

(i) If x? is a global minimizer of (1.1), then x? is a CW-minimum.

(ii) If x? is a CW-minimum, then it is a BF vector. Moreover, if ∇ f (x) is Lipschitz con-
tinuous over Rn, then x? is L-stationary for all L > L(f), where L(f) is the Lipschitz
constant of ∇ f .

(iii) If x? is an L-stationary point for some L > 0, then x? is a BF point.

Example 2.5. Consider the optimization problem

min
x∈R2

(x1 − 2)2 +

(
1
4

x4
2 −

1
3

x3
2 −

9
2

x2
2 + 9x2

)
s.t. ‖x‖0 ≤ 1.

The gradients of the objective function are given by

∇x1 f (x) = 2x1 − 4, ∇x2 f (x) = (x2 − 3)(x2 + 3)(x2 − 1).

We thus have 4 BF points:

x̄a = (2, 0), x̄b = (0, 3), x̄c = (0,−3), x̄d = (0, 1).

x̄a is a local minimizer (f (x̄a) = 0); however, we can observe that it is not a CW
point, since ‖x̄a‖0 = 1 and by a single swap of variables in the support we can
obtain x̄c = (0,−3) with f (x̄c) = −153/4. In fact, x̄c is the global minimizer and is
the only CW optimal point: x̄b is a local minimizer but not a CW point, while x̄d is
a local maximizer.

Note that x̄a, for instance, is L-stationary for all L > 9/2 while it is not for L <

9/2; indeed we have

x̄a −
1
L
∇ f (x̄a) = (2, 0)− 1

L
(0, 9) = (2,−9/L),

14 Optimality Conditions for Sparsity-Constrained Optimization Problems

so that the sparse projection operator returns

ΠX ((2, 9/L)) =

{
(0,−9/L) if L < 9/2,

(2, 0) if L > 9/2.

Similarly, it is easy to check that xb and xc are L-stationary for L > 4/3 and xd is
L-stationary for L > 4. Hence, we have

• xa, xb, xc, xd are L-stationary if L > 9/2;

• xb, xc, xd are L-stationary if 4 < L ≤ 9/2;

• xb, xc are L-stationary if 4/3 < L ≤ 4;

• no point is L-stationary if L < 4/3.

We can thus observe how crucial is the value of L for L-stationarity: if L is too
large, all BF points are L-stationary; on the other hand, if L is too small, L-stationarity
may not be a necessary condition of optimality. In order to properly select L, in
cases (unlike the above example) where∇ f is Lipschitz-continuous, the knowledge
of L(f) would be beneficial.

The three above conditions, even though significant, might however be difficult
to enforce with algorithms with nonconvex objectives. Therefore, it is also reason-
able to introduce a less restrictive condition for optimality.

Definition 2.7 (Lu-Zhang conditions, case X = Rn). Let X = Rn. We say that a
point x̄ ∈ X satisfies Lu-Zhang (LZ) first-order optimality conditions if there exists a
super support set J ∈ J (x̄) ∇i f (x̄) = 0 for all i ∈ J.

In the case ‖x̄‖0 = s, the only super support set is the support itself and Lu-
Zhang trivially coincide with basic feasibility. In general, however, the BF property
is stronger than LZ conditions. A BF point satisfies LZ condition for all J ∈ J (x̄).
We show this by the following example.

Example 2.6. Consider problem (1.1), letting

f (x) = (x1 − 1)2 + x2
2 + (x3 − 1)2

and s = 2. The point x̄ = (1, 0, 0) satisfies Lu-Zhang conditions, but it is not a BF-
vector. Indeed, let J = {1, 2}. We have that x̄j = 0 for all j ∈ J̄, i.e., J is a super
support set, and ∇i f (x̄) = 0 for all i ∈ J. Thus x̄ satisfies Lu-Zhang conditions. On
the other hand, ‖x̄‖0 < 2, and ∇3 f (x̄) 6= 0, i.e., it is not a BF-vector (LZ conditions
are not satisfied by the super support set {1, 3}).

2.2 Conditions for Optimality 15

The General Case with Convex Constraints

We are now ready to turn to the more general case where X ⊂ Rn, i.e., when the
sparsity constraint is considered in conjunctionwith another set of constraintswhich
we assume to be convex.

Optimality can be characterized based on first order information. In particular,
when X can be expressed as a set of equality and inequalities, KKT-fashioned con-
ditions can be expressed as follows:

Definition 2.8 (Lu-Zhang Conditions). A point x̄ ∈ X satisfies Lu-Zhang (LZ) con-
ditions for problem (1.1) if there exist a super support set J ∈ J (x̄) and multipliers
λ ∈ Rm, µ ∈ Rp, γ ∈ Rn such that

∇ f (x̄) +
m

∑
i=1

λi∇gi(x̄) +
p

∑
i=1

µi∇hi(x̄) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x̄) = 0, ∀i = 1, . . . , m,
γi = 0, ∀i ∈ J.

(2.4)

The following proposition holds:

Proposition 2.2 (Lu and Zhang 2013). Let x? ∈ X be a local minimizer for problem
(1.1) and J ∈ J (x?) be a super support set. Assume Slater’s condition is satisfied by the
constraints

h(x) = 0, g(x) ≤ 0, x J̄ = 0, (2.5)

where J̄ = {1, . . . , n} \ J. Then x? satisfies conditions (2.4) for some λ, µ and γ, i.e., x?

satisfies Lu-Zhang conditions for problem (1.1).

Basically, Lu-Zhang conditions extend to a more general case Definition 2.7, be-
ing necessary conditions of local optimality for problem (1.1) under constraint quali-
fications (CQs). In the original work from Lu and Zhang (2013), the Robinson condi-
tion is considered as CQ, but in fact we deduce from Ruszczynski (2011, Chapter 3)
that, since we consider a convex set X, Slater’s condition associated with constraints
(2.5) leads to the same result.

As in the case X = Rn, LZ conditions are a rather weak property, since only one
out ofmany possible super support sets is sufficient tomake themhold true. Amore
restrictive property is what we refer to as strong Lu-Zhang conditions.

Definition 2.9 (Strong LZConditions). Apoint x̄ ∈ X satisfies strong Lu-Zhang (SLZ)
conditions for problem (1.1) if for every super support set J ∈ J (x̄) there exist mul-
tipliers λ ∈ Rm, µ ∈ Rp, γ ∈ Rn such that conditions (2.4) hold.

16 Optimality Conditions for Sparsity-Constrained Optimization Problems

Strong Lu-Zhang conditions substantially require that basic Lu-Zhang condi-
tions are satisfied for each possible super support set. Note that in the case ‖x̄‖0 = s
there is only one super support set, coinciding with I1(x̄), and hence SLZ and LZ
conditions are equivalent.

If the problem is convex, except for the `0 term, i.e., if we assume that f is convex,
then strong LZ conditions are sufficient and necessary conditions of (local) optimal-
ity.

Proposition 2.3 (Lu and Zhang 2013). Assume that f is a convex function and that x? ∈
X satisfies strong Lu-Zhang conditions for problem (1.1). Then, x? is a local minimizer of
problem (1.1).

In case X cannot be defined as a set of equality (h(x) = 0) and inequality (g(x) ≤
0) constraints, or constraints do not satisfy suitable CQs, stationarity can be charac-
terized, as in the smooth convex case, by means of the projection operators.

Definition 2.10 (BF vectors). We say that a point x̄ ∈ X is a basic feasible (BF) vector
for problem (1.1) if, for every super support set J ∈ J (x?), there exists L > 0 such
that:

x? = ΠXJ (x? + d), di =

{
− 1

L∇i f (x?) if i ∈ J

di = 0 otherwise.

Definition 2.11 (L-stationarity). A vector x? ∈ X is called an L-stationary point of
problem (1.1) if it satisfies the relation

x? ∈ ΠX

(
x? − 1

L
∇ f (x?)

)
.

As can be easily observed, Definition 2.10 extends Definition 2.4 to the case X ⊂
Rn, even though this more general case is somewhat more complicated, relying on
super support sets. On the contrary, L-stationarity is defined in the same exact way
as in Definition 2.5.

The following results hold for BF and L-stationary points.

Proposition 2.4 (Beck and Hallak 2016). Let x? ∈ X . Then the following statements
hold:

(i) If x? is a global minimizer of problem (1.1), then x? is basic feasible.

(ii) If x? is an L-stationary point for problem (1.1) for some L > 0, then x? is basic feasible.

(iii) If x? is a global minimizer of problem (1.1) and∇ f (x) is a Lipschitz-continuous func-
tion, then x? is L-stationary for any L > L(f), being L(f) the Lipschitz constant of
∇ f .

2.2 Conditions for Optimality 17

We should highlight that, similarly as in the case X = Rn, the BF notion does
not say anything about the optimality of the support set; basic feasibility is indeed a
necessary condition of local optimality: the reasoning of the proof of Beck and Hal-
lak (2016, Theorem 5.1), where x? is assumed to be a global minimizer, identically
holds if the point is a local minimizer. L-stationarity is instead necessary for global
minimizers, but not for local ones.

However, the sparse projection operation onto the nonconvex set X , which is
easy when X = Rn, is a complex operation, practically available only in particular
cases (Beck and Hallak, 2016). Moreover, L-stationarity again requires gradients
Lipschitz-continuity and the knowledge of the Lipschitz constant L(f) to be useful
in practice.

On the other hand, the orthogonal projection onto the convex setXJ is doable, al-
though often expensive. Hence, basic feasibility is a generallymuchmore affordable
condition to consider than L-stationarity.

Remark 2.1. CW-optimality is not extendable to the more general case X ⊂ Rn. The
reason is that such condition is designed to consider the variables of the problem in-
dependently; unless X defines bounds, the constraints are not completely separable
and thus the single variable optimization problems in Definition 2.6 are pointless.

An alternative path can be followed to characterize solutions of problem (1.1),
exploiting reformulation (2.3) (Burdakov et al., 2016). The mixed-integer program-
ming problem can be relaxed into the following smooth problem:

min
x,y

f (x)

s.t. e>y ≥ n− s,

xiyi = 0, ∀ i = 1, . . . , n,

x ∈ X,

0 ≤ yi ≤ 1, ∀ i = 1, . . . , n.

(2.6)

Equivalence relationships between problems (1.1) and (2.6) have been proved.

Proposition 2.5 (Burdakov et al. 2016). Let x? ∈ Rn. (x?, y?). Then the following
statements hold:

1. x? is feasible for problem (1.1) if and only if there exists y? ∈ Rn such that (x?, y?) is
feasible for problem (2.6).

2. x? is a global minimizer of problem (1.1) if and only if there exists y? ∈ Rn such that
(x?, y?) is a global minimizer of problem (2.6).

3. If x? is a local minimizer for problem (1.1), then there exists y? ∈ Rn such that (x?, y?)
is a local minimizer of problem (2.6). Conversely, if (x?, y?) is a local minimizer for
problem (2.6) and ‖x?‖0 = s, then x? is a local minimizer of problem (1.1).

18 Optimality Conditions for Sparsity-Constrained Optimization Problems

There is thus a full correspondence between global optima x? of (1.1) and global
optima (x?, y?) of (2.6). Local minimizers of problem (1.1) are local minimizers of
(2.6), whereas the vice versa is necessarily true only for points such that ‖x?‖0 = s.

Since the relaxed problem (2.6) is a continuous optimization problem, we are
also able to define suitable stationarity concepts to characterize its solutions and,
consequently, solutions of the original problem (1.1). For example, it can be shown
that the feasible set of problem (2.6), in the specific case when X is polyhedral con-
vex, satisfies a suitable constraint qualification. In other words, KKT stationarity
is indeed a necessary optimality condition. In general, however, the feasible set of
problem (2.6) may violate each standard constraint qualification.

For this reason, it is more appropriate to introduce tailored definitions of station-
arity.

Definition 2.12 (S/M-stationarity). Let (x?, y?) be feasible for the relaxed problem
(2.6). Then (x?, y?) is called

(a) S-stationary (S = strong) if there exist multipliers λ ∈ Rm, µ ∈ Rp and γ ∈ Rn

such that the following conditions hold:

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m,
γi = 0, ∀i ∈ I0(y?).

(2.7)

(b) M-stationary (M = Mordukhovich) if there exist multipliers λ ∈ Rm, µ ∈ Rp

and γ ∈ Rn such that the following conditions hold:

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m,
γi = 0, ∀i ∈ I1(x?).

(2.8)

Note that M-stationarity is a weaker condition than S-stationarity, as it does not
impose conditions on the components for which both x?i and y?i are equal to 0. S-
stationarity can be shown to be equivalent to KKT stationarity. As a consequence,
M-stationarity is a weaker concept than KKT stationarity.

Note that, while S-stationarity depends on y?, M-stationarity is a condition that
actually only depends on the original variable x?. In other words, a “wrong” vector
y? can destroy S-stationarity, while an M-stationary point x? remains M-stationary
independently of the vector y? that is associated to it, as long as (x?, y?) is feasible.

2.3 A Unified View 19

M-stationarity can be further understood realizing that (x?, y?) is M-stationary
if and only if x? is a KKT point for the problem

min
x

f (x)

s.t. x ∈ X,

xi = 0 ∀ i ∈ I0(x?).

(2.9)

Hence, we can directly talk about x? as an M-stationary point for problem (1.1).
The strength of the mentioned stationarity conditions is explicitly stated in the

next Proposition.

Proposition 2.6 (Burdakov et al. 2016). Let x? ∈ X be a feasible point for problem (1.1)
and let y? ∈ Rn such that (x?, y?) is feasible for problem (2.6). Then, the following state-
ments hold:

(i) If (x?, y?) is a local minimizer for problem (2.6) and X is polyhedral, i.e., functions gi
are affine, then (x?, y?) satisfies KKT conditions for problem (2.6).

(ii) (x?, y?) satisfies KKT conditions for problem (2.6) if and only if (x?, y?) is S-stationary
for (2.6).

(iii) If (x?, y?) is S-stationary for (2.6), then x? is M-stationary for problem (1.1).

(iv) If x? is a local optimizer for problem (1.1) and some suitable CQ holds, then x? is
M-stationary for problem (1.1).

2.3 A Unified View
In the previous Section, we introduced a set of diverse properties to characterize
optimizers of problem (1.1). These conditions have been well established in the spe-
cialized literature; however, to the best of our knowledge, a thorough analysis of
how some of them relate to others has not been carried out.

Here, we aim at building a bridge between the various points of view. In the next
Proposition, we state and prove, when needed, the missing pieces to build, together
with Propositions 2.2-2.6, a complete hierarchy of optimality conditions for problem
(1.1).

Proposition 2.7. Consider problem (1.1) and a point x? ∈ X . The following statements
hold:

1. If x? satisfies strong Lu-Zhang conditions for problem (1.1), then x? is basic feasible
for (1.1);

20 Optimality Conditions for Sparsity-Constrained Optimization Problems

Local
Optimizer

Local
Optimizer
(Relax.)

KKT
(Relax.)S-stat.

M-stat.

Strong LZ

LZ

BF

L-stat.

CW

Global
Optimizer

‖x?‖0 = s X polyhedralCQ

‖x?‖0 = s

y? ∈ {0, 1}n
e>y? = n− s

X = Rn

∇f Lips.

X = Rn

∇f Lips.

‖x?‖0 = s

CQ

X = Rn

Figure 2.1: Chain of implications between necessary optimality conditions for prob-
lem (1.1).

2. If x? satisfies Lu-Zhang conditions for problem (1.1), then x? is M-stationary for prob-
lem (1.1);

3. If x? satisfies Lu-Zhang conditions for problem (1.1), then there exists y? such that
(x?, y?) is S-stationary for problem (2.6);

4. If (x?, y?) is S-stationary for problem (2.6), y? ∈ {0, 1}n and e>y = n− s, then x?

satisfies Lu-Zhang conditions for problem (1.1).

5. If x? is M-stationary for problem (1.1) and ‖x?‖0 = s, then x? satisfies (strong) Lu-
Zhang conditions.

Proof. We provide the proof of each statement:

1. Let J ∈ J (x?) be any super support set. Since x? satisfies strong Lu-Zhang

2.3 A Unified View 21

conditions, there exist multipliers λ ∈ Rm, µ ∈ Rp, γ ∈ Rn such that

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m,
γi = 0 ∀i ∈ J.

Therefore, there exist multipliers such that

∇J f (x?) +
m

∑
i=1

λi∇J gi(x?) +
p

∑
i=1

µi∇Jhi(x?) = 0,

λi ≥ 0, λigi(x?) = 0, ∀ i ∈ J.

Now, let X(J) ⊆ Rs be the feasible set for the super support set J. From the
above equation and Proposition A.1, we get x?J = ΠX(J)[x?J −∇J f (x?)]. There-
fore, letting d be such that dJ = −∇J f (x?) and d J̄ = 0, recalling x?J̄ = 0, we
get x? = ΠXJ [x

? + d], which completes the proof, since J is an arbitrary super
support set.

2. Let x? ∈ X satisfy Lu-Zhang conditions for problem (1.1), i.e., there exist a
super support set J ∈ J (x?) and multipliers λ ∈ Rm, µ ∈ Rp and γ ∈ Rn

such that

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m,
γi = 0 ∀i ∈ J.

Since I1(x?) ⊆ J, we have that λ, µ and γ satisfy

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m,
γi = 0 ∀i ∈ I1(x?),

i.e., x? is M-stationary.

3. By the assumptions, x? satisfies Lu-Zhang conditions, hence there exists a su-
per support set J ∈ J (x?) and multipliers such that (2.4) holds. Now, let
y? ∈ {0, 1}n be such that y?i = 0 for all i ∈ J, and y?i = 1 otherwise. Then,
I0(y?) = J and x? satisfies (2.7).

22 Optimality Conditions for Sparsity-Constrained Optimization Problems

4. Let (x?, y?) be an S-stationary point such that y? ∈ {0, 1}n and e>y? = n− s.
Clearly, |I0(y?)| = s, hence I0(y?) ∈ J (x?); by definition of S-stationarity,
there exist multipliers λ ∈ Rm, µ ∈ Rp, γ ∈ Rn such that

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m,
γi = 0 ∀i ∈ I0(y?),

which completes the proof since I0(y?) is a super support set.

5. Since, when ‖x?‖ = s, I1(x?) is the (unique) super support set, we have that
conditions (2.8) and (2.4) coincide. The proof straightforwardly follows.

We also graphically show the full chain of implications in Figure 2.1.
The stationarity conditions summarized above can be interpreted as follows; M-

stationarity can be seen as KKT-stationarity with respect to the variables in the sup-
port; S-stationarity is KKT-stationarity w.r.t. a specific active subspace; Lu-Zhang
conditions represent KKT-stationarity with respect to at least one super support set;
strong Lu-Zhang conditions are KKT-stationarity with respect to any possible super
support set; these four conditions coincide when ‖x?‖0 = s.

When y? has integer components and e>y? = n− s, S-stationarity is substantially
equivalent to Lu-Zhang conditions, as the active set identified by I0(y?) corresponds
to a super support set. Basic feasibility denotes classical continuous stationarity over
convex sets (see AppendixA)w.r.t. any possible super support set; similarly as in the
continuous case, KKT-stationarityw.r.t. a super support set implies stationarityw.r.t.
that super support set, hence strong Lu-Zhang conditions imply basic feasibility.
The converse is true under suitable constraints qualification (see Appendix A).

2.4 A General Condition: N -stationarity
The necessary conditions for global optimality described in the previous Sections
hardly go beyond the weak concept of local minimum. In fact, even conditions that
allow to consider possible changes to the structure of the support set and reduce
the pool of optimal candidates are either tailored to the “unconstrained case”, or
limited to moderate changes in the support, or involve difficult operations, such as
exact minimizations or projections onto nonconvex sets. In order to introduce a gen-
eral and affordable necessary optimality condition that also takes into account the
combinatorial nature of the problem, we exploit in our analysis the mixed-integer
reformulation (2.3).

2.4 A General Condition: N -stationarity 23

Nonlinear mixed-integer programs can be characterized exploiting the notion of
neighborhood (Lucidi et al., 2005; Li and Sun, 2006).

Definition 2.13. Let (x̄, ȳ) ∈ X (ȳ)×Y a feasible point for problem (2.3). A discrete
neighborhood N (x̄, ȳ) is a set of points such that:

• (x̄, ȳ) ∈ N (x̄, ȳ);

• (x̂, ŷ) ∈ X (ŷ)×Y for all (x̂, ŷ) ∈ N (x̄, ȳ);

• |N (x̄, ȳ)| < ∞.

Basically, given a feasible point (x, y), a discrete neighborhoodN (x, y) is a finite
set of feasible points that contains (x, y) itself. Of course, in order for the concept of
neighborhood to be practically meaningful, the points in it should be close, to some
extent, to the center (x, y); however, the formalization of this featurewill be deferred
to the definition of each specific neighborhood.

We introduce here an example of a tailored neighborhood for problem (2.3) that
can be implemented at a reasonable computational cost. Such a neighborhood will
also help us to relate our analysis to the other theoretical tools available in the liter-
ature.

Definition 2.14 (Nρ neighborhood). Let dH : {0, 1}n × {0, 1}n → N denote the
Hamming distance. Moreover, let ∆(y, ŷ) = {i | yi 6= ŷi} and let H∆(y,ŷ)(·) be a
function such that x̂ = H∆(y,ŷ)(x) is defined as

(H∆(y,ŷ)(x))h =

{
0 if h ∈ ∆(y, ŷ),
xh otherwise.

Then, given ρ ∈N, the neighborhood Nρ is defined as

Nρ(x, y) =
{
(x̂, ŷ) | ŷ ∈ Y ,X (ŷ) 6= ∅, dH(ŷ, y) ≤ ρ, x̂ = ΠX (ŷ)(H∆(y,ŷ)(x))

}
.

(2.10)

Basically, the neighborhood contains points (x̂, ŷ) with at most ρ components of
ŷ differing from y; x̂ is obtained by zeroing components of x as needed to maintain
feasibility w.r.t. the complementarity constraints and then by projecting the result
onto the (convex) active feasible set X(ŷ). In other words, this particular definition
of neighborhood allows to take into account the potential “change of status” of up
to ρ variables in the vector ŷ defining an active subspace.

Example 2.7. Consider the problem (2.3) with n = 3, s = 2, X = Rn and let ρ = 2.
Let (x, y) be a feasible point defined as follows

(x, y) =

 1
2
0

 0
0
1

24 Optimality Conditions for Sparsity-Constrained Optimization Problems

The neighborhood Nρ(x, y) is given by

N2(x, y) =

 1

2
0

 0
0
1

 ,

 1
0
0

 0
1
0

 ,

 0
2
0

 1
0
0

 ,

 1
0
0

 0
1
1

 ,

 0
2
0

 1
0
1

 ,

 0
0
0

 1
1
1

 .

Now, a notion of local optimality for the mixed-integer problem (2.3), depending
on the neighborhood N (x, y), can be introduced:

Definition 2.15 (N -local minimizer for (2.3)). A point (x?, y?) ∈ X (y?) × Y is an
N -local minimizer of problem (2.3) if there exists an ε > 0 such that for all (x̂, ŷ) ∈
N (x?, y?) it holds

f (x?) ≤ f (x) ∀ x ∈ B(x̂, ε) ∩ X (ŷ).

Note that in the above definition the continuous nature of the problem, expressed
by the variables x, is taken into account by means of the standard ball B(x̂, ε). The
given definition clearly depends on the choice of the neighborhoods. A larger neigh-
borhoodN (x?, y?) should give a better localminimizer, but the computational effort
needed to locate the solution may increase.

Inspired by the definition of local optimality for problem (2.3), we introduce a
necessary condition of global optimality for problem (1.1) that allows to take into ac-
count possible, beneficial changes of the support and that hence properly captures,
from an applied point of view, the essence of the problem.

Such a condition relies on the use of stationary points related to continuous prob-
lems obtained by fixing the binary variables in problem (2.3), i.e., for a fixed ȳ ∈ Y ,

min f (x)

s.t. x ∈ X (ȳ).
(2.11)

Definition 2.16 (N -stationarity). A point x? ∈ X is called an N -stationary point for
problem (1.1) if there exists an y? ∈ Y such that

(i) (x?, y?) is feasible for problem (2.3), i.e., (x?, y?) ∈ X (y?)×Y ;

(ii) the point x? is a stationary point of the continuous problem

min f (x)

s.t. x ∈ X (y?);

(iii) every (x̂, ŷ) ∈ N (x?, y?) satisfies f (x̂) ≥ f (x?) and if f (x̂) = f (x?), the point
x̂ is a stationary point of the continuous problem

min f (x)

s.t. x ∈ X (ŷ).

2.4 A General Condition: N -stationarity 25

It is easy to see that the following result stands:

Proposition 2.8. Let x? be a minimum point of problem (1.1). Then x? is anN -stationary
point.

In Definition 2.16 we generically refer to stationary points of problem (2.11),
namely, to points satisfying suitable optimality conditions. Then, concerning the
assumptions on the feasible set X (ȳ), we may distinguish the two cases:

(a) no constraint qualifications hold;

(b) constraint qualifications are satisfied and the usual KKT theory can be applied.

In case (a), we will refer to the following definition of stationary point of problem
(2.11).

Definition 2.17. Given ȳ ∈ Y and x̄ ∈ X (ȳ), we say that x̄ is a stationary point of
problem (2.11) if and only if

x̄ = ΠX (ȳ) [x̄−∇ f (x̄)] .

We notice that X (ȳ) is a convex set when X is convex, then the condition given
above is the classic stationarity condition for the problem (2.11), also discussed in
Appendix A.

In case (b) instead, KKT-stationarity will be considered. The relation between
KKT-stationarity and projection-based stationarity is thoroughly addressed in Ap-
pendix A.

In the next few subsections, wewill analyze the relationships betweenN -stationarity
and the optimality conditions previously discussed in this Chapter. In particular, we
will show how the definition of N -stationarity allows to retrieve in a unified view
most of the known optimality conditions, if a suitable neighborhoodN is employed.

N -stationarity and S-stationarity

It is fairly easy to see that, when KKT-stationarity is considered in Definition (2.16),
N -stationarity implies S-stationarity. Indeed, we can prove the following proposi-
tion.

Proposition 2.9. Let x? be anN -stationary point of problem (1.1), assumingKKT-stationarity
for continuous problems is considered. Then, there exists y? ∈ Y such that (x?, y?) is an
S-stationary point.

26 Optimality Conditions for Sparsity-Constrained Optimization Problems

Proof. If x? isN -stationary, there exists y? ∈ Y such that (x?, y?) is feasible for prob-
lem (2.3) (point (i)) and KKT-stationary w.r.t. the following problem (point (ii)):

min
x

f (x)

s.t. hi(x) = 0, ∀i = 1, . . . , p,

gi(x) ≤ 0, ∀i = 1, . . . , m,

xiy?i = 0, ∀i = 1, . . . , n.

Rearranging, the previous problem can be rewritten as

min
x

f (x)

s.t. hi(x) = 0, ∀i = 1, . . . , p,

gi(x) ≤ 0, ∀i = 1, . . . , m,

xi = 0, ∀i ∈ I1(y?).

This means that there exist multipliers λ ∈ Rm, µ ∈ Rp and γ ∈ Rn such that
the following conditions hold:

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) + ∑
i∈I1(y?)

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m.

That is:

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m,
γi = 0, ∀ i ∈ I0(y?).

Therefore, (x?, y?) is an S-stationary point.

In fact, we can observe that S-stationarity and N -stationarity substantially coin-
cide when the neighborhood

N (x, y) = {(x, y)}

is considered.

N -stationarity and M-stationarity
Since, when consideringKKT-continuous stationarity,N -stationarity implies S-stationarity
which is in turn stronger thanM-stationarity, we get that even whenwe use the sim-
plest possible neighborhood

N (x, y) = {(x, y)}

2.4 A General Condition: N -stationarity 27

N -stationarity implies M-stationarity.
To be more precise, with the above neighborhood, the three conditions are basi-

cally equivalent, as we show in the following proposition.

Proposition 2.10. Let x? ∈ X be an M-stationary point for problem (1.1). Then, x? is
N -stationary with N (x, y) = {(x, y)}.
Proof. Assume x? ∈ X is M-stationary. Let y? be defined as follows:

y?i =

{
0 if i ∈ I1(x?),

1 otherwise.

We have that x?i y?i = 0 for all i = 1, . . . , n, x ∈ X, y ∈ Y and e>y = n−‖x‖0 ≥ n− s;
hence (x?, y?) ∈ X (y)×Y and point (i) of Definition 2.16 is satisfied. Since x? is M-
stationary, it satisfies conditions (2.8). Noting that I0(x?) = I1(y?) by the definition
of y?, we deduce that conditions (2.7) are satisfied and thus, by tracing backwards
the reasoning in the proof of Proposition 2.9 we obtain that point (ii) of Definition
2.16 is satisfied. Since N (x, y) = {(x, y)}, we have that point (iii) collapses to only
check again the condition of point (ii), hence the proof is complete.

N -stationarity and Lu-Zhang Conditions
As we have shown in Proposition 2.7, S-stationarity and LZ conditions are equiva-
lent when the considered vectors y are binary and satisfy e>y = n− s. We can also
recall that N -stationarity and S-stationarity are equivalent when

N (x, y) = {(x, y)}
and KKT-stationarity is considered.

We can thus deduce that Lu-Zhang conditions can be retrieved if the above neigh-
borhood is employed and, in Definition 2.16, y? is required to satisfy e>y? = n− s,
i.e., I0(y?) identifies a super support set for x?.

On the other hand, strong Lu-Zhang conditions can be retrieved by using the
following neighborhood:

N (x?, y?) =
{
(x, y) | x = x?, y ∈ {0, 1}n, e>y = n− s, yix?i = 0 ∀ i = 1, . . . , n

}
.

Indeed, we can observe that, in the above neighborhood, x = x? for all (x, y) ∈
N (x?, y?) and thus f (x?) = f (x); therefore, by point (iii) of Definition 2.16, (KKT)
stationarity has to be checked for all points in N (x?, y?).

The different points in the discrete neighborhood are obtained by changing the
y part of the solution in all the possible ways so that the new binary vector identifies
a super support set.

Hence, with this neighborhood, a point is N -stationary if and only if it is KKT-
stationary w.r.t. any possible super support set, i.e., strong LZ conditions hold.

28 Optimality Conditions for Sparsity-Constrained Optimization Problems

N -stationarity and Basic Feasibility
By analogous reasonings as those seen in the previous section for strong LZ condi-
tions, we can see that Basic feasibility is obtainable by using, again, the neighbor-
hood

N (x?, y?) =
{
(x, y) | x = x?, y ∈ {0, 1}n, e>y = n− s, yix?i = 0 ∀ i = 1, . . . , n

}
,

while considering the projection-based concept of continuous stationarity as in Def-
inition 2.17.

We have to note, however, that the BF property requires that, for any super sup-
port set J ∈ J (x?), it holds

x? = ΠXJ [x
? + d],

where dJ = − 1
L∇J f (x?) and d J̄ = 0, whereas the condition in Definition 2.17 re-

quires
x? = ΠXJ [x

? −∇ f (x?)].

In fact, in the case of our problem the two conditions are equivalent, as we show
below.

Lemma 2.1. Let y ∈ Y and x? ∈ X (y). Then x? satisfies

x? = ΠX (y)(x? + d),

where dI0(y) = − 1
L∇I0(y) f (x?) and dI1(y) = 0, if and only if it satisfies

x? = ΠX (y)(x? −∇ f (x?)).

Proof. By the definition of projection, we have for all z ∈ Rn that

ΠX (y)(z) = arg min
(xI0(y)

,xI1(y)
)∈X

xI1(y)
=0

∥∥∥∥∥ xI0(y) − zI0(y)
xI1(y) − zI1(y)

∥∥∥∥∥
2

=

 arg min
xI0(y)

:(xI0(y)
,0)∈X

‖xI0(y) − zI0(y)‖2

0

Hence, we have

ΠX (y)(x∗ −∇ f (x∗)) =

 arg min
xI0(y)

:(xI0(y)
,0)∈X

‖xI0(y) − (x∗I0(y)
−∇I0(y) f (x∗)‖2

0

and

ΠX (y)(x∗ + d) =

 arg min
xI0(y)

:(xI0(y)
,0)∈X

‖xI0(y) − (x∗I0(y)
− 1

L∇I0(y) f (x∗)‖2

0

2.4 A General Condition: N -stationarity 29

To prove the statement, it is sufficient to show that if

x∗I0(y)
= arg min

xI0(y)
:(xI0(y)

,0)∈X

∥∥∥∥xI0(y) − (x∗I0(y)
− 1

L
∇I0(y) f (x∗)

∥∥∥∥2

for some L > 0, then

x∗I0(y)
= arg min

xI0(y)
:(xI0(y)

,0)∈X

∥∥∥∥xI0(y) − (x∗I0(y)
− 1

L2
∇I0(y) f (x∗)

∥∥∥∥2

for all L2 > 0. Thus, let us assume by contradiction that there exists L2 > 0, L2 6= L,
such that

x̂I0(y) = arg min
xI0(y)

:(xI0(y)
,0)∈X

∥∥∥∥xI0(y) − (x∗I0(y)
− 1

L2
∇I0(y) f (x∗)

∥∥∥∥2

,

with x̂I0(y) 6= x∗I0(y)
. By the properties of the projection operator over a convex set,

we get:(
x∗I0(y)

−
(

x∗I0(y)
− 1

L
∇I0(y) f (x∗)

))>
(x∗I0(y)

− xI0(y)) ≤ 0 ∀ xI0(y) : (xI0(y), 0) ∈ X

and(
x̂I0(y) −

(
x∗I0(y)

− 1
L2
∇I0(y) f (x∗)

))>
(x̂I0(y) − xI0(y)) ≤ 0 ∀ xI0(y) : (xI0(y), 0) ∈ X.

From the first of the above equations we then obtain

∇I0(y) f (x∗)>(x∗I0(y)
− x̂I0(y)) ≤ 0,

whereas from the second we can write(
x̂I0(y) −

(
x∗I0(y)

− 1
L2
∇I0(y) f (x∗)

))>
(x̂I0(y) − x∗I0(y)

) ≤ 0,

and then
‖x̂I0(y) − x∗I0(y)

‖2 ≤ 1
L2
∇I0(y) f (x∗)>(x∗I0(y)

− x̂I0(y)) ≤ 0,

which is absurd.

N -stationarity, L-stationarity and CW-optimality
The L-stationarity property can hardly be obtained in our framework, since it is
based on the sparse projection operation.

30 Optimality Conditions for Sparsity-Constrained Optimization Problems

As for the concept of CW-optimality for the case X = Rn, the definition is based
on argmin operators, i.e., on global information, and thus cannot be directly encap-
sulated in a concept of stationarity.

However, if we relax the definition, we can think of a CW-stationarity concept,
i.e., we can replace the argmin operation w.r.t. a variable by stationarity w.r.t. the
same variable.

When ‖x?‖0 < s, we require ∇i f (x?) = 0 for all i = 1, . . . , n (otherwise, there
would be a descent coordinate direction and the objective could be decreased by
moving one single variable).

When ‖x?‖0 = s, we shall instead require ∇ f (x̂) = 0 for all points in the set

R(x?) = {x̂ | x̂ = x? − x?i ei, i = 1, . . . , n}

and ∇I1(x?) f (x?) = 0. The set R(x?) contains all points obtained by zeroing one
single variable of x? (these points thus have incomplete support). We thus want
each of these points to be stationary, otherwise there would exist swaps allowing to
decrease the objective value. We also want x? to be stationary w.r.t. the variables in
the support set. Substantially, we want all points in

R(x?) ∪ {x?}

to be basic feasible.
Recalling the way the BF property can be written in terms of discrete neighbor-

hoods, the definition of CW-stationarity can thus be obtained, in the mixed-integer
setting, by using the discrete neighborhood

N (x?, y?) =
{{(x, y) | x = x?, eTy = n− s, yix?i = 0 ∀ i} if ‖x?‖0 < s,
{(x, y) | x ∈ R(x?) ∪ {x?}, eTy = n− s, yixi = 0 ∀ i} if ‖x?‖0 = s.

Chapter 3

Review of State-of-the-art Algorithms

Together with the analysis of solutions of problem (1.1) and the definition of opti-
mality conditions, tailored algorithmic schemes have been developed to tackle non-
convex sparsity-constrained problems in a continuous optimization fashion. These
algorithms are, in general, specifically designed to produce solutions that satisfy
some of the optimality conditions discussed in Section 2.2.

In this Chapter, we provide a brief overview of the main algorithmic proposals
that can be found in the related literature.

3.1 Iterative Hard Thresholding Method
The Iterative Hard Thresholding (IHT) approach (Beck and Eldar, 2013) to solve prob-
lem (1.1) when X = Rn basically consists of employing a fixed point method aimed
at enforcing the L-stationarity condition. Specifically, iterations of the form

xk+1 ∈ ΠX

(
xk − 1

L
∇ f (xk)

)
are performed. The cost of a single iteration of IHT is moderate since, as discussed
in Section 2.1, the projection of a solution onto the sparse set is readily available
when X = Rn.

Under suitable regularity assumptions, convergence properties can be stated for
the IHT algorithm.

Proposition 3.1 (Beck and Eldar 2013). Let ∇ f be Lipschitz-continuous with constant
L(f). Let {xk} be the sequence generated by the IHT algorithm with constant stepsize 1/L
where L > L(f). Then

(i) { f (xk)} is a monotone non increasing and thus convergent sequence;

(ii) f (xk+1) < f (xk) if xk+1 6= xk;

31

32 Review of State-of-the-art Algorithms

(iii) ‖xk+1 − xk‖ → 0 as k→ ∞;

(iv) any accumulation point x̄ of {xk} is an L-stationary point.

The main shortcoming of the IHT algorithm is that its performance strongly de-
pends on the choice of the stepsize 1/L. An excessively low value of 1/L leads
to slow convergence and increases the chance not to identify the global optimizer.
On the other hand, large stepsizes might not guarantee the convergence of the al-
gorithm. Moreover, the Lipschitz-continuity assumption on the gradients is quite
restrictive.

The IHT is also not particularly well suited to be used in the case X ⊂ Rn. Al-
though the algorithmic scheme can be directly mirrored to the general case (Beck
and Hallak, 2016), the sparse projection operation required at each iteration quickly
becomes unviable as the feasible set becomes more articulated. Indeed, the ap-
proach is practically useful under strong symmetry assumptions on the feasible set.

3.2 Greedy-Sparse Simplex Method
Similarly as the IHT algorithm, that is specifically designed to produce L-stationary
points, the Greedy Sparse-Simplex (GSS) method (Beck and Eldar, 2013) is devised to
generate a sequence of points converging to CW-optima for problem (1.1) in the case
X = Rn.

In analogy with the CW-optimality condition, the iterations of the algorithm de-
pend on the cardinality of the current iterate:

• if ‖xk‖0 < s:

– for all i = 1, . . . , n, compute xi = xk + tiei where

ti ∈ arg min
t

f (xk + tei);

– xk+1 ∈ arg minxi f (x);

• if ‖xk‖0 = s:

– for all i = 1, . . . , n, and j ∈ I1(xk), compute xi,j = xk + tiei − xk
j ej where

ti ∈ arg min
t

f (xk + tei − xk
j ej);

– xk+1 ∈ arg minxi,j f (x).

3.3 Regularization Method 33

When the support is incomplete, there is still room for adding variables to it: the
algorithm performs the best possible step among all those involving the change of
a single variable. When, on the other hand, the support is complete, the pool of
possibly considered moves includes those consisting of the zeroing of a variable in
the support and the optimal change of another one, hence allowing swapof variables
that modify the composition of the active set. The procedure stops when the current
iterate is kept fixed after an iteration.

By the definition of the algorithm itself, the following properties should not ap-
pear surprising.

Proposition 3.2 (Beck and Eldar 2013). Let {xk} the sequence produced by the GSS al-
gorithm. Then,

(i) f (xk+1) ≤ f (xk) for all k = 0, 1, . . .;

(ii) f (xk+1) = f (xk) if and only if xk+1 = xk and xk is CW-optimal;

(iii) If {xk} is an infinite sequence, any accumulation point x̄ of {xk} is a CW-optimal
solution.

The benefits of the GSS method over the IHT are evident. Indeed, the GSS pro-
duces points that satisfy the CW-optimality property, which is stronger than L-
stationarity, anddoes not require the accurate setting of a parameter (L) nor Lipschitz-
continuity assumptions.

However, this apparently overall superiority comes not for free. Specifically, the
GSS algorithm requires to perform steps of global optimization of subproblems.
This operation hides the convexity requisites, at least component-wise. In addition,
the cost of iterations is much higher for the GSS than for the IHT: the number of
one-variable optimization problems in the case ‖xk‖0 = s grows as fast as (n

s), thus
the algorithm does not scale well with the problem dimensionality. Moreover, even
once the final support has been identified, the algorithm performs a very long tail of
(costly) iterations that are needed for obtaining convergence bymoving one variable
at a time.

The algorithm can be substantially extended to the case X ⊂ Rn (Beck and Hal-
lak, 2016). However, in order to do that, strong symmetry assumptions on the fea-
sible set have to be made; in particular, any swap of variables values and any sign
change shall lead from a feasible point to another feasible point.

3.3 Regularization Method
A regularization approach has been proposed to tackle problem (1.1) by exploit-
ing the relaxed reformulation (2.6). In particular, to get rid of the hardly manage-
able complementarity type constraints, the following constraints are introduced:

34 Review of State-of-the-art Algorithms

ϕ(xi, yi; t) ≤ 0, ϕ̃(xi, yi; t) ≤ 0 for all i = 1, . . . , n, where

ϕ(a, b; t) =
{
(a− t)(b− t) if a + b ≥ 2t,
−1

2 [(a− t)2 + (b− t)2] if a + b < 2t,

ϕ(a, b; t) =
{
(−a− t)(b− t) if − a + b ≥ 2t,
−1

2 [(−a− t)2 + (b− t)2] if − a + b < 2t.

A sequence of regularized problems can be considered for values of tk such that
tk → 0. Each subproblem is then solved to KKT stationarity. Under rather weak
constraints qualification, the sequence of obtained solutions is such that any limit
point is an M-stationary solution.

Proposition 3.3 (Burdakov et al. 2016). Let {tk} be a sequence such that tk > 0 for all k,
tk → 0 as k→ ∞. Let {(xk, yk)} be a sequence of KKT points for the regularized subproblem
of parameter tk such that (xk, yk) → (x̄, ȳ). Assume that (x̄, ȳ) satisfies some suitable
constraint qualification for problem (2.6). Then x̄ is an M-stationary point of problem (1.1).

The convergence result for the regularization method is of course weaker than
those of IHT andGSS, beingM-stationarity the weakest condition among those ana-
lyzed in Section 2.2. However, this approach can be generally employed in presence
of additional constraints.

From a computational perspective, this approach proves to be quite efficient, but
evidence of its good performance is limited to a simple and limited benchmark and
the quality of the retrieved solutions, from a global optimization point of view, ap-
pears to be lacking.

In fact, it has been recently shown (Kanzow et al., 2021) that a probably more ef-
fective way to deal with problem (1.1), with still the same convergence guarantees,
is to directly tackle the relaxed subproblem (2.6) with a standard Augmented La-
grangian Method (ALM) with multipliers safeguarding (Birgin and Martínez, 2014;
Galvan and Lapucci, 2019).

3.4 Penalty Decomposition Approach
Applying the classical variable splitting technique (Jörnsten et al., 1985), Problem
(1.1) can be equivalently expressed as

min
x,z∈Rn

f (x)

s.t. ‖z‖0 ≤ s,

x ∈ X,

x = z.

(3.1)

3.4 Penalty Decomposition Approach 35

For simplicity, in the following, we will denote Z = {z ∈ Rn : ‖z‖0 ≤ s}.
The quadratic penalty function associated to Problem (3.1) is

qτ(x, z) = f (x) +
τ

2

(
‖x− z‖2 + ‖h(x)‖2 + ‖g+(x)‖2

)
,

where τ > 0 is the penalty parameter and g+(x) denotes the component-wise max-
imum max{0, g(x)}.

The PenaltyDecomposition (PD)method (Lu andZhang, 2013), formally defined
in Algorithm 1, can be used to solve Problem (1.1) by tackling Problem (3.1). In
particular, the approach consists of approximately solving a sequence of penalty
subproblems by a two-block decomposition method.

The algorithm starts from a point (x0, z0) that is feasible for problem (3.1). At
every iteration, the algorithmperforms the BlockCoordinateDescent (BCD)method
(Bertsekas and Tsitsiklis, 1989; Beck and Tetruashvili, 2013) w.r.t. the two blocks of
variables x and z, until an approximate stationary point of the penalty functionw.r.t.
the x block is attained. Then, the penalty parameter τk is increased for the successive
iteration, where a higher degree of accuracy is required to approximate a stationary
point.

Note that, as discussed in Section 2.1, the z-update step can be performed by
computing the closed-form solution of the related subproblem. At the beginning of
each iteration, before starting the BCD loop, a test is performed to ensure that the
points of the generated sequence belong to a compact level set. This is done in order
to guarantee that the sequence generated by the PD method is bounded, so that it
admits limit points.

Convergence properties can be proved for the PD algorithm.

Proposition 3.4 (Lu and Zhang 2013). Let {xk, zk} be the sequence generated by Algo-
rithm 1. Then

• for all k = 0, 1, . . . , there exists ` such that ‖∇xqτk(u
`, v`)‖ ≤ εk;

• the sequence {xk, zk} admits accumulation points;

• each accumulation point (x̄, ȳ) is such that:

– x̄ = ȳ and x̄ is feasible for Problem (1.1);

– x̄ satisfies LZ conditions for problem (1.1).

Compared to the other algorithms described so far, the PD approach has the ad-
vantage of being practically employable with additional constraints (X ⊂ Rn), with
stronger convergence properties than the regularization method (LZ conditions are
stronger than M-stationarity).

36 Review of State-of-the-art Algorithms

Algorithm 1: PenaltyDecomposition
1 Input: τ0 > 0, θ > 1, x0 = z0 ∈ Rn s.t. ‖x0‖0 ≤ s, a sequence {εk} s.t. εk → 0,

Γ ≥ max{ f (x0), minx qτ0(x, z0)}.
2 for k = 0, 1, . . . do
3 ` = 0
4 u0 = xk

5 if minx qτk(x, zk) ≤ Γ then
6 v0 = zk

7 else
8 v0 = z0

9 while ‖∇xqτk(u
`, v`)‖ > εk do

10 u`+1 ∈ arg minu qτk(u, v`)
11 v`+1 ∈ arg minv∈Z qτk(u

`+1, v)
12 ` = `+ 1

13 τk+1 = θτk
14 xk+1, zk+1 = u`, v`

15 Output: The sequence {xk}

However, in the case X = Rn, it has on the contrary weaker optimality guaran-
tees than IHT or GSS; indeed LZ points are not even guaranteed to be BF solutions.
Moreover, the practical performance of the PD scheme strongly depend, both in
terms of efficiency and effectiveness, on the setting of the penalty parameters se-
quence {τk}. Finally, the argmin operations required at step 10 implicitly require
convexity assumptions on the problem.

We will address some of the shortcomings highlighted for this approach in the
case X = Rn in the following Section.

Chapter 4

A Convergent Inexact Penalty
Decomposition Method for
Cardinality Constrained Optimization

The Penalty Decomposition algorithm has been shown to be effective in practice (Lu
and Zhang, 2013). However, it requires to compute, in the inner iterations of the
block decomposition method, the exact solution of a sequence of subproblems in
the x variables (see steps 5 and 10 of Algorithm 1). This may be prohibitive when
either the objective function is nonconvex or the finite termination of an algorithm
applied to a convex subproblem cannot be guaranteed (this latter issue typically
occurs when the convex function is not quadratic.).

On the other hand, the convergence analysis for the PD scheme is strongly based
on the assumption that the global minima of the subproblems in the x variables
are determined. In order to overcome this not trivial issue by preserving global
convergence properties, we propose in this Chapter a modified version of the al-
gorithm, suitable even for problems with nonconvex objective function in the case
when X = Rn.

4.1 An Inexact Penalty Decomposition Method
Throughout the Chapter, we assume that X = Rn, i.e., here we are concerned with
the optimization problem

min
x∈Rn

f (x)

s.t. ‖x‖0 ≤ s.
(4.1)

Moreover, we make the following hypothesis.

37

38
A Convergent Inexact Penalty Decomposition Method for Cardinality

Constrained Optimization

Assumption 4.1. The function f : Rn → R is continuously differentiable and coer-
cive on Rn, i.e., for all sequences {xk} such that xk ∈ Rn and limk→∞ ‖xk‖ = ∞ we
have limk→∞ f (xk) = ∞.

The above assumption implies that problem (4.1) admits solution.

Algorithm 2: InexactPenaltyDecomposition
1 Input: τ0 > 0, θ > 1, x0 = z0 ∈ Rn s.t. ‖x0‖0 ≤ s, a sequence {εk} s.t. εk → 0,

γ ∈ (0, 1) , β ∈ (0, 1) .
2 for k = 0, 1, . . . do
3 ` = 0
4 α = ArmijoLineSearch(qτk , xk, zk,−∇xqτk(xk, zk), γ, β)

5 xtrial = xk − α∇xqτk(xk, zk)

6 if qτk(xtrial, zk) ≤ f (x0) then
7 u0, v0 = xk, zk

8 else
9 u0, v0 = x0, z0

10 while ‖∇xqτk(u
`, v`)‖ > εk do

11 α` = ArmijoLineSearch(qτk , u`, v`,−∇xqτk(u
`, v`), γ, β)

12 u`+1 = u` − α`∇xqτk(u
`, v`)

13 v`+1 ∈ arg minv∈Z qτk(u
`+1, v)

14 ` = `+ 1

15 τk+1 = θτk
16 xk+1 = u`

17 zk+1 = v`

18 Output: The sequence {xk}

The proposed procedure is described in Algorithm 2. The exact minimization
with respect to the x variables is replaced by an Armijo-type line search along the
steepest descent direction of the penalty function, similarly as what is done in other
decomposition schemes (Grippo and Sciandrone, 1999, 2000; Galvan et al., 2020).
The line search procedure along a descent direction d is shown in Algorithm 3.

We recall somewell-known properties for the Armijo-type line search, later used
in the convergence analysis. These results can be found, for instance, in Bertsekas
(1997) book.

It can be easily seen that the algorithm is well-defined, i.e., there exists a finite in-
teger j such that βj satisfies the acceptability condition (4.2). Moreover the following
result holds.

4.1 An Inexact Penalty Decomposition Method 39

Algorithm 3: ArmijoLineSearch
1 Input: g : Rn ×Rn → R, x, z ∈ Rn, d ∈ Rn, γ ∈ (0, 1) , β ∈ (0, 1) .
2 Compute

α = max
j∈N
{βj : g(x + βjd, z) ≤ g(x, z) + γβj∇xg(x, z)Td} (4.2)

3 return α

Proposition 4.1. Let g : Rn × Rn → R be a continuously differentiable function and
{xt, zt} ⊆ Rn ×Rn. Let T ⊆ {0, 1, . . . , } be an infinite subset such that

lim
t→∞
t∈T

(xt, zt) = (x̄, z̄).

Let {dt} be a sequence of directions such that ∇xg(xt, zt)Tdt < 0 and assume that ‖dt‖ ≤
M for some M > 0 and for all t ∈ T. If

lim
t→∞
t∈T

g(xt, zt)− g(xt + αtdt, zt) = 0,

then we have
lim
t→∞
t∈T

∇xg(xt, zt)Tdt = 0.

Remark 4.1. Step 12 of Algorithm 2 can be modified in order to make the algorithm
more general. More specifically, the steepest descent direction−∇xqτk(u

`, v`) could
be replaced by any gradient-related direction d`. In this sense, we have the possi-
bility of arbitrarily defining the updated point u`+1, provided that qτk(u

`+1, v`) ≤
qτk(u

` + α`d`, v`), where α` is computed by Armijo line search along the descent di-
rection d` that, in particular, may be −∇xqτk(u

`, v`). It can be easily seen that this
modification does not spoil the theoretical analysis we are going to carry out here-
after, while it may bring significant benefits from a computational perspective.

Remark 4.2. As outlined by Lu and Zhang (2013), the stopping condition at line 10
ofAlgorithm 2 is useful for establishing the convergence properties of the algorithm,
but, in practice, different rules could be employedwith benefits in terms of efficiency.
For example, the progress of the decreasing sequence {qτk(u

`, v`)} might be taken
into account. As for the main loop, the whole algorithm can be stopped in practice
as soon as xk and zk are sufficiently close.

In the following Section, we address the properties of the Inexact Penalty De-
composition Method.

40
A Convergent Inexact Penalty Decomposition Method for Cardinality

Constrained Optimization

4.2 Convergence Analysis
Let us introduce the level set

L0(f) = {x : f (x) ≤ f (x0)}.
Note that L0(f) is compact, being f continuous and coercive on Rn. First we show
that also qτ(x, z) is a coercive function.

Lemma 4.1. The function qτ(x, z) is coercive on Rn ×Rn.

Proof. Let us consider any pair of sequences {xk} and {zk} such that at least one of
the following conditions holds

lim
k→∞
‖xk‖ = ∞, (4.3)

lim
k→∞
‖zk‖ = ∞. (4.4)

Assume by contradiction that there exists an infinite subset K ⊆ {0, 1, . . . , } such
that

lim sup
k→∞
k∈K

qτ(xk, zk) 6= ∞. (4.5)

Suppose first that there exists an infinite subset K1 ⊆ K such that

‖xk − zk‖ ≤ M, (4.6)

for some M > 0 and for all k ∈ K1. Recalling that f is coercive on Rn, from (4.3),
(4.4) we have that f (xk)→ ∞ for k→ ∞, k ∈ K1. From (4.6) we obtain

lim
k→∞
k∈K1

qτ(xk, zk) = lim
k→∞
k∈K1

f (xk) +
τ

2
‖xk − zk2‖ = ∞,

and this contradicts (4.5). Then we must have

lim
k→∞
k∈K

‖xk − zk‖ = ∞.

As f is coercive and continuous, it admits minimum over Rn. Let f ? the minimum
value of f . Thus, we have

qτ(xk, zk) ≥ f ? +
τ

2
‖xk − zk‖2,

which implies that qτ(xk, zk)→ ∞ for k→ ∞, k ∈ K.
Then, we can conclude that, for any infinite set K, we have

lim
k→∞
k∈K

qτ(xk, zk) = ∞,

and this contradicts (4.5).

4.2 Convergence Analysis 41

Now, we can prove that Algorithm 2 is well-defined, i.e., that the cycle between
step 10 and step 14 terminates in a finite number of inner iterations.

Proposition 4.2. Algorithm 2 cannot infinitely cycle between step 10 and step 14, i.e., for
each outer iteration k ≥ 0, the algorithm determines in a finite number of inner iterations a
point (xk+1, zk+1) such that

‖∇xqτk(xk+1, zk+1)‖ ≤ ε. (4.7)

Proof. Suppose by contradiction that, at a certain iteration k, the sequence {u`, v`}
is infinite. From the instructions of the algorithm, we have

qτk(u
`+1, v`+1) ≤ qτk(u

0, v0).

Hence, for all ` ≥ 0, the point (u`, v`) belongs to the level set

L0(qτk) = {(u, v) ∈ Rn ×Rn : qτk(u, v) ≤ qτk(u
0, v0)}.

Lemma 4.1 implies that L0(qτk) is a compact set. Therefore, the sequence {u`, v`}
admits cluster points. Let K ⊆ {0, 1, . . .} be an infinite subset such that

lim
`→∞
`∈K

(u`, v`) = (ū, v̄).

Recalling the continuity of the gradient, we have

lim
`→∞
`∈K

∇xqτk(u
`, v`) = ∇xqτk(ū, v̄).

We now show that ∇xqτk(ū, v̄) = 0. Setting d` = −∇xqτk(u
`, v`) and taking into

account the instructions of the algorithm we can write

qτk(u
`+1, v`+1) ≤ qτk(u

`+1, v`) = qτk(u
` + α`d`, v`) < qτk(u

`, v`). (4.8)

Recalling again the continuity of the gradient, we have that d` → ∇xqτk(ū, v̄) for
` ∈ K and `→ ∞, and hence ‖d`‖ ≤ M for some M > 0 and for all ` ∈ K.

The sequence {qτk(u
`, v`)} is monotonically decreasing, qτk(u, v) is continuous,

and hence we have that
lim
`→∞

qτk(u
`, v`) = qτk(ū, v̄).

From (4.8) it follows lim
`→∞

qτk(u
`, v`)− qτk(u

`+ α`d`, v`) = 0. Then, the hypothesis
of Proposition 4.1 are satisfied and we can write

lim
`→∞
`∈K

∇xqτk(u
`, v`)Td` = lim

`→∞
`∈K

−‖∇xqτk(u
`, v`)‖2 = 0,

which implies that, for ` ∈ K sufficiently large, we have ‖∇xqτk(u
`, v`)‖ ≤ ε, i.e.,

that the stopping criterion of step 10 is satisfied in a finite number of iterations, and
this contradicts the fact that {u`, v`} is an infinite sequence.

42
A Convergent Inexact Penalty Decomposition Method for Cardinality

Constrained Optimization

Before stating the global convergence result, we prove that the sequence gener-
ated by the algorithm admits limit points and that every limit point (x̄, z̄) is such
that x̄ is feasible for the original problem (4.1).

Proposition 4.3. Let {xk, zk} be the sequence generated by Algorithm 2. Then {xk, zk}
admits cluster points and every cluster point (x̄, ȳ) is such that x̄ = z̄, and ‖x̄‖0 ≤ s.

Proof. Consider a generic iteration k. The instructions of the algorithm imply for all
` ≥ 0

qτk(u
`+1, v`+1) ≤ qτk(u

`+1, v`) = qτk(u
` − α`∇xqτk(u

`, v`), v`) ≤ qτk(u
`, v`),

and hence we can write

qτk(xk+1, zk+1) ≤ qτk(u
0 − α0∇xqτk(u

0, v0), v0). (4.9)

From the definition of (u0, v0), we either have (u0, v0) = (xk, zk) or (u0, v0) =

(x0, z0). In the former case we have, by the definition of xtrial, that

qτk(u
0 − α0∇xqτk(u

0, v0), v0) = qτk(xtrial, zk) ≤ f (x0),

where the last inequality holds, as in this case the condition at line 6 is satisfied. In
the latter case, we have

qτk(u
0 − α0∇xqτk(u

0, v0), v0) ≤ qτk(u
0, v0) = qτk(x0, z0)

= f (x0) +
τk
2
‖x0 − z0‖2 = f (x0).

Then, in both cases from (4.9) it follows

qτk(xk+1, zk+1) ≤ f (x0). (4.10)

We also have

f (xk+1) ≤ qτk(xk+1, zk+1) = f (xk+1) +
τk
2
‖xk+1 − zk+1‖2 ≤ f (x0), (4.11)

and hence we can conclude that for all k ≥ 0 we have f (xk+1) ≤ f (x0). Therefore,
the points of the sequence {xk} belong to the compact set L0(f), and this implies
that {xk} is a bounded sequence and that, for all k ≥ 0, f (xk) ≥ f ? > −∞, being f ?

the minimum value of f over Rn.
From (4.11), dividing by τk, we get

‖xk+1 − zk+1‖2 ≤ 2
f (x0)− f (xk+1)

τk
≤ 2

f (x0)− f ?

τk
.

4.2 Convergence Analysis 43

Taking the limits for k→ ∞, recalling that τk → ∞ for k→ ∞, we obtain

lim
k→∞
‖xk+1 − zk+1‖ = 0. (4.12)

Therefore, since {xk} is a bounded sequence, from (4.12), it follows that {zk} is
bounded, and hence the sequence {(xk, zk)} admits cluster points. Let (x̄, z̄) be any
cluster point of {(xk, zk)}, i.e., there exists an infinite subset K ⊆ {0, 1, . . .} such that

lim
k→∞
k∈K

(xk, zk) = (x̄, z̄).

Again from (4.12) it follows x̄ = z̄.
Finally, as ‖zk‖0 ≤ s for all k, recalling the lower semicontinuity of the `0-norm

‖ · ‖0, we can conclude that ‖x̄‖0 = ‖z̄‖0 ≤ s.

We are ready to state the global convergence result.

Theorem 4.1. Let {xk, zk} be the sequence generated by Algorithm 2. Then {xk, zk} admits
cluster points and every cluster point (x̄, z̄) is such that x̄ satisfies the Lu-Zhang conditions
for problem (4.1).

Proof. Proposition 4.3 implies that the sequence {xk, zk} admits cluster points. Let
K ⊆ {0, 1, . . .} be an infinite subsequence such that

lim
k→∞
k∈K

(xk+1, zk+1) = (x̄, z̄).

From Proposition 4.3, it follows x̄ = z̄ and

‖x̄‖0 ≤ s. (4.13)

Using (4.7) of Proposition 4.2, for all k ≥ 0, we have

‖∇ f (xk+1) + τk(xk+1 − zk+1)‖ ≤ εk,

so that, taking the limits for k ∈ K and k→ ∞, as εk → 0, we can write

lim
k→∞
k∈K

‖∇ f (xk+1) + τk(xk+1 − zk+1)‖ = 0. (4.14)

From the instructions of the algorithm, we have zk+1 ∈ arg minz∈Z qτk(xk+1, z), i.e.,
zk+1 is a solution of the problem

min
z
‖z− xk+1‖2 s.t. ‖z‖0 ≤ s.

From (2.2) it follows

zk+1
i = xk+1

i for i ∈ G(xk+1), zk+1
i = 0 for i /∈ G(xk+1),

44
A Convergent Inexact Penalty Decomposition Method for Cardinality

Constrained Optimization

where we recall that the index set G(xk+1) contains at most s elements, those corre-
sponding to the not null components of xk+1 with the largest absolute value.

Note that |G(xk+1)| < s implies ‖xk+1‖0 < s and hence zk+1 = xk+1. Therefore,
we can write

−τk(xk+1
i − zk+1

i) = 0
{ ∀ i ∈ G(xk+1), if |G(xk+1)| = s,
∀ i ∈ {1, . . . , n}, if |G(xk+1)| < s.

(4.15)

The index set G(xk+1) belongs to the finite set {1, . . . , n}, therefore there exists an
infinite subset K1 ⊆ K such that G(xk+1) = G for all k ∈ K1.

Let G? = G(x̄) = I1(x̄), being x̄ feasible. We show that G? ⊆ G. Indeed, assume
by contradiction that there exists i ∈ G? such that i /∈ G. Hence, ȳi = x̄i 6= 0, while
zk+1

i = 0 for all k ∈ K. This is a contradiction, since zk+1 → z̄ for k→ ∞, k ∈ K.
Therefore, we have the following possible cases:

(i) |G| = s, G = G?; (ii) |G| < s; (iii) |G| = s, G ⊃ G?.

We now prove each case separately:

(i) Let i ∈ G = G?; from (4.14) we have

lim
k→∞
k∈K1

∇i f (xk+1) + τk(xk+1
i − zk+1

i) = 0,

and, using the first condition of (4.15), it follows τk(xk+1
i − zk+1

i) = 0 for all
k ∈ K1. Therefore, recalling the continuity of the gradient, we can write

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ G?,

i.e., Lu-Zhang conditions hold with the (super) support set G = G?.

(ii) Let i ∈ {1, . . . , n}; similarly to the previous case, we have that

lim
k→∞
k∈K1

∇i f (xk+1) + τk(xk+1
i − zk+1

i) = 0,

and using the second condition of (4.15) it follows τk(xk+1
i − zk+1

i) = 0 for all
k ∈ K1. Therefore, we obtain

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ {1, . . . , n},

i.e., Lu-Zhang conditions hold taking any super support set.

4.2 Convergence Analysis 45

(iii) Let i ∈ G. By the same reasonings of case (i), we can write

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ G,

i.e., Lu-Zhang conditions hold with the super support set G ⊇ I1(x̄).

Putting everything together, we have from (i), (ii) and (iii) that Lu-Zhang conditions
are always satisfied.

As we can see, the proposed inexact version of the algorithm enjoys the same
convergence properties as the original, exact one described in Section 3.4. In the
following remark, we provide a better characterization of the algorithm, with an ex-
post result that shows that the limit points are often BF-vectors (equivalently, satisfy
strong LZ conditions).

Remark 4.3. We note that, in both case (i) and case (ii) we have that x̄ satisfies the
BF optimality conditions. Moreover, note also that:

• If there exists a subsequence K̂ ⊆ K s.t. ‖xk‖0 = ‖x̄‖0 for all k ∈ K̂, the only pos-
sible cases are case (i) and (ii). Indeed, let us consider a further subsequence
K2 ⊆ K̂, such that G(xk+1) = G for every k ∈ K2, for some G ⊂ {1, . . . , n}.
We know that K2 exists and that G ⊇ G?. Since ‖xk+1‖0 = ‖x̄‖0 ≤ s for every
k ∈ K2, G = I1(xk+1) and G? = I1(x̄) respectively, and they have the same
cardinality. Therefore, it cannot be G ⊃ G?. It follows that G = G?, so we fall
into either case (i) or case (ii), and thus x̄ satisfies BF conditions.

• If there exists a subsequence K̂ ⊆ K such that ‖xk+1‖0 < s for all k ∈ K̂, we
can again define K2 ⊆ K̂ such that G(xk+1) = G for every k ∈ K2, for some
G ⊂ {1, . . . , n}. In this case, we have |G| = ‖xk+1‖0 < s and case (ii) applies.
It follows that x̄ is a BF-vector.

In case (i) from the proof, the algorithm is substantially imposing optimalityw.r.t.
the support, which is the only super support set. In case (ii), the algorithm looks at
all possible super support sets; in case (iii), instead, the algorithm only considers
one super support set among many.

Basically, the unfortunate case happenswhen the support of the solution asymp-
totically becomes incomplete. In this case, the algorithm somewhat enforces opti-
mality only w.r.t. variables in the support of iterates {zk}, ignoring some super sup-
port sets that should be considered at the limit point.

46
A Convergent Inexact Penalty Decomposition Method for Cardinality

Constrained Optimization

4.3 Future Work
Further work shall regard the extension of the presented algorithm to the case of
problem (1.1) when X ⊂ Rn, which, similarly to what is done in the exact PD
method, might be handled by moving the additional constraints into the quadratic
penalty term.

Another interesting theoretical investigation might concern the substitution of
the line search step by a trust-region framework. Such a modification, which ap-
pears to be reasonable, would in fact require nontrivial changes to the convergence
analysis.

Chapter 5

A Derivative-Free Penalty
Decomposition Algorithm for
Black-Box Sparse Optimization

First-order information about the objective function is fundamental for the PD class
of methods. However, there are applications where the objective function is ob-
tained by direct measurements or it is the result of a complex system of calcula-
tions, so that its analytical expression is not available and the computation of its
values may be affected by the presence of noise. Hence, in these cases the gradient
cannot be explicitly calculated or approximated.

Such lack of information has an impact on the applicability of Algorithm 2. In
particular, the x update step and the inner loop stopping criterion are no more em-
ployable as they are.

In this Chapter, we provide the definition of a derivative-free PD method for
sparse black-box optimization. We remark that, to our knowledge, convergent derivative-
free methods for cardinality constrained problems are not known, and this makes
the derivative-free algorithm proposed here particularly attractive.

5.1 A Derivative-Free Penalty Decomposition Method

Similarly as in Chapter 4, we consider the problem without additional constraints

min
x∈Rn

f (x)

s.t. ‖x‖0 ≤ s,
(5.1)

and we also make the coercivity assumption on the objective function.

47

48
A Derivative-Free Penalty Decomposition Algorithm for Black-Box Sparse

Optimization

Assumption 5.1. The function f : Rn → R is continuously differentiable and coer-
cive on Rn, i.e., for all sequences {xk} such that xk ∈ Rn and limk→∞ ‖xk‖ = ∞ we
have limk→∞ f (xk) = ∞.

The derivative-free PD method is described by Algorithm 5. At the x update
step, we employ as search directions the coordinate directions and their opposites. A
tentative step length α̃i is associatedwith each of these directions. At every iteration,
all search directions are considered one at a time; a derivative-free line search is
performed along each direction, according to Algorithm 4.

If the tentative step size does not provide a sufficient decrease, it will be reduced
for the next iteration. If, on the other hand, the tentative step size is of sufficient de-
crease, an extrapolation procedure is carried out; the tentative step size for that same
direction at the successive iteration will be the longest one tried in the extrapolation
phase that provides a sufficient decrease.

That same step length is also used to move along the considered direction, pro-
vided it is large at least εk; otherwise, no movement is done along the direction. The
inner loop then stops when all tentative step sizes have become smaller than εk.

Algorithm 4: LineSearch
1 Input: f : Rn → R, d ∈ Rn, α0 ∈ R+, x ∈ Rn, γ ∈ (0, 1) , σ > 1.
2 α = α0

3 if f (x + αd) ≤ f (x)− γα2‖d‖2 then
4 Let β = α
5 repeat
6 Set α = β
7 Set β = σα

8 until f (x + βd) > f (x)− γβ2‖d‖2;
9 return α

10 Set α = 0
11 return α

5.2 Convergence Analysis
Hereafter, we show that Algorithm 5 enjoys the same convergence properties as
Algorithm 2 and hence of the original PD Algorithm 1.

First, we prove that the line search procedure does not loop infinitely inside our
procedure.

Proposition 5.1. Algorithm 4 cannot infinitely cycle between steps 5 and 8.

5.2 Convergence Analysis 49

Algorithm 5: DerivativeFreeInexactPenaltyDecomposition
1 Input: τ0 > 0, θ > 1, δ ∈ (0, 1) , γ ∈ (0, 1) , σ > 1, x0 = z0 ∈ Rn s.t. ‖x0‖0 ≤ s,
{εk} s.t. εk < 1 for all k and εk → 0,
D = {d1, . . . , d2n} = {e1, . . . , en,−e1, . . . ,−en}.

2 for k = 0, 1, . . . do
3 α̃0 = e ∈ R2n

4 ` = 0
5 xtrial = xk

6 for i = 1, . . . , 2n do
7 α̂i = LineSearch(qτk(x, zk), di, 1, xk, γ, σ)
8 if α̂i > εk then
9 xtrial = xk + α̂idi
10 break

11 if qτk(xtrial, zk) ≤ f (x0) then
12 u0, v0 = xk, zk

13 else
14 u0, v0 = x0, z0

15 while maxi=1,...,2n {α̃`i } > εk do
16 u`(0) = u`

17 for i = 1, . . . , 2n do
18 α`i = LineSearch(qτk(u, v`), di, α̃`i , u`(i− 1), γ, σ)

19 if α`i = 0 then
20 α̃`+1

i = δα̃`i
21 else
22 α̃`+1

i = α`i

23 if α`i > εk then
24 u`(i) = u`(i− 1) + α`i d`i
25 else
26 u`(i) = u`(i− 1)

27 u`+1 = u`(2n)
28 v`+1 ∈ arg minv∈Z qτk(u

`+1, v)
29 ` = `+ 1

30 τk+1 = θτk
31 xk+1 = u`

32 zk+1 = v`

33 Output: The sequence {xk}

50
A Derivative-Free Penalty Decomposition Algorithm for Black-Box Sparse

Optimization

Proof. Assume by contradiction that Algorithm 4 does not terminate. Then, for j =
0, 1, . . ., we have f (x + σjα0d) ≤ f (x) − γσ2jα2

0‖d‖2. Taking the limits for j → ∞,
we obtain that f (x + σjα0d) → −∞, and this contradicts the fact that f is bounded
below, being continuous and coercive.

Note that, as shown by Proposition 5.1, qτk is coercive on Rn ×Rn. We prove
that Algorithm 5 is well-defined, i.e., the inner loop terminates in a finite number of
iterations.

Proposition 5.2. Algorithm 5 cannot infinitely cycle between steps 15 and 29.

Proof. Assume by contradiction that the algorithm loops infinitely. Then, for every
` = 0, 1, . . ., there exists i ∈ {1, . . . , 2n} such that α̃`i > εk, i.e.,

max
i=1,...,2n

{α̃`i } > εk. (5.2)

The instructions of the algorithm imply

qτk(u
`+1, v`+1) ≤ qτk(u

`+1, v`) ≤ qτk(u
`(i), v`) ≤ qτk(u

`(i− 1), v`) ≤ qτk(u
`, v`).

Then, the decreasing sequence {qτk(u
`, v`)} tends to a finite value, being qτk con-

tinuous and coercive and hence bounded below. For any i ∈ {1, . . . , 2n}, we can
split the sequence of iterations {0, 1, . . .} into two subsequences K1 and K2 such that
K1 ∪ K2 = {0, 1, . . .}, K1 ∩ K2 = ∅. In particular, we denote by:

- K1 the set of iterations where α̃`+1
i = α`i = α̃`i σt > 0 for some t ≥ 0, t ∈N;

- K2 the set of iterations where α̃`+1
i = δα̃`i and α`i = 0.

Note that K1 and K2 cannot both be finite. Then we analyze the following two cases,
K1 infinite (Case I) and K2 infinite (Case II).
Case (I). We have

qτk(u
`+1, v`+1) ≤ qτk(u

`+1, v`) ≤ qτk(u
`(i), v`) ≤ qτk(u

`(i− 1), v`)− γ(α̃`i σt)2

≤ qτk(u
`(0), v`)− γ(α̃`i)

2 = qτk(u
`, v`)− γ(α̃`i)

2.

Taking the limits for ` ∈ K1, ` → ∞, recalling that {qτk(u
`, v`)} tends to a finite

limit, we get

lim
`→∞
`∈K1

α̃`i = 0, (5.3)

and hence, for ` ∈ K1 sufficiently large, we have α̃`i ≤ εk.
Case (II). For every ` ∈ K2, let m` be the maximum index on {0, 1, . . .} such that
m` ∈ K1, m` < ` (m` is the index of the last iteration in K1 preceding `). We can

5.2 Convergence Analysis 51

assume m` = 0 if the index m` does not exist, that is, K1 is empty. Then we can write
α̃`i = δ`−m`α

m`
i . As ` ∈ K2 and ` → ∞, either m` → ∞ (if K1 is an infinite subset) or

`−m` → ∞ (if K1 is finite). Therefore, (5.3) and the fact that δ ∈ (0, 1) imply

lim
`→∞
`∈K2

α̃`i = 0.

Thus, for ` ∈ K2 sufficiently large, we have α̃`i ≤ εk.
We can conclude that lim`→∞ α̃`i = 0, so that, recalling that i is arbitrary, we get

maxi=1,...,n{α̃`i } ≤ εk for ` sufficiently large, and this contradicts (5.2).

Next, we prove a technical result used later.

Proposition 5.3. Assume that the initial step sizes α̃0
i , with i = 1, . . . , n, are such that

α̃0
i > εk for all k. Then, for every k and for every i = 1, . . . , 2n, there exists ρk

i ∈ (0, cεk)

such that
∇xqτk(xk+1 + ρk

i di, yk+1)Tdi > −cεk,

with c = max{σ, 1/δ}.

Proof. Given any iteration k, let ` be the index of the last inner iteration. By definition
of `, we must have that α̃`+1

i ≤ εk for all i = 1, . . . , n. From the instructions of
the algorithm this implies that we have u`+1 = u`(2n) = . . . = u`(0) = u`, and
consequently v`+1 = v`. Consider any i ∈ {1, . . . , 2n}. We have two cases:

1. α̃`+1
i = δα̃`i ; in this case, α̃`i did not satisfy the sufficient decrease condition in

the LineSearch procedure, i.e.

qτk(u
` + α̃`i di, v`)− qτk(u

`, v`) > −γ(α̃`i)
2. (5.4)

Using the Mean Value Theorem we can write

qτk(u
` + α̃`i di, v`)− qτk(u

`, v`) = α̃`i∇xqτk(u
` + ρ`i di, v`)Tdi, (5.5)

where ρ`i ∈ (0, α̃`i) . From (5.4) and (5.5), it follows:

∇xqτk(u
` + ρ`i di, v`)Tdi > −γα̃`i = −

γ

δ
α̃`+1

i ≥ −γ

δ
εk.

Observe that α̃`i ≤ εk/δ and hence ρ`i ∈ (0, εk/δ) .

2. α̃`+1
i = α`i ; from the instructions of the LineSearch procedure, we get

qτk(u
` + σα`i di, v`)− qτk(u

`, v`) > −γ(σα`i)
2. (5.6)

Using the Mean Value Theorem, we can write

qτk(u
` + σα`i di, v`)− qτk(u

`, v`) = σα`i∇xqτk(u
` + ρ`i di, v`)Tdi, (5.7)

52
A Derivative-Free Penalty Decomposition Algorithm for Black-Box Sparse

Optimization

where ρ`i ∈ (0, σα`i) . From (5.6) and (5.7), it follows

∇xqτk(u
` + ρ`i di, v`)Tdi > −γσα`i = −γσα̃`+1

i ≥ −γσεk.

Observe that σα`i = σα̃`+1
i ≤ σεk and hence ρ`i ∈ (0, σεk) .

Thus, in both cases we can write

∇xqτk(u
` + ρ`i di, v`)Tdi > −cεk, (5.8)

for some ρ`i ∈ (0, cεk) and c = max{σ, 1/δ}.
Since α̃`+1

i ≤ εk for all i = 1, . . . , 2n, from the instructions of the algorithm, we
have u`+1 = u` and consequently v`+1 = v`. Hence, equation (5.8) holds with
u` = xk+1, and v` = zk+1.

Now, we prove that the sequence generated by the algorithm admits limit points
and that every limit point is feasible for the original problem.

Proposition 5.4. Let {xk, zk} be the sequence generated by Algorithm 5. Then, {xk, zk}
admits cluster points and every cluster point (x̄, z̄) is such that x̄ = z̄, and ‖x̄‖0 ≤ s.

Proof. Consider a generic iteration k. The instructions of the algorithm imply, for all
` ≥ 0,

qτk(xk+1, zk+1) = qτk(u
`+1, v`+1) ≤ qτk(u

`+1, v`) ≤ qτk(u
`, v`).

From thedefinition of (u0, v0), we either have (u0, v0) = (xk, zk) or (u0, v0) = (x0, z0).
In the former case, for some i ∈ {1, . . . , 2n} we have, by the definition of xtrial, that

qτk(u
1, v0) ≤ qτk(u

0 + α̂idi, v0) = qτk(xtrial, zk) ≤ f (x0).

In the latter case, we have

qτk(u
0, v0) = qτk(x0, z0) = f (x0) +

τk
2
‖x0 − z0‖2 = f (x0).

Then, in both cases it follows

qτk(xk+1, zk+1) ≤ f (x0). (5.9)

The rest of the proof follows the same reasonings used in the proof of Proposition
4.3, starting from the condition corresponding to (5.9), i.e., condition (4.10).

Theorem 5.1. Let {xk, zk} be the sequence generated by Algorithm 5. Then {xk, zk} admits
cluster points and every cluster point (x̄, z̄) is such that x̄ satisfies the Lu-Zhang conditions
for problem (5.1).

5.2 Convergence Analysis 53

Proof. Proposition 5.4 implies that the sequence {xk, zk} admits cluster points. Let
K ⊆ {0, 1, . . .} be an infinite subsequence such that

lim
k→∞
k∈K

(xk+1, zk+1) = (x̄, z̄).

From Proposition 5.4 it follows x̄ = z̄ and ‖x̄‖0 ≤ s. From the instructions of the al-
gorithm, we have zk+1 ∈ arg minz∈Z qτk(xk+1, z), i.e., zk+1 is solution of the problem

min
z
‖z− xk+1‖2 s.t. ‖z‖0 ≤ s.

From (2.2) it follows

zk+1
i = xk+1

i for i ∈ G(xk+1), zk+1
i = 0 for i /∈ G(xk+1),

where we recall that the index set G(xk+1) contains at most s elements, those corre-
sponding to the not null components of xk+1 with the largest absolute value.

Note that |G(xk+1)| < s implies ‖xk+1‖0 < s and hence zk+1 = xk+1. Therefore,
we can write

−τk(xk+1
i − zk+1

i) = 0
{ ∀ i ∈ G(xk+1), if |G(xk+1)| = s,
∀ i ∈ {1, . . . , n}, if |G(xk+1)| < s.

(5.10)

The index set G(xk+1) belongs to the finite set {1, . . . , n}, therefore there exists an
infinite subset K1 ⊆ K such that G(xk+1) = G for all k ∈ K1.

Let G? = G(x̄) = I1(x̄), being x̄ feasible. We have already shown in the proof of
Theorem 4.1 that G? ⊆ G. We consider the following possible cases:

(i) |G| = s, G = G?; (ii) |G| < s; (iii) |G| = s, G ⊃ G?.

We now prove each case separately:

(i) Let i ∈ G = G?; using the first condition of (5.10), we get τk(xk+1
i − zk+1

i) = 0
for all k ∈ K1. From Proposition 5.3, recalling that

D = {d1, . . . , d2n} = {e1, . . . en,−e1, . . . ,−en},
we have that

∇ f (xk+1 + ρk
i ei)

Tei = ∇xqτk(xk+1 + ρk
i ei, zk+1)Tei > −cεk,

−∇ f (xk+1 + ρk
i+nei)

Tei = −∇xqτk(xk+1 − ρk
i+nei, zk+1)Tei > −cεk,

with c = max{σ, 1/δ}. Taking limits for k → ∞, k ∈ K1, recalling that εk → 0,
ρk

i , ρk
i+n ∈ (0, cεk) and the continuity of the gradient, we get

lim
k∈K1,k→∞

∇ f (xk+1 + ρk
i ei)

Tei = ∇i f (x̄) ≥ 0,

lim
k∈K1,k→∞

−∇ f (xk+1 − ρk
i+nei)

Tei = −∇i f (x̄) ≥ 0,

from which it follows that∇i f (x̄) = 0 for all i ∈ G?, i.e., Lu-Zhang conditions
hold with the (super) support set G = G?.

54
A Derivative-Free Penalty Decomposition Algorithm for Black-Box Sparse

Optimization

(ii) Let i ∈ {1, . . . , n}; the second condition of (5.10) implies τk(xk+1
i − zk+1

i) = 0
for all k ∈ K1. Similarly to the previous case, we can write

∇ f (xk+1 + ρk
i ei)

Tei = ∇xqτk(xk+1 + ρk
i ei, zk+1)Tei > −cεk,

−∇ f (xk+1 + ρk
i+nei)

Tei = −∇xqτk(xk+1 − ρk
i+nei, zk+1)Tei > −cεk,

with c = max{σ, 1/δ}, and we can prove

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ {1, . . . , n},

i.e., Lu-Zhang conditions hold taking any super support set.

(iii) Let i ∈ G. By the same reasonings of case (i), we can write

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ G,

i.e., Lu-Zhang conditions hold with the super support set G.

Putting everything together, we have, from (i), (ii) and (iii), that Lu-Zhang conditions
are always satisfied.

Remark 5.1. As in Remark 4.3, if there exists a subsequence K̂ ⊂ K s.t. ‖xk‖0 = ‖x̄‖0

for all k ∈ K̂ or ‖xk‖0 < s for all k ∈ K̂, x̄ is a BF-vector.

Chapter 6

A General Algorithm for
Sparsity-Constrained Optimization
Problems based on Discrete
Neighborhoods

In this Chapter, we discuss an algorithmic framework for the solution of sparsity
constrained problems

min
x

f (x)

s.t. ‖x‖0 ≤ s,
x ∈ X,

(6.1)

that exploits the reformulation given by problem

min
x,y

f (x)

s.t. e>y ≥ n− s,

xiyi = 0, ∀ i = 1, . . . , n,

x ∈ X,

y ∈ {0, 1}n.

(6.2)

In particular, the approach aims at finding points satisfying the N -stationarity
condition newly defined in Chapter 2 (Definition 2.16). The algorithm combines in-
exact minimizations with a strategy that explores discrete neighborhoods of a given
feasible point. Those features make it easy to handle the nonconvexity in both the
objective function and the feasible set also from a practical point of view. We prove
the convergence of the algorithmic scheme, establishing that its limit points are N -
stationary. We then show that most of the conditions reviewed in Chapter 2 can be
easily guaranteed.

55

56
A General Algorithm for Sparsity-Constrained Optimization Problems based

on Discrete Neighborhoods

6.1 The Algorithm
The proposed approach tackles the mixed integer reformulation (6.2) and is some-
how related to classical methods for mixed variable programming proposed in the
literature (Li and Sun, 2006; Lucidi et al., 2005).

The core piece of the proposed method lies in the exploration of discrete neigh-
borhoods. It is thus useful recalling the corresponding definition.

Definition 6.1. Let (x̄, ȳ) ∈ X (ȳ)× Y a feasible point for problem (6.2). A discrete
neighborhood N (x̄, ȳ) is a set of points such that:

• (x̄, ȳ) ∈ N (x̄, ȳ);

• (x̂, ŷ) ∈ X (ŷ)×Y for all (x̂, ŷ) ∈ N (x̄, ȳ);

• |N (x̄, ȳ)| < ∞.

Roughly speaking, the whole approach is based at each iteration on the compu-
tation of a discrete neighborhoodN (xk, yk) of the current point (xk, yk) and on local
exploratorymoves with respect to the continuous variables around the points of the
neighborhood.

Specifically, the continuous explorationmove consists of a local search performed
by an Armijo-type line search along the projected gradient direction, where the fea-
sible set X (y) for the continuous variables is induced by the binary variables y that
implicitly define an active set. The procedure is formalized in Algorithm 6.

Algorithm 6: Projected-Gradient Line Search (PGLS)

1 Input: y ∈ Y , x ∈ X (y), γ ∈ (0, 1
2), δ ∈ (0, 1), α = 1.

2 Set x̂ = ΠX (y) [x−∇ f (x)]
3 Set d = x̂− x
4 while f (x + αd) > f (x) + γα∇ f (x)>d do
5 set α = δα

6 Set x̃ = x + αd;
7 return x̃

In brief, the instructions of the algorithm are carried out as follows:

(i) starting from the current iterate (xk, yk), the PGLS is performed to obtain the
point x̃k;

(ii) for any point (x̂k, ŷk) ∈ N (x̃k, yk) that is not significantly worse (in terms of
the objective value) than the current candidate, we perform a local continuous
search around x̂k;

6.2 Neighborhood Continuity 57

(iii) the local search can be constituted by several steps of PGLS;

(iv) we skip to the following iteration as soon as a point providing a sufficient de-
crease of the objective value is found (successful iteration) or when no point is
left in the neighborhood to be explored;

(v) in the latter case, the success of the iterationwill be established by the decrease
in the objective value attained by x̃.

The algorithm, which we refer to as Sparse Neighborhood Search (SNS) is for-
mally defined in Algorithm 7.

6.2 Neighborhood Continuity
In the following sections, we will prove a set of results concerning the properties
of the sequences produced by Algorithm 7. Note that, unless stated otherwise, we
employ the classical concept of stationarity (A.2) for convex optimization, based on
the projection operator. First, however, we need to state some suitable assumptions.

Assumption 6.1. The gradient∇ f (x) is Lipschitz-continuous, i.e., there exists a con-
stant L > 0 such that

‖∇ f (x)−∇ f (x̄)‖ ≤ L ‖x− x̄‖
for all x, x̄ ∈ Rn.

Assumption 6.2. Given y0 ∈ Y , x0 ∈ X (y0) and a scalar ξ > 0, the level set

L(x0, y0) = {(x, y) ∈ X (y)×Y | f (x) ≤ f (x0) + ξ}

is compact.

The crucial point in the proposed framework is choosing suitable discrete neigh-
borhoods. First, note that whenwe deal with both continuous and integer variables,
the usual notion of convergence to a point needs to be tweaked. In particular, we
have the following definition.

Definition 6.2. Asequence {(xk, yk)} converges to a point (x̄, ȳ) if for any ε > 0 there
exists an index kε such that for all k ≥ kε we have that yk = ȳ and ‖xk − x̄‖ < ε.

To ensure convergence tomeaningful points, we need a “continuity” assumption
on the discrete neighborhoods we explore.

Assumption 6.3. Let {(xk, yk)} be a sequence converging to (x̄, ȳ) and let N be
a discrete neighborhood. Then, for any (x̂, ŷ) ∈ N (x̄, ȳ), there exists a sequence
{(x̂k, ŷk)} converging to (x̂, ŷ) such that (x̂k, ŷk) ∈ N (xk, yk) for all k.

58
A General Algorithm for Sparsity-Constrained Optimization Problems based

on Discrete Neighborhoods

Algorithm 7: Sparse Neighborhood Search (SNS)
1 Input: y0 ∈ Y , x0 ∈ X (y0), ξ ≥ 0, θ ∈ (0, 1), η0 > 0, µ0 > 0, δ ∈ (0, 1).
2 for k = 0, 1, . . . do
3 Compute x̃k = PGLS(xk, yk)
4 Define Wk = {(x, y) ∈ N (x̃k, yk) | f (x) ≤ f (x̃k) + ξ}
5 Set success = False
6 while Wk 6= ∅ and success = False do
7 select (x′, y′) ∈Wk
8 Set z1 = x′

9 for j = 1, 2, . . . do
10 Compute zj+1 = PGLS(zj, y′)
11 if f (zj+1) ≤ f (x̃k)− ηk then
12 Set xk+1, yk+1 = zj+1, y′

13 Set ηk+1 = ηk
14 Set success = True
15 break

16 if
∥∥∥zj −ΠX (y′)

[
zj −∇ f (zj)

]∥∥∥ ≤ ∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥+ µk

then
17 Set Wk = Wk \ {(x′, y′)}
18 break

19 if success = False then
20 Set xk+1, yk+1 = x̃k,= yk

21 if f (xk+1) ≤ f (xk)− ηk then
22 Set ηk+1 = ηk
23 success = True
24 else
25 Set ηk+1 = θηk

26 Set µk+1 = δµk

27 Output: The sequence {(xk, yk)}

6.2 Neighborhood Continuity 59

The assumption above is a mild continuity assumption on the discrete neigh-
borhoods and is equivalent to the lower semicontinuity of a point-to-set function
(Berge, 1963).

We show that, for example, the neighborhood Nρ defined in Definition 2.14 sat-
isfies Assumption 6.3 in the case X = Rn, as stated here below.

Proposition 6.1. The point-to-set map Nρ(x, y) defined in Definition 2.14 satisfies As-
sumption 6.3 when X = Rn.

Proof. Let {xk, yk} be a sequence convergent to {x̄, ȳ}. Then, for any ε > 0, there
exists kε such that yk = ȳ and ‖xk − x̄‖ ≤ ε for all k > kε.

Let (x̂, ŷ) ∈ Nρ(x̄, ȳ). For k sufficiently large, since yk = ȳ, we have {y | y ∈
Y , dH(y, yk) ≤ ρ} = {y | y ∈ Y , dH(y, ȳ) ≤ ρ}, hence ŷ ∈ {y | dH(y, yk) ≤ ρ} for
all k.

Let us then consider the sequence {x̂k, ŷk} where ŷk = ŷ and x̂k = H∆(yk,ŷ)(xk).
We can observe that (x̂k, ŷk) ∈ Nρ(xk, yk). Now, let j ∈ {1, . . . , n}. The set∆(yk, ŷk) =

∆(ȳ, ŷ) = ∆ is constant for k sufficiently large.
Noting that, being X = Rn, ΠX (ŷ)(H∆(x)) = H∆(x), we have for j /∈ ∆

lim
k→∞

x̂k
j = lim

k→∞
xk

j = x̄j = x̂j.

On the other hand, if j ∈ ∆, x̂k
j = 0 and x̂j = 0. Hence

lim
k→∞

x̂k = x̂

and we thus get the thesis.

The result still holds in the case X ⊂ Rn.

Proposition 6.2. Let {(xk, yk)} be a sequence converging to (x̄, ȳ). Then, the point-to-set
map Nρ(x, y) defined in Definition 2.14 satisfies Assumption 6.3.

Proof. The proof follows exactly as in Proposition 6.1, recalling the continuity of the
projection operator ΠX (ŷ).

Before turning to the convergence analysis of the algorithm, we prove a further
useful preliminary result concerning the neighborhood Nρ.

Lemma 6.1. Let y ∈ Y and x ∈ X (y) with δ = ‖x‖0. Let us consider the set

N̄ (x) = {(x̂, ŷ) | y ∈ {0, 1}n, x̂ = x, e>ŷ = n− s, I0(ŷ) ⊇ I1(x) }.

We have that
N̄ (x) ⊆ Nρ(x, y),

when ρ ≥ 2(s− δ).

60
A General Algorithm for Sparsity-Constrained Optimization Problems based

on Discrete Neighborhoods

Proof. Let (x̂, ŷ) be any point in N̄ (x). From the feasibility of (x, y) we have

δ ≤ |I0(y)| ≤ s n− s ≤ |I1(y)| ≤ n− δ. (6.3)

Moreover, from the definition of N̄ (x), we have

|I0(ŷ)| = s |I1(ŷ)| = n− s.

Now, it is easy to see that

dH(y, ŷ) = n− |I0(y) ∩ I0(ŷ)| − |I1(y) ∩ I1(ŷ)|. (6.4)

We can note that, since I0(y) ⊇ I1(x) and I0(ŷ) ⊇ I1(x), it has to be I0(y) ∩ I0(ŷ) ⊇
I1(x). Therefore

|I0(y) ∩ I0(ŷ)| ≥ |I1(x)| = δ. (6.5)

We can now turn to I1(y)∩ I1(ŷ). Since the latter set can be equivalently written, by
De Morgan’s law, as {1, . . . , n} \ (I0(y) ∪ I0(ŷ)), we can obtain

|I1(y) ∩ I1(ŷ)| = |{1, . . . , n} \ (I0(y) ∪ I0(ŷ))|
= n− |I0(y) ∪ I0(ŷ)|
= n− (|I0(y)|+ |I0(ŷ)| − |I0(y) ∩ I0(ŷ)|)
= n− |I0(y)| − s + |I0(y) ∩ I0(ŷ)|
≥ n− s− s + δ

= n− 2s + δ,

where the second last inequality comes from (6.3) and (6.5). Putting everything
together back in (6.4), we get

dH(y, ŷ) ≤ n− δ− n + 2s− δ = 2(s− δ).

Taking into account that ρ ≥ 2(s− δ) in the definition of Nρ(x, y), we obtain

(x̂, ŷ) ∈ Nρ(x, y),

thus getting the desired result.

6.3 Convergence Analysis
We can now focus on the algorithms. First, we prove a property of Algorithm 6 that
will play an important role in the convergence analysis of Algorithm 7.

6.3 Convergence Analysis 61

Proposition 6.3. Given a feasible point (x, y) ∈ X (y)×Y , Algorithm 6 produces a feasible
point (x̃, y) such that

f (x̃) ≤ f (x)− σ
(∥∥∥x−ΠX (y) [x−∇ f (x)]

∥∥∥) ,

where the function σ (·) ≥ 0 is such that if σ
(
th)→ 0 then th → 0.

Proof. By definition, d = x̂− x, where x̂ = ΠX (y) [x−∇ f (x)]. By the properties of
the projection operator, we can write

(x−∇ f (x)− x̂)>(x− x̂) ≤ 0,

which, with simple manipulations, implies that

∇ f (x)>d ≤ −‖d‖2 = −
∥∥∥x−ΠX (y) [x−∇ f (x)]

∥∥∥2
. (6.6)

By the instructions of the algorithm, either α = 1 or α < 1.
If α = 1, then x̃ = x + d satisfies

f (x̃) ≤ f (x) + γ∇ f (x)>d ≤ f (x)− γ
∥∥∥x−ΠX (y) [x−∇ f (x)]

∥∥∥2
. (6.7)

If α < 1, we must have that

f (x + αd) ≤ f (x) + γα∇ f (x)>d, (6.8)

f
(

x +
α

δ
d
)
> f (x) + γ

α

δ
∇ f (x)>d. (6.9)

Applying the mean value theorem to equation (6.9), we get

∇ f
(

x + θ
α

δ
d
)>

d > γ∇ f (x)>d,

where θ ∈ (0, 1). Adding and subtracting ∇ f (x)>d, and rearranging, we get

(1− γ)∇ f (x)>d >
[
∇ f (x)−∇ f

(
x + θ

α

δ
d
)]>

d.

By the Lipschitz-continuity of ∇ f (x), we can write[
∇ f (x)−∇ f

(
x + θ

α

δ
d
)]>

d ≥ −L
α

δ
‖d‖2 ,

which means that
(1− γ)∇ f (x)>d > −L

α

δ
‖d‖2 ,

62
A General Algorithm for Sparsity-Constrained Optimization Problems based

on Discrete Neighborhoods

Rearranging, we get
δ

L
(1− γ)∇ f (x)>d > −α ‖d‖2 .

This last inequality, together with (6.6), yields
δ

L
(1− γ)∇ f (x)>d > α∇ f (x)>d,

and substituting in equation (6.8) we finally get

f (x̃) < f (x) + γ
δ

L
(1− γ)∇ f (x)>d ≤ f (x)− γ

δ

L
(1− γ)

∥∥∥x−ΠX (y) [x−∇ f (x)]
∥∥∥2

.

This last inequality, together with (6.7), implies that

f (x̃) ≤ f (x)− σ
(∥∥∥x−ΠX (y) [x−∇ f (x)]

∥∥∥)
where

σ (t) = γ min
{

1,
δ

L
(1− γ)

}
t2.

We can now state a couple of preliminary theoretical results. We first show that
Algorithm 7 is well-posed.

Proposition 6.4. For each iteration k, the loop between steps 9 and 18 of Algorithm 7 ter-
minates in a finite number of steps.

Proof. Suppose by contradiction that Steps 9-18 generate an infinite loop, so that an
infinite sequence of points {zj} is produced for which∥∥∥zj −ΠX (y′)

[
zj −∇ f (zj)

]∥∥∥ >
∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥+ µk > 0 ∀j. (6.10)

By Proposition 6.3, for each j we have that

f (zj+1)− f (zj) ≤ −σ
(∥∥∥zj −ΠX (y′)

[
zj −∇ f (xj)

]∥∥∥) , (6.11)

where σ (·) ≥ 0. The sequence { f (zj)} is therefore nonincreasing. Moreover, equa-
tion (6.11) implies that∣∣∣ f (zj+1)− f (zj)

∣∣∣ ≥ σ
(∥∥∥zj −ΠX (y′)

[
zj −∇ f (zj)

]∥∥∥) . (6.12)

By Assumption 6.2, { f (xj)} is lower bounded. Therefore, recalling that { f (zj)} is
nonincreasing, we get that { f (zj)} converges, which implies that∣∣∣ f (zj+1)− f (zj)

∣∣∣→ 0.

By (6.12), we get that σ
(∥∥∥zj −ΠX (y′)

[
zj −∇ f (zj)

]∥∥∥)→ 0, and, by the properties

of σ (·), we finally get that
∥∥∥zj −ΠX (y′)

[
zj −∇ f (zj)

]∥∥∥ → 0, and this contradicts
(6.10).

6.3 Convergence Analysis 63

The next proposition shows some properties of the sequences generated by the
algorithm, which will play an important role in the subsequent analysis.

Proposition 6.5. Let {(xk, yk)}, {µk} and {ηk} be the sequences produced by Algorithm
7. Then:

(i) the sequence { f (xk)} is nonincreasing and convergent;

(ii) the sequence {(xk, yk)} is bounded;

(iii) the set Ku = {k | ηk < ηk−1} of unsuccessful iterates is infinite;

(iv) limk→∞ µk = 0;

(v) limk→∞ ηk = 0;

(vi) limk→∞

∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥ = 0.

Proof. (i) The instructions of the algorithmandProposition 6.3 imply that { f (xk)}
is nonincreasing, and Assumption 6.2 implies that { f (xk)} is lower bounded.
Hence, { f (xk)} converges.

(ii) The instructions of the algorithm imply that each point (xk, yk) belongs to the
level set L(x0, y0), which is compact by Assumption 6.2. Therefore, {(xk, yk)}
is bounded.

(iii) Suppose thatKu is finite. Then there exists k̄ > 0 such that all iterates satisfying
k > k̄ are successful, i.e.,

f (xk) ≤ f (xk−1)− ηk−1,

and ηk = ηk−1 = η > 0 for all k ≥ k̄. Since η > 0, this implies that { f (xk)}
diverges to −∞, in contradiction with (i).

(iv) Since, for all k, µk+1 = δµk, where δ ∈ (0, 1), the claim holds.

(v) If k ∈ Ku, then ηk = θηk−1, where θ ∈ (0, 1). Since Ku is infinite and ηk = ηk−1
if k /∈ Ku, the claim holds.

(vi) By Proposition 6.3, we have that

f (x̃k)− f (xk) ≤ −σ
(∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥) .

By the instructions of the algorithm, f (xk+1) ≤ f (x̃k), and so we can write

f (xk+1)− f (xk) ≤ −σ
(∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥) ,

64
A General Algorithm for Sparsity-Constrained Optimization Problems based

on Discrete Neighborhoods

i.e., ∣∣∣ f (xk+1)− f (xk)
∣∣∣ ≥ σ

(∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥) .

Since { f (xk)} converges, we get that σ
(∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥)→ 0.

By the properties of σ (·), we get that
∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥→ 0.

Before stating the main theorem of this section, it is useful to summarize some
theoretical properties of the subsequence {(xk, yk)}Ku of the unsuccessful iterates.
As the proof shows, the next proposition follows easily from the theoretical results
we have shown above.

Proposition 6.6. Let {(xk, yk)} be the sequence of iterates generated by Algorithm 7, and
let Ku = {k | ηk < ηk−1}. Then:

(i) {(xk, yk)}Ku admits accumulation points;

(ii) for any accumulation point (x?, y?) of the sequence of unsuccessful iterates {(xk, yk)}Ku ,
every point (x̂, ŷ) ∈ N (x?, y?) is an accumulation point of a sequence {(x̂k, ŷk)}Ku

where (x̂k, ŷk) ∈ N (xk, yk).

Proof. (i) ByProposition 6.5, item (ii), {(xk, yk)} is bounded. Therefore, {(xk, yk)}Ku

is also bounded, and so it admits accumulation points.

(ii) Assumption 6.3 implies that every (x̂, ŷ) ∈ N (x?, y?) is an accumulation point
of a sequence {(x̂k, ŷk)}Ku , where (x̂k, ŷk) ∈ N (xk, yk).

We can now prove the main theoretical result of this section.

Theorem 6.1. Let {(xk, yk)} be the sequence generated by Algorithm 7. Every accumu-
lation point (x?, y?) of {(xk, yk)}Ku is such that x? is an N -stationary point of problem
(6.1).

Proof. Let (x?, y?) be an accumulation point of {(xk, yk)}Ku . We must show that
conditions (i)-(iii) of Definition 2.16 are satisfied.

(i) From the instructions of Algorithm 7 the iterates (xk, yk) belong to the set
L(x0, y0), which is closed from Assumption 6.2. Any limit point (x?, y?) be-
longs to L(x0, y0) and is thus feasible for problem (6.2).

(ii) The result follows from Proposition 6.5, item (vi).

6.3 Convergence Analysis 65

(iii) Considering the way the set Ku is defined, we can observe that for all k ∈ Ku

xk = x̃k−1, yk = yk−1.

We can thus denote

N k = N (xk, yk) = N (x̃k−1, yk−1).

Since k ∈ Ku, for all (x̂k, ŷk) ∈ N k either the test at step 11 failed or the point
was not included in Wk−1 and hence

f (x̂k) > f (x̃k−1)− ηk−1 = f (xk)− ηk−1.

Since the sequence { f (xk)} is nonincreasing (Proposition 6.5, item (i)), we can
write

f (x∗) ≤ f (xk) < f (x̂k) + ηk−1

for all (x̂k, ŷk) ∈ N k. Taking limits, we get from Proposition 6.5, item (v),
Assumption 6.3, and by the continuity of f that f (x∗) ≤ f (x̂) for all (x̂, ŷ) ∈
N (x∗, y∗).
Now, note that item (i) of Proposition 6.5 ensures the existence of f ∗ ∈ R

satisfying

lim
k→∞

f (xk) = f (x∗) = f ∗. (6.13)

Consider any (x̂, ŷ) ∈ N (x∗, y∗) such that

f (x̂) = f ∗. (6.14)

Proposition 6.6 implies that the point (x̂, ŷ) is an accumulation point of a se-
quence {(x̂k, ŷk)}Ku , where (x̂k, ŷk) ∈ N k. Therefore, by (6.13) and (6.14) we
get, for k sufficiently large,

f (x̂k) < f (xk) + ξ = f (x̃k−1) + ξ.

Thus, for such values of k, we have

(x̂k, ŷk) ∈Wk−1 = {(x, y) ∈ N k | f (x) ≤ f (x̃k−1) + ξ}.

Steps 9-18 produce the points z2
k−1, . . . , z

j∗k−1
k−1 (where j∗k−1 is the finite number

of iterations of steps 9-18 until the test at step 16 is passed), which, by the
instructions at Step 10 and by Proposition 6.3, satisfy

f (x̂k) ≥ f (z2
k−1) ≥ . . . ≥ f (z

j∗k−1
k−1). (6.15)

66
A General Algorithm for Sparsity-Constrained Optimization Problems based

on Discrete Neighborhoods

Again, since k ∈ Ku, the test at step 11 is not passed at iteration k− 1, and we
can write

f (z
j∗k−1
k−1) > f (x̃k−1)− ηk−1 = f (xk)− ηk−1. (6.16)

Moreover, as the sequence {(x̂k, ŷk)}Ku converges to the point (x̂, ŷ), by (6.13),
(6.14), (6.15), (6.16), and by item (v) of Proposition 6.5, we obtain

f ∗ = lim
k→∞,k∈Ku

f (x̂k) = lim
k→∞,k∈Ku

f (z2
k−1) = lim

k→∞,k∈Ku
f (xk) = f ∗.

By Proposition 6.3, we have that

f (z2
k−1) ≤ f (x̂k)− σ

(∥∥∥x̂k −ΠX (ŷk)

[
x̂k −∇ f (x̂k)

]∥∥∥) ,

which can be rewritten as∣∣∣ f (z2
k−1)− f (x̂k)

∣∣∣ ≥ σ
(∥∥∥x̂k −ΠX (ŷk)

[
x̂k −∇ f (x̂k)

]∥∥∥) .

Taking limits for k→ ∞, k ∈ Ku, we finally get∥∥∥x̂−ΠX (ŷ) [x̂−∇ f (x̂)]
∥∥∥ = 0,

and the claim holds.

The above theorem states that, if any neighborhood N satisfying the continuity
Assumption 6.3 is employed, then all limit points of the sequence produced by the
SNS algorithm are N -stationary.

Now, we show that a suitable choice of the neighborhood to be used within Al-
gorithm 7 allows to obtain quite strong convergence properties.

For example, we show that, provided that Nρ is employed as neighborhood in
7, with a sufficiently large value of ρ, the SNS procedure converges to basic feasible
solutions.

Theorem 6.2. Let {(xk, yk)} be the sequence of iterates generated by Algorithm 7 equipped
with Nρ as neighborhood and A? the set of the accumulation points of the sequence of un-
successful iterates {(xk, yk)}Ku . If ρ ≥ 2(s− δ?), in the definition of the set Nρ(x, y), and
δ? = min{‖x?‖0 | (x?, y?) ∈ A?}, then given a point (x?, y?) ∈ A?, x? is basic feasible
for problem (6.1).

Proof. Let J ∈ J (x?) and consider the vector ŷ such that ŷj = 1 ∀j /∈ J and zero
otherwise. As |J| = s, we have e>ŷ = n− s. Moreover, I1(x?) ⊆ I0(ŷ), thus, using
Lemma 6.1, we have (x?, ŷ) ∈ N̄ (x?) ⊆ Nρ(x?, y?). By taking into account Theorem

6.4 Convergence Guarantees under Constraint Qualifications 67

6.1, we finally get that x? is an Nρ-stationary point of problem Problem (6.1) and
that it is also a stationary point of

min f (x)

s.t. x ∈ X (ŷ),

that is
x? = ΠX (ŷ)(x? −∇ f (x?)).

Then, by Lemma 2.1, recalling that ŷi = 0 if and only if i ∈ J, we obtain that x? is
basic feasible.

Remark 6.1. At a first glance, the result in Theorem 6.2may appear an ex post result.
In fact, the value of δ? cannot be known in advance. However, δ? ≥ 0, hence we
know a priori that the BF property will hold at limit points if we set ρ = 2s.

We shall also note that in most cases δ? will be not so far from s, hence small
values of ρ should typically be enough to enforce the basic feasibility of solutions.

6.4 Convergence Guarantees under Constraint
Qualifications

Continuing the discussion started at the end of the previous section, here we show
that, under constraint qualifications and by choosing suitable neighborhoods, it is
possible to state convergence results similar and even stronger than those obtained
by otherwell-known algorithms, namely, the PD and the regularization approaches.

Firstwe state the following assumptionwhich implicitly involves constraint qual-
ifications.

Assumption 6.4. Given ȳ ∈ Y and x̄ ∈ X (ȳ), we have that x̄ is a stationary point
of problem (2.11) if and only if there exist multipliers λ ∈ Rm, µ ∈ Rp and γ ∈ Rn

such that

∇ f (x̄) +
m

∑
i=1

λi∇gi(x̄) +
p

∑
i=1

µi∇hi(x̄) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x̄) = 0, ∀i = 1, . . . , m,
γi = 0, ∀ i such that ȳi = 0.

The above assumption states that x̄ is a stationary point of problem (2.11) if and
only if it is a KKT point of the following problem

min
x

f (x)

s.t. hi(x) = 0, ∀i = 1, . . . , p,

gi(x) ≤ 0, ∀i = 1, . . . , m,

xiȳi = 0, ∀i = 1, . . . , n,

68
A General Algorithm for Sparsity-Constrained Optimization Problems based

on Discrete Neighborhoods

which can be equivalenty rewritten as follows

min
x

f (x)

s.t. hi(x) = 0, ∀i = 1, . . . , p,

gi(x) ≤ 0, ∀i = 1, . . . , m,

xi = 0, ∀i ∈ I1(ȳ).

Remark 6.2. As shown in Appendix A, Assumption 6.4 holds when, e.g., the func-
tions gi are strongly convex with constant ci > 0, for i = 1, . . . , m, the functions hj,
for j = 1, . . . , p are affine, and some Cardinality Constraint-Constraint Qualification
(CC-CQ) is satisfied. For instance, a standard CC-CQ is the Cardinality Constraint-
Linear Independence Constraint Qualification (CC-LICQ) (Burdakov et al., 2016),
requiring that the gradients

∇gi(x̄) for all i : gi(x̄) = 0

∇hi(x̄) for all i = 1, . . . , p

ei for all i ∈ I1(ȳ)

are linearly independent.

From Theorem 6.1, Proposition 2.9 and Assumption 6.4 we immediately get the fol-
lowing result.

Theorem 6.3. Let {(xk, yk)} be the sequence generated by Algorithm 7. Every accumula-
tion point (x?, y?) of the sequence of unsuccessful iterates {(xk, yk)}Ku is such that there
exist multipliers λ ∈ Rm, µ ∈ Rp and γ ∈ Rn such that

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m,
γi = 0, ∀ i ∈ I0(y?).

(6.17)

Basically, the above proposition tells us that, under Assumption 6.4, the SNS al-
gorithm produces points that are S-stationary and hence M-stationary for problem
(6.1), as long as a neighborhood satisfying the continuity Assumption 6.3 is em-
ployed.

In order to state stronger convergence results, we again need to use suitable
neighborhoods (e.g., Nρ with a sufficiently large value of ρ) in the algorithm.

Theorem 6.4. Let {(xk, yk)} be the sequence generated by Algorithm 7 equipped with Nρ

as neighborhood and A? the set of the accumulation points of the sequence {(xk, yk)}Ku

of unsuccessful iterates. If ρ ≥ 2(s− δ?), in the definition of the set Nρ(x, y), and δ? =

6.4 Convergence Guarantees under Constraint Qualifications 69

min{‖x?‖0 | (x?, y?) ∈ A?}, then given a point (x?, y?) ∈ A? and for every super support
set J ∈ J (x?), we have that there exist multipliers λ ∈ Rm, µ ∈ Rp and γ ∈ Rn such that

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x?) = 0, ∀i = 1, . . . , m,
γi = 0, ∀ i ∈ J,

(6.18)

i.e., x? satisfies strong Lu-Zhang conditions for problem (6.1).

Proof. Let J ∈ J (x?) and consider the vector ŷ such that ŷj = 1 ∀j /∈ J and zero
otherwise. We have I1(x?) ⊆ I0(ŷ) and, as |J| = s, e>ŷ = n− s. Hence, (x?, ŷ) ∈
N̄ (x?) ⊆ Nρ(x?, y?), where we used Lemma 6.1. By taking into account Theorem
6.1, we finally get that x? is anNρ-stationary point of problem (6.1) and that it is also
a stationary point of

min f (x)

s.t. x ∈ X (ŷ).

Then, by Assumption 6.4, recalling that ŷi = 0 if and only if i ∈ J, we obtain that
(6.18) holds.

Remark 6.3. Similarly as in Remark 6.1, we shall note that Theorem 6.4 guarantees
us that all limit points of the sequence {xk, yk}Ku are such that strong Lu-Zhang
conditions are satisfied if the neighborhood N2s is employed in SNS.

Remark 6.4. It is interesting to note that, unlike the Penalty Decomposition algo-
rithm, SNS is able by a suitable choice of N to guarantee the convergence to points
satisfying strong LZ conditions. In fact, we know that, in the general case, the PD
method only guarantees to generate points satisfying Lu-Zhang conditions.

The SNS algorithm would have the same exact convergence results as the PD
method if we used the neighborhood

N (xk, yk) = {(x, y) | x = xk, y ∈ {0, 1}n, e>y = n− s, yixk
i = 0 ∀ i}.

Wehave seen in Section 2.4 that the above neighborhoodmakesN -stationarity equiv-
alent to SLZ conditions. However, it does not satisfy the continuity Assumption 6.3:
since some of the components of xk may go to zero asymptotically, at the limit point
a larger number of different y (i.e., super support sets) might be needed to be con-
sidered.

Hence, with the above neighborhoodwewould basically check all the super sup-
port sets at the current iterate xk, but it would fail fail to guarantee condition (6.18)
to be satisfied by all super support sets at the limit point.

70
A General Algorithm for Sparsity-Constrained Optimization Problems based

on Discrete Neighborhoods

6.5 Concluding Remarks
The introduction of the concept of discrete neighborhood into the analysis of cardinality-
constrained problems had already allowed us to see in a new light most of the ex-
isting related literature. The Sparse Neighborhood Search framework, which is also
base on this concept, additionally allowed to define tailored algorithmic schemes
aimed at retrieving points satisfying various optimality conditions.

In particular, the SNS algorithm:

• theoretically outperforms the regularization approach in the general case, pro-
ducing points that satisfy a stronger condition than S-stationarity;

• with a tailored neighborhood, provides basic feasible solutions in the general
setting;

• with a tailored neighborhood, allows to guarantee the SLZ conditions, which
the Penalty Decomposition algorithm falls short; the weakness of the PD ap-
proach can be characterized in terms of discontinuity of the underlying, im-
plicitly used discrete neighborhood.

Wewill see later that scanning through the neighborhoods also provides the SNS
methodwith higher exploration capabilities in practice thus getting to overall better
solutions in terms of objective value than other state-of-the-art methods.

Chapter 7

Multi-Objective Sparsity-Constrained
Optimization: Optimality Conditions
and an Algorithmic Approach

In many real-world problems several different objectives have to be taken into ac-
count, most of them being in contrast with each other (Gravel et al., 1992; Carrizosa
and Frenk, 1998; Fliege, 2001; Palermo et al., 2003; Liuzzi et al., 2003; Pellegrini et al.,
2014; Sun et al., 2016). Arguably, the most popular classes of techniques employed
to solve multi-objective problems are those of scalarization methods (Pascoletti and
Serafini, 1984; Drummond et al., 2008; Eichfelder, 2009) and of heuristic methods
based on genetic and evolutionary strategies (Deb et al., 2002; Laumanns et al., 2002;
Konak et al., 2006).

However, both these families of approaches present shortcomings. Specifically,
scalarization usually requires a deep analysis of the domain and the structure of
the problem, in order to identify the weights defining a suitable scalarized objec-
tive; moreover, an unfortunate choice of the weights may lead to unbounded scalar
problems, even under strong regularity assumptions (Fliege et al., 2009, sec. 7). On
the other hand, heuristic methods hardly possess theoretical convergence proper-
ties.

To also overcome these limitations, extensions of classical scalar descent meth-
ods have been proposed to handle unconstrained and constrained vector optimiza-
tion problems (see, e.g., Fliege and Svaiter, 2000; Fliege et al., 2009; Drummond and
Iusem, 2004).

Few effort, however, has been put by the optimization community in the study
of problems where the complexities caused by multiple objectives and sparsity re-
quirements are simultaneously taken into account. The lack of theory and method-
ologies regarding cardinality-constrained multi-objective optimization has proba-
bly reduced the use of such a modeling tool in the practical context. Nonetheless,

71

72
Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions

and an Algorithmic Approach

real-world applications exist that may benefit from the employment of specialized
procedures for problems with this kind of formulation.

As an example, let us consider the mean/variance portfolio selection problem,
which is one of the most famous ones from the optimization and financial eco-
nomics literature (Markowitz, 1952, 1994). There exist for this problem both amulti-
objective reformulation (Armananzas and Lozano, 2005; Radziukynienė and Žilin-
skas, 2008; Chen and Wei, 2019) and a sparse variant with cardinality constraints
(Bienstock, 1996; Bertsimas and Shioda, 2009; Bertsimas and Cory-Wright, 2018).
Indeed, a combination of the two has sometimes been considered in the literature
(Chiam et al., 2008; Xidonas et al., 2018; Tian et al., 2019), even though solutions to
the problem have then trivially been obtained by evolutionary algorithms or scalar-
ization methods.

In this Chapter we consider multi-objective optimization problems with a cardi-
nality constraint on the vector of decision variables and additional linear constraints.
We extend the analysis of necessary and sufficient conditions of (Pareto) optimality
from Chapter 2 to this class of problems.

We afterwards propose a PenaltyDecomposition type algorithm, exploitingmulti-
objective descent methods, to tackle the aforementioned family of problems. The
algorithm represents a direct extension of the procedure fromChapter 4 to themulti-
objective case. We conduct a rigorous convergence analysis for the proposedmethod,
where we prove that the produced sequence of points has limit points, each one be-
ing feasible and satisfying first-order optimality conditions.

7.1 Preliminaries
In multi-objective optimization, the aim is to simultaneously minimize a set of func-
tions, i.e., we consider problems of the form

min
x∈Rn

F(x) = (f1(x), . . . , fm(x))T

s.t. x ∈ C,
(7.1)

whereC ⊆ Rn is a closed convex set. As the components of F are typically in contrast
with each other, there does not exist in the general case a solution minimizing them
all together.

A partial ordering relation between vectors in Rm can be employed. Given two
points u, v ∈ Rm, we denote by u ≤ v when ui ≤ vi for all i = 1, . . . , m. We can
introduce analogous notation for the other inequality relations≤,<,>. Also, given
F : Rn → Rm, we say that x ∈ Rn dominates z ∈ Rn w.r.t. F if F(x) ≤ F(z) and
F(x) 6= F(z) and we denote this by F(x) � F(z).

We are now able to recall the classical concept of Pareto optimality for multi-
objective optimization.

7.1 Preliminaries 73

Definition 7.1. A point x̄ ∈ C is referred to as Pareto optimal for problem (7.1) if
there does not exist z ∈ C such that F(z) � F(x̄), i.e., there does not exist z ∈ C that
dominates x.

Pareto optimality is a strong property. A slightly weaker, but more affordable
concept is given by weak Pareto optimality.

Definition 7.2. A point x̄ ∈ C is referred to as a weak Pareto optimum for problem
(7.1) if there does not exist z ∈ C such that F(z) < F(x̄).

It is easy to prove that a Pareto optimal point is also weak-Pareto optimal. Similarly
as in the scalar context, local optimality notions can also be introduced.

Definition 7.3. A point x̄ ∈ C is called a locally Pareto optimal solution (respectively,
locally weak Pareto optimal) if there exists a neighborhood B(x̄, ρ) such that x̄ is a Pareto
optimizer (respectively, a weak Pareto optimizer) for F restricted to B(x̄, ρ) ∩ C.

Convexity assumptions allow to state a relation of equivalence between local and
global optima:

Lemma 7.1. Consider problem (7.1). If F is component-wise convex, then each local Pareto
optimal point is globally Pareto optimal.

Assume now F is continuously differentiable on C, with Jacobian JF = (∇ f1, . . . ,
∇ fm)T. Then, we can introduce a further notion to characterize optimal points.

Definition 7.4. A point x̄ ∈ C is Pareto-critical (or Pareto stationary) for problem
(7.1) if

min
z∈C

max
j=1,...,m

∇ f j(x̄)T(z− x̄) = 0. (7.2)

Lemma 7.2. Equation (7.2) holds if and only if

min
z∈C

‖z−x̄‖≤1

max
j=1,...,m

∇ f j(x̄)T(z− x̄) = 0. (7.3)

Proof. The implication (7.2) =⇒ (7.3) is trivial. Now, assume (7.3) holds and assume
by contradiction that (7.2) is not satisfied. Then, there exists z̄ ∈ C such that, if
d̄ = z̄− x̄, ‖d̄‖ > 1 and JF(x̄)d̄ � 0. By the convexity of C, if x̄ + d̄ = z̄ ∈ C, then
x̄+ td̄ ∈ C for all t ∈ [0, 1]. Hence, x̄+ d̄

‖d̄‖ = ẑ ∈ C. Also, ‖ẑ− x̄‖ = ‖x̄+ d̄
‖d̄‖ − x̄‖ =

1. Moreover, JF(x̄)(ẑ− x̄) = JF(x̄) d̄
‖d̄‖ =

1
‖d̄‖ JF(x̄)d̄ � 0. This contradicts (7.3).

Since a local/global weak/strong Pareto optimum is such that no feasible di-
rection is a descent direction with respect to all the objectives simultaneously, it is

74
Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions

and an Algorithmic Approach

easy to prove that, under differentiability assumptions, a local/global weak/strong
Pareto optimizer is also Pareto-critical. The converse is not necessarily true.

Finally, let us state equivalence relationships between Pareto stationary points
and Pareto optimizers under convexity assumptions.

Proposition 7.1 (Fliege et al. (2009)). Consider problem (7.1), assuming F ∈ C1(Rn).
Then, the following implications hold

• If x ∈ C is Pareto critical for (7.1) and F is component-wise convex, then x is weakly
Pareto optimal.

• If x ∈ C is Pareto critical for (7.1), F ∈ C2(Rn) and ∇2 f j(x) is positive definite
∀ j = 1, . . . , m, then x is a Pareto optimizer.

Given a vector-valued function F : C → Rm, we can define level sets as follows.

Definition 7.5. Let F : C → Rm be a vector function. For any ζ ∈ Rm, the level set ζ

of F, denoted by LF(ζ), is defined as LF(ζ) = {x ∈ C | F(x) ≤ ζ}.

Remark 7.1. In the remainder of this Chapterwewill often consider functionswhose
level sets are bounded. Note that a continuous vector function with bounded level
sets is necessarily bounded below. Also note that the level sets are closed by defini-
tion, hence all bounded level sets are compact.

Amongmany existing approaches for solvingmulti-objective problems, a partic-
ularly relevant class of algorithms is that of multi-objective descent method, whose
prototypical incarnation for the convexly constrained case is the Multi-Objective
ProjectedGradiendDescent (MOPGD)method proposed byDrummond and Iusem
(2004). This procedure, together with its theoretical analysis, is described in detail
in Appendix B.

7.2 The Problem
In this Chapter, we consider multi-objective cardinality constrained problems, i.e.,
problems of the form

min
x∈Rn

F(x) = (f1(x), . . . , fm(x))T

s.t. ‖x‖0 ≤ s, Ax = b,

l ≤ x ≤ µ,

(7.4)

where A ∈ Rp×n is a full rank matrix, b ∈ Rp, l, µ ∈ Rn with l ≤ 0 ≤ µ (l and
µ may possibly be infinite), F : Rn → Rm is a continuously differentiable function
with Jacobian JF and s < n.

7.2 The Problem 75

Consistently with the rest of this thesis, we denote by X the convex set {x ∈ Rn |
Ax = b, l ≤ x ≤ µ} and by X the feasible set {x ∈ Rn | ‖x‖0 ≤ s, x ∈ X}. In
the following, we will always be assuming that the overall feasible set is nonempty.
Linear inequality constraints could explicitly be included in the problem, we chose
not to consider them for the sake of simplicity. On the other hand, the extension to
general convex constraints g(x) ≤ 0 would not be straightforward.

Since problem (7.4) is constrained, we should identify the set of feasible direc-
tions at a feasible point x̄ ∈ X . We denote this set by F (x̄). By definition, F (x̄) is
given by

F (x̄) = {d ∈ Rn | ∃t̄ > 0 : ‖x̄ + td‖0 ≤ s, A(x̄ + td) = 0, l ≤ x̄ + td ≤ µ, ∀t ∈ (0, t̄]}
= {d ∈ Rn | ‖dI0(x̄)‖0 ≤ s− ‖x̄‖0, di ≤ 0 if x̄i = µi, di ≥ 0 if x̄i = li, Ad = 0}.

(7.5)

In order to validate the last equality, we prove the following statement.

Lemma 7.3. Let x̄ ∈ Rn be a point such that ‖x̄‖0 ≤ s. The set of feasible directions at x̄
w.r.t. the constraint ‖x‖0 ≤ s is given by

{d ∈ Rn | ‖dI0(x̄)‖0 ≤ s− ‖x̄‖0}.
Proof. Let d be a direction in Rn. Consider the quantity ‖x̄I0(x̄) + tdI0(x̄)‖0, for t > 0.
x̄I0(x̄) = 0 by definition, so we can write

‖x̄I0(x̄) + tdI0(x̄)‖0 = ‖tdI0(x̄)‖0 = ‖dI0(x̄)‖0.

We first assume that ‖dI0(x̄)‖0 ≤ s − ‖x̄‖0 and show that d is feasible w.r.t. the
cardinality constraint. For any t > 0 we have

‖x̄ + td‖0 = ‖x̄I1(x̄) + tdI1(x̄)‖0 + ‖x̄I0(x̄) + tdI0(x̄)‖0 = ‖x̄I1(x̄) + tdI1(x̄)‖0 + ‖dI0(x̄)‖0

≤ |I1(x̄)|+ ‖dI0(x̄)‖0 = ‖x̄‖0 + ‖dI0(x̄)‖0 ≤ ‖x̄‖0 + s− ‖x̄‖0 = s,

that is, d is feasible.
Now, let ‖dI0(x̄)‖0 > s− ‖x̄‖0. For any d, by the continuity axiom, we can always

find t sufficiently small such that if |x̄i| > 0 then |x̄i + tdi| > 0. So, for any d and for
t sufficiently small, ‖x̄I1(x̄) + tdI1(x̄)‖0 = ‖x̄I1(x̄)‖0. Therefore for all t̄ > 0 there exists
t ∈ (0, t̄] for which we can write

‖x̄ + td‖0 = ‖x̄I1(x̄) + tdI1(x̄)‖0 + ‖x̄I0(x̄) + tdI0(x̄)‖0

= ‖x̄I1(x̄)‖0 + ‖dI0(x̄)‖0 = ‖x̄‖0 + ‖dI0(x̄)‖0 > ‖x̄‖0 + s− ‖x̄‖0 = s.

This completes the proof.

Before turning to the discussion of an algorithmic approach to tackle problem
(7.4), we need to characterize its solutions, analyzing necessary and sufficient con-
ditions of Pareto local and global optimality. We will do this in the next section.

76
Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions

and an Algorithmic Approach

7.3 Optimality conditions
Pareto criticality, defined as in Definition 7.4, can be extended to the case of prob-
lem (7.4) by simply limiting the search among directions belonging to the feasible
directions set F (x̄):

Definition 7.6. A point x̄ ∈ X is referred to as Pareto critical (or stationary) for
problem (7.4) if

min
‖d‖≤1

d∈F (x̄)

max
j=1,...,m

∇ f j(x̄)Td = 0. (7.6)

Looking carefully, we can realize that Definition 7.6 represents an extension of
the BF property to the multi-objective case. Pareto-stationarity is indeed a condition
of local (Pareto) optimality, stating that no feasible descent direction exists at a given
point.

We now rigorously show that the properties of convexly-constrained Pareto crit-
ical points are mirrored in the case of problem (7.4).

Proposition 7.2. Let x̄ ∈ X be a local weak Pareto point for problem (7.4). Then, x̄ is
Pareto critical for problem (7.4).

Proof. Let x̄ be a local weak Pareto point for problem (7.4) and assume it is not Pareto
critical according to Definition 7.6. Then, there exists d ∈ F (x̄), d 6= 0, such that
JF(x̄)d < 0, i.e., ∇ f j(x̄)Td < 0 for all j = 1, . . . , m. Therefore, for every t̄ > 0 there
exists t ∈ (0, t̄] such that f j(x̄ + td) < f j(x̄) for all j = 1, . . . , m, that is, F(x̄ + td) <
F(x̄), which is absurd being x̄ a locally weak Pareto optimum and d feasible at x̄.

Before turning to the statement about sufficent conditions of local Pareto opti-
mality, we give a useful Lemma.

Lemma 7.4. Let x̄ ∈ X . Then there exists ρ > 0 such that for any z ∈ B(x̄, ρ) ∩ X there
exists d ∈ F (x̄) such that we can write z = x̄ + d.

Proof. By the continuity axiom,we have that there exists t > 0 such that if ‖z− x̄‖2 ≤
t then ‖zI1(x̄)‖0 = ‖x̄I1(x̄)‖0.

Let us assume that for all ρ > 0 there exists z ∈ B(x̄, ρ)∩X such that ‖zI0(x̄)‖0 >

s− ‖x̄‖0. Then this also holds for ρ < t. By definition ‖z‖0 ≤ s, while ‖zI0(x̄)‖0 =

‖x̄I0(x̄)‖0 since ‖z− x̄‖2 ≤ ρ < t. Thus

s ≥ ‖z‖0 = ‖zI1(x̄)‖0 + ‖zI0(x̄)‖0 = ‖x̄I1(x̄)‖0 + ‖yI0(x̄)‖0

= ‖x̄‖0 + ‖yI0(x̄)‖0 > ‖x̄‖0 + s− ‖x̄‖0 = s,

which is absurd.

7.3 Optimality conditions 77

Hence, we have for ρ sufficiently small that

B(x̄, ρ) ∩ X ⊆ {x ∈ B(x̄, ρ) | ‖xI0(x̄)‖0 ≤ s− ‖x̄‖0, x ∈ X}.

Let z belong to the set on the left side of the above equation, for a suitable value of
ρ. We know from (7.5) that F (x̄) = {d ∈ Rn | ‖dI0(x̄)‖0 ≤ s− ‖x̄‖0, di ≤ 0 if x̄i =

µi, di ≥ 0 if x̄i = li, Ad = 0}. Now, let d = z− x̄. We can write

‖dI0(x̄)‖0 = ‖zI0(x̄) − x̄I0(x̄)‖0 = ‖zI0(x̄)‖0 ≤ s− ‖x̄‖0,

Ad = A(z− x̄) = 0, di = zi − x̄i

{≤ µi − x̄i = 0 if x̄i = µi,
≥ li − x̄i = 0 if x̄i = li,

i.e., d is feasible at x̄. Since z is arbitrary, we get the thesis.

Proposition 7.3. Assume F is a component-wise convex function and let x̄ ∈ X be a Pareto
critical solution of problem (7.4). Then, x̄ is a local weak Pareto point for problem (7.4).

Proof. Let x̄ be Pareto critical for problem (7.4) and F be component-wise convex.
From the Pareto stationarity of x̄, we have

max
j=1,...,m

(JF(x̄)d)j ≥ 0

for all d ∈ F (x̄). That is, for any feasible directions d at x̄ there exists j ∈ {1, . . . , m}
such that ∇ f j(x̄)Td ≥ 0. Let hence d be feasible and j be such that ∇ f j(x̄)Td ≥ 0.
Recalling the convexity of f j, we have that

f j(x̄ + td) ≥ f j(x̄) +∇ f j(x̄)T(td) ≥ f j(x̄)

for all t ≥ 0.
Therefore, for any d ∈ F (x̄) there exists j such that for all t ≥ 0 it holds f j(x̄ +

td) ≥ f j(x̄), i.e.,

F(x̄ + td) ≮ F(x̄) ∀ d ∈ F (x̄) and t ≥ 0. (7.7)

Assume by contradiction that for all t̄ > 0 there exists z ∈ B(x̄, t̄) ∩ X such that
F(z) < F(x̄). For t̄ sufficiently small we know from Lemma 7.4 that z = x̄ + d for
some d ∈ F (x̄). But F(x̄) > F(z) = F(x̄ + d), which contradicts (7.7). We can finally
say that there exists t̄ > 0 such that F(x̄) ≯ F(y) for all z ∈ B(x̄, t̄) ∩ X , i.e., x̄ is a
local weak Pareto optimizer for the problem.

We nowdefine an extension of the Lu-Zhang conditions formulti-objective prob-
lems. LZ conditions represent a more affordable condition to obtain in practice.

78
Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions

and an Algorithmic Approach

Definition 7.7. A point x̄ ∈ X satisfies the Multi-objective Lu-Zhang first order op-
timality conditions (MOLZ conditions) if there exists a super support set J ∈ J (x̄)
such that

min
‖d‖≤1

d∈DJ(x̄)
d∈Rs

max
j=1,...,m

∇J f j(x̄)Td = 0, (7.8)

being

DJ(x̄) = {dJ ∈ Rs | di ≤ 0 if x̄i = µi, di ≥ 0 if x̄i = li, AJdJ = 0},

where AJ denotes the submatrix of A made of the columns of indexes in J.

Similarly as in the scalar case, MOLZ conditions are necessary conditions of
Pareto stationarity and, consequently, of local Pareto optimality. We formalize this
fact in the next Propositions.

Proposition 7.4. Let x̄ ∈ X be a Pareto critical point for problem (7.4). Then, x̄ satisfies
MOLZ conditions.

Proof. Let x̄ be a local Pareto critical point for problem (7.4) and assume by contra-
diction that it does not satisfy MOLZ condition. Let J ∈ J (x̄) be any super support
set.

From the absurd hypothesis, we have that

min
‖d‖≤1

d∈DJ(x̄)

max
j=1,...,m

∇J f j(x̄)Td < 0.

Let
D(x̄) = {d ∈ Rn | di ≤ 0 if x̄i = µi, di ≥ 0 if x̄i = li, Ad = 0}.

Recalling (7.5), we see that D(x̄) ∩ {d ∈ Rn | ‖d J̄‖0 = 0} ⊆ F (x̄). We can therefore
write

0 = min
‖d‖≤1

d∈F (x̄)

max
j=1,...,m

∇ f j(x̄)Td

≤ min
‖d‖≤1

d∈D(x̄)
‖d J̄‖0=0

max
j=1,...,m

∇ f j(x̄)Td = min
‖d‖≤1

d∈DJ(x̄)

max
j=1,...,m

∇J f j(x̄)Td < 0,

which is absurd. The proof is hence complete.

Corollary 7.1. Let x̄ ∈ X be a local weak Pareto point for problem (7.4). Then, x̄ satisfies
MOLZ conditions.

7.3 Optimality conditions 79

Proof. Since x̄ is a local weak Pareto point, it is Pareto critical from Proposition 7.2.
But then, it satisfies MOLZ conditions from Proposition 7.4.

Remark 7.2. The converse of Proposition 7.4, i.e., MOLZ conditions imply Pareto
stationarity, is not necessarily true. We point this fact out by means of the example
below.

Example 7.1. Consider Example 2.6, which can be seen as aninstance of problem
(7.4), with m = 1. Let x̄ = (1, 0, 0)T. We have

∇ f (x̄) = (2x̄1 − 2, 2x̄2, 2x̄3 − 2)T = (0, 0, −2)T.

Let d̄ = −∇ f (x̄)/‖∇ f (x̄)‖ = (0, 0, 1). d̄ ∈ F (x̄), as ‖d̄I0(x̄)‖0 = 1 and s− ‖x̄‖0 =

1. Then
min
‖d‖≤1

d∈F (x̄)

∇ f (x̄)Td ≤ ∇ f (x̄)T d̄ = −2 < 0,

i.e., x̄ is not Pareto critical for the problem.
On the other hand, let J = {1, 2} ∈ J (x̄). ∇J f (x̄) = 0, so ∇J f (x̄)Td = 0 for any

d ∈ Rs. Hence
min
‖d‖≤1
d∈Rs

∇J f (x̄)Td = 0,

i.e., x̄ satisfies MOLZ conditions for problem (7.4).

In order to obtain an equivalence result w.r.t. Pareto stationarity, MOLZ condi-
tions have to be strengthened. Of course, in order for a point to be Pareto critical,
MOLZ conditions have to be satisfied by all possible super support sets. In the fol-
lowing, we finally prove that Pareto stationarity is in fact equivalent to strongMOLZ
conditions.

Proposition 7.5. A point x̄ ∈ X is a Pareto critical point for problem (7.4) if and only if it
satisfies MOLZ conditions for all J ∈ J (x̄).

Proof. In order to prove the thesis, we just need to show that⋃
J∈J (x̄)

{d ∈ Rn | ‖d J̄‖0 = 0, di ≤ 0 if x̄i = µi, di ≥ 0 if x̄i = li, Ad = 0} = F (x̄).

Let us denote by U (x̄) the set on the left side of the above equation.
First we prove that if d ∈ U (x̄), then d ∈ F (x̄). Let J ∈ J (x̄) be a super support

set such that ‖d J̄‖0 = 0, which exists since d ∈ U (x̄). Then

‖dI0(x̄)‖0 = ‖d J̄‖0 + ‖dJ∩I0(x̄)‖0 = ‖dJ∩I0(x̄)‖0 ≤ |J ∩ I0(x̄)| = s− ‖x̄‖0,

that is, d ∈ F (x̄).

80
Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions

and an Algorithmic Approach

Now, let d ∈ F (x̄) and let R ⊆ I0(x̄) such that dI0(x̄)\R = 0 and |R| = s− ‖x̄‖0.
Let J = I1(x̄) ∪ R. We have ‖d J̄‖0 = 0 by the definition of R and J (J̄ = I0(x̄) \ R).
Also |J| = |I1(x̄)∪ R| = ‖x̄‖0 + s−‖x̄‖0 = s, since R ⊆ I0(x̄) and I0(x̄)∩ I1(x̄) = ∅.
As x̄ J̄ = 0, being J̄ ⊆ I0(x̄), d ∈ U (x̄) and the proof is complete.

7.4 A Penalty Decomposition Scheme
Analogously as in the scalar case, problem (7.4) can be equivalently expressed as

min
x,z∈Rn

F(x) = (f1(x), . . . , fm(x))T

s.t. ‖z‖0 ≤ s,

Ax = b,

l ≤ x, z ≤ µ,

x− z = 0.

(7.9)

In the above formulation we associated the bound constraints to both blocks of vari-
ables. We will motivate this choice shortly. We will refer to the feasible set of the z
variable, i.e., {z ∈ Rn | ‖z‖0 ≤ s, l ≤ z ≤ µ}, by Z. A quadratic penalty function
can be associated with problem (7.9).

Definition 7.8. We define the multi-objective penalty function of penalty parameter τ

associated to problem (7.9) as

Qτ(x, z) = F(x) +
τ

2
(‖x− z‖2 + ‖Ax− b‖2)e.

Note that, in a multi-objective setting, a objective penalty function shall be ob-
tained adding the penalty term to all the components of the objective function (Coc-
chi and Lapucci, 2020). Keeping both blocks of variables x and z inside the box
allows not to add penalty terms associated with the bound constraints. We denote
the components of Qτ(x, z) by qj(x, z; τ), j = 1, . . . , m, that is,

Qτ(x, z) = (q1(x, z; τ), . . . , qm(x, z; τ))T.

Let us also define the quantity

θQτ
(x; z) = min

‖d‖≤1
l≤x+d≤µ

max
j=1,...,m

∇xqj(x, z; τ)Td.

Problem (7.9), and consequently the original problem (7.4), can be solved by an
alternate minimization scheme, similarly as what is done in the scalar Penalty De-
composition approach. The Multi-Objective Sparse Penalty Decomposition (MO-
SPD) procedure proposed in this work is described in Algorithm 8.

7.4 A Penalty Decomposition Scheme 81

The MultiObjectiveDescent(φ, p0, ε) procedure invoked inAlgorithm 8 is intended
to run one of the existing multi-objective descent algorithms on the objective func-
tion φ, starting at point p0, until the current solution pκ is ε-stationary, i.e., θφ(pκ) ≥
−ε. From here on, we will assume that Algorithm 9 is employed.

The algorithm starts at a point (x0, y0) which is feasible for problem (7.9). At
every iteration Algorithm 8 repeats a run of (inexact) steepest descent on Qτk w.r.t.
x and a projection operation onto the feasible set Z, which can be equivalently seen
as the exact minimization of each component of the penalty function w.r.t. variable
z. Note that formula (2.2) continues to hold even in the case of bound-constrained
problems. As soon as the solution at the end of an iteration is approximately critical
w.r.t. the x block for the function Qτk , the penalty parameter τk is increased for the
successive iteration, while the stationarity approximation degree εk is decreased.

At the beginning of each outer iteration, before starting the “alternate minimiza-
tion” loop, a test is performed to ensure that the procedure will keep the iterates
inside an appropriate level set. If the test is passed, the inner loopwill start from the
point produced at the previous iteration, otherwise from the starting point, which is
guaranteed to satisfy the desired property. In the following Section we will address
the asymptotic convergence properties of the proposed algorithm.

Algorithm 8: MultiObjectiveSparsePenaltyDecomposition
1 Input: τ0 > 0, σ > 1, x0 = z0 ∈ Rn s.t. ‖x0‖0 ≤ s, a sequence {εk} s.t. εk → 0.
2 for k = 0, 1, . . . do
3 ` = 0
4 xtrial = MultiObjectiveDescent(Qτk(·, zk), xk, εk)

5 if Qτk(xtrial, zk) ≤ F(x0) then
6 u0, v0 = xk, zk

7 else
8 u0, v0 = x0, z0

9 while θQτk
(u`; v`) < −εk do

10 u`+1 = MultiObjectiveDescent(Qτk(·, v`), u`, εk)

11 v`+1 = arg minv∈Z
τk
2 ‖u`+1 − v‖2

12 ` = `+ 1

13 τk+1 = στk
14 xk+1 = u`

15 zk+1 = v`

16 Output: The sequence {xk, zk}.

82
Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions

and an Algorithmic Approach

7.5 Convergence analysis
We start the theoretical analysis of the MOSPD algorithm proving a technical result
which will be needed in the subsequent proofs.

Lemma 7.5. If F : Rn → Rm has bounded level sets in the multi-objective sense, then, for
any τ ≥ 0, the penalty function (x, z) ∈ Rn ×Rn 7→ Qτ(x, z) ∈ Rm associated with
problem (7.9) has bounded level sets.

Proof. Consider an arbitrary ζ ∈ Rm. From the hypotheses, LF(ζ) is bounded. Now,
let us consider the level set LQτ

(ζ), for any τ > 0.
Assume by contradiction that LQτ

(ζ) is not bounded, that is, there exists a se-
quence {xk, zk} such that (xk, zk) ∈ LQτ

(ζ) for all k and ‖(xk, zk)‖ → ∞. Then, either
‖xk‖ → ∞ or ‖zk‖ → ∞.

If ‖xk‖ → ∞, we have F(xk) � ζ for k sufficiently large, as the level set LF(ζ)

is bounded. But then, recalling the definition of Qτ, we have for k sufficiently large
Qτ(xk, zk) ≥ F(xk) � ζ, i.e., there exists j such that

qj(xk, zk; τ) ≥ f j(xk) > ζ j,

contradicting Qτ(xk, zk) ≤ z.
Hence ‖zk‖ → ∞ while {xk} stays bounded. But Qτ(xk, zk) = F(xk) + τ

2 (‖xk −
zk‖2 + ‖Axk − b‖2)e � ζ for k sufficiently large, as ‖xk − zk‖2 → ∞, ‖Axk − b‖2 ≥ 0
and F is bounded below, having bounded level sets. This is again a contradiction,
which completes the proof.

Assumption 7.1. Fromnowon, wewillmake the assumption that the objective func-
tion F of problem (7.4) has bounded level sets.

Next, in order to state that the whole algorithm is well posed, we show that the
MultiObjectiveProjectedGradientDescent method produces an approximate
Pareto critical point for the penalty function w.r.t. variable x in finite time.

Lemma 7.6. The MOPGD procedure employed at line 10 of Algorithm 8 produces a point
u`+1 such that θQτk

(u`+1; v`) ≥ −εk in a finite number of iterations.

Proof. Assume by contradiction that the assertion is false, i.e., the MOPGD proce-
dure produces an infinite sequence {ut} such that θQτk

(ut; v`) < −εk for all t =

0, 1,
From Lemma 7.5 and Proposition B.2 we know that there exists T ⊆ {0, 1, . . .}

such that ut → ū for t → ∞, t ∈ T, with ū Pareto critical for Qτk(·, v`), i.e., recalling
Lemma 7.2, θQτk

(ū; v`) = 0. From Proposition B.2 we know that θQτk
is a continuous

function, hence for all t ∈ T sufficiently large it has to hold θQτk
(ut; v`) ≥ −εk, a

contradiction. We hence get the thesis.

7.5 Convergence analysis 83

In order to assess algorithm completeness, we also have to show the finiteness of
the inner loop.

Lemma 7.7. Algorithm 8, equipped with MOPGD as descent procedure, does not loop in-
finitely between steps 9-12.

Proof. Assume by contradiction that the proposition is false and that, at a certain
iteration k, the sequence {u`, v`} is infinite, which means that

θQτk
(u`; v`) < −εk (7.10)

for all `. From the instructions of the MOPGD algorithm and Proposition B.2 we
have that

Qτk(u
`+1, v`) < Qτk(u

`, v`).

Moreover, recalling that v`+1 ∈ arg minv∈Z
τk
2 ‖u`+1 − v‖2 and v` ∈ Z, we have

Qτk(u
`+1, v`+1)−Qτk(u

`+1, v`) =
τk
2
‖u`+1 − v`+1‖2e− τk

2
‖u`+1 − v`‖2e ≤ 0.

Hence we can write

Qτk(u
`+1, v`+1) ≤ Qτk(u

`+1, v`) < Qτk(u
`, v`), (7.11)

fromwhichwe candeduce that {u`, v`} belongs to the compact setLQτk
(Qτk(u

0, v0)).
Therefore, there exists K ⊆ {0, 1, . . .} such that (u`, v`)→ (ū, v̄) for k ∈ K, k→ ∞.

F is continuously differentiable, and so is Qτk . Thus, JQτk
(u`, v`)→ JQτk

(ū, v̄) for
k ∈ K, k → ∞. Also, from (7.11), we know that the whole sequence {Qτk(u

`, v`)} is
monotonically decreasing and thus convergent to some value Q̄, which is finite as
Qτk has bounded level sets and is thus bounded below. So

Qτk(u
`, v`)→ Q̄ > −∞. (7.12)

We can rewrite (7.10) as

min
‖d‖≤1

l≤x+d≤u

max
j=1,...,m

(JQτk
(u`, v`)d)j < −εk. (7.13)

Let
d` ∈ arg min

‖d‖≤1
l≤x+d≤µ

max
j=1,...,m

∇xqj(u`, v`; τk)
Td.

From (7.13) we have

JQτk
(u`; v`)d` < −εke < 0. (7.14)

84
Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions

and an Algorithmic Approach

Now, the sequence {d`} is bounded (‖d`‖ ≤ 1), so taking the limits (along a suitable
subsequence, if necessary), we have d` → d̄ as ` → ∞, ` ∈ K. Taking the limits in
(7.14), we get

lim
`→∞
`∈K

JQτk
(u`; v`)d` = JQτk

(ū; v̄)d̄ ≤ −εke < 0. (7.15)

From the instructions of the MOPGDAlgorithm equipped with the Armijo-type
line search (Algorithm 10), we know that

Qτk(u
`+1, v`+1) ≤ Qτk(u

`+1, v`) ≤ Qτk(u
` + α`d`, v`)

≤ Qτk(u
`, v`) + βα`

[
max

j=1,...,m
∇xqj(u`, v`; τk)

Td`
]

e.

Taking the limits for ` ∈ K, `→ ∞, recalling (7.12) and (7.15), we get

0 ≤ lim
`→∞
`∈K

βα` max
j=1,...,m

∇xqj(u`, v`; τk)
Td ≤ lim

`→∞
`∈K

−βα`εk.

Now, assume that α` → 0. From the instructions of Algorithm 10, we have that for
all q ∈N there exists ¯̀ ∈ K such that for all ` ∈ K, ` ≥ ¯̀, we have

Qτk

(
u` +

1
2q d`; v`

)
� Qτk(u

`) +
β

2q JQτk
(u`)d`.

Taking the limits for `→ ∞ as ` ∈ K, `→ ∞, along a suitable subsequence if needed,
we have that for some j it holds

qj

(
ū +

1
2q d̄, v̄; τk

)
≥ qj(ū, v̄; τk) +

β

2q∇xqj(ū, v̄; τk)
T d̄.

Being q arbitrary, we have from Proposition B.1 that

max
j=1,...,m

∇xqj(ū, v̄; τk)
T d̄ ≥ 0,

which contradicts (7.15).
Hence, there exists ν > 0 such that α` ≥ ν for all ` ∈ K sufficiently large. Thus,

we get
0 ≤ lim

`→∞
`∈K

−βα`εk < 0,

which is again a contradiction.

We are finally able to address the asymptotic convergence properties of Algo-
rithm 8. We begin by stating the existence and the feasibility of limit points of the
generated sequence.

7.5 Convergence analysis 85

Proposition 7.6. Let {xk, zk} be the sequence generated by Algorithm 8. Then {xk, zk}
admits cluster points. All limit points (x̄, z̄) are feasible for problem (7.9), and x̄ is feasible
for problem (7.4).

Proof. Consider a generic iteration k. Since instructions 10-11 of the algorithm both
do not increase the value of any of the components of Qτk , we have that

Qτk(xk+1, zk+1) ≤ ... ≤ Qτk(u
1, v0) ≤ Qτk(u

0, v0). (7.16)

From the definition of (u0, v0), we either have (u0, v0) = (xk, zk) or (u0, v0) =

(x0, z0). In the first case, we have, by the definition of xtrial, that

Qτk(u
1, v0) = Qτk(xtrial, zk) ≤ F(x0),

where the last inequality holds, as in this case the condition at line 5 is satisfied. In
the second case we have

Qτk(u
1, v0) ≤ Qτk(u

0, v0) = Qτk(x0, z0)

= F(x0) +
τk
2
‖x0 − z0‖2e = F(x0).

So, putting everything together back in (7.16) we get

Qτk(xk+1, yk+1) ≤ F(x0). (7.17)

But, by the definition of Qτk it also holds F(xk+1) ≤ Qτk(xk+1, zk+1), so F(xk+1) ≤
F(x0). As k is arbitrary, it follows that {xk+1} ⊂ LF(F(x0)), which is compact by the
assumptions; hence {xk} is bounded.

From equation (7.17), we also have

Qτk(xk+1, zk+1) = F(xk+1) +
τk
2
‖xk+1 − zk+1‖2e ≤ F(x0).

Hence, for any j = 1, . . . , m, we have

qj(xk+1, zk+1; τk) = f j(xk+1) +
τk
2
(‖xk+1 − zk+1‖2 + ‖Axk+1 − b‖2) ≤ f j(x0).

Dividing by τk we get

‖xk+1 − yk+1‖2 + ‖Axk+1 − b‖2 ≤ 2
f j(x0)− f j(xk+1)

τk
. (7.18)

Taking the limits for k→ ∞, recalling the boundedness of {xk+1}, that F is bounded
below and that τk → ∞, we have that Axk+1− b→ 0 and xk+1− zk+1 → 0; the latter
implies that zk is also a bounded sequence. Hence, the sequence {xk, zk} is bounded
and therefore admits limit points. Let (x̄, z̄) be one of such limit points, i.e., there

86
Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions

and an Algorithmic Approach

exists K ⊆ {0, 1, . . .} such that {xk+1, zk+1} → (x̄, z̄) for k → ∞, k ∈ K; then, taking
the limits in (7.18) for k→ ∞, k ∈ K, we get

‖x̄− z̄‖2 + ‖Ax̄− b‖2 ≤ 0,

which completes the proof.

Now, we can finally turn to the proposition assessing optimality results for all
limit points of {xk}, after a technical Lemma is given which is necessary for the
proof.

Lemma 7.8. Let U ⊂ {1, . . . , n}, k ≤ |U|, A ∈ Rp×n, l ≤ x ≤ µ and F : Rn → Rm

continuously differentiable. Let also B = {d | l ≤ x + d ≤ µ, Ad = 0} and B̄ = {d |
di ≥ 0 if xi = li, di ≤ 0 if xi = µi, Ad = 0}. If

min
‖d‖≤1

d∈B
‖dU‖0≤k

max
j=1,...,m

∇ f j(x)Td = 0 (7.19)

then

min
‖d‖≤1

d∈B̄
‖dU‖0≤k

max
j=1,...,m

∇ f j(x)Td = 0. (7.20)

Proof. Assume that (7.19) holds and, by contradiction, that (7.20) is not satisfied. Let

d̄ ∈ arg min
‖d‖≤1

d∈B̄
‖dU‖0≤k

max
j=1,...,m

∇ f j(x)Td.

It’s easy to see that B ⊆ B̄, that 0 ∈ B and that both B and B̄ are convex sets.
Hence, there exists 0 < t < 1 sufficiently small such that td̄ ∈ B. Also, we have
‖td̄‖ ≤ 1 and ‖td̄U‖ = ‖d̄U‖0 ≤ k. Hence td̄ is feasible for the problem in (7.19).
But maxj=1,...,m∇ f j(x)T(td) = t maxj=1,...,m∇ f j(x)Td < 0. The last two statements
combined contradict (7.19).

Proposition 7.7. Let {xk, zk} be the sequence generated by Algorithm 8 applied to problem
(7.9). Suppose that (x̄, z̄) is a limit point of {xk+1, zk+1}, i.e., there exists K ⊆ {0, 1, . . .}
such that (xk, zk)→ (x̄, z̄) for k → ∞, k ∈ K. Then x̄ satisfies MOLZ conditions for
problem (7.4).

Proof. We know from Proposition 7.6 that x̄ = z̄ and Ax̄ = b. Moreover, from the
instructions of the algorithm, at each iteration k we have that

min
‖d‖≤1

l≤xk+1+d≤µ

max
j=1,...,m

(
∇ f j(xk+1) + τk AT(Axk+1 − b) + τk(xk+1 − zk+1)

)T
d ≥ −εk

7.5 Convergence analysis 87

and, recalling that εk → 0,

lim
k→∞
k∈K

min
‖d‖≤1

l≤xk+1+d≤µ

max
j=1,...,m

(
∇ f j(xk+1) + τk AT(Axk+1 − b) + τk(xk+1 − zk+1)

)T
d = 0.

(7.21)

In addition, we have

zk+1 = arg min
z∈Z

τk‖xk+1 − z‖2, (7.22)

which, recalling (2.2), gives{
zk+1

i = xk+1
i if i ∈ G(xk+1),

zk+1
i = 0 if i /∈ G(xk+1),

(7.23)

where we recall that the index set G(xk+1) contains at most s elements, correspond-
ing to the not null components of xk+1 with the largest absolute value.

Note that |G(xk+1)| < s implies ‖xk+1‖0 < s and hence zk+1 = xk+1, therefore
we can write

−τk(xk+1
i − zk+1

i) = 0
{∀ i ∈ G(xk+1) if |G(xk+1)| = s,
∀ i ∈ {1, . . . , n} if |G(xk+1)| < s.

(7.24)

There are finitely many possible sets G(xk+1), therefore at least one of them is
repeated infinitely on K. Thus, let us assume that K1 ⊆ K is such that G(xk+1) = I
for all k ∈ K1.

Now, let G? = G(x̄). We can prove by similar reasonings as in the proof of The-
orem 4.1 that G? ⊆ G.

We thus have the following three possible cases:

(i) |G| = s, G = G?;
(ii) |G| < s;

(iii) |G| = s, G ⊃ G?.
We will address these three cases one at a time:

(i) We are in the case G = G? = I1(x̄). We know, recalling (7.21), that

0 ≥ min
‖d‖≤1

l≤xk+1+d≤µ
‖dḠ‖0=0

Ad=0

max
j=1,...,m

(
∇ f j(xk+1) + τk AT(Axk+1 − b) + τk(xk+1 − zk+1)

)T
d

≥ min
‖d‖≤1

l≤xk+1+d≤µ

max
j=1,...,m

(
∇ f j(xk+1) + τk AT(Axk+1 − b) + τk(xk+1 − zk+1)

)T
d −−−→

k→∞
k∈K1

0.

(7.25)

88
Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions

and an Algorithmic Approach

In addition, recalling (7.24), we can write

min
‖d‖≤1

l≤xk+1+d≤µ
‖dḠ‖0=0

Ad=0

max
j=1,...,m

(
∇ f j(xk+1) + τk AT(Axk+1 − b) + τk(xk+1 − zk+1)

)T
d

= min
‖d‖≤1

l≤xk+1+d≤µ
‖dḠ‖0=0

Ad=0

max
j=1,...,m

(
∇ f j(xk+1) + τk(xk+1 − zk+1)

)T
d + τk(Axk+1 − b)T Ad

= min
‖d‖≤1

l≤xk+1+d≤µ
‖dḠ‖0=0

Ad=0

max
j=1,...,m

n

∑
i=1
∇i f j(xk+1)di + τkdi(xk+1

i − zk+1
i)

= min
‖d‖≤1

l≤xk+1+d≤µ
Ad=0

max
j=1,...,m

∑
i∈G
∇i f j(xk+1)di = min

‖d‖≤1
l≤x+d≤µ
‖dḠ‖0=0

Ad=0

max
j=1,...,m

∇ f j(xk+1)Td.

(7.26)

Substituting (7.26) in (7.25), recalling that I0(x̄) = Ḡ, Lemma 7.8 and thatF (x̄)
is given by (7.5) with s − ‖x̄‖0 = 0, taking the limits we get that x̄ is Pareto
critical for problem and hence MOLZ conditions hold.

(ii) We are in the case |G| < s, so G = I1(xk+1) for all k ∈ K1 and G? = I1(x̄). We
know from (7.24) that τk(xk+1

i − zk+1
i) = 0 for all i = 1, . . . , n, for any k ∈ K1.

Similarly as above, we can write

0 ≥ min
‖d‖≤1

l≤xk+1+d≤µ
‖dI0(x̄)‖0≤n−‖x̄‖0

max
j=1,...,m

(
∇ f j(xk+1) + τk AT(Axk+1 − b) + τk(xk+1 − zk+1)

)T
d

≥ min
‖d‖≤1

l≤xk+1+d≤µ

max
j=1,...,m

(
∇ f j(xk+1) + τk AT(Axk+1 − b) + τk(xk+1 − zk+1)

)T
d −−−→

k→∞
k∈K1

0

(7.27)

and using (7.24), after some algebraic manipulation, we have

min
‖d‖≤1

l≤xk+1+d≤µ
‖dI0(x̄)‖0≤n−‖x̄‖0

Ad=0

max
j=1,...,m

(
∇ f j(xk+1) + τk AT(Axk+1 − b) + τk(xk+1 − zk+1)

)T
d

= min
‖d‖≤1

l≤xk+1+d≤µ
‖dI0(x̄)‖0≤n−‖x̄‖0

Ad=0

max
j=1,...,m

∇ f j(xk+1)Td.

7.6 Concluding Remarks 89

Again, substituting in (7.27), taking the limits and recalling Lemma 7.8 we get
that x̄ is Pareto critical for problem (7.4) and therefore satisfies MOLZ condi-
tions.

(iii) We are in the case |G| = s, G ⊃ G?, G = G(xk+1) for all k ∈ K1, G? = I1(x̄).
We know from (7.24) that τk(xk+1

i − zk+1
i) = 0 for all i ∈ G. We can write

again equations (7.25) and (7.26) and substitute the latter in the first. Taking
the limits for k → ∞, k ∈ K1 and recalling Lemma 7.8 we get that x̄ satisfies
MOLZ conditions by selecting the super support set J = G.

Putting everything together, we have from (i), (ii) and (iii) thatMOLZ conditions are
always satisfied at the limit point x̄.

Remark 7.3. Similarly as in Remark 4.3, it is easy to observe if there exists a sub-
sequence K̂ ⊂ K s.t. ‖xk‖0 = ‖x̄‖0 for all k ∈ K̂ or ‖xk‖0 < s for all k ∈ K̂, x̄ is
a Pareto-critical. This better characterization of the algorithm tells us that the limit
points are Pareto critical in most cases.

7.6 Concluding Remarks
Theprimary aimof thisChapterwas to lay the theoretical foundation for the analysis
of sparsemulti-objective optimization tasks and to propose an algorithmic approach
to deal with this class of problems.

We have established first order necessary and sufficient optimality conditions
for problems with sparsity and linear constraints. We have then defined a conver-
gent Penalty Decomposition type method designed to properly tackle the consid-
ered class of problems. In particular, a multi-objective penalty function has been
defined and sequentially optimized, for increasing values of the penalty parame-
ter, employing an alternating minimization scheme where minimization w.r.t. the
original variables is carried out by multi-objective descent.

Further work shall be focused on strategies to make the algorithm deal with sets
of points and produce an approximation of the whole Pareto set, rather than a sin-
gle solution, similarly to what has been done for other multi-objective descent type
algorithms (Cocchi et al., 2020b, 2021; Custódio et al., 2011; Fliege and Vaz, 2016).

Chapter 8

Computational Experiments

In this Chapter, we present the results of a broad set of computational experiments
designed to evaluate the efficiency and the effectiveness of the algorithms intro-
duced in the previous chapters.

We put a special focus in emphasizing how the theoretical properties proved for
Algorithms 2, 5, 7, 8 translate into actual experimental benefits when these methods
are employed in practice.

8.1 Benchmark
Before turning to the experimental setting and the results, we shall introduce the
test problems used for the comparisons.

Sparse Logistic Regression Problem
The problem of sparse logistic regression (Hastie et al., 2009; Civitelli et al., 2021) has
important applications, for instance, in machine learning (Weston et al., 2003; Bach
et al., 2012). Given a dataset having N samples {r1, . . . , rN}, with n features and N
corresponding labels {t1, . . . , tN} belonging to {−1, 1}, the sparse logistic regression
problem can be formulated as follows

min
w

L(w) =
N

∑
i=1

log
(

1 + exp
(
−ti(wTri)

))
s.t. ‖w‖0 ≤ s. (8.1)

The benchmarkwe consider ismade up of 18 problems of the form (8.1), obtained
as described hereafter. We employed 6 binary classification datasets, listed in Table
8.1. All the datasets are from the UCIMachine Learning Repository (Dua and Graff,
2017).

For each dataset, we removed data points with missing variables; moreover, we
one-hot encoded the categorical variables and standardized the other ones to zero

91

92 Computational Experiments

mean and unit standard deviation. For every dataset, we chose 3 different values of
s, specified later in this Chapter, in order to define 3 different problems of the form
(8.1).

Table 8.1: List of datasets used for experiments on sparse logistic regression.

Dataset N n Abbreviation
Heart (Statlog) 270 25 heart
Breast Cancer Wisconsin (Prognostic) 194 33 breast
QSAR Biodegradation 1055 41 biodeg
SPECTF Heart 267 44 spectf
Spambase 4601 57 spam
Adult a2a 2265 123 a2a

Neural Networks Compression Problem

Artificial neural networks are typically highly overparameterized models; in appli-
cations, however, it is useful to employ smaller networks, for the sake of both predic-
tion speed andmemory usage. An important task that has had a renewed interest in
machine learning is thus that of pruning an already trained neural network (Reed,
1993).

In recent years, this task has been tackled by reformulating the neural network
compression problem as a cardinality constrained problem (Carreira-Perpinán and
Idelbayev, 2018):

min
w

L(w)

s.t. ‖w‖0 ≤ s,
(8.2)

where L is the loss function employed to train the net. The pruning operation is ob-
tained by warm-starting problem (8.2) with the trained parameters of the network.

In our experiments, we designed a simple feed-forward neural network to per-
form classification on the MNIST dataset (LeCun and Cortes, 2010). Input images
have been fed to the network as one-dimensional vectors of length 28× 28 = 784;
the network architecture consists of a single hidden layer of 32 neurons and the 10
output neurons, for a total of 25450 trainable parameters. We used the sigmoid func-
tion σ(t) = 1/(1 + exp(−t)) as the activation function for the hidden units, while
the output layer performs the softmax operation. We initially trained the network
with the classical ADAM optimizer (Kingma and Ba, 2014), run for 200 epochs, ob-
taining a network having a test accuracy of 92%. The loss function is the softmax
cross-entropy function (Goodfellow et al., 2016).

8.1 Benchmark 93

Sparse Portfolio Selection Problem
Weconsider themean/variance portfolio selection problem (Markowitz, 1952, 1994),
which has been so relevant to the financial community that it has driven enormous
attention from researchers in both fields of operations research and economics. The
problem, in the original Markovitz formulation, is given by

min
x∈Rn

ψ

2
xTQx− cTx

s.t. x ≥ 0, eTx = 1,
(8.3)

where x ∈ Rn is the vector of decision variables, being xi the fraction of the available
capital to be invested into asset i, c ∈ Rn is the vector of expected returns and Q ∈
Rn×n is the positive semi-definite variance-covariance matrix.

To improve the realism of the model, several constraints have been proposed
to be added to problem (8.3). Among them, one of the most relevant is certainly
the cardinality constraint ‖x‖0 ≤ s (Bienstock, 1996; Bertsimas and Shioda, 2009;
Bertsimas and Cory-Wright, 2018). The sparsity requirement is particularly relevant
not only because managers pay monitoring costs for non-zero positions, but also
because investors hardly trust portfolio managers who do not control the number
of positions held. Problem (8.3) with the cardinality constraint can be reformulated
as a MIQP optimization problem by means of the introduction of binary indicator
variables zi, i = 1, . . . , n, that model whether xi = 0 or not and the replacement of
‖x‖0 ≤ s by ∑n

i=1 zi ≤ s.
The objective function of (8.3) is the sum of two terms that represent in fact two

distinct, contrasting goals. Indeed, the underlying financial problem is inherently
a bi-objective optimization problem, which is scalarized for a simpler optimization
process. The pure multi-objective formulation has occasionally been considered in
the literature (Armananzas and Lozano, 2005; Radziukynienė and Žilinskas, 2008;
Chen and Wei, 2019), even with the additional cardinality constraint (Chiam et al.,
2008; Xidonas et al., 2018; Tian et al., 2019), leading to the problem

min
x∈Rn

(
ψ

2
xTQx, cTx

)T

s.t. x ≥ 0, eTx = 1, ‖x‖0 ≤ s.
(8.4)

We chose problem (8.4) as a benchmark for the multi-objective setting because
we can easily obtain a basis for comparison; indeed, the global solution of problem
(8.3)with the cardinality constraint constitutes, for every value of ψ, a Pareto optimal
point for problem (8.4). Hence, we can obtain a set of reference Pareto points by
solving with a MIQP solver the scalarized problem for several values of the trade-
off parameter ψ.

94 Computational Experiments

The data used in the experiments consists of daily data for securities from the
FTSE 100 index, from 01/2003 to 12/2007. The three datasets are referred to as
DTS1, DTS2, and DTS3, and are formed by 12, 24, and 48 securities, respectively.
We also included three datasets from the Fama/French benchmark collection (FF10,
FF17, and FF48, with cardinalities 10, 17, and 48), using the monthly returns from
07/1971 to 06/2011. The datasets are generated as by Brito and Vicente (2013) and
Cocchi et al. (2020a). For each dataset, we built two instances of problem (8.4), with
with two different values of s.

8.2 Comparison of PD Approaches: Convex Case
The purpose of this first block of experiments is to evaluate the proposed inexact
minimization strategy for the PDapproach (both in its gradient-based andderivative-
free versions), compared with the exact minimization approach of the original al-
gorithm. To this aim, we consider the problem of sparse logistic regression, where
the objective function is convex, but the solution of the subproblems in the x vari-
ables cannot be obtained in closed form, i.e., it requires the adoption of an iterative
method.

Implementation Details
Algorithms 1, 2 and 5 have been implemented in Python 3.6. We used as test bench-
mark the set of 18 sparse logistic regression problems described in Section 8.1 with s
corresponding to the 25%, 50% and 75% of the number n of features of each dataset.

The algorithms start from the feasible initial point x0 = z0 = 0 ∈ Rn. Their com-
mon parameters have been set as follows: τ0 = 1 and θ = 1.1. The three algorithms
differ only in the x-minimization step. Concerning the line search parameters of
Algorithm 2, we set γ = 10−5 and β = 0.5. As for the derivative-free Algorithm 5,
we set δ = 0.5, γ = 10−5, σ = 2.

The x-minimization step for Algorithm 1 has been performed by the BFGS (Bert-
sekas, 1997) solver included in the scipy library (Virtanen et al., 2020). In particular,
the inner iterates of the BFGS solver have been stopped whenever the current point
u`+1 is such that ‖∇xqτk(u

`+1, v`)‖ ≤ 10−5, i.e., when the current point is a good ap-
proximation of a stationary point and hence, being the penalty function qτk strictly
convex with respect to u, of the global minimizer.

For a fair comparison, we employ for the three PD procedures the same stopping
criteria for the outer and the inner loop. Specifically, we used the practical stopping
criteria proposed by Lu and Zhang (2013): the inner loop stops when the decrease
of the value of the function qτk is sufficiently small, i.e., when

qτk(u
`, v`)− qτk(u

`+1, v`+1) ≤ εin, (8.5)

8.2 Comparison of PD Approaches: Convex Case 95

where εin = 10−4; the outer loop is stopped when x and z are sufficiently close, i.e.,
as soon as

‖xk+1 − zk+1‖ ≤ εout, (8.6)

where εout = 10−4.
All the experiments have been carried out on an Intel(R) Core(TM) i7- 6700 CPU

@ 3.40GHz machine with 4 physical cores (8 threads) and 16 GB RAM.

Numerical Results
The three algorithms, Algorithm 1 called Exact PD, Algorithm 2 called Inexact PD,
and Algorithm 5 called DFPD, have been compared using the performance profiles
(Dolan and Moré, 2002). We recall that, in performance profiles, each curve repre-
sents, given a performance metric, the cumulative distribution of the ratio between
the result obtained by a solver on an instance of a problem and the best result ob-
tained by any considered solver on that instance. The results of the comparison are
shown in Figure 8.1.

5 10 15 20 25 30

performance ratio - time

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

Inexact PD

Exact PD

DFPD

(a) Runtime

1.00 1.05 1.10 1.15 1.20 1.25 1.30

performance ratio - objective value

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

Inexact PD

Exact PD

DFPD

(b) Objective value

Figure 8.1: Performance profiles of runtime (a) and attained objective value (b) for
the Exact, Inexact and Derivative-Free Penalty Decomposition algorithms, on 18
sparse logistic regression problems.

From the results in Figure 8.1b, we can observe that the performances of the three
algorithms, in terms of attained objective function values, are quite close, with rather
slight fluctuations. It’s worth remarking that different local minima can be attained
by different algorithms, even for equal starting points, because of the nonconvex
nature of problem (8.1).

On the other hand, as shown in Figure 8.1a, the inexact version of the PD algo-
rithm clearly outperforms the other two algorithms in terms of efficiency. This as-
pect can be valuable in connection with a global optimization strategy, where many

96 Computational Experiments

local minimizations have to be performed and the availability of an efficient local
solver may be useful.

The derivative-free algorithm is about an order of magnitude slower than its di-
rect gradient-based counterpart, which is reasonable, considering that the size of
the considered problems is quite large in the perspective of derivative-free optimiza-
tion. In fact, the difference between the speed of gradient-based and derivative-free
methods on problems with relatively large size is usually even larger; here, this gap
is mitigated, since there is a large set of instructions shared by all the versions of the
algorithm.

On the whole, this computational experience confirms the validity of the pro-
posed approach. We remark that we tested the simplest implementation of the pro-
posed algorithm, that is, performing, in the x-minimization step, a single line search
along the steepest direction. Benefits, in terms of attained function values, could be
obtained by performing more iterations of a descent method and by introducing a
suitable inner stopping criterion. As already observed, this can be done to improve
the effectiveness of the algorithm preserving its global convergence properties.

8.3 Comparison of PD Approaches: Nonconvex Case

In this Section, we turn to the evaluation of the proposed variant of the PD approach
in the nonconvex setting, which was one of the main motivations for the introduc-
tion of the inexact approach. We do so with a test problem representing an actual
application of the Penalty Decomposition method in the literature.

Specifically, we performed the pruning of the neural network described in Sec-
tion 8.1 with the Penalty Decomposition strategy, as suggested by Carreira-Perpinán
and Idelbayev (2018). Here, we do not consider the derivative-free version of the al-
gorithm, since the dimensionality of the considered problem is too high.

Wewould like to stress that here we are interested in evaluating the performance
of the algorithm from an optimization perspective, i.e., in terms of training speed
and value of the training loss, not in terms of the prediction performance of the
obtained models.

Implementation Details

We repeat the experiment for 11 different values of s. Clearly, due to the nonlinear-
ity of the objective function, the exact minimization at the x-update step is in fact
not viable; in the work of Carreira-Perpinán and Idelbayev (2018), this issue is over-
looked and a local optimizer is employed, therefore the theoretical guarantees of the
approach come from the novel analysis from Chapter 4.

8.3 Comparison of PD Approaches: Nonconvex Case 97

Our interest lies in comparing the performance ofAlgorithm2when the x update
is performed by means of a single descent step or by running the gradient descent
algorithm until a stationary point is reached. We compare the performance of the
two variants of the PD procedure in terms of runtime and attained objective value.

The network has been implemented and trained using the Tensorflow 1.14 li-
brary. Note that for both PD algorithms we perform gradient descent steps using
the full batch gradient, i.e., no SGD strategy is employed.

As for the stopping criterion, we use (8.5) and (8.6) for both algorithms, with
εin = 10−4 and εout = 10−5. For the complete gradient descent version of the
algorithm, we stop the x-update process if the gradient is sufficiently small, i.e.,
‖∇xqτk(u

`+1, v`)‖ ≤ 10−1 or if the decrease in the value of qτk is smaller than 10−3.
Concerning the other parameters, we set τ0 = 1, θ = 1.1, γ = 10−5 and β = 0.5.

In order to avoid numerical issues, we normalize the descent direction if the norm
of the gradient is larger than 1.

The experiments have been carried out on an Intel(R) Core(TM) i7-6700 CPU @
3.40GHz machine with 4 physical cores (8 threads) and 16 GB RAM.

Numerical Results

We show the results of the experiment, in terms of runtime, in Figure 8.2. We can
observe that performing a single descent step allows us to save a significant amount
of time, for all the tested values of s.

250 500 1000 1500 2500 3500 5000 7500 10000 15000 20000

Maximum cardinality

0

50

100

150

200

250

R
u
n
ti

m
e
 (

s)

Single Armijo step PD

Complete gradient descent PD

Figure 8.2: Comparison of the performance, in terms of runtime, of two variants of
the inexact PD algorithm on neural network compression problems.

98 Computational Experiments

We do not show the results concerning the obtained objective values, as in every
instance of the experiment the twomethods attained the same value, up to negligible
differences in the order of 10−2.

8.4 Sparse Neighborhood Search Performance
Concerning the SNS Algorithm 7, we are particularly interested from a computa-
tional point of view in studying two relevant aspects. Specifically, here we want
to:

• analyze the benefits and the costs of increasing the size of the neighborhood;

• assess the performance of the proposed approach, compared to the theGreedy
Sparse-Simplex (GSS) method and the Penalty Decomposition (PD) approach
(in the original, exact version).

To these aims, we considered again the problem of sparse logistic regression,
where the objective function is continuously differentiable and convex, but the so-
lution of the problem for a fixed support set requires the adoption of an iterative
method. Note that we preferred to consider a problem without other constraints in
addition to the sparsity one, in order to simplify the analysis of the behavior of the
proposed algorithm.

Implementation details
Algorithms SNS, PD and GSS have been implemented in Python 3.7, mainly ex-
ploiting libraries numpy and scipy. The convex subproblems of both PD and GSS
have been solved up to global optimality by using the L-BFGS algorithm (in the im-
plementation from Liu and Nocedal 1989, provided by scipy). We also employed
L-BFGS for the local optimization steps in SNS.

All algorithms start from the feasible initial point x0 = 0 ∈ Rn. For the PD
algorithm, we set the starting penalty parameter to 1 and its growth rate to 1.05. The
algorithm stops when ‖xk − zk‖ < 0.0001, as suggested by Lu and Zhang (2013). As
for the GSS, we stop the algorithm as soon as ‖xk+1 − xk‖ ≤ 0.0001.

Concerning our proposed Algorithm 7, we take into account four versions, em-
ploying the neighborhoodNρ defined in Definition 2.14 with radius ρ ∈ {1, 2, 3, 4}.
The parameters have been set as follows:

• ξ = 103,

• θ = 0.5,

• η0 = 10−5.

8.4 Sparse Neighborhood Search Performance 99

For what concerns µ0 and δ, we actually keep the value of µ fixed to 10−6. We again
employ the stopping criterion ‖xk+1 − xk‖ ≤ 0.0001.

For all the algorithms, we have also set a time limit of 104 seconds. All the ex-
periments have been carried out on an Intel(R) Xeon E5-2430 v2 @2.50GHz CPU
machine with 6 physical cores (12 threads) and 16 GB RAM.

Numerical Results

As benchmark for our experiments, we considered the 18 sparse logistic regression
problems from Section 8.1 with s set equal to to 3, 5 and 8 in (8.1). For SNS and GSS
we consider the computational time employed to find the best solution.

In Figure 8.3 the performance profiles (Dolan andMoré, 2002) w.r.t. the objective
function values and the runtimes (intended as the time to find the best solution)
attained by the different algorithms are shown. We do not report the runtime profile
of SNS(1) since it ismuch faster than all the othermethods and thuswould dominate
the plot, making it poorly informative. We can however note that unfortunately its
speed is outweighed by the very poor quality of the solutions.

1.00 1.02 1.04 1.06 1.08 1.10
performance ratio - obj

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

GSS
PD
SNS(2)
SNS(3)
SNS(4)
SNS(1)

(a) objective value

2 4 6 8 10
performance ratio - time_to_opt

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

GSS
PD
SNS(2)
SNS(3)
SNS(4)

(b) Objective value

Figure 8.3: Performance profiles for the considered algorithms on 18 sparse logistic
regression problems.

We can observe that increasing the size of the neighborhood consistently leads to
higher quality solutions, even though the computational cost grows. We can see that
SNS (with a sufficiently large neighborhood) has better performances than the other
algorithms known from the literature; in particular, while the neighborhood radius
ρ = 1 only allows to perform forward selection, with poor outcomes, ρ ≥ 2 makes
swap operations possible, with a significant impact on the exploration capabilities.

The GSS has worse quality performance than SNS(2), which is reasonable, since
its move set is actually smaller and optimization is always carried out w.r.t. a single

100 Computational Experiments

10 2 10 1 100 101

time

0

21

22

23

24

25

26

f
f b

es
t

SNS(1)
SNS(2)
SNS(3)
SNS(4)
PD
GSS

(a) breast - s = 3

10 1 100 101 102

time

0

21

22

23

24

25

26

f
f b

es
t

SNS(1)
SNS(2)
SNS(3)
SNS(4)
PD
GSS

(b) breast - s = 8

10 1 100 101 102 103

time

0

21
22
23
24
25
26
27
28
29

210
211

f
f b

es
t

SNS(1)
SNS(2)
SNS(3)
SNS(4)
PD
GSS

(c) spam - s = 3

100 101 102 103 104

time

0

21
22
23
24
25
26
27
28
29

210

f
f b

es
t

SNS(1)
SNS(2)
SNS(3)
SNS(4)
PD
GSS

(d) spam - s = 8

10 1 100 101 102

time

0

21
22
23
24
25
26
27
28
29

f
f b

es
t

SNS(1)
SNS(2)
SNS(3)
SNS(4)
PD
GSS

(e) a2a - s = 3

100 101 102 103

time

0

21
22
23
24
25
26
27
28
29

f
f b

es
t

SNS(1)
SNS(2)
SNS(3)
SNS(4)
PD
GSS

(f) a2a - s = 8

Figure 8.4: Quality/cost trade-off for the algorithms on sparse logistic regression
problems from datasets breast, spam and a2a.

8.5 Effectiveness of the Multi-objective PD Scheme 101

variable and not the entire active set. However, it proved to also be slower than the
SNS,mostly because of two reasons: it always tries all feasiblemoves, not necessarily
accepting the first one that provides an objective decrease, and it requires many
more iterations to converge, since it considers one variable at a time.

Finally, the PD method appears not to be competitive from both points of view:
it is slow at converging to a feasible point and it has substantially no global opti-
mization features that could guide to globally good solutions.

It is interesting to remark how considering larger neighborhoods appears to be
particularly useful in problems where the sparsity constraint is less strict and thus
combinatorially more challenging. As an example, we show the runtime-objective
tradeoff for the breast, spam and a2a problems for s = 3 and s = 8 in Figure 8.4.
We can observe that for s = 3, SNS finds good, similar solutions for either ρ = 2, 3
or 4, with a similar computational cost. On the other hand, as s grows to 8, using
ρ = 4 allows to significantly improve the quality of the solutionwithout a significant
increase in terms of runtime.

8.5 Effectiveness of the Multi-objective PD Scheme

As we have anticipated, we chose problem (8.4) to test the proposed Algorithm 8
since we can easily obtain a basis for comparison. It is worth emphasizing that MO-
SPD could however be employed with much more general problems, whereas MIP
modeling to solve the scalarized problem becomes impractical as soon as the objec-
tive function gets nonconvex or more than quadratic.

We are interested in the quality of the solutions retrieved by MOSPD on sparse
portfolio selection problems, figuring that the performance on this class of problems
is an indicator of its behavior in more general cases.

Implementation Details

The scripts for the experiments have beenwritten in Python3. MOSPD solver makes
use of the numpy library (Oliphant, 2006); the LP problem for the computation of
descent directions is solved with Gurobi 9.0.0 (Gurobi Optimization, 2020).

For the parameters of the algorithm, we set τ0 = 10, σ = 1.1, ε0 = 10−5 for DTS
problems and ε0 = 10−3 for FF problems, εk+1 = max{0.8εk, ε0/100}, β = 10−5;
the algorithm is stopped when ‖xk+1 − zk+1‖ ≤ 10−3 and |1− eTz| < 10−4; as final
solution we retain vector z̄ which strictly satisfies, from a numerical point of view,
the cardinality constraint; we employ theMOPGD algorithm to refine the solution z̄
returned by MOSPD; the MOPGD procedure is run starting at z̄ and keeping fixed
the zero variables, so that the cardinality constraint is implicitly handled.

102 Computational Experiments

We remark that, since the problem has a bounded feasible set, the restart strategy
at lines 6-9 of Algorithm 8 is not necessary. The MIQP scalarized problem is solved
with Gurobi 9.0.0.

The numerical comparison is carried out by runningmultiple timesMOSPD and
the scalar MIQP solver. MOSPD is started from n + 1 different initial solutions: all
points with one component equal to 1 and all others set to zero and the vector with
all components equal to 1/n; the scalarization approach is again performed n + 1
times, for values of λ in {2j | j = i− bn

2 c, i = 0, . . . , n}.

Numerical Results
The results of the experiment are shown in Figures 8.5 and 8.6. We can observe that
MOSPD is able to retrieve, inmost cases, a good quality approximation of the Pareto
front, using the one produced by the scalarization method as reference. We can also
see that some runs of MOSPD stop at dominated, and hence not Pareto optimal,
solutions, which is not surprising: as previously remarked, while scalarization, if
solved to optimality, is guaranteed to produce a Pareto optimzer, MOSPD is only
proved to generate a point satisfying MOLZ conditions. Besides, it is interesting to
note that the set of optimal solutions produced by MOSPD is generally more diver-
sified than that obtained by scalarization.

In order to quantitatively characterize the above qualitative considerations, we
employ the popular metrics defined by Custódio et al. (2011): purity, ∆-spread and
Γ-spread. We recall that the purity metric measures the quality of the generated
front, i.e., how good the non-dominated points computed by a solver are with re-
spect to those computed by any other solver. Here, a higher value is a better value.
On the other hand, the spreadmetrics are essential to measure the uniformity of the
generated front in the objectives space. Particularly, the Γ-spread metric is defined
as the maximum `∞ distance between adjacent points in the retrieved Pareto front.
The ∆-spread metric is quite similar to the standard deviation of the `∞ distances
between adjacent points in the retrieved Pareto front.

We report the performance obtained by the two considered methods on the 12
test problems in Table 8.2. We can see that the values of purity, Γ-spread and ∆-
spread support the visual impression that MOSPD produces approximate Pareto
fronts whose points are better distributed (better spread values), even if some solu-
tions are dominated (lower purity).

In conclusion, the set of solutions retrieved byMOSPD is, once the dominated so-
lutions are filtered out, comparable to the one obtained by the scalarizationmethod,
while it also allows the user to choose, a posteriori, among a more diverse spectrum
of optimal solutions, being the points well distributed along the front.

We would like to stress again that the discussed experiment is aimed at assess-
ing the performance of MOSPD in a case where a valid alternative is available; with

8.5 Effectiveness of the Multi-objective PD Scheme 103

more complex problems, the scalarization approach is no more viable, while we ex-
pectMOSPD to reproduce the good performance achieved on the portfolio selection
problem.

0.0014 0.0012 0.0010 0.0008 0.0006
Mean

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

Va
ria

nc
e

Problem DTS1, s = 3
MOSPD
Scalarization

(a) DTS1, s = 3

0.0014 0.0012 0.0010 0.0008 0.0006
Mean

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

Va
ria

nc
e

Problem DTS1, s = 6
MOSPD
Scalarization

(b) DTS1, s = 6

0.0014 0.0012 0.0010 0.0008 0.0006
Mean

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

Va
ria

nc
e

Problem DTS2, s = 6
MOSPD
Scalarization

(c) DTS2, s = 6

0.0014 0.0013 0.0012 0.0011 0.0010 0.0009 0.0008 0.0007 0.0006
Mean

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

Va
ria

nc
e

Problem DTS2, s = 12
MOSPD
Scalarization

(d) DTS2, s = 12

0.0014 0.0012 0.0010 0.0008 0.0006
Mean

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

Va
ria

nc
e

Problem DTS3, s = 12
MOSPD
Scalarization

(e) DTS3, s = 12

0.0014 0.0012 0.0010 0.0008 0.0006 0.0004
Mean

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

Va
ria

nc
e

Problem DTS3, s = 24
MOSPD
Scalarization

(f) DTS3, s = 24

Figure 8.5: Results of the tests on DTS problems.

104 Computational Experiments

0.017 0.016 0.015 0.014 0.013 0.012
Mean

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Va
ria

nc
e

Problem FF10, s = 2
MOSPD
Scalarization

(a) FF10, s = 2

0.017 0.016 0.015 0.014 0.013 0.012
Mean

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Va
ria

nc
e

Problem FF10, s = 5
MOSPD
Scalarization

(b) FF10, s = 5

0.016 0.015 0.014 0.013 0.012
Mean

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Va
ria

nc
e

Problem FF17, s = 2
MOSPD
Scalarization

(c) FF17, s = 2

0.016 0.015 0.014 0.013 0.012
Mean

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0.0022

Va
ria

nc
e

Problem FF17, s = 8
MOSPD
Scalarization

(d) FF17, s = 8

0.017 0.016 0.015 0.014 0.013 0.012
Mean

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Va
ria

nc
e

Problem FF48, s = 5
MOSPD
Scalarization

(e) FF48, s = 5

0.017 0.016 0.015 0.014 0.013 0.012
Mean

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Va
ria

nc
e

Problem FF48, s = 12
MOSPD
Scalarization

(f) FF48, s = 12

Figure 8.6: Results of the tests on FF problems.

8.5 Effectiveness of the Multi-objective PD Scheme 105

Table 8.2: Performance metrics (Purity, Γ-spread and ∆-spread) obtained by Pareto
front approximations produced bymulti-start versions of MOSPD and of the scalar-
ization approach.

Problem s Algorithm Purity Γ-spread ∆-spread

DTS1
3 MOSPD 0.714 0.00025 0.824

Scalarization 0.888 0.00033 0.776

6 MOSPD 0.818 0.00012 1.168
Scalarization 0.888 0.00023 0.701

DTS2
6 MOSPD 0.823 0.00014 1.102

Scalarization 0.944 0.00027 1.157

12 MOSPD 0.894 0.00010 1.151
Scalarization 0.944 0.00019 1.060

DTS3
12 MOSPD 0.785 0.00014 1.279

Scalarization 0.966 0.00016 1.318

24 MOSPD 0.875 0.00008 1.311
Scalarization 0.966 0.00015 1.324

FF10
2 MOSPD 1.0 0.0028 0.424

Scalarization 1.0 0.0026 1.046

5 MOSPD 1.0 0.00235 0.988
Scalarization 0.833 0.00264 1.046

FF17
2 MOSPD 0.5 0.00158 0.910

Scalarization 1.0 0.00212 1.173

8 MOSPD 0.866 0.00079 0.740
Scalarization 1.0 0.00170 1.146

FF48
5 MOSPD 0.8 0.00074 0.742

Scalarization 1.0 0.00214 1.523

12 MOSPD 0.903 0.00069 0.812
Scalarization 1.0 0.00212 1.522

Chapter 9

Conclusions

In this thesis work, we have dealt with mathematical optimization problems with
sparsity constraints. Specifically, emphasis was put on the cases where the objective
function is nonconvex and/or the number of variables is rather high, so that the
problem has to be tackled in terms of a continuous optimization problem.

In this context, we put order, from a theoretical point of view, among various
well-known, as well as novel, necessary conditions of optimality for this class of
problems. Then, we addressed a variety of algorithms designed to produce, in prac-
tice, solutions satisfying these conditions. In particular, we proposed tailored algo-
rithms for complex settings such as the nonconvex, the derivative-free and themulti-
objective one. Moreover, we introduced a completely new algorithmic scheme that,
taking into account the combinatorial, discrete nature of the problem, is able to ob-
tain the highest possible theoretical guarantees and also has remarkable exploration
capabilities in a global optimization perspective.

We finally showed by a diverse set of computational experiments that the pro-
posed approaches actually exhibit good performance in practice.

On the basis of the results of the present dissertation, new avenues of research
open up; in particular, topics for future work include:

• the conception and the analysis of an inexact version of the GSS algorithm for
the nonconvex case;

• the extension of the inexact PD scheme to the case with additional constraints;

• the study of optimality conditions for sparsity constrained problems in the
nonsmooth setting;

• the design of a tailored algorithm (reasonably PD-type) for the nonsmooth
setting;

• the extension of the SNS algorithm to the derivative-free and themulti-objective
settings;

107

108 Conclusions

• the extension of the theoretical analysis in the multi-objective setting to the
case with general additional constraints.

Appendix A

On the Relationship Between
Stationarity Conditions and KKT
Conditions

Consider the continuous optimization problem

min
x

f (x)

s.t. x ∈ X,
(A.1)

where X = {x ∈ Rn | h(x) = 0, g(x) ≤ 0} is a convex set (hi, i = 1, . . . , p are
affine functions, gi, i = 1, . . . , m, are convex functions). We assume f and g to be
continuously differentiable; h is differentiable, being affine.

Definition A.1. A point x? ∈ X is a stationary point for problem (A.1) if, for any
direction d feasible at x?, we have

∇ f (x?)>d ≥ 0.

It can be shown that a point x? is stationary for problem (A.1) if and only if

x? = ΠX[x? −∇ f (x?)], (A.2)

where ΠX denotes as usual the orthogonal projection operator. Stationarity is a
necessary condition of optimality for problem (A.1). It is possible to show that a
point satisfying the KKT conditions is always a stationary point. Vice versa is true
by stronger assumptions on the set of feasible directions.

Proposition A.1. Let x? ∈ X satisfy KKT conditions for problem (A.1). Then, x? is sta-
tionary for problem (A.1).

109

110On the Relationship Between Stationarity Conditions and KKT Conditions

Proof. Assume x? satisfies KKT conditions with multipliers λ and µ. Let d be any
feasible direction at x?. Since X is convex, we know that:

∇hi(x?)>d = 0 ∀i = 1, . . . , p, (A.3)
∇gi(x?)>d ≤ 0 ∀i : gi(x?) = 0. (A.4)

Moreover, from KKT conditions we know that

λi = 0 ∀ i : gi(x?) < 0. (A.5)

We know that

∇ f (x?) +
m

∑
i=1

λi∇gi(x?) +
m

∑
i=1

µi∇hi(x?) = 0,

hence (
∇ f (x?) +

m

∑
i=1

λi∇gi(x?) +
p

∑
i=1

µi∇hi(x?) = 0

)>
d = 0,

and then
∇ f (x?)>d +

m

∑
i=1

λi∇gi(x?)>d +
m

∑
i=1

µi∇hi(x?)>d = 0.

From equations (A.3) and (A.5), we get

∇ f (x?)>d + ∑
i:gi(x?)=0

λi∇gi(x?)>d = 0,

thus, recalling (A.4) and λ ≥ 0,

∇ f (x?)>d = − ∑
i:gi(x?)=0

λi∇gi(x?)>d ≥ 0.

Since d is an arbitrary feasible direction, we get the thesis.

Proposition A.2. Let x? ∈ X be a stationary point for problem (A.1). Assume that one of
the following conditions holds:

(i) the set of feasible directions D(x?) is such that

D(x?) = {d ∈ Rn | ∇gi(x?)>d ≤ 0 ∀i : gi(x?) = 0,∇hi(x?)>d = 0 ∀i = 1, . . . , p}

(ii) the set of feasible directions D(x?) is such that

D(x?) = {d ∈ Rn | ∇gi(x?)>d < 0 ∀i : gi(x?) = 0,∇hi(x?)>d = 0 ∀i = 1, . . . , p}

and a constraint qualification holds.

111

Then, x? is a KKT point.

Proof. We prove the two cases separately:

(i) Let x? be a stationary point. Then, there does not exist a direction d ∈ D(x?)
such that

∇ f (x?)>d < 0.

This implies that the system

∇ f (x?)>d < 0
∇gi(x?)>d ≤ 0 i : gi(x?) = 0
∇hi(x?)>d ≤ 0 i = 1, . . . , p
−∇hi(x?)>d ≤ 0 i = 1, . . . , p

does not admit solution. By Farkas’ Lemma we get the thesis.

(ii) Let x? be a stationary point. Then, there does not exist a direction d ∈ D(x?)
such that

∇ f (x?)>d < 0.

This implies that the system

∇ f (x?)>d < 0
∇gi(x?)>d < 0 i : gi(x?) = 0
∇hi(x?)>d = 0 i = 1, . . . , p

does not admit solution. By Motzkin’s theorem we get that x? satisfies the
Fritz-John conditions and hence, by assuming a constraint qualification, the
thesis is proved.

Condition (i) of Proposition A.2 holds if the functions gi, i = 1, . . . , m and hj,
j = 1, . . . , p are affine.

Condition (ii) of Proposition A.2 holds by assuming that the convex functions gi,
for i = 1, . . . , m are such that

gi(x + td) ≥ gi(x) + t∇gi(x)>d +
1
2

γt2‖d‖2 (A.6)

with γ > 0. Indeed, in this case it is easy to see that a direction d is a feasible
direction at x? if and only if

∇gi(x?)>d < 0 i : gi(x?) = 0 ∇hj(x?)>d = 0 i = 1, . . . , p

Condition (A.6) is satisfied by assuming that the functions gi are twice continuosly
differentiable and the Hessian matrix is positive definite.

112On the Relationship Between Stationarity Conditions and KKT Conditions

Condition (A.6) holds also for continuously differentiable functions gi assuming that
they are strongly convex with constant ci > 0, i.e., that for i = 1, . . . , m it holds

gi(y) ≥ gi(x) +∇gi(x)>(y− x) +
ci

2
‖y− x‖2, ∀ x, y.

Appendix B

Multi-Objective Projected Gradient
Descent Method

The Multi-Objective Projected Gradient Descent (MOPGD) method to solve prob-
lems of the form (7.1) has been proposed by Drummond and Iusem (2004) and then
further developed and analyzed by Fukuda andDrummond (2011) and Fukuda and
Drummond (2013); the main results related to MOPGD can be found summarized
in the survey from Fukuda and Drummond (2014).

In this work we employed a simple variant (formally defined by the pseudocode
inAlgorithm 9) of the standardMOPGDproposed byDrummond and Iusem (2004).
Specifically, we used a different definition for the constrained steepest descent direc-
tion, similarly to what is done for the Multi-objective Steepest Descent algorithm by
Fliege and Svaiter (2000, Section 3.1), i.e., we replaced

arg min
z∈C

max
j=1,...,m

∇ f j(x)T(z− x) +
1
2
‖z− x‖2

with

arg min
z∈C

‖z−x‖≤1

max
j=1,...,m

∇ f j(x)T(z− x). (B.1)

This choice is motivated by the fact that, as long as C is defined by linear constraints
and the `∞ norm is used, problem (B.1) is an LP problem that can be solved easily.
We refer to the optimal value of problem (B.1) by θ(x).

The idea of the method is that of taking, at each iteration, a step along the steep-
est common descent feasible direction. In order to guarantee convergence to Pareto
critical points, Algorithm 9makes use of a backtracking Armijo-like line search pro-
cedure, which is described in Algorithm 10. The idea of the line search procedure is
that of halving the step size as long as a sufficient decrease hasn’t been reached for
all objective functions.

113

114 Multi-Objective Projected Gradient Descent Method

Algorithm 9: MultiObjectiveProjectedGradientDescent
1 Input: β ∈ (0, 1), x0 ∈ Rn.
2 k = 0
3 while xk is not Pareto critical do
4 Compute

zk ∈ arg min
z∈C

‖z−xk‖≤1

max
j=1,...,m

∇ f j(xk)T(z− xk)

5 set dk = zk − xk

6 αk = ConstrainedLineSearch(xk, dk, β)

7 xk+1 = xk + αkdk

8 k = k + 1

9 return xk

In this Appendix, we state the theoretical properties of the employed variant
of the MOPGD procedure that are needed in the convergence analysis in Chapter
7. The following Proposition guarantees that, given a feasible common descent di-
rection at x, Algorithm 10 always returns a strictly positive step length in a finite
number of iterations.

Proposition B.1 (Drummond and Iusem (2004); Proposition 1). Consider problem
(7.1). If F is continuously differentiable, β ∈ (0, 1), x, z ∈ C, d = z− x and JF(x)d < 0,
then there exists ε ∈ (0, 1) such that , for all t ∈ (0, ε),

F(x + td) < F(x) + βtJF(x)d.

We next state and prove the properties of Algorithm 9. We provide for the sake
of completeness the proofs for these properties, which, although similar to those of
the standard MOPGD, cannot be found in the literature.

Algorithm 10: ConstrainedLineSearch
1 Input: β ∈ (0, 1), x ∈ Rn, d ∈ Rn.
2 j = 0
3 while F(x + 1

2j d) � F(x) + β 1
2j JF(x)d do

4 set j = j + 1

5 return 1
2j

Proposition B.2. Let {xk} be the sequence generated by Algorithm 9 on problem (7.1).
Then:

115

(a) the mapping xk 7→ θ(xk) is continuous;

(b) {xk} ⊂ C;

(c) the sequence {F(xk)} is monotonically strictly decreasing;

(d) every accumulation point, if any, of {xk} is a feasible stationary point;

(e) if C is bounded, or if F has bounded level sets in the multi-objective sense, {xk} admits
at least one accumulation point.

Proof. We prove the properties one at a time:

(a) This property comes straightforwardly from the definition of θ, i.e., form the
definition problem (B.1).

(b) The update rule ofAlgorithm9 is given by xk+1 = xk + αkdk. Now, dk is feasible
at xk by the definition of problem (B.1) and the convexity of C. Also, αk ≤ 1 by
the instructions of Algorithm 10. Hence, from the convexity of C, xk + αkd ∈ C.

(c) From the instructions of Algorithm 10, we have

F(xk+1) = F(xk + αkdk) ≤ F(xk) + βαk JF(xk)dk ≤ F(xk) + βαkθ(xk)e < F(xk),

where the last step comes from the fact that if it was θ(xk) = 0 then Algorithm
9 would stop and that αk > 0.

(d) Let x̄ be an accumulation point of the sequence {xk}, i.e., there exists K ⊆
{0, 1, . . .} such that xk → x̄ for k → ∞, k ∈ K. From (b) and recalling the
closedness of C, we have that x̄ ∈ C. From (c), we have that F(xk+1) < F(xk),
hence the sequence {F(xk)} has limit F̄; F is continuous, therefore F(xk) →
F(x̄) for k ∈ K, k → ∞; hence, the limit of the whole sequence F̄ is equal to
F(x̄) and is therefore finite.

From the instructions of Algorithm 10, we also have that

F(xk + αkdk) ≤ F(xk) + βαk JF(xk)dk ≤ F(xk) +

(
βαk max

j=1,...,m
∇ f j(xk)Tdk

)
e.

‖dk‖ ≤ 1 by the definition of problem (B.1), hence the sequence dk is bounded.
Thus, there exists K1 ⊆ K such that dk → d̄ (and similarly zk → z̄) when
k→ ∞, k ∈ K1.

Now, for all k ∈ K1, we have

F(xk+1)− F(xk) ≤
(

βαk max
j=1,...,m

∇ f j(xk)Tdk
)

e.

116 Multi-Objective Projected Gradient Descent Method

Taking the limits we get that

0 = F̄− F̄ ≤ β

 lim
k→∞
k∈K1

αk max
j=1,...,m

∇ f j(x̄)Tdk

 e.

Recalling that β > 0, αk > 0 for all k by the properties of Algorithm 10 and
maxj=1,...,m∇ f j(xk)Tdk ≤ 0 by the definition of dk, we get that

lim
k→∞
k∈K1

αk max
j=1,...,m

∇ f j(xk)Tdk = 0.

We have now two possible cases:

(i) maxj=1,...,m∇ f j(xk)Tdk → 0 as k→ ∞, k ∈ K. This implies that

0 = lim
k→∞
k∈K1

max
j=1,...,m

∇ f j(xk)Tdk = lim
k→∞
k∈K1

max
j=1,...,m

∇ f j(xk)T(zk − xk)

= lim
k→∞
k∈K1

min
z∈C

‖z−xk‖≤1

max
j=1,...,m

∇ f j(xk)T(z− xk)

= min
z∈C

‖z−x̄‖≤1

max
j=1,...,m

∇ f j(x̄)T(z̄− x̄)

which, from Lemma 7.2, implies that x̄ is Pareto-critical.
(i) αk → 0 as k→ ∞, k ∈ K1. From the instructions of Algorithm 10, we have

that for all q ∈ N there exists k̄ ∈ K1 such that for all k ∈ K1, k ≥ k̄, we
have

F
(

xk +
1
2q dk

)
� F(xk) +

β

2q JF(xk)dk.

Taking the limits (along a suitable subsequence if needed), we have that
for some j it holds

f j

(
x̄ +

1
2q d̄
)
≥ f j(x̄) +

β

2q∇ f j(x̄)T d̄.

Being q arbitrary, we have from Proposition B.1 that

max
j=1,...,m

∇ f j(x̄)T d̄ ≥ 0,

from which we can conclude that

0 ≤ max
j=1,...,m

∇ f j(x̄)T d̄ = min
z∈C

‖z−x̄‖≤1

max
j=1,...,m

f j(x̄)T(z− x̄) ≤ 0,

which, recalling Lemma 7.2, completes the proof.

117

(e) IfC is bounded,we have from (b) that {xk} is contained in a bounded set, hence
the sequence has at least one accumulation point. On the other hand, if F has
bounded level sets in themulti-objective sense, we have thatLF(F(x0)) = {x ∈
C | F(x) ≤ F(x0)} is bounded; form (c) we have that {xk} ⊂ LF(F(x0)), hence
the sequence has at least one accumulation point.

Appendix C

Publications

Journal papers
1. G. Galvan,M. Lapucci, T. Levato, M. Sciandrone, “AnAlternating Augmented

Lagrangianmethod for constrainednonconvex optimization”,OptimizationMeth-
ods and Software, 35.3 (2020): 502-520. Candidate’s contributions: participated
in the theoretical analysis, in the implementation of the algorithm and in car-
rying out numerical experiments.

2. G.Galvan,M.Lapucci. “On the convergence of inexact augmentedLagrangian
methods for problems with convex constraints.” Operations Research Letters
47.3 (2019): 185-189. Candidate’s contributions: participated in the literature
review and in the theoretical analysis.

3. L. Di Gangi, M. Lapucci, F. Schoen, A. Sortino, “An efficient optimization ap-
proach for best subset selection in linear regression, with application to model
selection and fitting in autoregressive time-series.” Computational Optimization
and Applications 74.3 (2019): 919-948. Candidate’s contributions: participated
in the literature review, in the design of the algorithm and in the design and
implementation of the experiments; carried out the theoretical analysis.

4. G. Cocchi,M.Lapucci. “An augmentedLagrangian algorithm formulti-objective
optimization.” Computational Optimization and Applications 77.1 (2020): 29-56.
Candidate’s contributions: carried out the literature review; designed the al-
gorithms; carried out the theoretical analysis; participated in the design of the
experiments.

5. G. Galvan,M. Lapucci, C.-J. Lin, M. Sciandrone, “A Two-Level Decomposition
Framework Exploiting First and Second Order Information for SVM Train-
ing Problems.” Journal of Machine Learning Research 22 (2021): 23-1. Candi-
date’s contributions: participated in the literature review; designed and im-

119

120 Publications

plemented the algorithm; participated in the design of the experiments; car-
ried out the experiments.

6. M. Lapucci, T. Levato, M. Sciandrone “Convergent Inexact Penalty Decompo-
sitionMethods for Cardinality-Constrained Problems.” Journal of Optimization
Theory and Applications 188.2 (2021): 473-496. Candidate’s contributions: con-
tributed to algorithmdesign, carried out the theoretical analysis; designed and
carried out the experiments.

7. Fulvia Ceccarelli, Giulio Olivieri, Alessio Sortino, Lorenzo Dominici, Filmon
Arefayne, Alessandra Ida Celia, Enrica Cipriano, Cristina Garufi, Matteo La-
pucci, Silvia Mancuso, Francesco Natalucci, Valeria Orefice, Carlo Perricone,
Carmelo Pirone, Viviana Antonella Pacucci, Francesca Romana Spinelli, Si-
mona Truglia, Cristiano Alessandri, Marco Sciandrone, Fabrizio Conti, “Com-
prehensive disease control in systemic lupus erythematosus”, Seminars inArthri-
tis and Rheumatism, Volume 51, Issue 2, 2021, Pages 404-408, Candidate’s con-
tributions: contributed to experiments design.

8. E. Civitelli,M. Lapucci, F. Schoen, A. Sortino, “An effective procedure for fea-
ture subset selection in logistic regression based on information criteria”, Com-
putational Optimization and Applications, 80, 1–32 (2021). Candidate’s contri-
butions: participated in the design of the algorithm and in the design of the
experiments; carried out the literature review and the theoretical analysis.

9. G. Cocchi, M. Lapucci, P. Mansueto. “Pareto Front Approximation through
a Multi-Objective Augmented Lagrangian Method.” EURO Journal on Com-
putational Optimization 9 (2021): 100008. Candidate’s contributions: carried
out the literature review; designed the algorithm; carried out the theoretical
analysis; participated in the design of the experiments.

10. F. Ceccarelli, M. Lapucci, G. Olivieri, A. Sortino, F. Natalucci, F.R. Spinelli,
C. Alessandri, M. Sciandrone, F. Conti, “Can Machine Learning models sup-
port physicians in Systemic Lupus Erythematosus diagnosis? Results from a
monocentric cohort”, Joint Bone Spine, 2021. Candidate’s contributions: con-
tributed to experiments design; contributed to carrying out the computational
experiments.

11. R. Bisori, M. Lapucci, M. Sciandrone, “A Study on Sequential Minimal Opti-
mizationMethods for StandardQuadratic Problems”, 4OR, 2021. Candidate’s
contributions: Carried out the literature review, the theoretical analysis and
the design of the experiments; contributed to carrying out the experiments.

12. L. Di Gangi, M. Lapucci, F. Schoen, A. Sortino, “Improved Maximum Likeli-
hood Estimation of ARMA Models”, Lobachevsky Journal of Mathematics, 2022.

121

Candidate’s contributions: contributed to literature review, theoretical anal-
ysis and experiments design.

Papers under review
• M.Lapucci, “APenaltyDecompositionApproach forMulti-objectiveCardinality-

Constrained Optimization Problems”, submitted to Optimization Methods and
Software. Candidate’s contributions: Single author, did everything.

• M. Lapucci, D. Pucci, “Mixed-Integer Quadratic Programming Reformula-
tions ofMulti-TaskLearningModels”, submitted toMathematics in Engineering,
special Issue on Mathematics of Machine Learning. Candidate’s contributions:
carried out model design and experiments design; contributed to experiments
implementation.

• M. Lapucci, F. Schoen, A. Sortino, “Regression and Black-Box Global Opti-
mization Through Sparse RBF Models”, submitted to Journal of Global Opti-
mization. Candidate’s contributions: contributed to algorithm design and ex-
periments design; carried out the theoretical analysis.

• E. Civitelli, A. Sortino, M. Lapucci, F. Bagattini, G. Galvan, “A Robust Initial-
ization of Residual Blocks for Effective ResNet Training without Batch Nor-
malization”, submitted to IEEE Transactions on Neural Networks and Learning
Systems. Candidate’s contributions: contributed to methodology design, the-
oretical derivations and experiments design.

• M. Lapucci, T. Levato, F. Rinaldi, M. Sciandrone, “A Unifying Framework for
Sparsity Constrained Optimization”, submitted to INFORMS Mathematics of
Operations Research. Candidate’s contributions: contributed to literature re-
view, algorithmdesign, theoretical analysis; designed and carried out the com-
putational experiments.

• M. Lapucci, P. Mansueto, F. Schoen, “A Memetic Procedure for Global Multi-
Objective Optimization”, submitted toMathematical Programming Computation.
Candidate’s contributions: devised paper’s initial concept; contributed to al-
gorithm design, theoretical analysis and experiments design.

Bibliography

Anagnostopoulos, K. P. and Mamanis, G. (2010). A portfolio optimization model
with three objectives and discrete variables. Computers & Operations Research,
37(7):1285–1297.

Armananzas, R. and Lozano, J. A. (2005). A multiobjective approach to the port-
folio optimization problem. In 2005 IEEE Congress on Evolutionary Computation,
volume 2, pages 1388–1395. IEEE.

Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. (2012). Optimization with
sparsity-inducing penalties. Foundations and Trends® in Machine Learning, 4(1):1–
106.

Beck, A. and Eldar, Y. C. (2013). Sparsity constrained nonlinear optimization: Opti-
mality conditions and algorithms. SIAM Journal on Optimization, 23(3):1480–1509.

Beck, A. and Hallak, N. (2016). On the minimization over sparse symmetric sets:
projections, optimality conditions, and algorithms. Mathematics of Operations Re-
search, 41(1):196–223.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202.

Beck, A. and Tetruashvili, L. (2013). On the convergence of block coordinate descent
type methods. SIAM Journal on Optimization, 23(4):2037–2060.

Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gómez, A., and
Salvagnin, D. (2016). On handling indicator constraints inmixed integer program-
ming. Computational Optimization and Applications, 65(3):545–566.

Ben Mhenni, R., Bourguignon, S., and Ninin, J. (2021). Global optimization for
sparse solution of least squares problems. Optimization Methods and Software,
pages 1–30.

Berge, C. (1963). Topological Spaces: Including a Treatment of Multi-valued Functions,
Vector Spaces and Convexity. Macmillan.

123

124 BIBLIOGRAPHY

Bertsekas, D. P. (1997). Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334.

Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and distributed computation: numer-
ical methods, volume 23. Prentice hall Englewood Cliffs, NJ.

Bertsimas, D. and Cory-Wright, R. (2018). A scalable algorithm for sparse portfolio
selection. arXiv preprint arXiv:1811.00138.

Bertsimas, D., Cory-Wright, R., and Pauphilet, J. (2019). A unified approach to
mixed-integer optimization: Nonlinear formulations and scalable algorithms.
arXiv preprint arXiv:1907.02109.

Bertsimas, D. and King, A. (2017). Logistic regression: From art to science. Statistical
Science, pages 367–384.

Bertsimas, D., King, A., Mazumder, R., et al. (2016). Best subset selection via a mod-
ern optimization lens. Annals of Statistics, 44(2):813–852.

Bertsimas, D., Pauphilet, J., andVanParys, B. (2017). Sparse classification: A scalable
discrete optimization perspective. arXiv preprint arXiv:1710.01352.

Bertsimas, D. and Shioda, R. (2009). Algorithm for cardinality-constrained quadratic
optimization. Computational Optimization and Applications, 43(1):1–22.

Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic
programming problems. Mathematical Programming, 74(2):121–140.

Birgin, E. G. and Martínez, J. M. (2014). Practical augmented Lagrangian methods for
constrained optimization. SIAM.

Blumensath, T. and Davies, M. E. (2009). Iterative hard thresholding for compressed
sensing. Applied and Computational Harmonic Analysis, 27(3):265–274.

Boudt, K. and Wan, C. (2020). The effect of velocity sparsity on the performance
of cardinality constrained particle swarm optimization. Optimization Letters,
14(3):747–758.

Brito, R. P. and Vicente, L. N. (2013). Efficient cardinality/mean-variance portfolios.
In IFIP Conference on System Modeling and Optimization, pages 52–73. Springer.

Burdakov, O. P., Kanzow, C., and Schwartz, A. (2016). Mathematical programs with
cardinality constraints: reformulation by complementarity-type conditions and a
regularization method. SIAM Journal on Optimization, 26(1):397–425.

Candès, E. J. and Wakin, M. B. (2008). An introduction to compressive sampling.
IEEE Signal Processing Magazine, 25(2):21–30.

BIBLIOGRAPHY 125

Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural net-
works. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE.

Carreira-Perpinán, M. A. and Idelbayev, Y. (2018). “Learning-compression” algo-
rithms for neural net pruning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8532–8541.

Carrizosa, E. and Frenk, J. B. G. (1998). Dominating sets for convex functions with
some applications. Journal of Optimization Theory and Applications, 96(2):281–295.

Cesarone, F., Scozzari, A., and Tardella, F. (2013). A newmethod for mean-variance
portfolio optimization with cardinality constraints. Annals of Operations Research,
205(1):213–234.

Chang, T.-J., Meade, N., Beasley, J. E., and Sharaiha, Y. M. (2000). Heuristics for
cardinality constrained portfolio optimisation. Computers & Operations Research,
27(13):1271–1302.

Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex mini-
mization. IEEE Signal Processing Letters, 14(10):707–710.

Chen, C. andWei, Y. (2019). Robustmultiobjective portfolio optimization: a set order
relations approach. Journal of Combinatorial Optimization, 38(1):21–49.

Chen, S. S., Donoho, D. L., and Saunders, M. A. (2001). Atomic decomposition by
basis pursuit. SIAM Review, 43(1):129–159.

Chen, X., Xu, F., and Ye, Y. (2010). Lower bound theory of nonzero entries in solu-
tions of `2 − `p minimization. SIAM Journal on Scientific Computing, 32(5):2832–
2852.

Chiam, S., Tan, K., andAlMamum, A. (2008). Evolutionarymulti-objective portfolio
optimization in practical context. International Journal of Automation and Comput-
ing, 5(1):67–80.

Civitelli, E., Lapucci, M., Schoen, F., and Sortino, A. (2021). An effective procedure
for feature subset selection in logistic regression based on information criteria.
Computational Optimization and Applications, pages 1–32.

Cocchi, G. and Lapucci, M. (2020). An augmented lagrangian algorithm for multi-
objective optimization. Computational Optimization and Applications, 77(1):29–56.

Cocchi, G., Lapucci, M., and Mansueto, P. (2021). Pareto front approximation
through a multi-objective augmented Lagrangian method. EURO Journal on Com-
putational Optimization, 9:100008.

126 BIBLIOGRAPHY

Cocchi, G., Levato, T., Liuzzi, G., and Sciandrone, M. (2020a). A concave
optimization-based approach for sparse multiobjective programming. Optimiza-
tion Letters, 14(3):535–556.

Cocchi, G., Liuzzi, G., Lucidi, S., and Sciandrone, M. (2020b). On the convergence
of steepest descent methods for multiobjective optimization. Computational Opti-
mization and Applications, 77(1):1–27.

Custódio, A. L., Madeira, J. A., Vaz, A. I. F., and Vicente, L. N. (2011). Direct multi-
search for multiobjective optimization. SIAM Journal on Optimization, 21(3):1109–
1140.

d’Aspremont, A., Bach, F., and El Ghaoui, L. (2008). Optimal solutions for sparse
principal component analysis. Journal of Machine Learning Research, 9(7).

Deb, K., Pratap, A., Agarwal, S., andMeyarivan, T. (2002). A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation,
6(2):182–197.

Deng, G.-F., Lin, W.-T., and Lo, C.-C. (2012). Markowitz-based portfolio selection
with cardinality constraints using improved particle swarm optimization. Expert
Systems with Applications, 39(4):4558–4566.

Di Gangi, L., Lapucci, M., Schoen, F., and Sortino, A. (2019). An efficient optimiza-
tion approach for best subset selection in linear regression, with application to
model selection and fitting in autoregressive time-series. Computational Optimiza-
tion and Applications, 74(3):919–948.

Di Lorenzo, D., Liuzzi, G., Rinaldi, F., Schoen, F., and Sciandrone, M. (2012). A
concave optimization-based approach for sparse portfolio selection. Optimization
Methods and Software, 27(6):983–1000.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with per-
formance profiles. Mathematical Programming, 91(2):201–213.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306.

Donoho, D. L. and Tsaig, Y. (2008). Fast solution of `1-norm minimization prob-
lems when the solution may be sparse. IEEE Transactions on Information Theory,
54(11):4789–4812.

Drummond, L. G. and Iusem, A. N. (2004). A projected gradient method for vector
optimization problems. Computational Optimization and applications, 28(1):5–29.

BIBLIOGRAPHY 127

Drummond, L. G., Maculan, N., and Svaiter, B. F. (2008). On the choice of parame-
ters for the weighting method in vector optimization. Mathematical Programming,
111(1-2):201–216.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Eichfelder, G. (2009). An adaptive scalarization method in multiobjective optimiza-
tion. SIAM Journal on Optimization, 19(4):1694–1718.

Feng, M., Mitchell, J. E., Pang, J.-S., Shen, X., and Wächter, A. (2013). Complemen-
tarity formulations of l0-norm optimization problems. Industrial Engineering and
Management Sciences. Technical Report. Northwestern University, Evanston, IL, USA.

Fliege, J. (2001). OLAF – a general modeling system to evaluate and optimize the
location of an air polluting facility. OR-Spektrum, 23(1):117–136.

Fliege, J., Drummond, L. G., and Svaiter, B. F. (2009). Newton’s method for multi-
objective optimization. SIAM Journal on Optimization, 20(2):602–626.

Fliege, J. and Svaiter, B. F. (2000). Steepest descent methods for multicriteria opti-
mization. Mathematical Methods of Operations Research, 51(3):479–494.

Fliege, J. and Vaz, A. I. F. (2016). A method for constrained multiobjective optimiza-
tion based on SQP techniques. SIAM Journal on Optimization, 26(4):2091–2119.

Foucart, S. and Rauhut, H. (2013). An invitation to compressive sensing. In A math-
ematical introduction to compressive sensing, pages 1–39. Springer.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics, 9(3):432–441.

Fukuda, E. H. and Drummond, L. G. (2011). On the convergence of the projected
gradient method for vector optimization. Optimization, 60(8-9):1009–1021.

Fukuda, E. H. and Drummond, L. G. (2013). Inexact projected gradient method for
vector optimization. Computational Optimization and Applications, 54(3):473–493.

Fukuda, E. H. and Drummond, L. M. G. (2014). A survey on multiobjective descent
methods. Pesquisa Operacional, 34(3):585–620.

Galvan, G. and Lapucci, M. (2019). On the convergence of inexact augmented La-
grangian methods for problems with convex constraints. Operations Research Let-
ters, 47(3):185–189.

Galvan, G., Lapucci, M., Levato, T., and Sciandrone, M. (2020). An alternating aug-
mented Lagrangian method for constrained nonconvex optimization. Optimiza-
tion Methods and Software, 35(3):502–520.

128 BIBLIOGRAPHY

Gao, J. and Li, D. (2013). Optimal cardinality constrained portfolio selection. Oper-
ations Research, 61(3):745–761.

Ge, D., Jiang, X., and Ye, Y. (2011). A note on the complexity of Lp minimization.
Mathematical Programming, 129(2):285–299.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Gotoh, J.-y., Takeda, A., and Tono, K. (2018). DC formulations and algorithms for
sparse optimization problems. Mathematical Programming, 169(1):141–176.

Gravel, M., Martel, J. M., Nadeau, R., Price, W., and Tremblay, R. (1992). A mul-
ticriterion view of optimal resource allocation in job-shop production. European
Journal of Operational Research, 61(1-2):230–244.

Grippo, L. and Sciandrone, M. (1999). Globally convergent block-coordinate
techniques for unconstrained optimization. Optimization Methods and Software,
10(4):587–637.

Grippo, L. and Sciandrone, M. (2000). On the convergence of the block nonlin-
ear Gauss–Seidel method under convex constraints. Operations Research Letters,
26(3):127–136.

Guillot, D., Rajaratnam, B., Rolfs, B. T., Maleki, A., and Wong, I. (2012). Iterative
thresholding algorithm for sparse inverse covariance estimation. arXiv preprint
arXiv:1211.2532.

Gurobi Optimization, L. (2020). Gurobi optimizer reference manual.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media.

Jörnsten, K., Näsberg, M., and Smeds, P. (1985). Variable Splitting: A New Lagrangean
Relaxation Approach to Some Mathematical Programming Models. LiTH MAT R.:
Matematiska Institutionen. University of Linköping, Department of Mathemat-
ics.

Kanzow, C., Raharja, A. B., and Schwartz, A. (2021). An augmented Lagrangian
method for cardinality-constrained optimization problems. Journal of Optimization
Theory and Applications, pages 1–21.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 129

Konak, A., Coit, D. W., and Smith, A. E. (2006). Multi-objective optimization using
genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–
1007.

Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining convergence
and diversity in evolutionary multiobjective optimization. Evolutionary computa-
tion, 10(3):263–282.

Le Thi, H. A., Dinh, T. P., Le, H. M., and Vo, X. T. (2015). DC approximation
approaches for sparse optimization. European Journal of Operational Research,
244(1):26–46.

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

Li, D. and Sun, X. (2006). Nonlinear integer programming, volume 84. Springer Science
& Business Media.

Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45(1):503–528.

Liuzzi, G., Lucidi, S., Parasiliti, F., andVillani,M. (2003). Multiobjective optimization
techniques for the design of induction motors. IEEE Transactions on Magnetics,
39(3):1261–1264.

Lu, Z. and Zhang, Y. (2013). Sparse approximation via penalty decompositionmeth-
ods. SIAM Journal on Optimization, 23(4):2448–2478.

Lucidi, S., Piccialli, V., and Sciandrone, M. (2005). An algorithm model for mixed
variable programming. SIAM Journal on Optimization, 15(4):1057–1084.

Mairal, J., Bach, F., and Ponce, J. (2014). Sparse modeling for image and vision pro-
cessing. arXiv preprint arXiv:1411.3230.

Malioutov, D. M., Cetin, M., and Willsky, A. S. (2005). Homotopy continuation for
sparse signal representation. In Proceedings.(ICASSP’05). IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, 2005., volume 5, pages v–733.
IEEE.

Mangasarian, O. (1999). Minimum-support solutions of polyhedral concave pro-
grams. Optimization, 45(1-4):149–162.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91.

Markowitz, H. M. (1994). The general mean-variance portfolio selection problem.
Philosophical Transactions of the Royal Society of London. Series A: Physical and Engi-
neering Sciences, 347(1684):543–549.

130 BIBLIOGRAPHY

Miller, A. (2002). Subset selection in regression. CRC Press.

Miyashiro, R. and Takano, Y. (2015). Mixed integer second-order cone program-
ming formulations for variable selection in linear regression. European Journal of
Operational Research, 247(3):721–731.

Mourad, N. andReilly, J. P. (2010). Minimizing nonconvex functions for sparse vector
reconstruction. IEEE Transactions on Signal Processing, 58(7):3485–3496.

Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Jour-
nal on Computing, 24(2):227–234.

Nguyen, T. T., Soussen, C., Idier, J., and Djermoune, E.-H. (2019). NP-hardness of
`0 minimization problems: revision and extension to the non-negative setting. In
13th International Conference on Sampling Theory and Applications, SampTA 2019.

Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol Publishing USA.

Palermo, G., Silvano, C., Valsecchi, S., and Zaccaria, V. (2003). A system-level
methodology for fast multi-objective design space exploration. In Proceedings of
the 13th ACM Great Lakes symposium on VLSI, pages 92–95. ACM.

Pascoletti, A. and Serafini, P. (1984). Scalarizing vector optimization problems. Jour-
nal of Optimization Theory and Applications, 42(4):499–524.

Pellegrini, R., Campana, E., Diez, M., Serani, A., Rinaldi, F., Fasano, G., Iemma,
U., Liuzzi, G., Lucidi, S., and Stern, F. (2014). Application of derivative-free
multi-objective algorithms to reliability-based robust design optimization of a
high-speed catamaran in real ocean environment1. Engineering Optimization IV-
Rodrigues et al.(Eds.), page 15.

Radziukynienė, I. and Žilinskas, A. (2008). Evolutionary methods for multi-
objective portfolio optimization. InProceedings of theWorld Congress on Engineering,
volume 2, pages 1155–1159.

Reed, R. (1993). Pruning algorithms-a survey. IEEE Transactions on Neural Networks,
4(5):740–747.

Rinaldi, F., Schoen, F., and Sciandrone, M. (2010). Concave programming for mini-
mizing the zero-norm over polyhedral sets. Computational Optimization and Appli-
cations, 46(3):467–486.

Ruszczynski, A. (2011). Nonlinear optimization. Princeton university press.

BIBLIOGRAPHY 131

Sun, Y., Ng, D.W. K., Zhu, J., and Schober, R. (2016). Multi-objective optimization for
robust power efficient and secure full-duplex wireless communication systems.
IEEE Transactions on Wireless Communications, 15(8):5511–5526.

Teng, Y., Yang, L., Yu, B., and Song, X. (2017). A penalty PALM method for sparse
portfolio selection problems. Optimization Methods and Software, 32(1):126–147.

Tian, Y., Zhang, X., Wang, C., and Jin, Y. (2019). An evolutionary algorithm for large-
scale sparsemultiobjective optimization problems. IEEE Transactions on Evolution-
ary Computation, 24(2):380–393.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Tillmann, A. M., Bienstock, D., Lodi, A., and Schwartz, A. (2021). Cardinal-
ity Minimization, Constraints, and Regularization: A Survey. arXiv preprint
arXiv:2106.09606.

Virtanen, P., Gommers, R., Oliphant, T. E., and SciPy 1.0 Contributors (2020). SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. NatureMethods,
17:261–272.

Weston, J., Elisseeff, A., Schölkopf, B., and Tipping, M. (2003). Use of the zero norm
with linear models and kernel methods. The Journal of Machine Learning Research,
3:1439–1461.

Xidonas, P., Hassapis, C., Mavrotas, G., Staikouras, C., and Zopounidis, C. (2018).
Multiobjective portfolio optimization: bridging mathematical theory with asset
management practice. Annals of Operations Research, 267(1-2):585–606.

Yin, W., Osher, S., Goldfarb, D., and Darbon, J. (2008). Bregman iterative algorithms
for `1-minimization with applications to compressed sensing. SIAM Journal on
Imaging sciences, 1(1):143–168.

Yu, B., Mitchell, J. E., and Pang, J.-S. (2019). Solving linear programs with comple-
mentarity constraints using branch-and-cut. Mathematical Programming Computa-
tion, 11(2):267–310.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis.
Journal of Computational and Graphical Statistics, 15(2):265–286.

	Contents
	Introduction
	Optimality Conditions for Sparsity-Constrained Optimization Problems
	Preliminaries
	Conditions for Optimality
	A Unified View
	A General Condition: N-stationarity

	Review of State-of-the-art Algorithms
	Iterative Hard Thresholding Method
	Greedy-Sparse Simplex Method
	Regularization Method
	Penalty Decomposition Approach

	A Convergent Inexact Penalty Decomposition Method for Cardinality Constrained Optimization
	An Inexact Penalty Decomposition Method
	Convergence Analysis
	Future Work

	A Derivative-Free Penalty Decomposition Algorithm for Black-Box Sparse Optimization
	A Derivative-Free Penalty Decomposition Method
	Convergence Analysis

	A General Algorithm for Sparsity-Constrained Optimization Problems based on Discrete Neighborhoods
	The Algorithm
	Neighborhood Continuity
	Convergence Analysis
	Convergence Guarantees under Constraint Qualifications
	Concluding Remarks

	Multi-Objective Sparsity-Constrained Optimization: Optimality Conditions and an Algorithmic Approach
	Preliminaries
	The Problem
	Optimality conditions
	A Penalty Decomposition Scheme
	Convergence analysis
	Concluding Remarks

	Computational Experiments
	Benchmark
	Comparison of PD Approaches: Convex Case
	Comparison of PD Approaches: Nonconvex Case
	Sparse Neighborhood Search Performance
	Effectiveness of the Multi-objective PD Scheme

	Conclusions
	On the Relationship Between Stationarity Conditions and KKT Conditions
	Multi-Objective Projected Gradient Descent Method
	Publications
	Bibliography

