
Received: 28 July 2021 | Revised: 16 December 2021 | Accepted: 3 January 2022

DOI: 10.1002/rob.22061

R E S E A R CH AR T I C L E

Sensor‐driven autonomous underwater inspections:
A receding‐horizon RRT‐based view planning
solution for AUVs

Leonardo Zacchini1,2 | Matteo Franchi1,2 | Alessandro Ridolfi1,2

1Department of Industrial Engineering (DIEF),

University of Florence, Florence, Italy

2Interuniversity Center of Integrated Systems

for the Marine Environment (ISME), University

of Genova, Genova, Italy

Correspondence

Leonardo Zacchini, Department of Industrial

Engineering (DIEF), University of Florence, via

di Santa Marta 3, 50139 Florence, Italy.

Email: leonardo.zacchini@unifi.it

Funding information

H2020 EUMarineRobots,

Grant/Award Number: 731103

Abstract

Autonomous Underwater Vehicles (AUVs) are used by the scientific community for

various applications, from collecting well‐distributed high‐quality data to mapping

the seafloor or exploring unknown areas. Nonpredictable environmental conditions

and sensor acquisitions make the design of AUV surveys challenging even for expert

operators. Multiple attempts are required, and the collected data quality is not

guaranteed: The AUV passively stores the sensors' acquisitions that are then ana-

lyzed offline after its recovery. In Forward‐Looking SONAR (FLS) seabed inspections,

the vehicle follows lawnmower paths designed by an expert operator that considers

the sensor characteristics. The performance of FLSs is affected by several en-

vironmental conditions and possible protruding objects. This paper presents a

probabilistic framework for FLS‐based seabed inspections that endow the AUV with

the ability to autonomously conducting the survey and ensure adequate coverage of

the target area. A three‐dimensional probabilistic occupancy mapping system for FLS

reconstructions to update the covered area map was developed. The map is used by

the Coverage Path Planning (CPP) algorithm to evaluate the visibility of the view-

points that are generated as nodes of a random tree. The Next‐Best Viewpoint

(NBV) is selected as the first node in the branch expected to collect more data, and

the path to reach the NBV is computed using the rapidly exploring random tree

(RRT*) algorithm. The sensor‐driven coverage approach is used in a receding‐horizon

manner. The proposed Receding‐Horizon Coverage Approach was validated with

simulations and real prerecorded data. Finally, the framework was used online during

an experimental campaign where several FLS seabed inspections were performed.
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1 | INTRODUCTION

The last two decades of mobile robotics developments have been led

by the increasing demand of scientists, researchers, and industries for

intelligent robots to perform complex tasks and acquire data in ha-

zardous scenarios. In marine applications, marine biologists, arche-

ologists, and geologists have sought systems to expand their ability to

discover and observe the oceans. Autonomous Underwater Vehicles

(AUVs) can carry a wide variety of exteroceptive sensors, ranging

from high‐resolution MultiBeam Echosounders (MBESs) to Side Scan

SONARs (SSSs), Forward‐Looking SONARs (FLSs), SubBottom Pro-

filers (SBPs), optical cameras, and so on. Thus, they met field spe-

cialists' requirements and have become fundamental tools for

collecting high‐quality data to study and understand complex and

dynamic underwater environments.

Consequently, the scientific community has extensively used

AUVs endowed with different payload sets in various applications in

the last years (Wynn et al., 2014). In Larroque et al. (2011), the authors

used an AUV to collect MBES data to characterizing the active tectonic

and gravitational deformation of the northern Ligurian margin, Italy. To

identify mechanisms related to the detachment fault denudation at the

seafloor and investigate the relation between the mass wasting and

the tectonic extension, the authors in Escartín et al. (2017) used the

collected micro bathymetric data and geologic samples acquired by an

AUV and a remotely operated vehicle (ROV), respectively. MBES data

acquired by the Eagle Ray AUV were used in the research work pre-

sented in Mitchell et al. (2018). In detail, the MBES data set was used

to locate and map the hydrocarbon seeps that are evident in the MBES

measurements in Green Canyon Block 600 in the Gulf of Mexico. For

deep‐ocean seafloor investigations, 6000m depth rated AUVs ac-

quired MBES, SSS, and SBP data as reported in Caress et al. (2008) and

Lee and “Tony” George (2004). The collected data allowed geoscien-

tists to analyze the seafloor morphology, the bathymetric changes

associated with sediment transport, gravitational driven failure asso-

ciated features, and ocean bottom‐current activities. Besides, marine

biologists were able to investigate deep‐ocean benthic habitats. Simi-

larly, inTurner et al. (2018), the distribution of the benthic communities

of the Ningaloo Marine Park, Australia, was analyzed using geomor-

phological measurements provided by an MBES device, environmental

data (such as the water temperature, salinity, to mention a few), and

optical images. The exploited data set was acquired in several surveys

conducted by different AUVs. In Schrottke et al. (2006), an AUV able

to acquire high‐resolution photographic, bathymetric, and subbottom

data was used to perform a seismo‐acoustic characterization. An op-

tical delineation campaign of near‐shore benthic habitat was reported

in Moline et al. (2007). The exploited AUV was equipped with multi-

spectral radiometers and optical cameras; the results demonstrated

AUVs' ability to map littoral habitats at high resolution and proved

their fundamental role in collecting high‐quality data for science users.

Marine vehicles were also employed for water‐quality monitoring, and

observation of fish behavior in net cage fish farming (Karimanzira

et al., 2014), where collecting data over large areas is of utmost

importance.

Finally, AUVs found extensive use in seabed inspections. In these

tasks, the vehicle is used to collect optical as well as acoustic images,

using cameras and imaging SONARs. Then, the data could be used for

underwater surveillance purposes (Terracciano et al., 2020), where

image processing techniques and modern Deep Learning (DL)

methodologies can accurately find targets of interest (see Jin

et al., 2019; Zacchini, Franchi, et al., 2020; Zacchini, Ridolfi, Topini,

et al., 2020), and for archeological investigations, where optical

(Allotta, Costanzi, et al., 2016) and acoustic reconstructions (Franchi

et al., 2018) emerged as an essential tool to correctly classifying

historical finds.

The aforementioned case studies' analysis highlights the science

users (e.g., archeologists, oceanographers, and biologists) and navy

personnel necessity for robots for collecting high‐quality data to

analyze and study an area of interest. Science users cooperate with

technicians to plan AUV surveys, often using lawnmower or zig‐zag

paths, to acquire well‐distributed and representative data. Generally

speaking, despite the different scopes and sensors used, the surveys

are designed so that the more the area covered, the better the data

collected. Thus, the better the area characterization.

Nowadays, AUVs passively store the data that are then analyzed

offline after their recovery, meaning that exteroceptive sensor

feedbacks are not used during the mission. Since environmental

conditions cannot be forecasted, and the sensor characteristics affect

the quantity and the quality of the collected data, it implies many

mission replanning and repeated attempts, increasing the total cost of

exploration and monitoring campaigns. This is especially the case of

FLS‐ and SSS‐based seabed inspections. The seafloor morphology

and composition, as well as object shapes and positions, affect the

performance of such acoustic devices. Consequently, designing off-

line AUV paths that ensure satisfying coverage of the area is chal-

lenging and requires time and experienced operators.

Coverage Path Planning (CPP) strategies represent an excellent

solution. Sensor‐driven algorithms can actively consider sensor

feedbacks and environmental information; they can monitor the

quality and quantity of acquired data and guarantee adequate cov-

erage levels or exploration goals, avoiding repeated missions. Since

the problem of computing a path that optimally covers an area of

interest with a sensor is common to many robotic domains, several

CPP methodologies for Unmanned Ground Vehicles (UGVs), Micro

Aerial Vehicles (MAVs), and AUVs have been proposed in the last

years. Generally speaking, the authors developed solutions to enable

the robot to calculate the shortest route online through unknown

areas to create occupancy maps and acquire the necessary data,

requiring various sensor sets.

This study describes a coverage framework composed of a

planning and a mapping module, tailored for AUVs to accomplish

FLS‐based seabed inspections, but that can be extended to any ex-

teroceptive sensor. A receding‐horizon sensor‐driven coverage

methodology based on random trees, which enables an AUV to au-

tomatically acquire well‐distributed and representative data over an

area of interest, is proposed and used in the planning module. It uses

a three‐dimensional (3D) probabilistic occupancy mapping system for
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FLS reconstructions to compute the AUV viewpoints. This latter

module uses FLS imagery and employs a machine learning segmen-

tation technique to create and update the environment's occupancy

map during the vehicle mission. It allows the planning module to

correctly select the Next‐Best Viewpoint (NBV) by evaluating tree

nodes' visibility according to the map. Therefore, the AUV actively

considers the sensor feedbacks during the mission and can guarantee

adequate coverage of the area of interest. The here proposed fra-

mework was validated and tested on FeelHippo AUV (Allotta

et al., 2017), a compact AUV developed by the Department of In-

dustrial Engineering of the University of Florence (UNIFI DIEF). First,

it was validated through an extensive set of realistic experiments

made by means of the Unmanned Underwater Vehicle Simulator

(UUV Simulator; Manhães et al., 2016) and real data recorded during

sea trials performed with FeelHippo AUV. Then, an experimental

campaign to demonstrate the effectiveness of both the mapping and

planning methodologies was conducted; the results are reported and

discussed.

This article remainder is organized as follows: Section 2 details

paper's contribution and reviews related state‐of‐the‐art works,

whereas Section 3 describes the considered problem and presents

the preliminaries of path planning and 3D mapping. Section 4 is

dedicated to the description of the proposed paradigm. In particular,

it reports the developed framework and describes in detail the 3D

FLS‐based probabilistic occupancy mapping system and the coverage

methodology. In addition, Section 4 provides an analysis of the

coverage solution with a theoretical investigation concerning the

performance of different formulations. In Sections 5 and 6 the vali-

dation and the experimental results are reported and analyzed. Fi-

nally, Section 7 summarizes the presented research and discusses

future works.

2 | BACKGROUND AND PAPER
CONTRIBUTION

This section highlights the main characteristics of the here proposed

strategy and reports related works that inspired this study. First of all,

the contributions of this paper are described, then state‐of‐the‐art

and innovative solutions for coverage and exploration tasks are

presented. Lastly, previous mapping‐related works are reviewed.

2.1 | Contribution

This paper investigates the development of a sensor‐driven coverage

framework that endows an AUV with the ability to autonomously

conducting an inspection survey and ensures adequate coverage of

the target area. In the underwater domain, state‐of‐the‐art inspection

missions are represented by preplanned surveys, such as lawnmower

and zig‐zag paths, where the AUVs passively store the collected data.

Such paths can be optimized by considering the utilized sensor

characteristics, but environmental conditions cannot be forecasted,

and thus, they do not guarantee the acquisition of data over the

entire area of interest and could lead to repeated attempts. In the last

years, some solutions to overcome these limitations have been pro-

posed. However, as reported in Section 2.2, such CPP solutions were

developed for Mine Counter Measure (MCM) applications and only

considered as feedback the presence or absence of an object.

Solutions for inspections of underwater structures or exploration of

unknown areas could seem reasonable. Still, they either rely on a

prior map or end up being a greedy strategy when it comes to CPP

applications. As the aerial domain is concerned, some remarkable

solutions, which could inspire an AUV tailored CPP solution, have

recently been presented, but to the best of authors' knowledge, their

exploitation has not been investigated by the marine community yet.

Therefore, this study paper aims at investigating, for the first

time to the best of the authors' knowledge, the use of the recent

advancements in the aerial domain for developing an underwater

framework that can guide an AUV toward autonomous inspection

surveys. The authors have sought a solution that overcomes the

drawbacks of the previously mentioned approaches; that is, it does

not require a prior map; it uses the expected benefit of more actions

than just one, that is, does not turn into a greedy approach that leads

to longer paths, and can replan online the mission by considering as

feedbacks the covered area and not only the presence or absence of

objects.

The AUV tailored FLS‐based inspection framework presented

here, suitable for any acoustic or optical sensor, which extends and

fuses the short works presented in Franchi, Bucci et al. (2020) and

Zacchini, Ridolfi, and Allotta (2020), was developed for ensuring that

the entire seabed of the area of interest is enlightened by an FLS,

which is particularly useful for objects of potential interest searching

surveys (Terracciano et al., 2020; Zacchini, Franchi, et al., 2020),

acoustic mosaicing (Franchi et al., 2018), and so on. In detail, a

probabilistic 3D occupancy mapping methodology, based on the re-

search work presented in Franchi, Bucci et al. (2020), was integrated

with the here presented coverage planning framework, which dee-

pens the solution described in Zacchini, Ridolfi, and Allotta (2020).

The overall framework and the results reported in this paper are

novel and were not presented previously. First, the innovative 3D

probabilistic occupancy mapping system for FLS reconstructions is

described. It uses machine learning segmentation techniques on

acoustic images to generate a 3D point cloud of the seafloor and

protruding visible objects, overcoming the information loss that oc-

curs during the 3D to 2D image projection. It is worth highlighting

that this mapping module was developed to provide feedback to the

planning module on the area covered by the utilized imaging SONAR,

that is, the enlightened seabed, and not for creating an accurate

reconstruction.

The CPP methodology presented here is based on a two‐level

planning paradigm that allows using different planning policies and

cost functions for each level. A CPP algorithm was designed for the

high‐level planner. It grows random trees considering the vehicle

kinematic using the Dubins constraints and evaluates the tree nodes

according to the updated occupancy map and information metrics.
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At each iteration, the best branch is selected, and only the first node

becomes the NBV that is sent to the motion planner, which computes

the feasible shortest path to lead the AUV to the NBV by utilizing the

rapidly exploring random tree (RRT) algorithm. The process is re-

peated in a receding‐horizon manner, similar to the control theory

that helps to reduce the coverage errors. In the context of this study,

a rewiring strategy for the CPP algorithm to find for each new

viewpoint candidate the best parent is proposed. Besides, a com-

parison of volumetric information gain (IG) metrics, along with a

theoretical analysis, for underwater coverage tasks, is reported.

In conclusion, the main contributions of this paper are:

• An innovative probabilistic 3D map representation for FLS‐based

reconstructions that uses machine learning segmentation techni-

ques and linear interpolation over the visible object profile.

• A sensor‐driven Receding‐Horizon Coverage Approach (RHCA)

that uses a random trees‐inspired algorithm. The coverage algo-

rithm uses the created map to evaluate the randomly generated

tree node and selects the NBV. The effect of the rewiring process

in tree growing is evaluated.

• A mathematical formulation of the developed coverage algorithm

and a theoretical analysis of the effects of the exploited volumetric

information (VI) formulation.

• A benchmark of IG metrics for AUVs 3D coverage tasks. The CPP

algorithm was tested with a volume‐based and an entropy‐based

gain metric. The comparison results are reported and discussed. As

far as the authors know, this is the first study of IG metrics for

coverage tasks in the underwater domain.

• Interesting results of an experimental campaign, conducted to

assess the performance of the proposed RHCA in real sea trials,

are reported and analyzed.

2.2 | Related works on planning and coverage

The CPP task is integral to several robotic applications and domains. CPP

algorithms have to compute a feasible path for the robot using simple

motion trajectories (Cao et al., 1988) that are optimal, according to spe-

cific criteria, such as the path length or the total time to complete the

coverage mission. According to Choset (2001) and Galceran and Carreras

(2013), CPP algorithms are classified as offline, which requires full prior

knowledge of the environment and relies on stationary information, and

online, as they consider the sensor feedback. Offline algorithms are built

on assumptions that might be unrealistic in many scenarios, as the un-

derwater domain, where the conditions change continuously and rapidly,

affecting both optical and acoustic payload sensors' performance. On the

other hand, online strategies, also called sensor‐based or sensor‐driven,

can deal with changing or unknown environments by considering as

feedbacks the sensor measurements and reacting to the perceived en-

vironment. In this study, the problem of collecting FLS data over an area

of interest, that is, FLS‐based inspection, is considered, and since AUVs

are commonly used in unknown areas where a prior map is not available,

the focus has shifted to online algorithms.

In the context of underwater robotics, the CPP problem is a

typical dual‐use topic and was considered, for instance, for MCM

applications and also extended to exploration tasks.

An online approach for SSS seabed coverage for MCM was

proposed in Paull et al. (2012). The AUV employed a multiobjective

optimization that combines information theory with the concept of

branch entropy to compute the heading reference. The branch en-

tropy was proposed to overcome the limitations of the IG, which is a

useful tool for calculating the potential next moves' expected bene-

fits. Still, it is not sufficient to achieve global goals when there is

incomplete prior knowledge about the environment. In fact, it

becomes a greedy‐first search when applied to coverage tasks that

could limit sensor‐driven methods performance. The AUV performed

constant altitude surveys in an equal‐sized hexagon cell decomposed

workspace. The MCM problem was also tackled in Williams et al.

(2016), where a two‐phase solution for adapting the survey to re-

inspect potential targets was presented. These methods, however,

are limited to MCM or object hunting applications since they consider

as a measurement the belief about the presence or absence of an

object at a location.

Inspections of underwater structures have carried the develop-

ment of the research described in Galceran et al. (2014). The authors

proposed a planning algorithm to compute the inspection path and a

guidance strategy that uses the data perceived during the mission to

adapt the vehicle trajectory to the terrain. For a similar application, in

Palomeras et al. (2018), an algorithm that uses a prior map to cal-

culate the minimum number of viewpoints that provide the maximum

amount of information was presented. Then, a trajectory that guides

the AUV through the computed viewpoints is computed by solving a

Traveling Salesman Problem (TSP). However, to calculate the initial

inspection mission, these strategies need a prior map, meaning that

either it was available or the AUV had to perform a presurvey to

gather a preliminary bathymetric map of the area.

To carry out underwater exploration in 3D unknown environ-

ments, Vidal and colleagues developed a two‐layer planning system

that considers optical and acoustic data to select the viewpoints

(Vidal et al., 2020). The environment was represented with a cubic

cell‐based map, where each cell was labeled according to multisensor

measurements. Acoustic data, provided by a multibeam SONAR,

were used to determine whether a cell was occupied or not, while an

estimation of the camera Field Of View (FOV) marked the cells as

viewed. The view planner utilized the map to compute range and

camera candidates deterministically. Then the viewpoints were gen-

erated along the surface normal at a distance determined by the

sensor parameters (range and FOV). To select the best viewpoint,

candidates were evaluated according to a metric function that used

the distance between the robot and the viewpoint and the orienta-

tion difference. The selected NBV was sent to the motion planner

layer, responsible for computing a safe and feasible path to lead the

AUV to the viewpoint. To this end, the asymptotic optimal ⋆RRT

algorithm (Karaman & Frazzoli, 2011) was employed. Outstanding

results were reached both in simulations and in real sea trials; the

Girona 500 AUV, used as a testing platform, managed to explore
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challenging unknown scenarios. Nevertheless, the view planner

computed the NBV among the Frontier Points (FPs), that is, points in

the regions between known and unknown spaces. Moreover, it re-

quires a heuristic for deterministically selecting the viewpoint can-

didates. This strategy is the right approach for exploration tasks, but

it limits the performance of CPP algorithms. De facto, it ends up

being a greedy search strategy and leads to longer paths for adequate

coverage levels in CPP applications.

In the context of 3D object reconstructions, it is possible to find

several similarities with the CPP problem considered in this study

work. In this context, researchers considered the problem of selecting

the NBV to perform an active volumetric 3D reconstruction of an

object with a camera attached to a mobile robot (Kriegel et al., 2015;

Vasquez‐Gomez et al., 2014). In Delmerico et al. (2018), which ex-

tends the work of Isler et al. (2016), an analysis of volumetric IG

metrics is proposed. The voxels' entropy was used to consider the

volumetric map uncertainty in the NBV selection criteria. In this pa-

per, the voxels' entropy idea and the information metrics, shown in

the works mentioned above, were considered. However, as for FP

methods, considering only the next‐best action makes those ap-

proaches greedy.

Finally, the coverage methodology proposed in this study was

inspired by the strategies presented in Papachristos et al. (2017) and

Bircher et al. (2018), where MAVs used novel path planning methods

to explore unknown 3D spaces with a camera. Random trees were

expanded in the free space. Each node of the tree represented a

viewpoint that was evaluated according to the amount of unmapped

space visible from the viewpoint. The best branch in the constructed

tree was selected. Then, only the first viewpoint was executed

(becoming the NBV), and the process was repeated in a receding‐

horizon manner. By considering the Branch Information Gain (BIG),

these methods predicted the effects of more actions than just one

and overcame the limitations of the IG method in unknown en-

vironments. Besides, random trees have the nonnegligible advantage

of being able to implement nonholonomic constraints conveniently

and can run onboard in real‐time on small robots with limited com-

putational capability. These methodologies were developed for the

aerial domain for carrying out autonomous explorations with MAVs.

To the best of the authors' knowledge, such random tree‐based

strategies have not been extended to the underwater domain yet.

This paper investigates the use of receding‐horizon sensor‐driven

random tree‐based approaches for AUV coverage tasks. The here

presented solution enables an AUV to autonomously inspect an un-

known area and, by actively considering the sensor feedbacks,

guarantees satisfying coverage levels. For the ease of the reader,

Table 1 summarizes the solutions described in this section.

2.3 | Related works on mapping and FLS mapping

During the last decades, due to the favorable property of acoustic

propagation in the underwater environment, acoustic devices have

emerged as a strong alternative in underwater sensing. Indeed,

optical devices (e.g., optical cameras; Johnson‐Roberson et al., 2017;

Massot‐Campos & Oliver‐Codina, 2015) or LASER‐based solution

(Palomer et al., 2019), even if unquestionably worth, lay themselves

open to water conditions. In fact, it is well known that turbidity,

sediment, and lighting conditions pose relevant issues to such de-

vices' operation, thus jeopardizing underwater sensing.

In the following, the main contributions related to acoustic

mapping1 will be outlined.

Concerning acoustic devices, a first classification can be made

basing on the nature of the produced output (Ribas et al., 2010). In

particular, ranging SONAR is echosounder, MBES, and pencil‐beam

SONAR, whereas imaging SONAR is FLS, Mechanically Scanned

Imaging Sonar (MSIS), SSS, and Synthetic Aperture SONAR (SAS). For

the sake of completeness, 3D SONAR solutions composed of a matrix

array are available in the market (Davis & Lugsdin, 2005). However,

they are typically tailored for large‐scale vehicles.

This study is focused on imaging sensors, particularly FLSs, which

can carry relevant benefits to the authors' best opinion. Indeed, they

enable the coverage of a large portion of water, thus leading to sig-

nificant scene acquisition and understanding. Moreover, it is the

authors' conviction that the marine robotics community could obtain

significant advantages with an FLS‐based architecture. Most im-

portantly, a single FLS can be used for several tasks. From sonograms

acquisition and DL‐based Automatic Target Recognition (ATR) appli-

cations (Valdenegro‐Toro, 2016; Valdenegro‐Toro, 2017; Zacchini,

Franchi, et al., 2020; Zacchini, Ridolfi, Topini, et al., 2020), navigation

(Franchi, Ridolfi, & Allotta, 2020; Franchi, Ridolfi, & Pagliai, 2020;

Westman & Kaess, 2019b; Henson & Zakharov, 2018;

Negahdaripour, 2013), 2D mosaicing (Ferreira et al., 2015; Franchi

et al., 2018; Hurtós et al., 2015; Hurtós, Nagappa, et al., 2013), to

mapping (Aykin & Negahdaripour, 2016a; Franchi, Bucci, et al., 2020;

Guerneve et al., 2018; Kim et al., 2018; Ozog et al., 2015). Currently,

different dedicated devices are employed for the above‐mentioned

applications. However, as far as costs and carrying capabilities are

major constraints (i.e., smaller AUVs or, generally speaking, UUVs),

multipurpose devices could be a promising approach. Furthermore,

when FLSs are compared with MSISs, distortions related to the ve-

hicle motion do not occur because of their high refresh rate. Similarly,

compared with SSSs, combining returned acoustic echoes to produce

an artifact of the insonified scene is not necessary, since FLSs can

directly render a 2D image. Last, SAS‐basaed solutions require ac-

curate navigation, sophisticated signal processing strategies, and

constrained path motions.

Undoublty, employing FLSs as other wide‐aperture imaging

SONARs, poses relevant issues on recovering the 3D scene

appearance from 2D images, as will be detailed in the following.

Concerning FLSs‐based mapping frameworks, the differences

among the approaches can sometimes be subtle but remarkable.

Consequently, a detailed overview of the most promising and well‐

known approaches is listed in the following. In the treatment, specific

1In this context, mapping is intended as the 3D reconstruction of underwater scenarios by

means of acoustic devices.
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differences will be pointed out, and particular emphasis will be given

to highlight, in the context of this study's application, pros, and cons

of each one.

A first classification can be made basing on how the map is

generated; in particular, map with known poses and map with unknown

poses represent two distinct approaches. In the former, poses are

assumed to be precisely known (or known with sufficient accuracy),

whereas, in the latter, the problem of computing robot pose and map

is solved together. This study can be categorized under the former

class and a thoughtful illustration is detailed in Table 2. In contrast, a

brief description of the others is presented at the end of the section.

Moreover, a novel line of work of Sodhi et al. (2019), Ho et al. (2018),

and Pairet et al. (2020) based on the OctoMap framework tries to

provide a unique map representation useful both localization, under

the Simultaneous Localization And Mapping (SLAM) paradigm, and

planning. Nevertheless, this is not the core of this study.

Concerning map with unknown poses, which typically resorts to

feature‐based SLAM, references can be found in Huang and Kaess

(2015), Shin et al. (2015), Mai et al. (2017), J. Li et al. (2018), Wang, Shan

et al. (2019), and Westman and Kaess (2020), where tests are conducted

either in controlled environments (Shin et al., 2015; Wang, Shan,

et al., 2019), or offline (J. Li et al., 2018; Westman & Kaess, 2020). In Mai

et al. (2017) feature points are manually selected.

3 | PRELIMINARIES AND PROBLEM
FORMULATION

3.1 | FLS, mapping, and OctoMap preliminaries

A generic vector ∈ p 3 and expressed in a frame O x y z{ }0 0 0 0 will be

denoted with p0 . A generic rotation matrix ∈R SO(3), with

∈ ⊤R RR I, =6
6 (I6 is the 6× 6 identity matrix) and Rdet( ) = 1, will be

indicated with three indices Rk i
j, where Rk i

j is an operator that maps

(rotates) unit vectors of the frame O x y z{ }j j j j in unit vectors of the frame

O x y z{ }i i i i , both expressed in the frame O x y z{ }k k k k . The situation is de-

picted in compact form as

( )( )R R R= ,k
i
k k

i
j k

j
k

(1)

where the columns of Rk i
k and Rk j

k are the projections of the unit

vectors of the frame i in the frame k and of the frame j in the frame k ,

respectively. Given a generic Rk i
j, if k j= , the three‐indexes notation

could not be employed R R( =j
i
j

i
j). In compact notation, a general pose

can be represented with a transformation matrix T , a matrix member

of the special Euclidean group in 3:

∈ ∈ 





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reference frame whose axes point, respectively, North, East, and Down

(NED) O x y z{ }NED NED NED NED , and the other, attached to the vehicle, de-

noted as O x y z{ }b b b b (Zacchini, Calabrò, et al., 2020). See Fossen (1994) for

further information. In the following, superscript N will denote a quantity

in the NED frame, whereas b will describe a quantity in the body one.

Concerning the FLS, let us consider a right‐handed reference

frame O x y z{ }FLS FLS FLS FLS located on the FLS center whose the x‐axis is

directed forward and the z‐axis is pointed down. The overall situation

is depicted in Figure 1.

A generic 3D point ∈ P 3 with a Cartesian representation in the

FLS coordinate system ⊤P X Y Z= [ , , ]FLS , possesses the following

spherical coordinates ⊤R α β[ , , ]→ , where R→ is the FLS delivering

range, α is the azimuth angle, and β is the elevation angle. The fol-

lowing relations hold:

TABLE 2 Mapping with known poses state‐of‐the‐art

Category References Approach Remarks

Map with
known
poses

Cho et al. (2017) and Kim
et al. (2019)

Scanning strategy to obtain
3D mapping via 3D
point cloud generation

The generated output is a point cloud, which is not memory‐efficient
and not able to disambiguate among occupied/free or not visited
areas (which represent a fundamental feature for robotic systems

during coverage and exploration in an unknown environment) nor
to fuse multiple observations probabilistically

Aykin and Negahdaripour

(2015, 2016a)

Space carving The reconstruction of small 3D objects is addressed in simulation and

experimentally. The proposed solution appears not suitable for
planning purposes

Guerneve et al. (2018) Generative sensor model
Space carving

Remarkable reconstruction of medium‐sized objects (on the order of
meters) both in simulation and real environment. However, the

vehicle must be moved along the direction of uncertainty (SONAR
vertical aperture). Moreover, the approach appears not to be easily
scalable and unsuitable for online approaches and planning
purposes

Aykin and Negahdaripour
(2013a, 2016b)

Generative sensor model Estimation of the elevation angle of each pixel in a SONAR image to
exactly reconstruct the interior points of an object. The method is
constrained to the scenario of objects lying on the seafloor and the

target surface. However, even if the method shows promising
results for small‐scale target with accurate reconstruction, to the
authors' best opinion, it would put an overhead for the problem at
hand (being detailed surface reconstruction not necessary)

Westman and Kaess (2019b) Generative sensor model Improvement of the solution presented in Aykin and Negahdaripour

(2013a, 2016b), the same drawbacks are still valid here

Westman et al. (2020) Non‐Line‐Of‐Sight (NLOS) To the authors' best knowledge, it represents the most novel line of
work, and it provides impressive reconstructions. However, the

involved optimization procedure puts relevant issues on online
large underwater scene representation

E. Hernández et al. (2009) Occupancy grid mapping The method is applied to Mechanically Scanned Imaging SONAR
(MSIS) data; however, 2D reconstruction only is involved

Wang et al. (2018) and
Wang, Ji et al. (2019)

Occupancy grid mapping A probabilistic 3D occupancy mapping framework is presented, where
the OctoMap library (Hornung et al., 2013) is employed. However,
the Inverse Sensor Model (ISM) is not specifically tailored for FLS

(as in this study) and, moreover, the algorithm is not tested in large‐
scale scenarios

J. D. Hernández et al. (2019) Occupancy grid mapping How to build a 3D scene from wide‐aperture imaging SONAR (here an
MSIS is employed) is not fully detailed

Vidal et al. (2020) Occupancy grid mapping Multisensor (optoacoustic) mapping. However, concerning the
acoustic part, a profiling SONAR is employed

Franchi, Bucci et al. (2020) Occupancy grid mapping The authors present an FLS‐based probabilistic 3D occupancy

mapping framework tailored explicitly to AUVs, which is the
foundation of the hereby presented mapping framework. The
mapping layer takes advantage of the OctoMap library (Hornung
et al., 2013)

Abbreviations: 3D, three‐dimensional; FLS, Forward‐Looking SONAR.
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FLS
→

→
2 2 2

−1

−1 2 2

(3)

FLSs are active devices, that is, they propagate sound pressure waves

that are reflected by the insonified targets and recorded by the device. In

particular, the transmitted pings are composed of beams that span along

the FLS FOV, see angle α, with fixed elevation angle aperture, bounded

by β β[ ; ]min max (the overall width is usually 7°–20°). For each beam of the

FLS, at every range interval, the measured average power, as a function of

R→ and α produces the intensity value of the correspondent pixel in the

final FLS image, natively in the polar domain. Because of the image

generation process, the originated FLS image at a particular range and

beam value cannot keep track of the origin of the reflected echo along

the elevation aperture (Hurtós et al., 2015). Therefore, this process poses

ambiguity when a 3D scene needs to be reconstructed from single 2D

images. In other words, the 3D representation of the scene from 2D

images is an ill‐posed inverse problem (Aykin & Negahdaripour, 2013a;

Guerneve et al., 2018).

As detailed in Section 2.3, it is assumed that the robot pose is

completely known (or known with sufficient accuracy) and more in-

formation concerning the navigation strategies developed by the UNIFI

DIEF are detailed in authors' previous works Costanzi et al. (2016),

Allotta, Caiti, Costanzi et al. (2016), and Franchi, Ridolfi, and

Allotta (2020).

The employed mapping strategy resorts to the occupancy grid

mapping paradigm (Burgard et al., 2005). Born as a robust re-

presentation of the surrounding environment, occupancy grid

mapping (Moravec & Elfes, 1985) has encountered several marine

robotics applications in the context of collision checking and ob-

stacle/collision avoidance (Youakim et al., 2020), mapping

(Franchi, Bucci, et al., 2020; Teixeira et al., 2016), planning

F IGURE 1 NED frame, body frame, and FLS frame representation. FLS, Forward‐Looking SONAR; NED, North, East, and Down [Color figure
can be viewed at wileyonlinelibrary.com]

(J. D. Hernández et al., 2019; Vidal et al., 2020), and navigation with

planning (Ho et al., 2018; Pairet et al., 2020; Sodhi et al., 2019).

Given the robot pose ⋅x ( ), and the set of measurement ⋅z ( ), up to the

time t as z t1: , occupancy grid tries to infer the map m from such ob-

servations. Here, the notation ⋅( ) t1: indicates the set of data from time 1 to

time t, where t ≥ 1. In the following, for the sake of brevity, the de-

pendence on the poses will be omitted. The classic occupancy grid theory,

as exploited in the hereby presented work, employs the following

assumptions:

• The grid cells mi that partitions the 2D or 3D domain, such as

m m= ∑i i, are considered as independent. As a consequence, the

problem of estimating m is divided into independent subproblems.

Intentionally, to make the problem tractable, dependencies among

neighboring cells are explicitly not considered.

• The Markovian assumption  p z m z p z m( , ) = ( )t i t t i1: −1 is employed,

where ⋅ ⋅p ( ) represents the conditional probability. Arguably, this re-

presents the most significant assumption that can lead to incon-

gruency in the map construction, see Burgard et al. (2005).

In the Bayesian context, the update law becomes:










p m z

p m z

p m z

p m z

p m z

p m z

p m

p m

( )

1 − ( )
=

( )

1 − ( )

( )

1 − ( )

1 − ( )

( )
.

i t

i t

i t

i t

i t

i t

i

i

1:

1:

inverse sensor model

1: −1

1: −1

recursive term prior

        

(4)

As first suggested by Moravec (1989), given log‐odds ratio ⋅l ( ), where

⋅
⋅

⋅
l

p

p
( ) = log

( )

1 − ( )
, (5)

an elegant and numerically efficient update formulation for the

occupancy grid problem can be obtained:

  l m z l m z l m z l m( ) = ( ) + ( ) − ( ).i t i t i t i1: 1: −1 (6)
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The term p m z( )i t is called the Inverse Sensor Model (ISM) and will be

detailed in Section 4.2. In this study, OctoMap (Hornung et al., 2013)

has been used as a tool to develop the 3D probabilistic occupancy

mapping solution. OctoMap is a well‐known and efficient open‐

source C++ library, ubiquitous in probabilistic robotics, for probabil-

istic map representation; it permits to model free free, occupied

obst, and unmapped uk areas, which is fundamental for planning

and exploring in unknown environments. Basically, OctoMap can deal

with distance‐like sensor fusing measurements into a voxel re-

presentation, where the information is stored in an octree data

structure. The main part of the octree is the node, which represents

the space contained within a cubic volume, usually known as a voxel.

Recursively, the volume is divided into eight (equally dimensioned)

parts, and the procedure stops whenever a minimum size is reached.

More information can be found in Hornung et al. (2013) and the

references therein.

In addition to the solution presented in Equation (6), OctoMap, in

its standard version, employs the noninformative prior assumption

p m( ) = 0.5i , which is reasonable when mapping in completely un-

known environments. Moreover, the clamping update policy (Yguel

et al., 2008) is used, leading to

  l m z l m z l m z l l( ) = max(min( ( ) + ( ), ), ),i t i t i t1: 1: −1 max min (7)

where ∈ lmin
+ and ∈ lmax

− are the lower and upper bound on the

log‐odds value, respectively.

3.2 | Motion planning formulation

The motion planning problem is defined as the problem of com-

puting safe and feasible paths that the vehicle can track according

to its kinematic (or dynamic) constraints. Mathematically, given

an initial configuration ξinit, that is, the vehicle pose, a target

configuration ξgoal that defines the goal region goal, that is, a ball

centered in ξgoal with a predefined radius; defined the workspace

, the obstacle region obs, and denote the obstacle‐free space

as ⧹=free obs, a feasible path problem, denoted as

ξ ξ( , , )free init goal , is defined as the task of finding a path

σ : [0, 1] → free such that σ ξ(0) = init and ∈σ (1) goal. The com-

puted path σ belongs to the obstacle‐free space free and has to

be feasible, which means it must be compliant with the vehicle

kinematic (or dynamic) constraints. Moreover, given the set of all

paths Σ and a cost function ⩾c : Σ → 0, the optimality problem

of path planning asks for finding a feasible path ⋆σ such that
⋆c σ c σ σ( ) = min( ( ) : is feasible) (Karaman & Frazzoli, 2011).

Motion planning algorithms tackle this problem and find a path

that satisfies the described requirements. In the context of this study

work, a motion planner is used to compute the shortest path that

leads the vehicle to the goal configuration; thus, it utilizes the path

length as a cost function. However, it is worth noting that the mul-

tilevel planning paradigm here considered allows using any admissible

cost function.

The here proposed framework was designed to run onboard on

compact AUVs. The asymptotic optimal ⋆RRT (Karaman &

Frazzoli, 2011) has been proven to efficiently explore the workspace

while taking the motion constraints into account. It was tested in the

underwater domain for AUV onboard solutions (J. D. Hernández

et al., 2019), showing satisfying results. Therefore, the ⋆RRT algo-

rithm with the Dubins kinematic constraints was selected as the

motion planner.

3.3 | Coverage planning preliminaries
and IG metrics

Although several strategies for motion planning tasks have been

proposed, and sampling‐based algorithms have become state‐of‐the‐

art for unknown environments, the coverage problem is still an open

point in the academic and industry market. In a two‐level planning

paradigm, the high‐level planner (also called view planner) tackles this

problem. This study focused on developing a sensor‐driven coverage

solution that enables the robot to carry out FLS seabed inspections of

an unknown area. Such surveys are typically conducted with the AUV

navigating through preplanned waypoints, flying at a constant depth

or at a constant altitude from the seafloor. To overcome the limita-

tions of preplanned paths and make the AUV aware of the gathered

data, the high‐level planner has to compute iteratively online the next

waypoint to map the unknown area. In this study, the AUV is sup-

posed to perform a constant altitude mission; thus, the coverage

algorithm was designed to compute the next waypoint constituted of

a 2D position x y( , )N N in the NED frame and orientation ψ( ), which

represents the vehicle heading angle. From these considerations, a

robot viewpoint (or configuration) is defined as ∈ξ Ξ, with

ξ x y ψ= ( , , )N N , and the considered problem is the following: com-

puting online the best path according to a cost function, that let the

AUV map the workspace , that is initially unknown =uk , and

classify it as free free or occupied obs. The occupancy map

paradigm, described in Section 3.1, is employed to determine the

NBV and monitor the coverage progresses. Consequently, the cov-

erage algorithm solves the problem of computing the waypoints that

allow one to estimate m m= ∑i i.

Using the occupancy mapping strategy (Section 3.1), the visibility

of a viewpoint ξ is defined as the set of visible voxels that are

computed through a ray‐casting process. The sensor characteristics

define the set of rays ξ for every viewpoint; each ray ends when it

reaches the maximum sensor range or the limit of the map or it hits

an occupied voxel. Traversing the map, a ray visits a set of voxels r .

The obtainable IG from a viewpoint, denoted as ξ is estimated as

(Delmerico et al., 2018)

∀ ∈ ∀ ∈

∑ ∑ I x= ( ),ξ
r xξ r

(8)

where I x( ) denotes the VI contained in the voxel x .

In this paper, a comparison of IG metrics for seabed inspections

is reported. In particular, two VI formulations were considered:
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the first one, denoted as volume‐based VI in the following,

considers the volume of unmapped cells, while the second one, called

entropy‐based VI, uses the concept of entropy to take into

account the map uncertainty. Similarly to Bircher et al. (2018),

when exploiting the volume‐based VI, viewpoints' IG is

computed by considering only the volume of unmapped cells,

yielding to

∈


I x
μ x x

( ) =
( ) if ,

0 otherwise ,
v

uk
(9)

where μ x( ) denotes the volume of the voxel. As described in

Section 3.1, OctoMap was used to develop the 3D probabilistic

occupancy mapping solution, and since it employs the non-

informative prior assumption, the VI can be written as




I x
μ x δ P x δ

( ) =
( ) if 0.5 − ≤ ( ) ≤ 0.5 + ,

0 otherwise ,
v

o
(10)

where P x( )o is the voxel probability of being occupied, and δ is a

parameter that depends on the mapping sensor accuracy.

Moreover, the occupancy grid mapping paradigm allows con-

sidering the map uncertainty easily. Assumed P x P x¯ ( ) = 1 − ( )o o , an

entropy‐based VI formulation can be defined:

I x P x P x P x P x( ) = − ( ) ln ( ( )) − ¯ ( ) ln ( ¯ ( )).e o o o o (11)

Utilizing this VI formulation, the highest uncertainty matches un-

known voxels, that have the occupancy probability of P x( ) = 0.5o .

4 | COVERAGE FRAMEWORK FOR
SEABED INSPECTIONS

The developed RHCA framework for seabed inspections is described

in this section. First, the framework structure and implementation

details are reported. Then, the FLS mapping strategy is discussed.

Finally, the developed coverage algorithm is described in detail.

4.1 | Framework structure

The here proposed coverage solution, depicted in Figure 2, is com-

posed of four elements: the Mission Manager, the mapping module,

the high‐level planner, and the motion planner. These modules run

onboard on the AUV and were integrated within the Robot Operating

System (ROS) framework (Quigley et al., 2009). Additionally, a

Graphical User Interface (GUI) that runs on a laptop computer was

developed. It enables an operator or a science user to interact with the

F IGURE 2 The developed inspections framework. In the context of this study, the framework was used to perform FLS seabed inspections.
The operator can define the inspection area through a dedicated GUI. The Mission Manager works as an interface with the GUI, sets the
workspace limits, and monitors the mission progresses. The mapping module creates and updates the map using an exteroceptive sensor. The
Mission Manager triggers the high‐level planner to plan the NBV to accomplish the task. Then, the selected NBV is set as the goal configuration
for the motion planner, in charge of computing a feasible path for the AUV. Finally, the GNC block includes the guidance, navigation, and control
strategies. AUV, Autonomous Underwater Vehicle; FLS, Forward‐Looking SONAR; GUI, Graphical User Interface; NBV, Next‐Best Viewpoint;
ROS, Robot Operating System [Color figure can be viewed at wileyonlinelibrary.com]
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AUV. As shown in Figure 3, the GUI allows one to easily define the

inspection area, which is sent to the AUV through a radio or WiFi link.

The Mission Manager uses the selected inspection area to limit

the workspace of other modules. It triggers the high‐level planner to

compute the NBV when it receives the start command from the GUI,

or the vehicle has reached the previous viewpoint. It also monitors

the coverage progresses.

The mapping module creates and updates an occupancy map. It

takes as input the AUV estimated position and orientation and the

gathered FLS images. When a new image is acquired, the module

utilizes the front‐end to generate a 3D point cloud and the back‐end

to update the occupancy map. Section 4.2 describes in detail the

mapping process.

The high‐level planner uses the coverage algorithm reported in

Section 4.3. Starting from the AUV position, the coverage planner builds a

random tree to determine viewpoint candidates. For each viewpoint

candidate, its visibility is evaluated according to the updated map with a

ray‐casting strategy. To this end, the planner uses an ROS service to

request the mapping module the viewpoint visibility, which replies with

the list of visible voxels and their occupancy probability. Thus, the ex-

pected IG along the branch can be evaluated by calculating the voxels

discovered along a tree branch and using one of the metrics proposed in

Section 3.3. The algorithm selects the branch that is expected to collect

the highest gain. The first node is extracted as the NBV, while the rest of

the branch is stored, and it is used to initialize the tree when the Mission

Manager requests a new NBV.

The computed NBV becomes the goal configuration of the mo-

tion planner. It is in charge of calculating the feasible best path, ac-

cording to the Dubins kinematic constraints and a cost function, that

leads the AUV from its position to the goal configuration. In the

context of this study, the motion planner module uses the ⋆RRT

algorithm and path length as the cost function.

Finally, the GNC module includes the guidance, navigation, and

control strategies that the AUV uses to estimate its position and track

the planned path. This module is reported for showing how the de-

veloped framework is connected to the software architecture of an

AUV, but it is not in the scope of this paper. Further information

regarding the exploited GNC solutions used by FeelHippo AUV, se-

lected as the testing platform, can be found in Allotta, Caiti, Chisci

et al. (2016) and Allotta, Caiti, Costanzi, et al. (2016). For the sake of

completeness, the ROS computation graph of the developed in-

spection framework is reported in Figure 4.

This simple structure gives the high‐level planner continuous

feedback of the mapped environment and enables the use of a

receding‐horizon approach that allows using this solution in unknown

environments and helps to reduce the coverage errors. Therefore, it

realizes a receding‐horizon sampling‐based sensor‐driven coverage

planning strategy.

4.2 | Mapping strategy

The mapping framework consists of two parts, see Figure 5: front‐

end, where 3D point cloud generation is performed (Section 4.2.1)

and back‐end, where occupancy mapping is achieved (Section 4.2.2).

4.2.1 | Front‐end

As detailed in Section 3.1, 3D mapping from FLS images is an ill‐posed

inverse problem. Indeed, it requires the knowledge of the elevation angle

β, which is lost during the 3D‐to‐2D image formation process. Although

several attempts have been pursued to resolve this disambiguation, from

generative models Aykin and Negahdaripour (2013a) and Westman and

F IGURE 3 The developed Graphical User Interface (GUI) used for selecting the inspection area, limited by the four green points and the
black dashed lines [Color figure can be viewed at wileyonlinelibrary.com]
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Kaess (2019b), Guerneve et al. (2018) to Non‐Line‐Of‐Sight (NLOS) ap-

proaches (Westman et al., 2020), it is the authors' conviction that a

coarser solution may fit our tasks better. In fact, the above‐mentioned

works provide the best reconstructions in terms of accuracy and ap-

pearance to the authors' best opinion. However, they are tailored to small

reconstruction problems and are not suitable for online implementations.

In the hereby presented work, the map framework must provide an

adequate and time‐efficient representation of the 3D environment to the

planner, where the term adequate is dependent on the application at

hand. In the described application, where medium‐scale environment is

tested, a coarse representation of the underwater domain seems an ac-

ceptable compromise.

The hereby presented solution embraces specific ideas from

Aykin and Negahdaripour (2013b) for elevation angle disambiguation

and FLS image segmentation. Similarly to Aykin and Negahdaripour

(2013b), the presented dense mapping framework's main assump-

tions are a local flat sea bottom and smooth object surfaces that

change monotonically in terms of distance from the FLS.

F IGURE 4 A visualization of the ROS computation graph of the developed inspection framework. Oval frames represent the ROS nodes,
while squared frames depict the topics, and the continuous one‐way arrows visualize the flow of information in the topics. Finally, the
bidirectional dashed arrows represent the implemented ROS services. FLS, Forward‐Looking SONAR; NBV, Next‐Best Viewpoint; ROS, Robot
Operating System

F IGURE 5 Overview of the presented mapping framework. 3D, three‐dimensional; FLS, Forward‐Looking SONAR [Color figure can be
viewed at wileyonlinelibrary.com]
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On the one hand, the sea bottom is geometrically reconstructed

based on the local altimeter measurement. On the other hand, the

visible portion of protruding objects is generated according to a

machine‐learning segmentation technique applied to FLS images and

thanks to the knowledge of the elevation angle β trend over the

visible sea bottom.

The following points summarize and describe the main ideas on

which the proposed strategy is based:

• The points that compose each cloud are labeled according to two

sets: one set for the sea bottom sb and one for the protruding

objects po.

• Under the local flat sea bottom assumption, the points ∈ sb are

generated according to the altimeter measurements. To avoid local

discontinuities, low‐pass filtering on altimeter measurements is

advocated.

• Inspired by the work of Aykin and Negahdaripour (2013b), it is

reasonable to assume that three different levels of intensities

approximately dominate each FLS image. Accordingly, inter-

mediate brightness levels belong to flat surfaces, such as the sea

bottom. In contrast, high and low levels are due to protruding 3D

objects and the shadows cast by the objects (or, generally

speaking, are without reflections), respectively. Consequently, the

brightness profile in each FLS image is supposed to be adequately

described with three classes. Trivially, each class possesses a dif-

ferent brightness level. To segment each FLS image, the well‐

known k‐means clustering algorithm with seed initialization of

Arthur and Vassilvitskii (2007) is employed. For further informa-

tion on the k‐means algorithm, please refer to Bishop (2006) and

(Kanungo et al., 2002). It is worth highlighting that more advanced

solutions for image segmentation, such as Convolutional Neural

Networks (CNNs), could be employed. However, on the one hand,

the computational burden and data collection for training, to

mention a few, are significant drawbacks in applying these tech-

niques for underwater online FLS segmentation. On the other

hand, the hereby presented method based on the k‐means algo-

rithm has shown acceptable performance and can run real‐time on

compact AUVs without requiring dedicated hardware (see

Section 5.2).

• The output of the k‐means algorithm, namely, the centroid of

each brightness class, is used to search the transition patterns

sea bottom‐to‐object, object‐to‐shadow, and shadow‐to‐sea

bottom. The above‐mentioned transitions are used to define

the object and shadow contours that, under the local flat sea

bottom assumption, permit to define boundaries for the ele-

vation angle β, namely, β β( , )LE OE . LE in βLE stands for Leading

Edge, whereas OE in βOE stands for Occluding Edge; the former

represents the beginning of the object profile, while the latter

is the end of the object profile (see Figure 6 for more in-

formation). Within these boundaries, the elevation angle is

approximated via linear interpolation, and then points ∈ po are

generated, see Figure 6.

• The merging between points ∈ sb and points ∈ po is left to the

back‐end part (Section 4.2.2).

Given the FLS mounting angle (Rb
FLS) and its orientation (Rb

N), the elevation

aperture of the FLS (β β−max min ) and its maximum operative range, the

altimeter measurements, and exploiting the local flat scene approxima-

tion, for each azimuthal scan, the FLS actual elevation angle span βmin
′ and

βmax
′ can be found. It is worth noting that βmin

′ and βmax
′ can be different

from βmin and βmax , and more information can be found (Aykin &

Negahdaripour, 2013b). To avoid poor FLS acquisitions, the FLS max-

imum operative range, its mounting configuration, and its altitude need to

be properly set according to the scenario at hand. Generally speaking,

concerning its mounting configuration, small grazing angles (around 20°)

permit to cover larger portions of the scene. In addition to this, missions

at a constant altitude (around 2m) have been conducted during the ex-

perimental trials, see Section 6 and the operative range of the FLS was set

at 10m.

Within each azimuthal scan of the FLS image, as detailed in Figure 7,

the output of the k‐means algorithm is used to search the transition

patterns sea bottom‐to‐object, object‐to‐shadow, and shadow‐to‐sea

bottom. Under the local flat sea bottom approximation, the elevation

angle βOE can be obtained from the correspondent shadow contour point.

Furthermore, within the interval β β( , )LE OE , the trend of the elevation

angle can be satisfactorily approximated via linear interpolation. It is trivial

that the smoother and the monotone the surface, the more adequate the

approximation. The situation is depicted in Figure 6. Generally speaking,

F IGURE 6 Locally flat sea bottom with a protruding object on it. Given an azimuth angle, the elevation angle at the occlusion edge
can be obtained from the elevation angle of the cast shadow (see the blue line) and the end of the 3D object shadow. 3D, three‐dimensional;
FLS, Forward‐Looking SONAR [Color figure can be viewed at wileyonlinelibrary.com]
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k‐means clustering offers no accuracy guarantees (Arthur &

Vassilvitskii, 2006); however, its simplicity and speed have been con-

sidered a major advantage for the problem at hand. Moreover, the em-

ployment of an FLS, which is notoriously difficult due to (just to name a

few) low‐resolution, low Signal‐to‐Noise Ratio (SNR), and insonification

modifications due to viewpoint changes, poses further complexity. Con-

sequently, the k‐means clustering algorithm might fail to produce results,

thus impairing the following map generation. From a pragmatic and

practical point of view, it is worth noting that, given the significant por-

tions of water covered by the FLS and the typical low dynamics involved

in the underwater domain, a generic object is insonified in more frames

during the vehicle motion, therefore minimizing the event of not re-

cognizing an object.

With the aim of increasing the robustness of the generated

point cloud, a statistical outlier removal has been employed

where, for each point, a fixed number of neighbors are analyzed,

and the sample mean is computed. All the points distant more

than a predetermined threshold from the mean are marked as

outliers and removed from the point cloud. Moreover, to avoid

the scarcity of points in the cloud (which are determined on the

basis of segmentation and pattern search algorithm), up‐sampling

is pursued (Alexa et al., 2003). To this end, a Moving Least

Squares (MLS) surface reconstruction procedure is employed

(Levin, 2004) with an up‐sampling method that fits the local plane

(Rusu & Cousins, 2011).

The code has been implemented in C++ language by making use

of the OpenCV (OpenCV, 2020) and PCL (PCL, 2020) libraries.

4.2.2 | Back‐end

In its standard version, OctoMap performs ray‐casting operations to

update voxels, where an ISM of the form





l m z
l m

l m
( ) =

if is hit by the beam,

if is traversed by the beami t
i

i

occ

free
(12)

is employed. Here, ∈ locc
+ and ∈ lfree

− are usually fixed (and se-

lected basing on the instrument accuracy). In particular, OctoMap,

born to naturally deal with range‐like sensors, assigns obstacle sur-

faces to measurement endpoints and free space to the line of sight

between the sensor origin and each endpoint, and the update law in

Equation (7) is employed.

First, let us analyze the occupancy mapping related to the

points po.

One of the main paper contributions is focused on proposing

a modified ISM to specifically account the presented front‐end

part of the mapping strategy (see Section 4.2.1). In particular,

inspired by the work of Heng et al. (2014), this study presents an

ISM obtained by discretizing a piecewise function constituted of

two Gaussians centered on the measurement. To account the

underlying 3D point cloud generation process, the peak ampli-

tude is heuristically derived from metrics related to the

k‐means algorithm and from the brightness value of the detected

object and shadow contour, therefore driving towards a non-

static, self‐adapting approach. A similar contribution concerning

was presented in E. Hernández et al. (2009), where only the in-

tensity of the echo was considered for 2D occupancy mapping,

and a simple three‐valued ISM (leveraged on echo intensities) was

employed.

Mathematically, p m z( )i t is described as a function of the current

range r and the measurement range r p m z p r r, ( ) ≈ ( , )z i t z :





 ( )

( )
p r r

p a p p e r r

p ae r r

( , ) =
+ ( + − ) if 0 < ≤ ,

+ if > .

z
z

z

free ocl free
−

ocl
−

r rz
σ

r rz
σ

1
2

−

1

2

1
2

−

2

2

(13)

p r r( , )z is the occupancy probability at distance r given the mea-

surement r p,z ocl is the probability for points beyond the mea-

surement rz (points beyond the measurement, occluded by the

measurement, present p = 0.5ocl ), σ1 is the variance of the mea-

surement (in this study it is assumed constant), and σ2 is chosen to

have an approximate symmetric distribution around rz . In parti-

cular, a encodes the heuristics employed to weight the occupancy

probability, and it is calculated as in Equation (15). In other words,

the main idea is to concentrate a description of the front‐end

process into a. More in detail, a global descriptor,2 related to the

goodness of the overall segmentation process, and a local de-

scriptor,3 which consider the goodness of the patterns bottom‐

to‐object, object‐to‐shadow, and shadow‐to‐sea bottom are

advocated.

F IGURE 7 On the left, a representation of a raw FLS image. In
contrast, on the right, a segmented version is depicted. The centroids
of the k‐means clustering algorithm are employed to search the
transitions indicated on the left picture. FLS, Forward‐Looking
SONAR [Color figure can be viewed at wileyonlinelibrary.com]

2Global descriptor is intended a quantity that considers the whole FLS image.
3Local descriptor is intended a quantity that considers a single azimuthal scan on the

FLS image.
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Concerning the global descriptor, the well‐known k‐means

clustering‐related metrics sum of squared errors is used:

∥ ∥∑ ∑J r x μ= − ,
n

N

k

K

nk n k
=1 =1

2 (14)

where xn is a generic element of the data set of size N μ, k is the

centroid of the cluster K , and ∈r {0, 1}nk is one if data point xn is

assigned to cluster k , otherwise is zero. Such a function needs to

be scaled, and thus the relative quantity J J∕min is used, where Jmin

is the minimum of J during the underwater mission. Concerning

the local descriptor, without losing generality, let us consider

single‐channel FLS images ⊂ ↦I : Ω Γ with Γ = {0, 1, …, Γ }M
2 ,

where to denote the pixel intensity at the location Z on

the image I the notation I Z is employed. For each azimuthal scan,

three significant points are recognized: Ob is object point

in the sea bottom‐to‐object transition, Sh is the shadow point in

the object‐to‐shadow transition, and Sb is the sea bottom point

in the shadow‐to‐sea bottom transition, see Figure 8. a encodes

all the single local and global contribution as additive terms as

follows:

F IGURE 8 On the left, a 3D view of the sea bottom with a 3D object. The horizontal FOV of the FLS is marked in blue, whereas two
azimuthal scans are depicted in a dotted black line. Last, the elevation angle is represented in green. On the right, a qualitative FLS acquisition
coming from the 3D scene on the left. Given the current azimuthal scan (dotted blue line), the object point in the sea bottom‐to‐object transition
(Ob), the shadow point in the object‐to‐shadow transition (Sh), and the sea bottom point in the shadow‐to‐sea bottom transition (Sb) are
indicated. 3D, three‐dimensional; FLS, Forward‐Looking SONAR; FOV, Field Of View [Color figure can be viewed at wileyonlinelibrary.com]

∝

  
a

+ + +

4
,

J

J

I I I

Γ

Γ −

Γ Γ
Ob Sh Sb

M

M

M M

min

(15)

where ∝ (directly proportional to) is employed to have a that gives

peaks smaller than one.

Concerning the points that belong to the sea bottom, the simple

ISM detailed in Equation (12) has been deemed as sufficient. How-

ever, failures in the generation of po might lead to the elimination of

protruding objects from the map, forcing towards a smooth and flat

scenario. Indeed, protruding objects, if not detected continuously,

can be deleted from ray‐casting operations on sb, which is indeed

created from simple altimeter measurements under the local flat sea

bottom hypothesis. It is worth noting that failures in the generation

of po can occur due to, to name a few, low‐resolution, in-

homogeneous insonification, and speckle noise. In conclusion, to

create a unique occupancy mapping from sb and po, ray‐casting

operations on sb set mi as free space only if the corresponding voxel

is not already marked occupied by protruding objects. In other words,

when such “collisions” take place, the map remains static locally. The

above‐mentioned solutions, even if fictitious, have shown reliable

reconstruction performance, maintaining the appearance of objects
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that protrudes from the sea bottom and thus a realistic map for

planning purposes. Moreover, the ability to dynamically react to

changes and to cope with FLS noise still remains. Indeed, the occu-

pancy map generated from FLS acquisition is free to update ac-

cording to the classic update law given in Equation (7).

4.3 | Random tree‐based coverage solution
for high‐level planning

As described in Section 4.1, the high‐level planning module computes

online the path to accomplish the coverage survey. In the framework

proposed here, whenever the Mission Manager requests to plan the next

waypoint, the high‐level planner computes the NBV resorting to an RRT‐

inspired coverage algorithm. The developed algorithm, summarized in

Algorithm 1, takes as input the AUV actual configuration. A new tree T

containing the AUV configuration is initialized (line 3). If the algorithm had

already been activated, the remainder of the previous call solution, that is,

the remainder of the best branch, is added to the tree, and its expected

gain is evaluated according to the new updated map (lines 5–7). Then,

until the terminal condition, which is the maximum planning time timemax

is reached, the algorithm expands the tree : it randomly samples a new

configuration ξs in the workspace, the nearest node in the tree is retrieved

ξn, and a new configuration ξnew is computed by propagating ξn along the

direction to ξs with a random step (lines 8–10). If the generated new

node ξnew is inside the inspection area and the motion ξ ξ→n new is valid

(line 11), ξnew is added to the tree (line 12). The algorithm requests to

the mapping module the visibility of ξnew, which responds with the ob-

servable voxels computed by using the ray‐casting process (line 13). It is

worth noting that the visibility of a viewpoint does not depend on the

parent of the node; only its gain is affected by the choice of the parent. In

fact, to correctly evaluate the expected viewpoint gain, the voxels already

seen along the branch shall not be considered. This simple consideration

constitutes the rewiring strategy. Once the viewpoint visibility has been

computed, the algorithm looks for the best parent, that is, the parent that

maximizes the gain, among the nearest nodes in the tree. Therefore, the

list of the k‐nearest nodes of ξnew is retrieved (line 14), and for each node

in the list ξp, if the motion ξ ξ→p new is valid (line 16), the branch gain

assuming ξp as the parent is computed (line 17). To calculate the branch

gain, the viewpoint IG of Equation (8) was extended to define the BIG

as follows:

∀ ∈

∑ I x= ( ),
x

(16)

where denotes the observable voxels along the branch , and I x( )

is the voxel VI, which is calculated according to Equation (10) or

Equation (11).

Then, the branch gain is computed by combining the BIG with

penalizing factors. Since this study focuses on FLS seabed inspec-

tions, long and curvy paths were penalized:

e eGain = ,λ ψ ξ ξ λ ξ ξ(Δ ( , )) (distance( , ))ψ k d k0 0 (17)

where ∈λ Rψ penalizes curvy paths by considering the heading

changes, and ∈λ Rd penalizes long paths.

Finally, the branch that is expected to collect the highest IG is

selected as the solution (lines 18–21) and stored to initialize the next

call (line 22). The first node becomes the NBV that is sent to the

start‐to‐goal planner (line 23).

The presented coverage algorithm was developed using the

Open Motion Planning Library (OMPL; Şucan et al., 2012), and was

implemented using the C++ programming language and integrated

within the ROS framework.

4.3.1 | Theoretical analysis

A theoretical analysis of the proposed receding‐horizon coverage

solution highlights essential properties. Generally speaking, as in

Bircher et al. (2018) and Vidal et al. (2020), each time a new view-

point is requested, the high‐level planner tries to solve an optimiza-

tion problem. Since the environment is unknown, the best approach

is to compute the next moves according to the available data, and

then, when new measurements have been acquired, repeat the

process. Considering the presented tree‐based solution, the

receding‐horizon problem can be formulated as

∈

ξ ξ ξ

ξ f ξ

ξ

max

s.t.

= { , , …, },

= ( )

,

N

i i

0 1

−1

p (18)

where is a branch that is composed of a sequence of random

length Np of configurations (viewpoints) ξ{ }i . The function f is the

relation between two consecutive vehicle configurations ξi and ξi−1,

that, in the context of this study, was represented by the Dubins

kinematic constraints.

The problem cannot be solved using deterministic optimization

algorithms. In fact, a deterministic relation between the gain function

(BIG) and the workspace , where the configurations ξ{ }i are sam-

pled, is not available (the environment is not known a priori). De

facto, the only way to know the BIG associated with a configuration

is to test the configuration, that is, compute the visible voxels given

the available map; thus, the gain shall be considered a “black‐box”

function. Stochastic optimization strategies were developed to han-

dle such problems (Törn & Žilinskas, 1989). Random search algo-

rithms use a probabilistic approach by repeatedly sampling the

feasible region, typically according to a uniform sampling distribution.

They are proven to converge probabilistically to the global optimum

with probability one, but the expected number of cost function

evaluations grows exponentially with the feasible space dimension

(Solis & Wets, 1981). Thus, they were applied to many “black‐box”

global optimization problems to rapidly find a suboptimal solution.
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Exploiting random trees to solve the optimization problem in Equa-

tion (18), as in this study or in Bircher et al. (2018), correspond to use

a Pure Random Search (PRS) solution (Zabinsky, 2013): RRT algo-

rithms compute random trees by randomly sampling new configura-

tions and use a Voronoi‐biased expansion strategy to explore the

workspace efficiently. Hence, the theory of the PRS algorithm can be

used to analyze the coverage/exploration problem. First, as explained

above, the gain function is a “black‐box” whose value cannot be

foretold. However, it is worth to note that it depends on two factors:

the number of visible voxels and the IG formulation used. Regarding

the former, the number of visible voxels along a branch depends on

the configurations that constitute the branch, which are randomly

sampled, and on the sensor characteristics (FOV and range). The IG

depends on the occupancy probability of visible voxels and the

exploited VI formulation, such as the volume and entropy‐based

proposed in Section 3.3. Therefore, given a branch , that is,

a sequence of configurations (viewpoints), and the sensor used to

accomplish the task, the set of visible voxels is defined, and the gain

function of the optimization problem depends only on the VI

formulation.

Since the high‐level planner has a limited computing time to

solve the optimization problem, according to the PSR theory, it looks

for a suboptimal solution. Defined the optimum branch ⋆ at each

call of the algorithm and its gain ⋆g as

⋆

⋆ ⋆

= arg max

= ,
(19)

the algorithm tries to compute a suboptimal solution with a gain
⋆ − ϵ. According to Zabinsky (2013), the probability of a PRS al-

gorithm to generate a sample with gain better than a value ∈c R can

be defined:
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F IGURE 9 Comparison of the VI formulations normalized with respect to their maximum value. Given a suboptimal value ( ε1 − ), depicted
with the continuous black line, the entropy‐based VI formulation (blue dashed‐dotted line) has a larger suboptimal level set than the volume‐
based formulation (red dashed line). VI, volumetric information [Color figure can be viewed at wileyonlinelibrary.com]

p c ν S c ν( ) = ( ( ))∕ ( ), (20)

where ⋅ν ( ) denotes the Lebesgue measure, is the workspace

(where the samples are generated), and S c( ) is the level set:

∈S c ξ ξ c( ) = { = { } : and ≥ }. (21)

Therefore, at each call, there is a probability

⋆ ⋆p ν S ν( − ϵ) = ( ( − ϵ))∕ ( ) (22)

of finding a suboptimal solution. Finally, it is possible to analyze the

effect of the VI on the high‐level planner. Figure 9 shows the VI

formulations (Section 3.3) normalized with respect to their maximum

value. As discussed above, given a set of visible voxels, the gain

function of the optimization problem in Equation (18) depends only

on the voxels' occupancy probability and the VI used. Thus, as shown

in Figure 9, according to Equation (22), since the entropy VI for-

mulation has a larger suboptimal level set, an algorithm using such VI

formulation is more likely to find a suboptimal solution than by ex-

ploiting the volume‐based.

From the presented analysis, some important considerations can

be drawn. The exploited VI formulation impacts the performance of

the here proposed solution. A receding‐horizon strategy is used in

this study; thus, the last call's best solution is kept to initialize the

algorithm. However, this solution was the best according to the in-

formation available in the previous step. The VI based on the entropy

enhances the algorithm probability of finding a suboptimal solution

within the given computation time, meaning that the algorithm is

more likely to compute a new best solution. In conclusion, the

entropy VI formulation leads to a more well‐posed optimization problem

and could enhance the performance of the coverage algorithm. This

analysis is validated with the results presented in Sections 5 and 6,

where a comparison of the two VI formulations is proposed.

5 | VALIDATION

The proposed RHCA was, first, validated with simulations and real data

recorded during sea trials. FeelHippo AUV, described here below, was

selected as the testing platform. The mapping strategy is validated

through the use of real data gathered with FeelHippo AUV. Then, the

here proposed inspection framework has been validated with an

extensive comparison of realistic simulations made by means of the

UUV Simulator. Since conducting experimental sea trials is time and

cost expansive, this validation step made through realistic simulations,

has been of utmost importance. In fact, the results reported in this

section aimed to validate and tune the developed coverage framework

in light of the sea trials described in Section 6. In fact, during the

experimental campaign, the coverage solution was tested with the

parameters found in the here reported validation process.

5.1 | FeelHippo AUV

FeelHippo AUV, depicted in Figure 10, is a compact and lightweight

AUV developed by the UNIFI DIEF. The main characteristics are

summarized in Table 3.

The software architecture is based on the ROS framework

and runs on an Intel i‐7‐based LP‐175‐Commel motherboard

(main computer). Additionally, FeelHippo AUV has three payload

ZACCHINI ET AL. | 19

http://wileyonlinelibrary.com


computers: one NVIDIA Jetson Nano and two Intel Neural

Compute Stick 2 for running onboard machine learning algo-

rithms. Regarding the developed inspection framework, see

Figure 2, it was deployed on the vehicle's main computer. The

WiFi and radio links with the control station are provided by a

Ubiquiti Bullet M2 WiFi access point and an 868+ RFDesign radio

modem, respectively. For the sake of completeness, FeelHippo

AUV can also create an acoustic link by using an EvoLogics S2CR

18/34 acoustic modem. The GNC module uses the following

sensors:

• U‐blox 7P precision Global Positioning System (GPS);

• Orientus Advanced Navigation Attitude Heading Reference Sys-

tem (AHRS);

• KVH DSP 1760 single‐axis high precision Fiber Optic Gyro-

scope (FOG);

• Nortek DVL1000 DVL, measuring linear velocity and acting as

Depth Sensor (DS);

The acoustic images used by the mapping module (Figure 2) are

provided by aTeledyne BlueView M900 2D FLS with an FOV of130°.

Moreover, two bottom‐looking Microsoft Lifecam Cinema cameras

collect optical images.

5.2 | Mapping validation

The presented mapping strategy has been first qualitatively validated

offline using data recorded during sea trials performed in 2019 at the

NATO Science and Technology Organization CMRE, La Spezia (Italy),

with FeelHippo AUV during the European Robotics League (ERL)

Emergency 2019 competition (Ferri et al., 2017). Concerning the test,

information is given in Figure 11.

The overall process is detailed in Figure 12, where the pipeline

from a raw FLS image to the OctoMap representation is detailed.

Last, in Figure 13, the overall results, overlaid with the mosaic pre-

sented in Figure 11 are presented.

Afterward, to provide a quantitative analysis of the mapping

framework, another suitable underwater test was conducted at the

Naval Support and Experimentation Centre (Centro di Supporto e

Sperimentazione Navale—CSSN) basin in La Spezia, Italy with Feel-

Hippo AUV. In particular, an object that resembles a truncated cone

and whose dimensions are 0.20m (minor radius), 0.45m (major ra-

dius), 0.44m (height) was placed on the sea bottom and insonified

with the Teledyne BlueView M900 2D FLS. The online generated

reconstruction has been compared (in postprocessing) with the 3D

model of the above‐mentioned object. Turning to the quantitative

analysis, the generated point cloud has been manually aligned

(translation only) to the reference 3D model of the object, where the

error has been evaluated by considering the median distance be-

tween the generated points and the surface of the 3D model, re-

sulting in 0.262m. It is worth mentioning that, on the OctoMap side,

the voxel resolution was 1 cm (Figure 14).

It is worth mentioning that the presented mapping methodology

is bent to the needs of the planning module and represents a trade‐

off between accuracy and feasibility for online operations on AUVs.

In fact, although the presence of complex shapes (such as nonconvex

objects) could represent a challenging scenario for the developed

front‐end part, the presented mapping/reconstruction module pro-

vides a meaningful and suitable representation (for autonomous

planning purposes) of the surrounding environment. To the authors'

opinion, given the current state‐of‐the‐art (see Section 2.3), a more

thorough and detailed reconstruction could be obtained by sacrificing

online operations on small platform AUVs. Nevertheless, to the au-

thors' knowledge, the hereby reconstruction approach is still novel;

indeed, it presents for the first time an FLS‐based probabilistic 3D

occupancy mapping framework (integrated with an information gain‐

based path planning) capable of operating in large and real under-

water environments without requiring particular motions for the

vehicle.

5.3 | Coverage framework validation and
quantitative analysis

This section presents the results of realistic simulations performed to tune

and validate the coverage solution and the proposed analysis

(Section 4.3). These simulations were based on the dynamic model of

F IGURE 10 FeelHippo Autonomous Underwater Vehicle (AUV)
during a sea trial [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 FeelHippo AUV main features

Weight (kg) 35

Dimensions (mm) 600 × 640 × 500

Controlled DOFs 5

Thrusters 6

Maximum depth (m) 30

Maximum longitudinal speed (m/s) 1

Battery life (h) 3

Abbreviations: AUV, Autonomous Underwater Vehicle;
DOF, degree of freedom.
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FeelHippo AUV that was implemented in the UUV Simulator. Coverage

surveys at a constant altitude of 2m from the seabed to inspect an area

of 29 ×27m were simulated. To make these simulations as realistic as

possible, the BlueView M900 2D FLS, which is mounted on FeelHippo

AUV, was simulated through the UUV Simulator. The sensor has a hor-

izontal FOV (hFOV) of 130° and a vertical FOV (vFOV) of 20° and the

range was set to 10m. The FLS was mounted in front of the vehicle with

a tilt angle of 30° w.r.t. the horizontal plane. The motion planner and

high‐level planner modules used the Dubins curves with a turning radius

of 3m to model the AUV kinematics constraints. Finally, the high‐level

planner maximum computing time was set to 2 s, while the ⋆RRT em-

ployed as the motion planner had 0.5 s to find a path.

First, two lawnmower paths were designed, considering the

characteristics of the sensor (FOV and range) and the target area

F IGURE 11 The sea bottom of the testing site. On the left, the complete acoustic reconstruction. Two underwater structures are visible
within the red rectangle. In the middle, a detailed reconstruction of the area around the two underwater structures is reported. Last, on the right,
five optical images are manually stitched to provide more information about the geometry of one of the two structures [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 12 On the left, a raw Forward‐Looking SONAR (FLS) image in the Cartesian domain, on the top‐right its polar counterpart: two
rocks are visible. Here, within the azimuthal scan, green dots represent the beginning of the object profile and blue the completion of this region.
In contrast, red dots are due to the beginning of the shadow region, whereas yellow is the completion of this area. Last, on the bottom‐right, the
OctoMap representation of the insonified object. It is worth noting that one of the two rocks is not generated. Indeed, the end of the shadow
region is not recognized [Color figure can be viewed at wileyonlinelibrary.com]
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dimensions. As shown in Table 4, the length of the paths varies. The

coverage solution was validated by performing 10 simulations with

and without the rewiring strategy for both the proposed VI for-

mulations (a total of 40 runs were performed). Since the developed

coverage algorithm is based on a probabilistic approach, Table 4 re-

ports the path length mean and standard deviation of the performed

experiments. RHCA volume denotes the proposed RHCA with the

volume‐based VI, while RHCA entropy stands for the proposed so-

lution using the VI formulation based on the entropy function. When

the rewiring strategy is used, the algorithm tests the closest k = 10

neighbor nodes. The rewiring procedure is computationally ex-

pensive; this parameter was selected heuristically as a trade‐off to let

the algorithm evaluate a sufficient number of possible parents and

generate an adequate number of samples during the given plan-

ning time.

Table 4 highlights the effectiveness of the here proposed cov-

erage solution and points out some key aspects. The proposed RHCA

solution is based on a random optimization process that varies the

performance in each trial. As shown by the path length mean and

standard deviation, the RHCA outperformed the lawnmower paths in

some trials, but the planned path is longer in other experiments.

However, lawnmower paths are usually developed by skilled opera-

tors, taking into account both the environmental characteristics and

F IGURE 13 On the left, a zoom on the acoustic mosaic is presented in Figure 11. In the middle, the occupancy‐grid map obtained with
OctoMap. Last, on the right, the occupancy‐grid map (for the sake of clarity the sea bottom is removed) is overlaid with the acoustic mosaic
depicted on the left part of the image. It can be noted the good matching between the mosaic and the map [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 14 The generated point cloud in red, whereas the reference 3D model of the object is in black. On the left, the top view; in contrast,
on the right, the lateral view [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Outcomes of the coverage simulations

Coverage level 80% Coverage level 90%
Path
length

Path
length

Path
length

Path
length

Method
mean
(m)

standard
deviation (m)

mean
(m)

standard
deviation (m)

Lawnmower 1 102.94 – 121.31 –

Lawnmower 2 87.76 – 106.47 –

RHCA volume 98.87 9.47 126.65 16.01

RHCA entropy 89.63 9.75 123.16 13.14

RHCA volume—
rewiring

95.59 7.35 124.17 13.09

RHCA entropy
—rewiring

96.13 4.44 123.21 12.35

Abbreviation: RHCA, Receding‐Horizon Coverage Approach.
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the robots' payloads; the here proposed strategy could represent a

solution for science users that do not require such field experts.

Besides, the classic surveys may require multiple attempts. In fact,

the AUV acquires data passively, without considering the quality and

quantity of the gathered data. The proposed strategy instead ensures

an adequate coverage level of the inspection area by actively mon-

itoring the gathering process. Moreover, the RHCA eliminates the

premission time: the AUV is deployed, and the mission can start

avoiding an operator to design a suitable path that might take several

minutes.

Deepening the analysis, the outcomes validate the theoretical

investigation proposed in Section 4.3. The entropy‐based VI for-

mulation led to shorter paths for achieving both the 80% and the

90% of the coverage. Regarding the former goal, the RHCA entropy

reached a mean path length of 89.63 m, which is close to the in-

spection conducted following the Lawnmower 2; while the RHCA

volume, which accomplished a mean path length of 98.87 m, out-

performed the survey conducted with the Lawnmower 2. The im-

portance of the theoretical analysis of Section 4.3 emerges from

comparing the RHCA results with the two VI formulations. The en-

tropy VI formulation enhances the coverage algorithm's success

probabilities of computing a solution better than the one found at the

previous call. Hence, it is more likely to update the survey path than

the volume‐based VI. Consequently, it improves the performance of

the proposed methodology.

Achieving a 90% of coverage is a more challenging task. The

more the AUV covers the area, the more difficult the optimization

problem of Equation (18) becomes. It means that the algorithm is less

likely to change the computed old best path, leading to worse per-

formance, that is, longer surveys. A longer planning time could lead to

better performance of the RHCA, and better highlight the effect of VI

formulation. Nevertheless, the planning time is a trade‐off between

the proposed framework's performance and the online computation

constraints.

The rewiring procedure plays a key role. It remarkably reduces

the variances of the computed paths. In fact, by testing different

possible parents of the newly generated node, the optimization is

guided toward better solutions. However, this mechanism is com-

putationally expensive, reducing the number of generated samples

within the given time. While it enhances the RHCA volume perfor-

mance, it deteriorates the RHCA entropy outcomes. By generating

fewer samples, it reduces the probabilities of computing new good

paths, but it enables the algorithm to perform better updates, that is,

the most promising branches are expanded. Although the rewiring

strategy deteriorates the mean values of the RHCA entropy, it has a

nonnegligible effect on its standard deviation.

6 | EXPERIMENTAL RESULTS

The proposed framework was tested in real sea trials in shallow

waters, performed in October 2020 with FeelHippo AUV at CSSN

basin in La Spezia, Italy. The experimental campaign aimed to

validate the coverage framework in an unknown real environ-

ment. Besides, the results validated the theoretical and quanti-

tative analyses discussed above. An inspection area as large as

the one used during the simulations (Section 5), that is, 29 × 27 m,

was selected. FeelHippo AUV performed several surveys at a

constant altitude (2 m) to inspect the seabed using the BlueView

M900 2D FLS. The FLS was mounted in front of the vehicle with a

tilt angle of 30° w.r.t. the horizontal plane (see Figure 15). The

SONAR range was set to 10 m. The mapping module aimed to

create an occupancy grid map of the covered area that is used as

an active feedback for the high‐level planning module. Thus, since

the goal was not to create a detailed reconstruction of the en-

vironment, the map resolution was set to 0.5m. Both the motion

planner and high‐level planner modules modeled again the AUV

kinematics constraints with Dubins curves with a turning radius

of 3 m. The high‐level planner had 2 s to compute the NBV. The

motion planner calculated the path to lead the AUV to the NBV in

0.5 s using the ⋆RRT algorithm.

First of all, to have a benchmark for evaluating the proposed

methodology, a lawnmower survey at a constant altitude (2 m) over

the selected area of interest was performed. The executed law-

nmower pattern was designed considering the SONAR characteristics

and its mounting pose with respect to the AUV. By following such a

path, the AUV managed to cover 80% and 90% of the target area in

62.5 and 71.7 m, respectively.

The experiments showed that the developed approach led the

AUV toward the inspection surveys. Figure 16 reports a sequence of

snapshots of the planning process. The high‐level planner used the

algorithm described in Section 4.3 to grow a random tree from the

AUV initial position. The best branch (whose nodes are reported in

yellow in Figure 16), that is, the branch that is expected to acquire

more information, was selected, and the first node became the NBV.

Then, FeelHippo AUV followed the path computed by the motion

planner (depicted in green). When the NBV was reached, the high‐

level planner grew a new random tree that was initialized using the

previous best solution. As reported in Figure 16, the RHCA solution

F IGURE 15 FeelHippo AUV endowed with the BlueView M900
2D FLS used to conduct the inspection surveys during the
experimental campaign. 2D, two‐dimensional; FLS, Forward‐Looking
SONAR; AUV, Autonomous Underwater Vehicle [Color figure can be
viewed at wileyonlinelibrary.com]
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has the desired behavior: while performing the survey, the AUV can

replan the mission considering the mapping module feedback.

To highlight this sought behavior, Figure 17 reports a visualiza-

tion of the data collected during an inspection survey planned by the

developed RHCA during the experimental campaign. While the AUV

was following the inspection path, the mapping module updated the

occupancy map and allowed to monitor the covered area. The map

was updated using the mapping strategy described in Section 4.2 that

made use of the gathered FLS images. The map's use is twofold: it is

used to monitor the progress of the coverage survey and plan the

NBV. In fact, as shown in Figure 17, the RHCA considers the map to

move the AUV toward nonenlightened regions. The inspection path

planned by the proposed high‐level planner is depicted with the blue

line, while the purple spheres represent the path to lead the AUV to

the NBV, calculated by the motion planner, which utilizes the ⋆RRT

algorithm. In particular, it is worth noting that since the initially

planned survey (Figure 17a) managed to guide the vehicle through

nonenlightened regions of the area of interest, it was not modified.

Each time the AUV reached a viewpoint (the blue spheres) of the

inspection path, the view planning algorithm was executed, but

within the given computational time, it did not find a better path

(Figure 17b,c). Then, as depicted in Figure 17d, the inspection path

was updated to complete the coverage of the area. Finally, Figure 18

shows the map created by means of the developed RHCA when 90%

of the inspection area was covered. Therefore, thanks to the devel-

oped solution, the vehicle inspected the seabed actively by mon-

itoring the quantity and quality of the acquired data during the survey

and using the data to replan the mission. Then, an adequate coverage

level can be ensured, avoiding multiple attempts.

Turning to quantitative analysis, the RHCA was tested at field

both with the volume and the entropy VI formulations. To assess the

developed RHCA solution's performance in a real scenario, four trials

for each VI formulation were performed: two with and two without

the rewiring procedure. Table 5 reports the obtained results using the

volume‐based VI. The vehicle managed to inspect the area with sa-

tisfying results. In accordance with the validation experiments' out-

comes, the rewiring procedure reduced the path length of the RHCA

volume method. In fact, by testing possible parents of new nodes, the

rewiring procedure helps the algorithm expand the branches toward

the most promising directions. In Table 6 the results of the trials

performed using the RHCA entropy algorithm are reported. Together

with the realistic simulations, these experimental results proved the

validity of the theoretical analysis of the developed coverage meth-

odology. The entropy VI formulation leads to a more well‐posed

F IGURE 16 Different snapshots of one of the autonomous surveys conducted by FeelHippo AUV during the experimental campaign,
La Spezia (Italy). Using the developed coverage framework, the vehicle managed to inspect the seabed of the target area, defined by the four
green points and the four black dashed lines. The yellow points are the nodes of the best branch computed by the high‐level planner. The path to
lead the AUV to the NBV is depicted in green, while the estimated AUV tracked path is reported in red. AUV, Autonomous Underwater Vehicle;
NBV, Next‐Best Viewpoint [Color figure can be viewed at wileyonlinelibrary.com]
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optimization problem, and by enhancing the algorithm probability of

finding a new best solution at each call, it improves the performance

of the inspection framework. As shown in Section 5, the rewiring

strategy deteriorates the RCHA entropy algorithm's performance. It is

a computationally expensive process that reduces the number of

generated samples. Consequently, it reduces the chances of com-

puting new suboptimal solutions.

In conclusion, the RHCA strategy using the entropy‐based VI

formulation without the rewiring procedure led to better results in

both simulations and real sea trials. The outcomes are in line with the

theoretical discussion (Section 4.3). Besides, the experimental cam-

paign demonstrated that the developed framework can guide the

AUV toward active inspection surveys in an unknown environment

and can guarantee adequate levels of coverage of the target area.

F IGURE 17 Four snapshots of an inspection survey performed by FeelHippo AUV exploiting the developed RHCA. Two green polygons
delimit the inspection area at depth 0m and the maximum depth. The mapping module uses the data gathered with the FLS, whose FOV is
represented with the yellow lines, during the survey to update the map of the covered area. The inspection path generated by the high‐level
planner is shown with the blue line, while the purple spheres depict the path created utilizing the RRT* algorithm used as the motion planner,
which the AUV tracks to reach the computed NBV. For the sake of completeness, the snapshots report, on top on the right side, the traveled
distance and the reached coverage level. AUV, Autonomous Underwater Vehicle; FLS, Forward‐Looking SONAR; FOV, Field Of View;
RHCA, Receding‐Horizon Coverage Approach; RRT, rapidly exploring random tree [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 18 The final map of the inspection
area. FeelHippo AUV conducted the inspection
survey autonomously by using the developed
coverage solution. AUV, Autonomous
Underwater Vehicle [Color figure can be viewed
at wileyonlinelibrary.com]
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Finally, to evaluate the developed framework, the achieved re-

sults shall be compared with the ad hoc preplanned lawnmower

pattern. By using both the VI formulations, the proposed methodol-

ogy led to longer coverage paths than the state‐of‐the‐art law-

nmower. Nevertheless, the lawnmower path requires the perfect

knowledge of the scenario and the FLS operational settings in ad-

vance, and during the mission, the AUV passively stores the acquired

data. Moreover, it was calculated by a skilled operator and required a

nonnegligible premission time. On the other hand, the hereby sensor‐

driven RHCA, being fully probabilistic, permits to obtain reasonable

performance (close to the lawnmower mission) without knowing the

underwater scenario in advance. In addition, it eliminates the path

designing time, and by monitoring the gathered data through the

created map, ensures the insonification of a required portion of the

seafloor. Therefore, the developed RHCA could represent a solution

for AUV end‐users by simplifying the data acquisition process.

7 | CONCLUSIONS AND FUTURE WORKS

This paper presents a coverage framework to enable an AUV to perform

FLS seabed inspections autonomously. The framework is composed of a

mapping module, a high‐level planner, and a motion planner. While the

latter uses the well‐known ⋆RRT algorithm to compute feasible paths for

the AUV, considering its kinematic constraints, ad hoc solutions were

developed for the first two modules. The mapping module utilizes a

probabilistic 3D map representation for FLS‐based reconstructions.

It uses machine learning segmentation techniques and linear interpolation

over the visible object profile to cope with unknown FLS elevation angles,

along with an ISM to insert the FLS acquisition into a Bayesian occupancy

map. A sensor‐driven CPP algorithm was developed for the high‐level

planner. The algorithm utilizes the mapping module updated map to ex-

pand random trees and find the NBV. In fact, the visibility of each node of

the tree is evaluated on the map through a ray‐casting process that takes

into account the FLS range and FOV. The AUV tracks the path computed

by the motion planner to reach the NBV; then, the process is repeated in

a receding‐horizon paradigm: the previous best branch is evaluated on

the updated map, and it is used to initialize the new tree. A mathematical

formulation of the developed coverage algorithm and a theoretical in-

vestigation of the effects of the exploited VI formulation were provided.

Besides, a comparison of two VI formulations was reported. To the au-

thors' best knowledge, the theoretical analysis of the VI formulations is

novel. This paper also presents the first investigation of information gain

metrics for seabed inspections.

Real data recorded during previous sea trials verified the mapping

strategy. The proposed framework was also validated with realistic si-

mulations and then through a dedicated experimental campaign at sea.

The developed solution endowed FeelHippo AUV with the ability to

autonomously inspecting the seabed in a target area. By actively mon-

itoring the data gathering process, it ensures adequate coverage levels

and avoids multiple attempts. In addition, the outcomes are in accordance

with the theoretical analysis; the entropy‐based VI enhances the algo-

rithm chances of computing a better solution w.r.t. the previous call and

leads to better results, that is, shorter paths.

Future works will focus on improving the performance of the

planning algorithm by accelerating the nodes' visibility computa-

tion. Moreover, the theoretical study suggests that reducing the

space from which the samples are generated could improve the

algorithm performance. Besides, a forward propagation approach

to expand the tree considering the AUV dynamics, as in Y. Li et al.

(2016) or Dharmadhikari et al. (2020), will be investigated. Finally,

the proposed planning methodology could consider the classifi-

cation of multiple targets located in the inspection area in the

planning methodology.
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TABLE 5 RHCA volume‐based VI sea trials results

Method

Coverage
level 80%

Coverage
level 90%

RHCA volume Rewiring Path length (m) Path length (m)

Trial 1 No 88.87 118.91

Trial 2 No 91.34 114.74

Trial 3 Yes 87.82 104.53

Trial 4 Yes 83.79 110.15

Abbreviations: RHCA, Receding‐Horizon Coverage Approach;
VI, volumetric information.

TABLE 6 RHCA entropy‐based VI sea trials results

Method

Coverage
level 80%

Coverage
level 90%

RHCA entropy Rewiring Path length (m) Path length (m)

Trial 1 No 75.39 95.85

Trial 2 No 76.92 88.87

Trial 3 Yes 86.41 105.74

Trial 4 Yes 80.66 121.61

Abbreviations: RHCA, Receding‐Horizon Coverage Approach;
VI, volumetric information.
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