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ABSTRACT: Arsenoplatin-1 (AP-1) is a dual-action anticancer metallodrug with a
promising pharmacological profile that features the simultaneous presence of a cisplatin-
like center and an arsenite center. We investigated its interactions with proteins through
a joint experimental and theoretical approach. The reactivity of AP-1 with a variety of
proteins, including carbonic anhydrase (CA), superoxide dismutase (SOD), myoglobin
(Mb), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and human serum
albumin (HSA), was analyzed by means of electrospray ionization mass spectrometry
(ESI MS) measurements. In accordance with previous observations, ESI MS
experiments revealed that the obtained metallodrug−protein adducts originated from
the binding of the [(AP-1)-Cl]+ fragment to accessible protein residues. Remarkably, in
two cases, i.e., Mb and GAPDH, the formation of a bound metallic fragment that lacked the arsenic center was highlighted. The
reactions of AP-1 with various nucleophiles side chains of neutral histidine, methionine, cysteine, and selenocysteine, in neutral form
as well as cysteine and selenocysteine in anionic form, were subsequently analyzed through a computational approach. We found that
the aquation of AP-1 is energetically disfavored, with a reaction free energy of +19.2 kcal/mol demonstrating that AP-1 presumably
attacks its biological targets through the exchange of the chloride ligand. The theoretical analysis of thermodynamics and kinetics for
the ligand-exchange processes of AP-1 with His, Met, Cys, Sec, Cys−, and Sec− side chain models unveils that only neutral histidine
and deprotonated cysteine and selenocysteine are able to effectively replace the chloride ligand in AP-1.

1. INTRODUCTION

Transition-metal complexes are widely used in medicinal
chemistry;1−4 the case of cisplatin as an anticancer agent being
the most representative.5 As a matter of fact, there is a
continuous interest in the development of cisplatin derivatives
with the objective of ameliorating their antitumor potency
while decreasing systemic toxicity.6−8 The toxicity of cisplatin
originates from the relatively easy in vivo replacement of the
chloride ligands by donor atoms of endogenous targets;
actually, the testing of a plethora of less reactive Pt ligands in
the place of chloride has permitted the production of
metallodrugs with lower systemic toxicity and a higher
therapeutic index.9−13 This proves that the design of new
active Pt(II)-based compounds should involve the structure-
based control of the substitution reaction.14,15

Arsenoplatin-1 (AP-1) is a novel dual-action metallodrug
characterized by an antitumor effect based on the synergetic
interplay of a square planar Pt(II) center and the coordinated
arsenic trioxide moiety16 (Figure 1), resulting in a superior
antitumor activity in a majority of cancer cell lines.16,17

The mechanism of action of AP-1 is not yet completely
comprehended at the molecular level, although several
experimental16−19 and computational20−22 investigations have
been reported so far. AP-1 binding to DNA was studied by
inductively coupled plasma mass spectrometry on AP-1-DNA

adducts extracted from triple-negative breast MDA-MB-231
cancer cells, revealing that gradual and continuous release of
the As(OH)2 moiety inside the cell results in the augmented
toxicity of arsenoplatin-1 juxtaposed to cisplatin.16 Density-
functional theory (DFT) calculations unveiled that guanine is a
more favored binding site than adenine for AP-1 as well as for
other platinum-containing compounds.20 It was also shown
that the hydrolysis of AP-1 necessitates a higher energy barrier
than that for DNA platination, although the barrier for
aquation is lower than that of cisplatin because of the trans
effect of the arsenic moiety.20 A detailed computational study
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Figure 1. Chemical structure of arsenoplatin-1.
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of the metalation of the bovine pancreatic ribonuclease (RNase
A) by AP-1 revealed the binding of His to platinum(II),
retaining the Pt−As bond. The computations evidenced that
the metalation is more advantageous in water than in the
protein milieu, consistent with the character of the protein
binding pocket residues.22

Interestingly, the replacement of chloride in AP-1 with
iodide did not hamper its cytotoxicity, thus proving that the
Pt−As core is the “true” cytotoxic metal scaffold.23

Given the differences in the mechanism of action of
arsenoplatin compared to cisplatin, it is plausible to assume
that the interactions with proteins may play a prominent part
in the action mode of AP-1. To the best of our knowledge,
there are only two investigations of the reactivity of AP-1 with
proteins. The first study focuses on the interactions of AP-1
with the small model proteins hen egg-white lysozyme
(HEWL) and bovine pancreatic ribonuclease (RNase A).
The corresponding crystal structures of AP-1-protein adducts
revealed that the preferred binding sites for AP-1 are the His
side chains in both proteins.16 Unlike cisplatin and carboplatin,
which target the sulfurs of Met side chains of RNase A,24 AP-1
does not show any preference for Met side chains. Another
evidence of AP-1 targeting His residue was offered by a recent
study, in which AP-1 was placed into the apoferritin (AFt)
nanocage; the resulting X-ray structure revealed the coordina-
tion of the AP-1 fragment to the side chain of a His residue.19

The present study has a twofold objective.
On one hand, we aim to expand the knowledge of the

reactions of AP-1 with proteins by considering a larger and
more representative group of proteins including human
carbonic anhydrase 1 (hCA1), bovine superoxide dismutase
(SOD), horse heart myoglobin (Mb), glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) from rabbit muscle,
and human serum albumin (HSA). These reactions and the
associated adduct formation were examined through the
classical ESI MS strategy developed in our laboratory.
On the other hand, the reactions of the neutral AP-1 with

water and the histidine, methionine, cysteine, and selenocys-
teine side chains, which are the main candidates for protein
metalation by AP-1, are investigated by means of DFT
approaches to shed light on the observed binding preferences

of protein residues for AP-1. More specifically, we have
employed simple (short) models of these residues where each
side chain is modeled by the nucleophilic group, i.e., imidazole,
CH3S

−, HS−, and HSe− for His, Met, Cys, and Sec residues,
respectively, whereas the remainder of the chain is rendered by
an ethyl group (Scheme 1).
Moreover, we assume that the reaction of AP-1 with protein

targets occurs through the nucleophilic substitution on the
Pt(II) center of the labile chloride ligand by the entering X
ligand via an associative interchange mechanism as depicted in
Scheme 2.
To gain a broader comprehension of the binding mechanism

of AP-1 with protein targets as well as of their binding
preference, we have evaluated both the thermodynamics and
kinetics of the proposed mechanistic hypotheses. Indeed,
computational studies were frequently and auspiciously
employed for the characterization of the reactivity of metals
and metallodrugs with proteins.25−28 Understanding the
binding preference of AP-1 would be very beneficial to
completely understand its mechanism of action in vivo and may
be advantageous to design more efficacious anticancer drugs.

2. RESULTS

2.1. Reactions of AP-1 with a Few Representative
Proteins Analyzed by ESI MS. The reactions of AP-1 with
the model proteins HEWL and RNase A were studied by ESI
MS measurements in our previous study.16 Those results
clearly showed that AP-1 binds both proteins through
coordination of an [(AP-1)-Cl]+ fragment after the release of
the Cl− ligand. Complementary X-ray diffraction studies
revealed that this metallic fragment was coordinated at the
level of His15 of HEWL and His105 and His119 residues in
the case of RNase A.
Here, we have extended this type of approach to a larger

number of proteins some of them also being of a considerably
greater size. Specifically, the following proteins were employed
for this new study: hCA1, SOD, Mb, GAPDH, and HSA.
The interactions of these proteins with AP-1 were

investigated according to a standard experimental setup
including preparation of the protein solution in 2 × 10−3 M

Scheme 1. Simplified Models for Protein Residues Employed in DFT Calculations

Scheme 2. Reaction Scheme for the Nucleophile Substitution on the AP Complex Explicitly Showing the Intermediate and
Transition State Species
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ammonium acetate at pH 6.8; addition of a threefold excess of
AP-1; incubation delay; recording of the ESI MS spectra.
The resulting deconvoluted ESI MS spectra are reported in

Figure 2, with a direct comparison of the proteins’ spectra after
and before the AP-1 addition. Particularly, the metalation of all
tested proteins already took place after 3 h of AP-1 incubation.
The interpretation of these ESI MS spectra is quite

straightforward. In most cases, AP-1-protein adducts are
formed as witnessed by the appearance of new peaks of a
greater mass; however, the amount of the formed adducts is
quite limited. In most cases, a peak characterized by a mass
shift of +419 is detected. This mass increase well matches the
mass of an [(AP-1)-Cl] fragment, or of its dimer (in the case of
hCA1), in line with previous observations.29

The spectra of the tested proteins, after 24 h incubation,
typically show a net decrease in the intensity of the adducts
signal, suggesting a progressive instability of the binding.
The spectrum of the GAPDH protein is characterized by

two major signals; one, at 35 764 Da, assigned to the native
protein, and another, at 35 797 Da, probably due to the
Cys150 sulfhydration; this double signal is also detected in the
spectrum of the AP-1 adducts.
Interestingly, in the case of both GAPDH and Mb, a new

fragment of a different mass, with a shift of 311 Da, is
observed. Notably, this mass shift well corresponds to the
Pt(NHC(CH3)O)2 fragment. Observation of this fragment
offers direct evidence that arsenoplatin-1, upon interaction
with certain proteins, may undergo the breaking of the As−Pt
bond and the detachment of the As(OH)2 group, an

interesting feature that had not been observed in the previous
studies.
In addition, AP-1 has been tested with HSA, the main

plasma protein; we found that AP-1 manifests the tendency to
react again, forming an adduct with the Pt(NHC(CH3)O)2
fragment. In Figure S1, Supporting Information, the mass
spectra of HSA before and after the addition of AP-1 are
presented. The deconvoluted mass spectrum of metal-free
HSA is marked by the signals at 66 438 and 66 557 Da,
corresponding to the protein in its native and its cysteinylated
forms, respectively, i.e., the protein with a Cys residue bound to
the Cys34. Interestingly, AP-1 upon reacting with HSA
produces adducts with both the native and the cysteinylated
proteins, primarily with the native protein as evidenced by the
lower intensity of the native protein signal with respect to the
cysteinylated protein signal.

2.2. Computational Studies. A preliminary investigation
on the AP-SCN and AP-1 complexes21 has shown that the
range-corrected CAM-B3LYP density functional with the
LANL2DZ effective core potential and the 6-31+G* basis set
yields the minimized structures well matching the crystallo-
graphic data17 with Pt−S and Pt−As bond distances within
0.04 Å error. We extracted the AP-1-His complex from the X-
ray crystallographic data for the AP-1-HEWL adduct16 and
made a comparison of geometrical parameters obtained by
experiment, optimization in the gas phase, and optimization in
water (Figure 3). We can see that most of the calculated bond
distances, including the crucial metal center−ligand bond Pt−
N, were estimated within an error of 0.01 Å, whereas the

Figure 2. (a) Deconvoluted mass spectrum of human carbonic anhydrase 1 (hCA1) overlapped to the deconvoluted mass spectrum of AP-1
incubated with hCA1, at 37 °C for 3 h in 1:3 protein-to-AP-1 ratio. (b) Deconvoluted mass spectrum of superoxide dismutase 1 (SOD1)
overlapped with the deconvoluted mass spectrum of AP-1 incubated with SOD1, at 37 °C for 3 h in 1:3 protein-to-AP-1 ratio. (c) Deconvoluted
mass spectrum of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) overlapped to the deconvoluted mass spectrum of AP-1 incubated with
GAPDH, at 37 °C for 3 h in 1:3 protein-to-AP-1 ratio, with 0.1% v/v of formic acid shortly prior to the infusion in the mass spectrometer. (d)
Deconvoluted mass spectrum of myoglobin (Mb) overlapped with the deconvoluted mass spectrum of AP-1 incubated with Mb, at 37 °C for 3 h in
1:3 protein-to-AP-1 ratio, with 0.1% v/v of formic acid shortly prior to the infusion in the mass spectrometer.
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calculated Pt−As bond is within 0.1 and 0.08 Å for the
optimization in the gas phase and solvated phase, respectively.
The thermodynamics and kinetics of the ligand substitution

of chloride by entering nucleophile molecules were analyzed
via DFT computations. The choice of modeling the
investigated protein residues with the simplified models
shown in Scheme 1, instead of capped or free amino acids,
requires some further consideration.30 On one hand, the
capped forms of amino acids are linked to the nucleophilic
groups of side chains via hydrocarbon chains of different
lengths, which leads to considerable variation in the size of the

ligand interacting with metal complex and thus substantially
affecting the computation of solvation free energies. On the
other hand, free amino acids contain terminus carboxylic acid
and amine groups in ionized zwitterionic form, which do not
exist in proteins. We assume all residues to exist in their most
stable protonation state at pH = 7.2: histidine and methionine
are neutral, whereas selenocysteine is anionic (however, we
included the neutral form of selenocysteine for completeness).
Both neutral and anionic forms of cysteine were considered
since both are present at neutral pH, although the anionic form
can be found only in low concentrations. Moreover, the
anionic form of cysteine might be stabilized in the vicinity of
histidine and other basic residues.
We assume that the ligand-exchange reactions on AP-1

undergo an associative interchange mechanism, with reactants
and products forming stable noncovalent adducts before and
after the reaction. Thus, the geometries of the reactants (R),
reactant adducts (RA), transition states (TS), product adducts
(PA), and products (P) were calculated. The activation
enthalpies and free energies were calculated as the difference
between TS and the lowest between reactants and reactant
adducts, whereas the reaction enthalpies and free energies were
calculated as the difference between reagents and products
infinitely apart.
Initially, we analyzed the hydrolysis reaction with the

exchange of chloride by a water molecule to test the stability
of AP-1 in biological fluids and consequently determine if the
chlorido or the aquo form of AP-1 might be the reactive
species with protein targets. Indeed, it is well known that
cisplatin and other biologically active metal complexes31−33

often go through hydrolytic activation, at which the labile aquo
ligand replaces at least one ligand of the metal center. The

Figure 3. Representation of the experimentally characterized structure
of AP-1-His (4-His) complex.16 The reported values of bond
distances are experimentally measured (black), optimized in the gas
phase (red), and optimized in the solvated phase (blue). All distances
are in angstroms.

Figure 4. Transition states for the considered nucleophiles. All distances are in angstroms and all angles in degrees.
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calculated reaction free energy value for the aquation of AP-1 is
19.2 kcal/mol, a similar value to that calculated in ref 20. This
value shows that this reaction is thermodynamically unfavor-
able and is improbable to take place at physiological
temperature, indicating that AP-1 is expected to attack the
biomolecular targets with the metal center in its chlorido form.
The reaction of AP-1 with models of the His, Met, Cys, and

Sec side chains was consequently investigated assuming the
associative interchange mechanism in each case. The
optimized geometries of transition state structures allow us
to obtain interesting insights into the reactivity disclosed by
the analyzed protein residues. For example, the Pt−As bond in
all calculated transition states is 2.28−2.30 Å, suggesting that
the trans effect is not observed in the geometrical structure
with a trigonal bipyramidal or square pyramidal configuration.
The transition state geometries for the reaction of AP-1 with
the neutral side chain models are characterized by an
approximately trigonal bipyramidal coordination of the Pt
center (Figure 4) with all entering ligand−Pt-leaving Cl angles
ranging from 81.5 to 85.6°. The Pt−N distances of 2.52 and
2.55 Å are observed for 4-His and 5-His, respectively, and the
same Pt−Cl distance of 2.56 Å, which suggests that both
tautomers disclose almost the same reactivity. The Pt−S/Se
bond lengths of 2.67−2.72 Å correspond well with the 2.67−
2.71 Å lengths of Pt−Cl bonds for the transition states of
neutral Cys, Sec, and Met, indicating that these transition
states are neither early nor late. Deprotonated cysteine and
selenocysteine, the only anionic nucleophiles in this study,
form somewhat distorted square pyramidal transition states
with S−Pt−Cl and Se−Pt−Cl angles of 90.1 and 92.7° for
Cys− and Sec−, respectively. Pt−S/Se bonds are 2.99/3.04 Å,
while the Pt−N distances are 2.50 Å, this suggests very early
transition states (Figure 4).
The computed values for the reaction enthalpy and free

energy for the ligand substitution reactions involving the
exchange of chloride with the investigated models (Table S1
and Figure 5) permit us to determine the thermodynamic
preferences for Pt(II) binding to the examined side chains of
protein residues. Calculations indicate that the reaction of AP-
1 with the neutral Cys, Sec, and Met is moderately
endothermic and endergonic, whereas the reaction with His
and deprotonated Cys− and Sec− is exothermic and exergonic.
It is also worth noticing that 5-His and 4-His have very close
reaction and activation free energies. In accordance with the
calculated thermodynamics, we are able to finally establish the
regiochemistry for the reaction of AP-1 with the tested side
chain models in the trend Cys− > Sec− > 5-His∼4-His > Met >
Sec > Cys, hence noting the significance of the protonation
state of the nucleophile.
The activation free energies for the reaction of AP-1 with 5-

His and 4-His are 19.5 and 18.9 kcal/mol, respectively,
resulting in the lowest barriers among the considered neutral
residues. Moreover, the reaction free energies of −0.7 and −0.8
kcal/mol for 5-His and 4-His, respectively, make them the only
neutral protein side chains targeted by AP in both exothermic
and exergonic processes. The reaction of AP-1 with either Met,
Cys, or Sec model is affected by a higher activation free energy,
i.e., 20.6, 22.6, or 21.6 kcal/mol, respectively, as well as higher
reaction free energies of 8.6, 11.3, and 10.0 kcal/mol in the
same order, respectively. Our calculations clearly indicate the
chloride substitution by His results to be both thermodynami-
cally and kinetically most favorable compared to the other
neutral side chain models.

On the other hand, the reaction of AP-1 with cysteine and
selenocysteine in their anionic forms results to be both
thermodynamically and kinetically the most favorable. Indeed,
the computed activation free energy values for the exchange of
chloride ligand with Cys− and Sec− are only 15.1 and 15.4
kcal/mol, respectively, whereas the corresponding values for
the reaction free energy are −16.2 and −15.5 kcal/mol.
An overall insight into both thermodynamics and kinetics of

the ligand substitution reactions investigated in the present
study is provided in Figure 5. The results suggest that AP is
expected to preferentially bind at His residues unless
deprotonated cysteine or selenocysteine are available.
The binding preference in the AP-1 protein targeting

obtained by our computational models implicitly assumes the
same steric accessibility of these residues. However, protein
side chains characterized by a high solvent exposure are more
reachable to the AP complex and thus expected to be more
reactive.
To better assess the targetability of specific protein systems

by AP-1, the regioselectivity based on the nucleophilic
substitution must be paralleled by a study on the solvent
exposure of the considered protein residues. Hence, solvent-
accessible surface (SAS) analyses (Figure 6) were performed
on the X-ray structures of the hen egg-white lysozyme
(HEWL) and the bovine pancreatic ribonuclease (RNase A)
proteins (pdb ids 5nj1 and 5nj716), showing that the His
residues that form adducts with AP-1 are closer to the surface.
Indeed, the residues His12 and His48 in the bovine pancreatic
ribonuclease are not metallated and, after a thorough
investigation of the X-ray structure, we might conclude that

Figure 5. Reaction profiles for AP-1 reacting with the considered
nucleophiles. Values in kcal/mol are computed in solution at the
CAM-B3LYP/LANL08( f)/6-311++G**//CAM-B3LYP/
LANL2DZ/6-31+G* level.
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the only reason is solvent inaccessibility. Cysteines and
methionines are also situated in regions with less solvent
accessibility, although not very deep, and are also not
metallated.

3. MATERIALS AND METHODS
Materials. Lyophilized human carbonic anhydrase (hCA I),

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from rabbit
muscle, bovine superoxide dismutase (SOD), myoglobin (Mb) from
horse heart, and human serum albumin (HSA) were acquired from
Merck and utilized without additional purification or manipulation.
AP-1 was synthesized in the MetMed laboratories at the Department
of Chemistry, University of Florence in accordance with already
established procedures.13,14

Dimethyl sulfoxide (DMSO) was acquired from Fluka. Liquid
chromatography-mass spectrometry (LC-MS) materials (water and
ammonium acetate) were procured from Honeywell.
ESI MS Experimental Conditions. Sample Preparation. Stock

solutions of hCA I 10−4 M, HSA 10−3 M, GAPDH 10−4 M, SOD 5 ×
10−3 M, and Mb were prepared by dissolving the proteins and the
peptide in H2O LC-MS grade. Stock solutions 10−2 M of the AP-1
compound was obtained dissolving the samples in DMSO.
For the experiments with hCA I, solutions of the protein 10−5 M

and AP-1 at protein-to-metal ratio 1:3 were prepared and diluted with
ammonium acetate solution 2 × 10−3 M (pH 6.8). The mixtures were
then incubated at 37 °C up to 24 h.
For the experiments with GADPH, aliquots of the stock solutions

were mixed with aliquots of AP-1 at protein-to-metal ratio 1:3 and
diluted with ammonium acetate solution 2 × 10−3 M (pH 6.8) to 10−5

M final protein concentration. The mixtures were incubated at 37 °C
up to 1 h.
For the experiments with Mb and SOD, solutions of the protein

10−5 M and AP-1 at protein-to-metal ratio 1:3 were prepared by
diluting with ammonium acetate solution 2 × 10−3 M (pH 6.8). The
mixtures were then incubated at 37 °C up to 24 h.
For the experiments with HSA, solution of the protein 10−4 M and

AP-1 at the protein-to-metal ratio of 1:0.9 or 1:3 was prepared and
diluted with ammonium acetate solution 2 × 10−3 M (pH 6.8). The
mixture was then incubated at 37 °C up to 24 h.
ESI MS Analysis: Final Dilutions. After the incubation time, all

solutions were sampled and diluted to a final protein concentration of
5 × 10−7 M for hCA I, HSA, GAPDH, and 10−7 M for Mb and SOD
using ammonium acetate solution 2 × 10−3 M (pH 6.8).

In the final Mb, GAPDH and HSA solutions were also added with
0.1% v/v of formic acid shortly prior to the infusion in the mass
spectrometer.

Instrumental Parameters. The ESI mass study was carried out
utilizing a TripleTOF 5600+ high-resolution mass spectrometer
(Sciex, Framingham, MA) furnished with a DuoSpray interface
operating with an ESI probe. Respective ESI mass spectra were
obtained via direct infusion at a flow rate of 5 μL/min.

The general ESI source parameters optimized for each protein and
peptide analysis were as follows.

SOD parameters are positive polarity, ion spray voltage floating
5500 V, temperature 0, ion source gas 1 (GS1) 25 L/min; ion source
gas 2 (GS2) 0, curtain gas (CUR) 15 L/min, collision energy (CE) 10
V, declustering potential (DP) 200 V, and range 1300−3400 m/z.

Mb parameters are positive polarity, ion spray voltage floating 5500
V, temperature 0, ion source gas 1 (GS1) 40 L/min, ion source gas 2
(GS2) 0, curtain gas (CUR) 15 L/min, collision energy (CE) 10 V,
declustering potential (DP) 100 V, and range 700−2200 m/z.

GAPDH parameters are positive polarity, ion spray voltage floating
5500 V, temperature 0, ion source gas 1 (GS1) 20 L/min, ion source
gas 2 (GS2) 0, curtain gas (CUR) 15 L/min, collision energy (CE) 10
V, declustering potential (DP) 100 V, and acquisition range 600−
2000 m/z.

hCA I parameters are positive polarity, ion spray voltage floating
5500 V, temperature 0, ion source gas 1 (GS1) 25 L/min, ion source
gas 2 (GS2) 0, curtain gas (CUR) 20 L/min, collision energy (CE) 10
V, declustering potential (DP) 300 V, and range 1500−3500 m/z.

HSA parameters are positive polarity, ion spray voltage floating
5500 V, temperature 0, ion source gas 1 (GS1) 40 L/min, ion source
gas 2 (GS2) 0, curtain gas (CUR) 20 L/min, collision energy (CE) 10
V, declustering potential (DP) 200 V, and range 900−2600 m/z.

For acquisition, Analyst TF software 1.7.1 (Sciex) was employed,
and deconvoluted spectra were attained by utilizing the Bio Tool Kit
microapplication v.2.2 embedded in PeakView software v.2.2 (Sciex).

Computational Methods. All computations were carried out
with the Gaussian 09 A.0234 quantum chemistry package.
Optimizations and the determination of electronic and solvation
energies were performed in solvated phase (C-PCM)35,36 and by
employing the density functionals as described below.

All geometrical optimizations were performed with the LANL2DZ
effective core potential for Pt atom37 and the 6-31+G* basis set for
other elements,38,39 while single-point electronic and solvation energy
computations were performed with the LANL08(f) effective core
potential for platinum37,40 and the 6-311++G** basis set for other
elements.41−43 We used the range-corrected DFT functional CAM-

Figure 6. Solvent-accessible surface (SAS) computed on the X-ray structures of adducts of AP with two small model proteins, hen egg-white
lysozyme (HEWL), and bovine pancreatic ribonuclease (RNase A) (pdb entries 5nj1 and 5nj7). Circles, squares, and diamonds indicate His, Met,
and Cys protein side chains, respectively. AP-1 bound amino acids are indicated with arrows.
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B3LYP44 for geometrical optimization and electronic and solvation
energies calculations. As we have shown elsewhere,21 the CAM-
B3LYP/LANL08(f)/6-311++G**//CAM-B3LYP/LANL2DZ/6-
31+G* functional-basis set combination yields the best results for
geometry and energy computations for the aquation of arsenoplatin-1.
DFT functionals are recognized to produce adequate geometries and
reaction profiles for transition-metal-containing compounds45−48

including Pt-based anticancer compounds.49−51

Frequency calculations were carried out to confirm the
convergence to the stationary points and to evaluate zero-point
energy (ZPE) and thermal corrections to thermodynamic properties.
Intrinsic reaction coordinate (IRC) computations were utilized to
determine reactants and products minima connected with the
transition states for each examined reaction step.
Single-point electronic energy computations were performed on

the geometries optimized in the solution. The C-PCM continuum
solvent methodology was employed to account for solvation.35 It was
demonstrated to yield significantly smaller discrepancies than other
continuum models for aqueous free energies of solvation for cations,
anions, and neutrals and to be especially efficacious for the
calculations of solution properties necessitating an enhanced accuracy
of solution free energies.52 Free energies of solvation, considered as
the difference between the solution energies and the gas phase
energies, were added to the gas phase enthalpies and free energies
values to have the corresponding values in the aqueous solution.
The solvent-accessible surface (SAS) of each examined amino acid

was calculated by employing the SAS option available in Gromacs
software.53

4. CONCLUSIONS

This study includes a combined experimental and theoretical
investigation of arsenoplatin-1 interactions with protein targets.
The analysis of the biomolecular interactions of AP-1
grounded on ESI MS measurements was extended here to a
larger number of proteins than in the past, including carbonic
anhydrase, superoxide dismutase, myoglobin, glyceraldehyde 3-
phosphate dehydrogenase, and human serum albumin. The
ESI MS results reveal that AP-1 generates in most cases tight
adducts with the studied proteins containing the [(AP-1)-Cl]+

fragment, in nice agreement with previous observations made
on HEWL and RNase A, and with the computational analysis
carried out here. More in detail, the computational studies
have considered the reactions of AP-1 with various
nucleophiles, which mimic the side chains of neutral histidine,
methionine, cysteine, and selenocysteine in neutral form as
well as cysteine and selenocysteine in anionic form. The
aquation of AP-1 is energetically disfavored with the reaction
free energy of 19.2 kcal/mol, thus indicating that AP-1
presumably attacks its biomolecular targets by the direct
substitution of the chloride ligand. The theoretical examination
of thermodynamics and kinetics for the ligand substitution
processes of AP with His, Met, Cys, Sec, Cys−, and Sec− side
chain models revealed that only neutral histidine and
deprotonated cysteine and selenocysteine can effectively
replace the chloride ligand in AP-1.
Moreover, a different and innovative result has been

achieved here through the ESI MS experiments when reacting
AP-1 with GAPDH and Mb. Indeed, in these latter cases, the
adducts just contained a smaller fragment where the [As-
(OH)2] moiety is lost. This result is of particular interest as it
provides direct evidence that arsenoplatin-1 may undergo
degradation in the biological milieu, with the cleavage of the
As−Pt bond giving rise to a protein-bonded platinum-
containing fragment while releasing an arsenic-containing
fragment.

Although the mechanistic details of the [As(OH)2]
detachment from AP-1 were not expressly addressed in the
present study, our calculations showed that the Pt−As distance
is not significantly affected when replacing chloride by a
nucleophilic protein ligand. This computational outcome
suggests that the [As(OH)2] release is probably subsequent
to protein metalation and may be kinetically influenced by the
protein environment surrounding the Pt(II) binding site.
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