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CONVERGENCE OF SYMMETRIZATION PROCESSES

GABRIELE BIANCHI, RICHARD J. GARDNER, AND PAOLO GRONCHI

Abstract. Steiner and Schwarz symmetrizations, and their most important relatives, the
Minkowski, Minkowski-Blaschke, fiber, inner rotational, and outer rotational symmetrizations,
are investigated. The focus is on the convergence of successive symmetrals with respect to a
sequence of i-dimensional subspaces of Rn. Such a sequence is called universal for a family of
sets if the successive symmetrals of any set in the family converge to a ball with center at the
origin. New universal sequences for the main symmetrizations, for all valid dimensions i of
the subspaces, are found, by combining two groups of results. The first, published separately,
provides finite sets F of subspaces such that reflection symmetry (or rotational symmetry)
with respect to each subspace in F implies full rotational symmetry. In the second, proved
here, a theorem of Klain for Steiner symmetrization is extended to Schwarz, Minkowski,
Minkowski-Blaschke, and fiber symmetrizations, showing that if a sequence of subspaces is
drawn from a finite set F of subspaces, the successive symmetrals of any compact convex
set converge to a compact convex set that is symmetric with respect to any subspace in F
appearing infinitely often in the sequence. It is also proved that for Steiner, Schwarz, and
Minkowski symmetrizations, a sequence of i-dimensional subspaces is universal for the class
of compact sets if and only if it is universal for the class of compact convex sets, and Klain’s
theorem is shown to hold for Schwarz symmetrization of compact sets.

1. Introduction

Around 1836, Jakob Steiner, in attempting to prove the isoperimetric inequality for convex
bodies in Rn, introduced the process that became known as Steiner symmetrization. (Defini-
tions of Steiner and other important symmetrizations, and some of their basic properties, can
be found in Section 4 below.) Its most useful feature is that there are sequences of directions
such that the corresponding successive Steiner symmetrals of a convex body always converge
to a ball of the same volume. Nowadays, this is employed in standard proofs of not only the
isoperimetric inequality, but other potent geometric inequalities besides: the Blaschke-Santaló,
Brunn-Minkowski, Busemann random simplex, and Petty projection inequalities, to name but
a few. Certain of these inequalities, such as the isoperimetric and Brunn-Minkowski inequali-
ties, hold for more general sets, such as sets of finite perimeter. Many are affine invariant and
therefore, at least in the convex geometry context, even more powerful; the Petty projection
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inequality, for example, is far stronger than the isoperimetric inequality. Several have more
general, and sometimes even stronger, Lp and Orlicz versions. For a sample, the reader can
consult [1, 17, 23, 35, 36, 37, 38]. Moreover, the impact of these inequalities extends far be-
yond geometry, since they often lead quickly to analytic versions; for example, the classical
Sobolev inequality is equivalent to the isoperimetric inequality, and the Brunn-Minkowski and
Petty projection inequalities yield, respectively, the Prékopa-Leindler inequality and Zhang’s
remarkable affine Sobolev inequality [52]. This transition is explained at length in [18] and
provides a portal to very wide applications to other areas such as probability and multivari-
ate statistics, PDEs, and mathematical economics and finance. For further information and
references, see [19, Chapter 9], [22, Chapter 9], and [41, Chapter 10].

Nor is Steiner symmetrization the only symmetrization process by which valuable geometric
and analytic inequalities can be established. Minkowski and Schwarz symmetrization can be
used to prove Urysohn-type inequalities and others; see, for example, [15, 21, 38]. These and
other symmetrization processes still are the main weapons of attack in the classic text of
Pólya and Szegő [39], which stimulated further applications to PDEs, potential theory, and
mathematical physics. Here one finds inequalities for other set functions, such as the Poincaré-
Faber-Szegő inequality for capacity, the Faber-Krahn inequality for the first eigenvalue of the
Laplacian, and Pólya’s inequality for torsional rigidity. The literature is vast and we can only
point to [2, 16, 25, 26, 27, 28, 32, 34, 42], and the references given in these texts.

Our previous paper [4] initiated a systematic study of symmetrizations in geometry, the
basic notion being that of an i-symmetrization, a map ♦H : E → EH , where H is a fixed
i-dimensional subspace H in Rn, i ∈ {0, . . . , n − 1}, E is a class of nonempty compact sets
in Rn, and EH is the class of members of E that are H-symmetric (i.e., symmetric with
respect to H). Prototypical examples include Steiner symmetrization (i = n − 1), Schwarz
symmetrization (i ∈ {1, . . . , n − 2}), and Minkowski symmetrization (i ∈ {0, . . . , n − 1}).
Both [4] and the present paper focus on symmetrization of sets, but an analogous axiomatic
framework for rearrangements of functions has been formulated by Brock and Solynin [9] and
van Shaftingen [45] (see also [49]). A different approach to the latter was proposed by the
authors and Kiderlen [6]; see [6, Appendix] for a comparison.

Most of the results in [4] concern either classifications of Steiner and Minkowski sym-
metrizations in terms of their properties, or containment relations between symmetrals, akin
to Lemma 4.1 below. The focus of [4, Section 8], however, is on the convergence of successive
symmetrals, and the present paper grew from the seed planted there. To discuss such results,
we allow the subspace H above to vary and call a collection ♦ = {♦H : H ∈ G(n, i)} of
maps an i-symmetrization process, where G(n, i) denotes the Grassmannian of i-dimensional
subspaces in Rn (see Sections 2 and 4 for notation and terminology). We borrow key notions
from Coupier and Davydov [13]: A sequence (Hm) of i-dimensional subspaces is called weakly
♦-universal if for any k ∈ N, successive ♦-symmetrals, with respect to Hk, Hk+1, . . . , of any
E ∈ E always converge to an origin-symmetric ball (depending on E and k), and ♦-universal if
the ball is independent of k. See Section 4 for precise definitions. From [13, Theorem 3.1] and
earlier results, we know that when i = n−1 and E = Kn

n, the class of convex bodies in Rn, the
four concepts (weakly) Steiner-universal and (weakly) Minkowski-universal are all equivalent.
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In [4, Theorem 8.1], it was shown that if i ∈ {1, . . . , n − 1} and ♦ is an i-symmetrization
process on Kn

n such that IHK ⊂ ♦HK ⊂ MHK for K ∈ Kn
n and H ∈ G(n, i), where IHK

and MHK are the inner rotational symmetral and Minkowski symmetral of K, respectively,
then any Minkowski-universal sequence in G(n, i) is also weakly ♦-universal. This allowed the
same conclusion to be drawn, in [4, Corollary 8.2], for any i-symmetrization process satisfying
Properties 1, 4, and 7 in Section 4.

Steiner-universal sequences are far from rare. In [13, Proposition 3.3], a result from [7] is
used to show that they can be drawn from any set of (n − 1)-dimensional subspaces whose
unit normal vectors are dense in Sn−1. Steiner-universal sequences affording a particularly
fast rate of convergence are provided by Klartag [31]; the construction depends on that in
[30] and involves concatenating finite sequences of symmetrizations, some with respect to a
deterministic choice of directions and some with respect to a random choice. Random Steiner
symmetrizations that produce Steiner-universal sequences almost surely have been described
by Burchard and Fortier [11, Corollary 2.3] and Coupier and Davidov [13, Proposition 3.2].
In the former, similar results are obtained first for random polarizations and then combined
with van Shaftingen’s universal approximation of Steiner symmetrization by polarizations in
[47], [48]. We note in passing that van Schaftingen’s approximations can be adapted to other
symmetrizations, including some that play no major role in the present paper, such as the
spherical cap symmetrization; see [48, Section 4.3].

It is important to bear in mind that in general the limit of a sequence of successive Steiner
symmetrals of a convex body may not exist; see [3, Example 2.1]. However, a remarkable
theorem of Klain [29, Theorem 5.1] reveals another source of Steiner-universal sequences.
This states that if a sequence (Hm) of (n − 1)-dimensional subspaces is drawn from a finite
set F of such subspaces, the successive Steiner symmetrals of any compact convex set, with
respect to the subspaces in (Hm), will converge to a compact convex set that is symmetric
with respect to each subspace in F that occurs infinitely often in (Hm). From this, Klain
[29, Corollary 5.4] is able to conclude that if the unit normal vectors to the subspaces in F
contains an irrational basis and each element of the basis occurs infinitely often as a unit
normal vector to some Hm, then (Hm) is Steiner-universal.

A major goal of this paper is to obtain more information about universal sequences of sub-
spaces. In Theorem 5.6, we adapt an argument from [3] to extend Klain’s theorem to fiber
symmetrization for i ∈ {1, . . . , n−1}, defined by (3) below. This little-known but fundamental
symmetrization reduces to Steiner symmetrization when i = n− 1. Fiber symmetrization be-
comes Minkowski symmetrization only when i = 0, but nevertheless we prove in Theorem 5.7
that Klain’s theorem also holds for Minkowski symmetrization when i ∈ {1, . . . , n − 1}, and
indeed for any symmetrization with Properties 1, 4, 7, and 9 from Section 4. In Theorem 5.11,
we prove a version of Klain’s theorem for Schwarz symmetrization; in this case the limit com-
pact convex set is rotationally symmetric with respect to each subspace in F that occurs
infinitely often in (Hm). We also show that the same result holds for Minkowski-Blaschke
symmetrization. Since Klain’s theorem does not apply when i = 0, our results extend the
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theorem to all the main subspace symmetrizations in the literature except Blaschke sym-
metrization. The latter is somewhat of an oddball, lacking even the monotonicity property
(see [4, Theorem 3.1]), and we pay no attention to it in this paper beyond stating Problem 8.4.

Using our extensions of Klain’s theorem, we are able to exhibit new universal sequences when
E = Kn

n. Theorem 6.1 does this for Minkowski symmetrization, for i ∈ {1, . . . , n − 1} and
Theorem 6.9 serves the same purpose for Schwarz and Minkowski-Blaschke symmetrization.
Moreover, Theorem 6.1 and [4, Corollary 8.2] yield, for all i ∈ {1, . . . , n − 1}, weakly ♦-
universal sequences for any i-symmetrization process ♦ satisfying Properties 1, 4, and 7 in
Section 4. As far as we know, no explicit universal sequences have appeared before in the
literature for i ∈ {1, . . . , n − 2}, except for isolated results such as that of Tonelli [43] for
Schwarz symmetrization when i = 1 and n = 3.

The transition from extensions of Klain’s theorem to the existence of universal sequences
requires an extra step. From Klain’s theorem we know that the limit compact convex set is
symmetric with respect to each subspace in the finite set F . Therefore if F can be chosen so
that reflection symmetry (or, for Schwarz and Minkowski-Blaschke symmetrization, rotational
symmetry) in each subspace in F implies full rotational symmetry, then the limit compact
convex set must be an origin-symmetric ball. Hence, in the case of reflection symmetry, the
problem is to find a finite set F such the closure of the subgroup of O(n) generated by the
reflections in the subspaces in F acts transitively on Sn−1. Here we apply results from our
paper [5], summarized in Section 3, that build on earlier work of Burchard, Chambers, and
Dranovski [10] (see also [14]).

In Section 7, we examine symmetrization of compact sets. Steiner, Schwarz, and Minkowski
symmetrization make sense for compact sets, and some convergence results are available in
this setting; see, for example, [3], [43], [46], [50], and [51]. To these we add the observation,
in Theorem 7.1, that Klain’s theorem holds for the Schwarz symmetrization of compact sets.
By [3, Examples 2.1 and 2.4], with the sequence (αm) of reals there chosen so that their sum
converges, we know that the limit of a sequence of successive Steiner symmetrals of a compact
set may exist but be non-convex. Thus there is no obvious direct relationship between con-
vergence for convex bodies and convergence for compact sets. Nevertheless, in Theorems 7.3
and 7.4, we prove that if i ∈ {1, . . . , n − 1}, any Schwarz-universal (or Minkowski-universal)
sequence for the class of convex bodies is also Schwarz-universal (or Minkowski-universal, re-
spectively) for the class of compact sets. Here we regard Schwarz symmetrization for i = n−1
as Steiner symmetrization. These results, together with those mentioned above, show that the
eight properties (weakly) Steiner-universal for convex bodies, (weakly) Minkowski-universal for
convex bodies, (weakly) Steiner-universal for compact sets, and (weakly) Minkowski-universal
for compact sets are all equivalent. A tool in the proofs of Theorems 7.3 and 7.4 is the notion
of the Kuratowski limit superior or inferior of a sequence of sets.

In addition to the principal results discussed above, we prove a new containment result
relating various symmetrals, Lemma 4.1; an analog of [4, Theorem 8.1] for Schwarz sym-
metrization, Theorem 6.10; and a characterization of Schwarz symmetrization in terms of its
properties, Theorem 6.7.
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Throughout the paper we provide, whenever we can, examples to show that the various
assumptions we make are necessary. The final Section 8 lists some problems left open by our
study.

For most applications, for example in establishing geometric inequalities, basic convergence
results for symmetrizations suffice. We end this introduction, however, with a nod to a quite
different line of investigation, namely, determining the least number of successive symmetrals
required to transform a set into one in some sense close to an origin-symmetric ball. Such
results on rates of convergence often require very delicate analysis, as evidenced by the deep
work of Bourgain, Klartag, Lindenstrauss, Milman, and others, and have obvious applications
to geometric asymptotic analysis, for example. See [30], [31], and the references given there.
A worthwhile endeavor, but one that must wait for future research, would be to determine
rates of convergence for symmetrizations in the general setting considered here.

We are very grateful to a referee whose extensive knowledge and incisive remarks led to
substantial improvements.

2. Preliminaries

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean n-space Rn with
Euclidean norm ‖ · ‖. We assume throughout that n ≥ 2. The term ball in Rn will always
mean an n-dimensional ball unless otherwise stated. The unit ball in Rn will be denoted by
Bn and B(x, r) is the ball with center x and radius r. If x, y ∈ Rn, we write x · y for the inner
product and [x, y] for the line segment with endpoints x and y. If x ∈ Rn \ {o}, then x⊥ is
the (n− 1)-dimensional subspace orthogonal to x. Throughout the paper, the term subspace
means a linear subspace.

If X is a set, we denote by linX , convX , clX , and dimX the linear hull, convex hull,
closure, and dimension (that is, the dimension of the affine hull) of X , respectively. If H is a
subspace of Rn, then X|H is the (orthogonal) projection of X on H and x|H is the projection
of a vector x ∈ Rn on H .

If X and Y are sets in Rn and t ≥ 0, then tX = {tx : x ∈ X} is the dilate of X by the
factor t and

X + Y = {x+ y : x ∈ X, y ∈ Y }

denotes the Minkowski sum of X and Y .
When H is a fixed subspace of Rn, we write RHX for the reflection of X in H , i.e., the

image of X under the map that takes x ∈ Rn to 2(x|H) − x. If RHX = X , we say X is
H-symmetric. If H = {o}, we instead write −X = (−1)X for the reflection of X in the origin
and o-symmetric for {o}-symmetric. A set X is called rotationally symmetric with respect to
the i-dimensional subspace H if for all x ∈ H , X∩(H⊥+x) is a union of (n−i−1)-dimensional
spheres, each with center at x. These are just the sets that are invariant under each element
of O(n) or SO(n) that fixes H , i.e., act as the identity on H . If dimH = n − 1, then X is
rotationally symmetric with respect to H if and only if it is H-symmetric. If K is a compact
convex set, then K is rotationally symmetric with respect to H precisely when for all x ∈ H ,
K∩(H⊥+x) = rx(B

n∩H⊥)+x for some rx ≥ 0. The termH-symmetric spherical cylinder will
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always mean a set of the form (B(x, r)∩H)+s(Bn∩H⊥) = (B(x, r)∩H)×s(Bn∩H⊥), where
r, s > 0. Thus these sets are solid cylinders whose H- and H⊥-components are centered at
x and o, respectively. Of course, H-symmetric spherical cylinders are rotationally symmetric
with respect to both H and H⊥.

The phrase translate orthogonal to H means translate by a vector in H⊥.
We write Hk for k-dimensional Hausdorff measure in Rn, where k ∈ {1, . . . , n}.
The Grassmannian of k-dimensional subspaces in Rn is denoted by G(n, k).
We denote by Cn the class of nonempty compact subsets of Rn. Let Kn be the class of

nonempty compact convex subsets of Rn and let Kn
n be the class of convex bodies, i.e., members

of Kn with interior points. A subscript s denotes the o-symmetric sets in these classes. If
K ∈ Kn, then

hK(x) = sup{x · y : y ∈ K},

for x ∈ Rn, defines the support function hK of K. The texts by Gruber [22] and Schneider
[41] contain a wealth of useful information about convex sets and related concepts such as
the intrinsic volumes Vj , j ∈ {1, . . . , n} (see [22, Section 6.4], [41, p. 208], and also [19,
Appendix A]). In particular, ifK ∈ Kn, then Vn(K) = Hn(K) is the volume ofK, and Vn−1(K)
and V1(K) are (up to constants independent of K) the surface area and mean width of K,
respectively; see [22, p. 104] or [19, (A.28), (A.35), (A.50)]. Intrinsic volumes are independent
of the dimension of the ambient space, so that if dimK = k, then Vk(K) = Hk(K), and in
this case we prefer to write Vk(K). By κn we denote the volume Vn(B

n) of the unit ball in
Rn.

3. Rotational symmetry via symmetries in finitely many subspaces

In this section, we summarize the results we need from [5] that address the problem of
finding finite sets of i-dimensional subspaces such that reflections in these subspaces, or (full)
rotational symmetries with respect to subspaces, generate full rotational symmetry. We refer
to [5] for comments on related earlier work of Burchard, Chambers, and Dranovski [10] and
others.

Theorem 3.1. ([5, Theorem 3.2].) Let Hj ∈ G(n, 1), j = 1, . . . , n, be such that
(i) at least two of them form an angle that is an irrational multiple of π,
(ii) H1 + · · ·+Hn = Rn, and
(iii) {H1, . . . , Hn} cannot be partitioned into two mutually orthogonal nonempty subsets.

If E ⊂ Sn−1 is nonempty, closed, and such that RHj
E = E, j = 1, . . . , n, then E = Sn−1.

Let 2 ≤ i ≤ n/2 and let α1, . . . , αi be an increasing sequence in (0, π/2) such that
π, α1, . . . , αi are linearly independent over Q. Let H1, H2, H3 ∈ G(n, i) be defined by

(1)

H1 =lin {e1, e3, . . . , e2i−1},

H2 =lin {cosαj e2j−1 + sinαj e2j : j = 1, . . . , i}, and

H3 =lin {{cosα1 e1 + sinα1 e2i} ∪ {cosαj e2j−1 + sinαj e2j−2} : j = 2, . . . , i}.
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Theorem 3.2. ([5, Theorem 3.8].) Let k ≥ 3 and let Hj ∈ G(n, i), j = 1, . . . , k. If 2 ≤ i ≤
n/2, assume that
(i) H1, H2, and H3 are as in (1),
(ii) H1 + · · ·+Hk = Rn, and
(iii) for each j = 3, . . . , k − 1,

Hj+1 ∩ (H1 + · · ·+Hj)
⊥ = {o}.

If n/2 < i ≤ n−2, assume that (i)–(iii) are satisfied with each Hj replaced by H⊥
j . If E ⊂ Sn−1

is nonempty, closed, and such that RHj
E = E for j = 1, . . . , k, then E = Sn−1.

Corollary 3.3. ([5, Corollary 3.9].) Let 1 ≤ i ≤ n− 1 and let

k =











n, if i = 1 or i = n− 1,

⌈n/i⌉ + 1, if 1 < i ≤ n/2,

⌈n/(n− i)⌉ + 1, if n/2 ≤ i < n− 1.

There exist Hj ∈ G(n, i), j = 1, . . . , k, such that if E ⊂ Sn−1 is nonempty, closed, and
such that RHj

E = E for j = 1, . . . , k, then E = Sn−1. Hence, if F ⊂ Rn is closed and
RHj

F = F for j = 1, . . . , k (or K ∈ Kn
n and RHj

K = K for j = 1, . . . , k), then F is a union
of o-symmetric spheres (or K is an o-symmetric ball, respectively).

Theorem 3.4. ([5, Theorem 4.1].) Let H1, . . . , Hk be subspaces in Rn such that 1 ≤ dimHj ≤
n− 2 for j = 1, . . . , k. The following statements are equivalent.
(i) H⊥

1 + · · ·+H⊥
k = Rn and {H⊥

1 , . . . , H
⊥
k } cannot be partitioned into two mutually orthogonal

nonempty subsets.
(ii) If E ⊂ Sn−1 is nonempty and closed, and for each j = 1, . . . , k and x ∈ E, we have
Sn−1 ∩ (H⊥

j + x) ⊂ E, then E = Sn−1.
(iii) If F ⊂ Rn is closed and invariant under any rotation that fixes Hj for each j = 1, . . . , k,
then F is a union of o-symmetric spheres.
(iv) If K ∈ Kn

n is rotationally symmetric with respect to Hj for each j = 1, . . . , k, then K is
an o-symmetric ball.

Corollary 3.5. ([5, Corollary 4.2].) Let 1 ≤ i ≤ n − 2 and let k = ⌈n/(n − i)⌉. There exist
Hj ∈ G(n, i), j = 1, . . . , k, such that the statements in Theorem 3.4 hold.

4. i-Symmetrization and i-symmetrization processes

Let i ∈ {0, . . . , n − 1} and let H ∈ G(n, i) be fixed. Let B ⊂ Cn be a class of nonempty
compact sets in Rn and let BH denote the subclass of members of B that are H-symmetric.
We call a map ♦H : B → BH an i-symmetrization on B (with respect to H). If K ∈ B, the
corresponding set ♦HK is called a symmetral. We consider the following properties, where it
is assumed that the class B is appropriate for the properties concerned and that they hold for
all K,L ∈ B. Recall that RHK is the reflection of K in H .

1. (Monotonicity or strict monotonicity) K ⊂ L ⇒ ♦HK ⊂ ♦HL (or ♦HK ⊂ ♦HL and
K 6= L ⇒ ♦HK 6= ♦HL, respectively).
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2. (f -preserving) f(♦HK) = f(K), where f : B → [0,∞) is a set function. In particular,
we can take f = Vj, j = 1, . . . , n, the jth intrinsic volume, though we generally prefer to write
mean width preserving, surface area preserving, and volume preserving when j = 1, n−1, and
n, respectively.

3. (Idempotence) ♦2
HK = ♦H(♦HK) = ♦HK.

4. (Invariance on H-symmetric sets) RHK = K ⇒ ♦HK = K.
5. (Invariance on H-symmetric spherical cylinders) If K = Dr(x) + s(Bn ∩ H⊥), where

s > 0 andDr(x) ⊂ H is the i-dimensional ball with center x and radius r > 0, then ♦HK = K.
6. (Projection invariance) (♦HK)|H = K|H .
7. (Invariance under translations orthogonal to H of H-symmetric sets) If RHK = K

and y ∈ H⊥, then ♦H(K + y) = ♦HK.
8. (Rotational symmetry) ♦HK is rotationally symmetric with respect to H .
9. (Continuity) ♦HKm → ♦HK as m → ∞ whenever Km → K as m → ∞ in the

Hausdorff metric (cf. [20, p. 2310]).
The six main symmetrizations of interest for this paper are defined and their properties

summarized below. In each, we take K ∈ Kn and H ∈ G(n, i); additional information and
references can be found in [4].

Let i ∈ {1, . . . , n−1}. Let SHK be such that for each (n−i)-dimensional plane G orthogonal
to H and meeting K, the set G ∩ SHK is a (possibly degenerate) (n− i)-dimensional closed
ball with center in H and (n− i)-dimensional volume equal to that of G∩K. When i = n−1,
G∩ SHK is a (possibly degenerate) closed line segment with midpoint in H and length equal
to that of G ∩K, and SHK is called the Steiner symmetral of K with respect to H . When
i ∈ {1, . . . , n − 2}, SHK is the Schwarz symmetral of K with respect to H . See [4, p. 57].
Steiner and Schwarz symmetrization are the original classical ones with myriad applications;
see the references given in [4, p. 52].

Let i ∈ {0, . . . , n− 1}. The Minkowski symmetral of K with respect to H is defined by

(2) MHK =
1

2
K +

1

2
RHK.

(Recall that RHK is the reflection of K in H .) See [4, p. 57].
Let i ∈ {1, . . . , n − 2}. The Minkowski-Blaschke symmetral MHK of K is defined for

u ∈ Sn−1 via

hMHK(u) =

{

1
Hn−i−1(Sn−1∩(H⊥+u))

∫

Sn−1∩(H⊥+u)
hK(v) dv, if Hn−i−1(Sn−1 ∩ (H⊥ + u)) 6= 0,

hK(u), otherwise.

Thus the support function hK(u) of K ∈ Kn at u ∈ Sn−1 is replaced by the average of hK

over the subsphere of Sn−1 orthogonal to H and containing u. See [4, p. 58] and note that
we have simplified and corrected the definition given there. We can extend the definition to
i = n− 1 if we interpret it to mean that MHK = MHK in this case.
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Let i ∈ {0, . . . , n− 1}. The fiber symmetral FHK of K is defined by

FHK =
⋃

x∈H

(

1

2
(K ∩ (H⊥ + x)) +

1

2
RH(K ∩ (H⊥ + x))

)

=
⋃

x∈H

(

1

2
(K ∩ (H⊥ + x)) +

1

2
(RHK ∩ (H⊥ + x))

)

.(3)

See [4, p. 58]. Thus each non-degenerate section of FHK by an (n− i)-dimensional subspace
orthogonal to H is the Minkowski symmetral of the corresponding section of K.

Let i ∈ {1, . . . , n − 1}. The inner rotational symmetral IHK of K is such that for each
(n− i)-dimensional plane G orthogonal to H and meeting K, the set G ∩ IHK is a (possibly
degenerate) (n− i)-dimensional ball with center in H and radius equal to that of the (possibly
degenerate) largest (n−i)-dimensional ball contained inG∩K. The outer rotational symmetral
OHK of K is the intersection of all rotationally symmetric with respect to H convex bodies
for which some translate orthogonal to H contains K.

The Minkowski, Minkowski-Blaschke, fiber, inner rotational, and outer rotational sym-
metrizations are all important and very natural relatives of Steiner and Schwarz symmetriza-
tions. Indeed, there is a remarkable duality [4, Theorem 7.1] between Steiner and Minkowski
symmetrization when i = n − 1, which extends to one between fiber and Minkowski sym-
metrization when i ∈ {0, . . . , n − 1}: The fiber (Steiner, if i = n − 1) symmetral of K ∈ Kn

is the union of all H-symmetric compact convex sets such that some translate orthogonal
to H is contained in K, while the Minkowski symmetral of K is the intersection of all H-
symmetric compact convex sets such that some translate orthogonal to H contains K. The
inner and outer rotational symmetrizations, introduced in [4, Section 5], display exactly the
same duality in a rotationally symmetric setting. Minkowski-Blaschke symmetrization ex-
tends to i ∈ {1, . . . , n− 2} the case i = n− 1 of Minkowski symmetrization in a different, but
nevertheless direct, way to using (2). Despite their names, both Minkowski and Minkowski-
Blaschke symmetrizations were introduced by Blaschke and have found various uses (see [4,
Sections 1 and 3]).

Some of the applications of the symmetrizations discussed in the previous paragraph stem
from containment relations, to which we now turn our attention. We begin with the following
new result, which reduces to the known fact that SHK ⊂ MHK when i = n− 1.

Lemma 4.1. If H ∈ G(n, i), i ∈ {1, . . . , n− 1}, and K ∈ Kn, then SHK ⊂ MHK ⊂ OHK.

Proof. For the right-hand inclusion, let L be rotationally symmetric with respect to H and
such that K ⊂ L+y, where y ∈ H⊥. Since MH is monotonic and invariant under translations
of H-symmetric sets orthogonal to H , we obtain

MHK ⊂ MH(L+ y) = MHL = L,

where the previous equality follows directly from the definition of MH and the fact that L is
rotationally symmetric with respect to H . Therefore MHK ⊂ L and hence MHK ⊂ OHK by
the definition of OH.
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For the left-hand inclusion, let x ∈ H . By the definition of SHK, we have

(SHK) ∩ (H⊥ + x) = sx(B
n ∩H⊥) + x,

for some sx ≥ 0 satisfying

(4) Vn−1(K ∩ (H⊥ + x)) = Vn−1(sx(B
n ∩H⊥) + x).

By the definition of MHK, we have that for u ∈ Sn−1, hMHK(u) is the average of hK(v) over

v ∈ Sn−1 ∩ (H⊥ + u). It follows that

MH(K ∩ (H⊥ + x)) = tx(B
n ∩H⊥) + x ⊂ H⊥ + x,

for some tx ≥ 0 satisfying

(5) V1(K ∩ (H⊥ + x)) = V1(tx(B
n ∩H⊥) + x).

By Urysohn’s inequality ([19, Theorem 9.3.2, p. 365] with p = 1 or [41, (7.21), p. 382]) in
H⊥+x ≈ Rn−1, the inequalities (4) and (5) imply that sx ≤ tx. It follows, by the monotonicity
of MH , that

(SHK) ∩ (H⊥ + x) ⊂ MH

(

K ∩ (H⊥ + x)
)

⊂ (MHK) ∩ (H⊥ + x)

and hence that SHK ⊂ MHK. �

The following theorem summarizes all the known inclusions between the various symmetrals.
It should be added that FHK = MHK when i = 0.

Theorem 4.2. If H ∈ G(n, i), i ∈ {1, . . . , n− 1}, and K ∈ Kn, then

(6) IHK ⊂ FHK ⊂ MHK ⊂ OHK

and

(7) IHK ⊂ SHK ⊂ MHK ⊂ OHK.

When i = n− 1, we have IHK = FHK = SHK and MHK = MHK = OHK.

Proof. The left-hand inclusion in (6) follows easily from the definitions of IHK and FHK. The
middle inclusion is a consequence of [4, Corollary 7.3] and the right-hand inclusion is noted in
[4, p. 66]. The left-hand inclusion in (7) is also noted in [4, p. 66] and the remaining inclusions
are given by Lemma 4.1. The stated equalities all follow directly from the definitions. �

The seven symmetrizations defined in this section possess all the Properties 1 and 3–8
above, except that only Steiner, Minkowski, and fiber symmetrization are invariant on H-
symmetric sets and neither Minkowski nor fiber symmetrization is rotationally symmetric
when i < n− 1. Regarding Property 2, SH (and hence FH when i = n− 1) preserves volume,
and MH (and hence FH when i = 0) and MH preserve mean width. For more details, see [4],
especially Sections 3 and 5. Regarding Property 9, which was not considered in [4], all seven
symmetrizations are continuous on Kn

n and all except SH , FH (for i ∈ {1, . . . , n − 1}), and
IH are continuous on Kn. (For OH , let ε > 0 and let K,L ∈ Kn satisfy K ⊂ L + εBn. Note
that OHL is the smallest rotationally symmetric with respect to H compact convex set with
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Name Symbol 1 2 3 4 5 6 7 8 9 9
Steiner SH , i = n− 1 sX Vn X X X X X X X ✕

Schwarz SH , 1 ≤ i ≤ n− 2 X Vn X ✕ X X X X X ✕

Minkowski MH sX V1 X X X X X ✕ X X

Minkowski-Blaschke MH , 1 ≤ i ≤ n− 2 sX V1 X ✕ X X X X X X

Fiber FH , 1 ≤ i ≤ n− 2 sX ✕ X X X X X ✕ X ✕

Inner IH 1 ≤ i ≤ n− 2 X ✕ X ✕ X X X X X ✕

Outer OH 1 ≤ i ≤ n− 2 sX ✕ X ✕ X X X X X X

Table 1. Properties, numbered as in Section 4, of the main symmetrizations,
where sXindicates strictly monotonic.

a translate containing L, because the intersection of rotationally symmetric convex bodies is
a rotationally symmetric compact convex set. Then L ⊂ OHL+y for some y ∈ H⊥ and hence
K ⊂ OHL + εBn + y. Therefore OHL + εBn is a rotationally symmetric convex body with
a translate containing K and it follows that OHK ⊂ OHL + εBn. The continuity of OH on
Kn follows. The non-continuity of SH , FH (for i ∈ {1, . . . , n − 1}), and IH on Kn can be
verified by considering a sequence of origin-symmetric (n− i)-dimensional balls contained in
(n− i)-dimensional subspaces whose intersection with H⊥ has dimension less than n− i and
which converge to an (n− i)-dimensional ball contained in H⊥.)

Table 1 summarizes this information.
Let B be a class of compact sets. We can fix i ∈ {1, . . . , n − 1} but regard ♦ as an

entire collection of i-symmetrizations ♦H : B → BH , H ∈ G(n, i), and refer to ♦ as an
i-symmetrization process. The definition of ♦H may depend on H , so that, for example,
♦H may be Steiner symmetrization for some H and Minkowski symmetrization for others.
However, when we speak of familiar symmetrization processes, such as Steiner or Minkowski
symmetrization, we assume that the type of symmetrization is the same for all H . We focus on
the convergence of successive applications of ♦ through a sequence of i-dimensional subspaces.
We shall use and extend ideas of Coupier and Davydov [13], who consider only the case
i = n− 1, and adopt some of their notation in modified form.
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Let i ∈ {1, . . . , n − 1} and suppose that ♦ is an i-symmetrization process. Let (Hm) be a
sequence in G(n, i) and for convenience write ♦m = ♦Hm

for m ∈ N. If 1 ≤ l ≤ m, let

(8) ♦l,mK = ♦m(♦m−1(· · · (♦lK) · · · ))

for each K ∈ B, so that ♦l,mK results from m − l + 1 successive ♦-symmetrizations applied
to K with respect to Hl, Hl+1, . . . , Hm.

A sequence (Hm) in G(n, i) is called weakly ♦-universal for B if for all K ∈ B and l ∈ N,
there exists r(l, K) > 0 such that ♦l,mK → r(l, K)Bn as m → ∞. Note that this implies
in particular that the successive symmetrals ♦1,mK converge to a ball as m → ∞. If the
constant r(l, K) is independent of l, we say that (Hm) is ♦-universal for B. When B = Kn

n,
we shall use the shorter terms weakly ♦-universal and ♦-universal instead. Example 6.4 below
exhibits a symmetrization process ♦ and a sequence (Hm) that is weakly ♦-universal but not
♦-universal.

When i = n − 1, we shall use the terms in the previous paragraph also for the sequences
(um) of directions in Sn−1 such that Hm = u⊥

m for each m. In fact, by [13, Theorem 3.1],
a sequence (um) in Sn−1 is Steiner-universal if and only if it is Minkowski-universal. Since
Steiner and Minkowski symmetrization preserve volume and mean width, respectively, it is
easy to see that (um) is weakly Steiner-universal (or weakly Minkowski-universal) if and only
if it is Steiner-universal (or Minkowski-universal, respectively). Much is known about such
sequences; in particular, [13, Proposition 3.3] implies that a sequence with each of these four
equivalent properties can be drawn from any dense set in Sn−1. See Section 7 for further
references.

5. Extensions and variants of Klain’s theorem

The goal of this section is to establish some extensions and variants of Klain’s theorem [29,
Theorem 5.1] for Steiner symmetrization, the special case of Theorem 5.6 below corresponding
to i = n− 1.

Let B be a class of compact sets closed under intersections with o-symmetric balls and let
f : B → R be a set function for which

(9) Ωf (K) =

∫ ∞

0

f(K ∩ rBn)e−r2 dr

exists for each K ∈ B. We call Ωf the f -layering function on B. When B = Kn
n and f = Vn,

we write ΩVn
= Ω for the usual layering function (see, for example, [29, p. 344]). Klain [29,

Theorem 3.1] proved the following result for Steiner symmetrization.

Lemma 5.1. Let B be a class of compact sets closed under intersections with o-symmetric
balls and let f : B → R be an increasing set function. Let H ∈ G(n, i), i ∈ {0, . . . , n − 1},
and suppose that ♦H : B → BH is monotonic, invariant on o-symmetric balls, and does not
decrease f . If K ∈ B, then

(10) Ωf (K) ≤ Ωf (♦HK).
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If f is strictly increasing on B, then equality in (10) implies that ♦H(K∩rBn) = (♦HK)∩rBn

for each r > 0.

Proof. Since ♦H is monotonic and invariant on o-symmetric balls, we have

(11) ♦H(K ∩ rBn) ⊂ (♦HK) ∩ rBn

for all r > 0. Since ♦H does not decrease f and f is increasing, it follows that

(12) f(K ∩ rBn) ≤ f(♦H(K ∩ rBn)) ≤ f((♦HK) ∩ rBn)

for r > 0 and (10) is then a consequence of the definition (9) of Ωf .
Suppose that f is strictly increasing on B, K ∈ B, and equality holds in (10). Then, in

view of (12), we clearly have f(K ∩ rBn) = f((♦HK) ∩ rBn) for almost all r > 0 and hence,
since f is increasing, for all r > 0. This implies that (12) holds with equality. Consequently,
since f is strictly increasing on B, we deduce from (11) that ♦H(K ∩ rBn) = (♦HK) ∩ rBn

for each r > 0. �

Example 5.2. The equality condition in Lemma 5.1 is not enough for our purposes: We
would like to have equality in (10) if and only if ♦HK = K. However, this is not true in
general, even when B = Kn

n. To see this, let H ∈ G(n, i), i ∈ {1, . . . , n − 1}, and define ♦H

as follows. Choose u ∈ Sn−1 ∩ H and let R = {tu : t ≥ 0}. If K ∈ Kn, let Cr(K) be the
spherical cap of rSn−1 with center ru and the same (n − 1)-dimensional Hausdorff measure
as K ∩ rSn−1, and let AHK = ∪{Cr(K) : r ≥ 0}. This process is sometimes called spherical
cap symmetrization. Then define ♦HK = convAHK.

If K ⊂ L, we have AHK ⊂ AHL and hence ♦HK ⊂ ♦HL, so ♦H is monotonic. It is clearly
invariant on o-symmetric balls. The construction of AHK ensures that Vn(AHK) = Vn(K),
so Vn(K) ≤ Vn(♦HK) and ♦H does not decrease Vn. Thus ♦H satisfies the hypotheses of
Lemma 5.1 with B = Kn

n and f = Vn.
Now let x 6∈ H and let K = Bn + x. Then ♦HK is an H-symmetric translate of Bn, so

♦HK 6= K. On the other hand, Vn((♦HK) ∩ rBn) = Vn(K ∩ rBn) for each r ≥ 0, and hence
Ω(♦HK) = Ω(K). �

Note that the i-symmetrization ♦H from Example 5.2 is also idempotent and continu-
ous, but it is neither invariant on H-symmetric cylinders nor invariant under translations
orthogonal to H of H-symmetric sets. Since the symmetral of a ball is an H-symmetric ball,
it is easy to see that Klain’s theorem [29, Theorem 5.1] is not true for the corresponding
i-symmetrization process ♦.

Klain [29, Theorem 3.1] proved the following result for Steiner symmetrization, which cor-
responds to the special case when i = n− 1.

Lemma 5.3. Let i ∈ {1, . . . , n − 1}. When ♦H = FH , fiber symmetrization with respect to
H, equality holds in (10) with B = Kn

n and f = Vn if and only if FHK = K. Hence the
corresponding conclusion also holds when ♦H is monotonic, invariant on H-symmetric sets,
and invariant under translations orthogonal to H of H-symmetric sets. In particular, it holds
when ♦H = MH , Minkowski symmetrization with respect to H.
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Proof. Let K ∈ Kn, let r > 0, and let x ∈ H . If equality holds in (10) with B = Kn
n and

f = Vn, then by Lemma 5.1, we have FH(K ∩ rBn) = (FHK) ∩ rBn. Using the definition (3)
of FH and the Brunn-Minkowski inequality in H⊥ + x, we obtain

Vn−i((FHK) ∩ rBn ∩ (H⊥ + x))1/(n−i) = Vn−i(FH(K ∩ rBn) ∩ (H⊥ + x))1/(n−i)

= Vn−i

(

1

2
(K ∩ rBn ∩ (H⊥ + x)) +

1

2
RH(K ∩ rBn ∩ (H⊥ + x))

)1/(n−i)

≥
1

2
Vn−i(K ∩ rBn ∩ (H⊥ + x))1/(n−i) +

1

2
Vn−i(RH(K ∩ rBn ∩ (H⊥ + x)))1/(n−i)

= Vn−i(K ∩ rBn ∩ (H⊥ + x))1/(n−i)

and hence

(13) Vn−i((FHK) ∩ rBn ∩ (H⊥ + x)) ≥ Vn−i(K ∩ rBn ∩ (H⊥ + x)).

Equality holds if and only if K ∩ rBn ∩ (H⊥ + x) is homothetic to RH(K ∩ rBn ∩ (H⊥ + x))
and hence if and only if K ∩ rBn ∩ (H⊥ + x) is symmetric in H⊥ + x with respect to x.

Suppose that FHK 6= K. Then, since FH is invariant on H-symmetric sets, K is not H-
symmetric. It follows that there is an r > 0 such that K ∩ rBn is not H-symmetric and hence
an x ∈ H such that K ∩ rBn ∩ (H⊥ + x) is not symmetric in H⊥ + x with respect to x. From
the previous paragraph, we conclude that strict inequality holds in (13). By Fubini’s theorem,
we obtain Vn((FHK)∩ rBn) > Vn(K ∩ rBn) and so, by continuity and (9), Ω(FHK) > Ω(K).
This proves the first claim in the lemma.

Suppose that ♦H is monotonic, invariant on H-symmetric sets, and invariant under trans-
lations orthogonal to H of H-symmetric sets. By [4, Corollary 7.3], FHK ⊂ ♦HK. Therefore
Ω(K) ≤ Ω(FHK) ≤ Ω(♦HK), by Lemma 5.1. If Ω(♦HK) = Ω(K), then Ω(FHK) = Ω(K).
Consequently, FHK = K, implying that K is H-symmetric and hence that ♦HK = K. �

Lemma 5.4. Let i ∈ {1, . . . , n− 2}. When ♦H = SH , Schwarz symmetrization with respect
to H, equality holds in (10) with B = Kn

n and f = Vn if and only if SHK = K.

Proof. Let K ∈ Kn and let H ∈ G(n, i). By identifying H⊥ with Rn−i, choose a Steiner-
universal sequence (Hm) such that Hm ∈ G(n, n − i − 1) with Hm ⊂ H⊥, m ∈ N. Let
Jm = H +Hm ∈ G(n, n − 1), m ∈ N. Then the Steiner symmetrals SJmK converge to SHK
as m → ∞.

Suppose that equality holds in (10) with f = Vn, i.e., Ω(SHK) = Ω(K). Let Km =
SJm · · ·SJ1K, m ∈ N. By Lemma 5.1, applied successively with K and ♦H replaced by Kk

and SJk+1
, and the continuity of Ω, we obtain

Ω(K) ≤ Ω(K1) ≤ Ω(K2) ≤ · · · ≤ Ω(Km) → Ω(SHK) = Ω(K).

Since equality must hold throughout, successive use of Lemma 5.3 with i = n − 1 (in which
case FH = SH) now yields

K = K1 = K2 = · · · = Km = · · · = SHK,

as required. �
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Lemma 5.5. Let i ∈ {1, . . . , n− 2}. When ♦H = MHK, equality holds in (10) with B = Kn
n

and f = Vn if and only if MHK = K.

Proof. We have Ω(K) ≤ Ω(SHK) ≤ Ω(MHK), by Lemma 5.1 (with ♦H = SH and f = Vn)
and Lemma 4.1. If Ω(MHK) = Ω(K), then Ω(SHK) = Ω(K). Consequently, SHK = K,
by Lemma 5.4, implying that K is rotationally symmetric with respect to H and hence that
MHK = K. �

The following result generalizes Klain’s theorem [29, Theorem 5.1] for Steiner symmetriza-
tion, which corresponds to the special case when i = n− 1. The proof uses ideas from [3].

Theorem 5.6. Let i ∈ {1, . . . , n − 1} and let (Hm) be a sequence chosen from a finite set
F = {U1, . . . , Uk} ⊂ G(n, i). Then, for every K ∈ Kn, the successive fiber symmetrals

(14) Km = FHm
· · ·FH1

K

converge to a compact convex set L as m → ∞. Furthermore, L is Uj-symmetric for each
Uj ∈ F that appears infinitely often in (Hm).

Proof. A few preliminary observations will be useful. Let H ∈ G(n, i) and let K,L ∈ Kn,
where L is H-symmetric. Note that FH does not decrease volume. Indeed, the definition (3)
of FH shows that it is equivalent to Minkowski symmetrization in each (n − i)-dimensional
plane orthogonal to H . It follows that

Vn−i(K ∩ (H⊥ + x)) ≤ Vn−i((FHK) ∩ (H⊥ + x))

for each x ∈ H , since Minkowski symmetrization preserves V1 and does not decrease Vj for
j > 1 (see [4, p. 58]). Then Fubini’s theorem yields

(15) Vn(K) ≤ Vn(FHK).

Furthermore

(16) Vn(K ∩ L) ≤ Vn((FHK) ∩ L)

holds because
FH(K ∩ L) ⊂ (FHK) ∩ FHL = (FHK) ∩ L,

since FH is monotonic and invariant on H-symmetric sets. Hence, by (15) with K replaced
by K ∩ L,

Vn(K ∩ L) ≤ Vn(FH(K ∩ L)) ≤ Vn((FHK) ∩ L).

We follow Klain’s argument. Dropping an initial segment (Km)m≤N of the sequence (Km)
defined by (14) and possibly replacing F by one of its subsets, we may assume, without loss of
generality, that each subspace in F appears infinitely often in the sequence (Hm). The main
idea is to construct a subsequence along which the subspaces Uj ∈ F appear in a particular
order. With each index m, we associate a permutation πm of {1, . . . , k} that indicates the
order in which the subspaces U1, . . . , Uk appear for the first time among those Uj with j ≥ m.
Since there are only finitely many permutations, we can pick a subsequence (Hmp

) such that
the permutation πmp

is the same for each p. By relabeling the subspaces, we may assume that
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this permutation is the identity. Passing to a further subsequence, we may assume that every
subspace in F appears in each segment Hmp

, Hmp+1, . . . , Hmp+1−1.
By Blaschke’s selection theorem, there is a subsequence (again denoted by (Kmp

)) that
converges in the Hausdorff metric to some L ∈ Kn. We note for later use that the entire
sequence

(

Vn(Km)
)

is increasing, by (15), and hence convergent. Moreover,

(17) lim
m→∞

Vn(Km) = lim
p→∞

Vn(Kmp
) = Vn(L).

Now assume that K ∈ Kn
n.

We show by induction that L is Uj-symmetric for j = 1, . . . , k. For j = 1, observe that
Hmp

= U1 for each p. Therefore Kmp
is U1-symmetric for each p and the same is true for L.

Suppose that L is Ur-symmetric for r = 1, . . . , j−1. Let m′
p be the index where Uj appears for

the first time after Hmp
. Then for mp + 1 ≤ m ≤ m′

p − 1, Hm = Ur for some r = 1, . . . , j − 1,
so we can apply the inductive hypothesis and (16), successively with H equal to one of the
latter subspaces, to obtain

(18) Vn(Kmp
∩ L) ≤ Vn((FHm′

p−1
· · ·FHmp+1

Kmp
) ∩ L) = Vn(Km′

p−1 ∩ L).

Since (Kmp
) converges to L, (17) implies that the left-hand side of (18) converges to Vn(L).

Therefore the right-hand side converges to Vn(L), which implies that

Vn(Km′
p−1∆L) = Vn(Km′

p−1) + Vn(L)− 2Vn(Km′
p−1 ∩ L)

converges to zero. Then, becauseKm′
p−1 ∈ Kn

n, it follows thatKm′
p−1 converges to L as p → ∞.

Now we use this, Lemma 5.1 (with B = Kn, f = Vn, and ♦H = FH), the continuity of fiber
symmetrization, and the continuity of the functional Ω, to obtain

(19) Ω(L) ≤ Ω(FUj
L) = lim

p→∞
Ω(FUj

Km′
p−1) = lim

p→∞
Ω(Km′

p
).

Since
(

Ω(Km)
)

is an increasing sequence, by Lemma 5.1, and since it contains the subsequence
(

Ω(Kmp
)
)

which converges to Ω(L) because Ω is continuous, the first and last term in (19) are
equal, so equality holds throughout. By Lemma 5.3, FUj

L = L. Therefore L is Uj-symmetric
and this concludes the inductive step.

It remains to prove that the entire sequence converges. Since L is Uj-symmetric for j =
1, . . . , k, we have, by the same reasoning as in (18) and the lines following it, that

Vn(Kmp
∩ L) ≤ Vn(Km ∩ L),

for eachm ≥ mp; moreover, since Vn(Kmp
∩L) → Vn(L) as p → ∞, we also have Vn(Km∩L) →

Vn(L) as m → ∞. Since Km ∈ Kn
n, this implies that Km converges to L as m → ∞. This

completes the proof when K ∈ Kn
n.

Suppose that dimK < n. Fiber symmetrization is invariant under translations, so we may
assume that o ∈ K. Then o ∈ Km for all the successive symmetrals Km of K. Since fiber
symmetrization with respect to a subspace H corresponds to Minkowski symmetrization in
each plane H⊥+x, x ∈ H , it follows that affKm ⊂ affKm+1 for allm. Then there is anM ∈ N

such that affKm = affKM for all m ≥ M . Consequently, we may as well assume, by replacing
K by KM if necessary, that each Km is contained in a subspace S and dimKm = dimS = k,
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say. The cases k = 0 and k = 1 are trivial, and if k ≥ 2, the previous argument can be
repeated, with n replaced by k, by identifying S and Rk. �

Theorem 5.7. Let i ∈ {1, . . . , n−1} and let ♦ be an i-symmetrization process on Kn
n. Suppose

that for each H ∈ G(n, i), ♦H is monotonic, invariant on H-symmetric sets, invariant under
translations orthogonal to H of H-symmetric sets, and continuous. Then Klain’s theorem [29,
Theorem 5.1] holds for ♦. In particular, it holds for Minkowski symmetrization, and in this
case, the result also applies to K ∈ Kn.

Proof. We first check that the proof of Theorem 5.6 for the case whenK ∈ Kn
n works when fiber

symmetrization is replaced by an i-symmetrization process ♦ with the four stated properties.
Indeed, the first three properties imply that for each H ∈ G(n, i), FHK ⊂ ♦HK, by [4,
Corollary 7.3]. Then (15) and (16) clearly hold. The use of Blaschke’s selection theorem
requires only that the successive symmetrals are uniformly bounded, and this is ensured by
the invariance on H-symmetric sets. No further assumptions are needed except for (19), which
holds for ♦ by the continuity hypothesis. Lemma 5.3 allows the conclusion that ♦Uj

L = L at
the end of the inductive step and the rest of the proof is straightforward.

Minkowski symmetrization has all the properties stated in the theorem. In this case the
last paragraph of the proof of Theorem 5.6 applies without change if fiber symmetrization is
replaced by Minkowski symmetrization. �

Example 5.8. (cf. [4, Example 5.2].) For all K ∈ Kn
n and H ∈ G(n, i), let ♦K be the smallest

H-symmetric spherical cylinder such that some translate orthogonal to H contains K. Then
♦H is monotonic, invariant under translations orthogonal to H of H-symmetric sets, and
continuous, but not invariant on H-symmetric sets. Klain’s theorem [29, Theorem 5.1] is not
true for the corresponding i-symmetrization process ♦. To be specific, let n = 2, i = 1, and
for m ∈ N, let H2m+1 = (1, 1)⊥ and H2m = (0, 1)⊥. If K = [−1, 1]2, the successive symmetrals
Km = ♦Hm

· · ·♦H1
K do not converge; indeed, they are not even uniformly bounded. �

Example 5.9. (cf. [4, Example 5.14].) Let K ∈ Kn
n and let H ∈ G(n, i). If K = L + y,

where L is H-symmetric and y ∈ H⊥, then define ♦K = L. Otherwise, define ♦K = tKC
n,

where Cn is an o-symmetric cube with Vn(C
n) = 1 and a facet parallel to H (and hence

H-symmetric), and where tK ≥ 0 is chosen so that Vn(♦K) = Vn(K). Then ♦H is invariant
under translations orthogonal to H of H-symmetric sets and invariant on H-symmetric sets,
but neither monotonic nor continuous. Klain’s theorem [29, Theorem 5.1] is not true for the
corresponding i-symmetrization process ♦. In fact, let n = 2, i = 1, 0 < θ < π/4, and
for m ∈ N, let H2m+1 = (cos θ, sin θ)⊥ and H2m = (0, 1)⊥. If K = [−1, 1]2, the successive
symmetrals Km = ♦Hm

· · ·♦H1
K do not converge. To see this, note that K is not a translate

orthogonal to H1 of an H1-symmetric set, so K1 = ♦H1
K = φK, where φ denotes a rotation

by θ around the origin. Then K1 is not a translate orthogonal to H2 of an H2-symmetric set,
so K2 = ♦H2

K1 = φ−1K1 = K. It follows that Km = K for even m and Km = φK for odd
m. �

Despite the previous two examples, it is possible that the assumptions in the previous
theorem can be weakened; see Problem 8.1. In particular, we do not know if the continuity
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of ♦ is necessary, although the following example shows that it is not a consequence of the
other assumptions in Theorem 5.7.

Example 5.10. Let H ∈ G(n, n − 1) and for K ∈ Kn
n, let ♦HK = SHK if Vn(K) < 1, and

let ♦HK = MHK if Vn(K) ≥ 1. Then ♦H is monotonic, invariant on H-symmetric sets, and
invariant under translations orthogonal to H of H-symmetric sets, but not continuous. �

Theorem 5.11. Klain’s theorem [29, Theorem 5.1] (cf. Theorem 5.6) holds for Schwarz sym-
metrization, where the limit set L is rotationally symmetric with respect to each Uj ∈ F that
appears infinitely often in (Hm). The same is true for Minkowski-Blaschke symmetrization.

Proof. We follow the proof of Theorem 5.6 for the case when K ∈ Kn
n, replacing fiber

symmetrization by either Schwarz symmetrization or Minkowski-Blaschke symmetrization.
Throughout, we replace symmetry with respect to a subspace by rotational symmetry with
respect to the subspace.

For the first statement in the theorem, note that Schwarz symmetrization is monotonic,
continuous, and does not increase (in fact preserves) Vn. Then the proof goes through without
difficulty if Lemma 5.4 is used instead of Lemma 5.3.

For the second statement, we use Lemma 4.1 to obtain SHK ⊂ MHK for each K ∈ Kn
n and

H ∈ G(n, i). This and the fact that (15) and (16) hold when FH is replaced by SH allow us
to conclude that (15) and (16) also hold when FH is replaced by MH . The use of Blaschke’s
selection theorem requires only that the successive symmetrals are uniformly bounded, and
this is ensured by the containment MHK ⊂ OHK from Lemma 4.1. No further assumptions
are needed except for (19), which holds because MH is continuous. Lemma 5.5 allows the
conclusion that MUj

L = L at the end of the inductive step and the rest of the proof is
straightforward. �

The first statement in the previous theorem extends to the Schwarz symmetrization of
compact sets; see Theorem 7.1.

6. Universal and weakly-universal sequences

In [29, Corollary 5.4], Klain proves the following result: Let v1, . . . , vk be a set of directions
in Rn that contains an irrational basis for Rn. Suppose that (um) is a sequence of directions
such that each um belongs to {v1, . . . , vk} and each element of the irrational basis appears
infinitely often in (um). Then (um) is weakly Steiner-universal.

Weakly Steiner-universal is equivalent to Steiner-universal, as we know. Thus Klain’s result
provides specific Steiner-universal sequences, the novel feature being that only a finite set of
directions are used.

Theorem 6.1. Let i ∈ {1, . . . , n−1} and let Uj ∈ G(n, i), j = 1, . . . , k, be as in Corollary 3.3
(with Hj replaced by Uj). Let (Hm) be a sequence chosen from {U1, . . . , Uk} in which each Uj

appears infinitely often. Then (Hm) is Minkowski-universal.

Proof. Let K ∈ Kn
n and let l ∈ N. By Theorem 5.7, the result Km of successive Minkowski

symmetrizations of K with respect to Hl, Hl+1, . . . , Hm, m ≥ l, converges as m → ∞ to an
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L ∈ Kn
n such that RUj

L = L for j = 1, . . . , k. By Corollary 3.3 with K and Hj replaced by
L and Uj, respectively, L = rBn for some r = r(l, K) > 0. Since Minkowski symmetrization
preserves mean width, V1(rB

n) = V1(K), proving that r is independent of l. �

Note that the subspaces Uj in the previous theorem are those specified in Theorem 3.1
(for i = 1), Theorem 3.2 (for 1 < i < n − 1), and [10, Proposition 4.2] (for i = n − 1).
Since Minkowski-universal sequences are Steiner-universal when i = n− 1, Theorem 6.1 is an
extension of Klain’s result [29, Corollary 5.4] stated above.

The following result is [4, Theorem 8.1].

Proposition 6.2. Let i ∈ {1, . . . , n − 1} and let ♦ be an i-symmetrization process on Kn
n.

Suppose that
IHK ⊂ ♦HK ⊂ MHK

for all H ∈ G(n, i) and all K ∈ Kn
n. If (Hm) is a Minkowski-universal sequence in G(n, i),

then (Hm) is weakly ♦-universal.

Note that if i = n − 1, then IH = SH , the Steiner symmetral. As was observed above,
Minkowski-universal and Steiner-universal sequences coincide. By [4, Theorem 6.3], when
i = n−1 the hypotheses of the following corollary hold if the assumption that ♦H is monotonic
and invariant under H-symmetric sets is replaced by the assumption that ♦H is strictly
monotonic, idempotent, and either invariant on H-symmetric spherical cylinders or projection
invariant. The next result is [4, Corollary 8.2].

Proposition 6.3. Let i ∈ {1, . . . , n − 1} and let ♦ be an i-symmetrization process on Kn
n.

Suppose that for each H ∈ G(n, i), ♦H is monotonic, invariant on H-symmetric sets, and
invariant under translations orthogonal to H of H-symmetric sets. If (Hm) is a Minkowski-
universal sequence in G(n, i), then (Hm) is weakly ♦-universal.

In particular, the sequence (Hm) from Theorem 6.1 is weakly ♦-universal whenever ♦
satisfies the hypotheses of Proposition 6.3, providing a further extension of Klain’s result [29,
Corollary 5.4] stated above.

[4, Examples 5.10 and 5.14], both with j = 1 (say) and Bn replaced by an H-symmetric
n-dimensional cube, show that the assumptions of invariance on H-symmetric sets and mono-
tonicity, respectively, cannot be dropped in Proposition 6.3. We do not have an example
showing that the assumption of invariance under translations orthogonal to H of H-symmetric
sets is necessary (see Problem 8.1). However, the following example (see [4, Example 8.3])
shows that if this assumption is omitted, the hypotheses of Proposition 6.3 do not allow the
stronger conclusion that (Hm) is ♦-universal.

Example 6.4. Let ♦ be the symmetrization process corresponding to the symmetrization
♦H in [4, Example 5.8], with n = 2 and i = 1. Let 0 < θ < π/2 be an irrational multiple
of π and let H1 be the line through the origin in the direction (cos θ, sin θ). For m ∈ N,
let H2m+1 = H1 and H2m = (0, 1)⊥. Then the sequence (Hm) is Steiner-universal; see, for
example, [29, Corollary 5.4]. It is shown in [4, Example 8.3] that (Hm) is weakly ♦-universal
but not ♦-universal. �
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We now examine Schwarz and Minkowski-Blaschke symmetrization.

Example 6.5. Define ♦H : Kn
n → (Kn

n)H by

♦HK = (K|H) + tK(B
n ∩H⊥),

where tK ≥ 0 is chosen so that Vn(♦HK) = Vn(K). Then ♦H is volume-preserving, idem-
potent, invariant on H-symmetric spherical cylinders, projection invariant, invariant under
translations orthogonal to H of H-symmetric sets, and rotationally symmetric, but not mono-
tonic or invariant on H-symmetric sets. �

Example 6.6. (Generalized Schwarz symmetrization.) Let i ∈ {1, . . . , n− 2}, let k > 0, and
let f : Kn−i

n−i → [0,∞) be strictly increasing, rigid-motion invariant, homogeneous of degree k,
and such that

(20) f((1− t)K + tL)1/k ≥ (1− t)f(K)1/k + tf(L)1/k

for t ∈ [0, 1] and K,L ∈ Kn−i
n−i. Let H ∈ G(n, i). For K ∈ Kn

n, define ♦HK such that
for each (n − i)-dimensional plane G orthogonal to H and meeting K, the set G ∩ ♦HK
is a (possibly degenerate) (n − i)-dimensional closed ball with center in H such that f(G ∩
♦HK) = f(G ∩ K). A standard argument for the Brunn-Minkowski inequality (see [18,
p. 361]) shows that (20) and the homogeneity of f imply that ♦HK ∈ Kn

n. Then ♦H is strictly
monotonic, idempotent, invariant on H-symmetric spherical cylinders, projection invariant,
invariant under translations orthogonal toH ofH-symmetric sets, and rotationally symmetric,
but not invariant on H-symmetric sets. �

When f = Vn−i in Example 6.6, we retrieve the classical Schwarz symmetrization. One can
also take f = Vj , j ∈ {1, . . . , n − i − 1}, since (20) is then the Brunn-Minkowski inequality
for quermassintegrals [18, (74), p. 393] (see also [24, Satz XI, p. 260]); in this case, ♦H is not
Vk-preserving for any k ∈ {1, . . . , n}. In view of this, the following characterization of Schwarz
symmetrization is worth stating. Note that by [40, Theorem 3.2], the assumption that ♦ is
invariant on H-symmetric cylinders can be replaced by projection invariance.

Theorem 6.7. Let i ∈ {1, . . . , n− 2}, let H ∈ G(n, i), and let ♦H be an i-symmetrization on
Kn

n. Suppose that ♦H is monotonic, volume preserving, rotationally symmetric, and invariant
on H-symmetric cylinders. Then ♦H is Schwarz symmetrization with respect to H.

Proof. If ♦H is monotonic, volume preserving, and invariant on H-symmetric cylinders, then
by [4, Theorem 10.1(i)], we have

(21) Vn−i

(

(♦K) ∩ (H⊥ + x)
)

= Vn−i

(

K ∩ (H⊥ + x)
)

for all K ∈ Kn
n and x ∈ H . Then we need only observe that if ♦H is rotationally symmetric

and (21) is satisfied, ♦H must be Schwarz symmetrization with respect to H by its very
definition. �

Examples 6.5, 6.6, [4, Example 10.7], and [4, Example 5.10] with j = n, show that none of
the assumptions in the previous theorem can be omitted.
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The following corollary extends [13, Theorem 3.1], which corresponds to the case when
i = n− 1.

Corollary 6.8. Let i ∈ {1, . . . , n − 1}. A sequence (Hm) in G(n, i) is Schwarz-universal if
and only if it is Minkowski-Blaschke-universal.

Proof. We know that SHm
preserves Vn and does not increase V1. We also know that MHm

preserves V1 and conclude from Lemma 4.1 that MHm
does not decrease Vn. This allows the

proof of [13, Theorem 3.1] to be applied almost verbatim. �

The special case of the following theorem when i = 1, n = 3, k = 2, U1 and U2 are two
orthogonal lines through the origin in R3, H2m+1 = H1, and H2m = H2 for m ∈ N, was
first proved by Tonelli [43]. His rather long and complicated argument applied not only to
convex bodies but general compact sets. Tsolomitis [44, Theorem 1.7(ii)] proves that Schwarz-
universal sequences exist for some other values of i and n. However, his result requires that
n2/(n−1) < 2, which only holds when n ≥ 7.

Theorem 6.9. Let i ∈ {1, . . . , n−2} and let Uj ∈ G(n, i), j = 1, . . . , k, be as in Theorem 3.4(i)
(with Hj replaced by Uj). Let (Hm) be a sequence chosen from {U1, . . . , Uk} ⊂ G(n, i) in which
each Uj appears infinitely often. Then (Hm) is Schwarz-universal and hence, by Corollary 6.8,
also Minkowski-Blaschke-universal.

Proof. Let K ∈ Kn
n and let l ∈ N. By Theorem 5.11, the result Km of successive Schwarz

symmetrizations of K with respect to Hl, Hl+1, . . . , Hm, m ≥ l, converges as m → ∞ to an
L ∈ Kn

n that is rotationally symmetric with respect to Uj for j = 1, . . . , k. By Corollary 3.5
with K and Hj replaced by L and Uj , respectively, L = rBn for some r = r(l, K) > 0. Since
Schwarz symmetrization preserves volume, Vn(rB

n) = Vn(K), proving that r is independent
of l. �

Note that in view of Lemma 4.1, we can take ♦H = MH in the next theorem. The following
proof is essentially the same as that of [4, Theorem 8.1] but is included for the reader’s
convenience.

Theorem 6.10. Let i ∈ {1, . . . , n − 1} and let ♦ be an i-symmetrization process on Kn
n.

Suppose that

(22) SHK ⊂ ♦HK ⊂ OHK

for all H ∈ G(n, i) and all K ∈ Kn
n. If (Hm) is a Schwarz-universal sequence in G(n, i), then

(Hm) is weakly ♦-universal.

Proof. Let (Hm) be Schwarz-universal and let K ∈ Kn
n. Using the right-hand containment in

(22), is easy to see that any ball with center at the origin that contains K will also contain
all the successive ♦-symmetrals ♦1,mK. If m ∈ N and L ∈ Kn

n, then by (22), we have ♦mL ⊃
SmL and hence Vn(♦mL) ≥ Vn(SmL) = Vn(L), where S stands for Schwarz symmetrization.
Taking L = ♦1,m−1K, we obtain Vn(♦1,mK) ≥ Vn(♦1,m−1K) for all m = 2, 3, . . . . Therefore
Vn(♦1,mK) → a > 0, say, as m → ∞.
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By Blaschke’s selection theorem, there is a subsequence (Hmp
) of (Hm) such that ♦1,mp

K →
J ∈ Kn

n as p → ∞, where Vn(J) = a.
Now if 1 ≤ p ≤ s, then by (22),

(23) ♦1,ms
K = ♦mp+1,ms

(♦1,mp
K) ⊃ Smp+1,ms

(♦1,mp
K).

As s → ∞, the body on the left converges to J , while because (Hm) is Schwarz-universal, the
body on the right converges to the ball Bp,K with center at the origin such that Vn(Bp,K) =
Vn(♦1,mp

K). However, the latter equation implies that Vn(Bp,K) → a as p → ∞. Now Vn is
strictly monotonic on Kn

n, J ⊃ Bp,K by (23), and Vn(J) = a. These facts force J to be the
ball B1 centered at the origin with Vn(B1) = a. Consequently, any convergent subsequence of
(♦1,mK) converges to B1 and hence ♦1,mK → B1 as m → ∞.

Finally, if l ∈ N, l ≥ 2, we can apply the above argument to the Schwarz-universal sequence
(Hm+l−1), m ∈ N, to conclude that ♦l,mK converges to a ball Bl as m → ∞. This proves that
(Hm) is weakly ♦-universal. �

Note that by [4, Theorem 7.5], the right-hand inclusion in (22) is satisfied if ♦H is strictly
monotonic, idempotent, invariant on H-symmetric cylinders, and invariant under translations
orthogonal to H of H-symmetric sets, and examples given after that result show that none of
these four conditions can be dropped. Also, the symmetrization from [4, Example 10.7] has
all four properties but fails the left-hand inclusion in (22). The latter symmetrization is not
rotationally symmetric, so one might hope that (22) would hold if this fifth condition is added
to the four others. If this were true, we would have a corollary to Theorem 6.10 analogous
to Proposition 6.3. (In this connection, note that SHK ⊂ IHK is not true in general, yet IH
has all five properties except that it is monotonic but not strictly monotonic.) However, it is
false. To see this, in Example 6.6, let f(K) be the reciprocal of the first eigenvalue λ1(K) of
the Laplace operator. See [12, Section 2.1] for the definition of λ1(K) and the fact that it is
homogeneous of degree −2 and satisfies a Brunn-Minkowski inequality with exponent −1/2,
a result due to Brascamp and Lieb [8]. Since f(K) = λ1(K)−1, f is homogeneous of degree
2 and satisfies (20) with k = 1/2. Moreover, λ1(K), and therefore f(K), is rigid-motion
invariant, and f(K) is strictly increasing on Kn

n since λ1(K) is strictly decreasing; see [26,
p. 13]. Finally, the Faber-Krahn inequality (see, for example, [26, Theorem 3.2.1]) can be
expressed in the form

(

f(K)

f(Bn)

)1/2

=

(

λ1(K)

λ1(Bn)

)−1/2

≤

(

Vn(K)

κn

)1/n

,

with equality if and only ifK is a ball. From this (applied with n replaced by n−i) it is easy to
check that if ♦K is the symmetral from Example 6.6 with f(K) = λ1(K)−1, then ♦K ⊂ SHK,
where the containment is strict in general and hence the left-hand inclusion in (22) is false.
An example with similar properties can be obtained by instead taking f(K) = τ(K), the
torsional rigidity of K; see [12, Section 2.3].
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7. Symmetrals of compact sets

In this section, we consider symmetrals of compact sets, paying special attention to Steiner,
Schwarz, and Minkowski symmetrization. The definitions of SHK andMHK given forK ∈ Kn

in Section 4 apply equally to K ∈ Cn.
It is known (see [3, Examples 2.1 and 2.4]) that in general the limit of a sequence of successive

Steiner symmetrals of a compact convex set may not exist. Also, the limit of a sequence of
successive Steiner symmetrals of a compact set may exist but be non-convex; this is shown by
[3, Example 2.1] with the sequence (αm) of reals chosen so that their sum converges.

In [3, Theorem 6.1], it is proved that Klain’s theorem [29, Theorem 5.1] holds for compact
sets, i.e., the same statement holds when the initial set is an arbitrary compact set. Volčič [51]
showed that any sequence (um) dense in Sn−1 can be ordered so that the resulting sequence
is Steiner-universal, even if the initial set is an arbitrary compact set.

Despite this progress, many problems concerning symmetrals of compact sets remain open,
even for Steiner symmetrization; see, for example, [3, p. 1708], [51, p. 1691], and Section 8.

Our first contribution is the following extension of the first part of Theorem 5.11. (The
second part would require a suitable extension of the definition of Minkowski-Blaschke sym-
metrization, which we shall not pursue here.)

Theorem 7.1. Klain’s theorem [29, Theorem 5.1] (cf. Theorem 5.6) holds for Schwarz sym-
metrization of compact sets, where the limit set L is rotationally symmetric with respect to
each Uj ∈ F that appears infinitely often in (Hm).

Proof. We shall only give a sketch, indicating the necessary observations that allow the proof
for Steiner symmetrization from [3, Theorem 6.1] to be modified.

Let i ∈ {1, . . . , n−2} and let H ∈ G(n, i). Let K,L ∈ Cn be nonempty and let Eδ = E+δBn

for E ∈ Cn and δ > 0. The main argument requires the following four preliminary observations.
Firstly, the monotonicity of SH implies that SH(K ∩ L) ⊂ SHK ∩ SHL. This, the equality
Hn(SHK \SHL) = Hn(SHK)−Hn(SHK∩SHL), and the fact that SH preserves volume yield

(24) Hn(SHK \ SHL) ≤ Hn(K \ L).

Secondly, it follows that Hn(SHK△SHL) ≤ Hn(K△L) and hence that SH is continuous on
Cn in the symmetric difference metric. Thirdly, the inclusion

(25) (SHK)δ ⊂ SHKδ

is the special case L = δBn of SHK + SHL ⊂ SH(K + L), which in turn follows from
the Brunn-Minkowski inequality applied to intersections of K and L with translates of H⊥.
Fourthly,

(26) Hn(SHKδ \ rB
n) = Hn(Kδ \ rB

n) for all δ, r > 0 ⇒ SHK = K.

To see this, let u ∈ Sn−1 ∩H⊥. Then

Hn(Kδ \ rB
n) ≥ Hn(Su⊥Kδ \ rB

n) ≥ Hn(SHSu⊥Kδ \ rB
n) = Hn(SHKδ \ rB

n),
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where the inequalities follow from (24) and the equality from SHSu⊥Kδ = SHKδ. The
hypothesis in (26) implies that equality holds throughout. Then, from Hn(Kδ \ rBn) =
Hn(Su⊥Kδ \ rBn) and [3, Lemma 3.3], we get Su⊥K = K and since u ∈ Sn−1 ∩ H⊥ was
arbitrary, the desired conclusion SHK = K in (26) follows.

With these preliminary observations in hand, a few substitutions allow the main argument
of [3, Theorem 6.1] to be followed without difficulty. Of course Steiner symmetrization with
respect to a sequence of directions must be replaced by Schwarz symmetrization with respect
to a sequence of subspaces. Otherwise, it is only necessary to appeal to (24), (25), and
(26) wherever the proof of [3, Theorem 6.1] uses [3, (2.1)], [3, (2.2)], and [3, Lemma 3.3],
respectively. �

For the remaining results in this section, we need some definitions. The Kuratowski limit
superior of a sequence (Am) of sets in Rn is the closed set

Lsm→∞Am = {x ∈ Rn : ∀ε > 0, B(x, ε) ∩Am 6= ∅ for infinitely many m}

and the Kuratowski limit inferior of (Am) is the closed set

Lim→∞Am = {x ∈ Rn : ∀ε > 0, B(x, ε) ∩ Am 6= ∅ for sufficiently large m}.

It is not hard to check that Lim→∞Am ⊂ Lsm→∞Am. Also, if (Am) is uniformly bounded,
then limm→∞ Am exists if and only if Lim→∞Am = Lsm→∞Am. See [33, Section 29], where
these notions are credited to P. Painlevé.

Lemma 7.2. Let i ∈ {1, . . . , n−1}, let ♦ be an i-symmetrization process on Cn that preserves
sets in Kn

n, and let (Hm) be a ♦-universal sequence in G(n, i). Let K ∈ Cn and suppose that
the sequence (♦1,mK), defined via (8), is uniformly bounded. Let r > 0 be minimal such that
Lsm→∞♦1,mK ⊂ rBn. Let f : Kn

n → [0,∞) be continuous and strictly increasing. If ♦H is
monotonic on Cn and f -preserving on Kn

n for each H ∈ G(n, i), then rSn−1 ⊂ Lim→∞♦1,mK.

Proof. Let K ∈ Cn and r > 0 satisfy the assumptions of the lemma and let ε > 0. Let
L = Lsm→∞♦1,mK and let I = Lim→∞♦1,mK. We claim that there is an m0 ∈ N such that

(27) ♦1,mK ⊂ L+ εBn

for m ≥ m0. Indeed, if this is not true, then there exists a subsequence (mj) and points

xmj
∈ (♦1,mj

K) \ (L+ εBn)

for j ∈ N. Since (♦1,mK) is uniformly bounded, there is a subsequence of (xmj
) converging

to some z. But then z ∈ L and z 6∈ L+ εBn, which is impossible.
If the conclusion of the lemma is false, there is an x ∈ (rSn−1) \ I and hence an ε0 > 0 and

subsequence (mk) such that

(28) B(x, ε0) ∩ ♦1,mk
K = ∅

for k ∈ N. Let J be a closed half-space such that x 6∈ J and

(29) (rBn) \B(x, ε0) ⊂ J.
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Let C = (rBn) ∩ J . As f is continuous and strictly increasing, we can choose t > 0 small
enough so that x 6∈ C + tBn and

(30) f(C + tBn) < f(rBn).

By (29), (rBn) \B(x, ε0) ⊂ C \B(x, ε0) and hence

(31) ((r + t′)Bn) \B(x, ε0) ⊂ (C + tBn) \B(x, ε0)

for sufficiently small t′ > 0. It then follows from (27) with ε = t′, the assumption L ⊂ rBn,
(28), and (31) that

(32) ♦1,mk
K ⊂ C + tBn

for mk ≥ m0. Now if p > mk ≥ m0, (32) and the monotonicity of ♦H on Cn yields

(33) ♦1,pK = ♦mk+1,p(♦1,mk
K) ⊂ ♦mk+1,p(C + tBn) → sBn

as p → ∞, where s is independent of k, since C + tBn ∈ Kn
n and (Hm) is ♦-universal. As ♦H

is f -preserving on Kn
n and f is continuous there, we deduce from (30) and (33) that

f(sBn) = f(♦mk+1,p(C + tBn)) = f(C + tBn) < f(rBn)

for p ≥ mk ≥ m0, so s < r because f is strictly increasing on Kn
n. This and (33) imply that

♦1,pK ⊂ ((r + s)/2)Bn for sufficiently large p and consequently L ⊂ ((r + s)/2)Bn. Since
(r + s)/2 < r, this contradicts the minimality of r. �

Theorem 7.3. Let i ∈ {1, . . . , n−1} and let (Hm) be a Schwarz-universal sequence in G(n, i).
If K ∈ Cn and l ∈ N, the successive Schwarz symmetrals Sl,mK of K, defined by (8) with
♦ = S, converge to rBn as m → ∞, for some r = r(K) independent of l. In other words,
(Hm) is also Schwarz-universal for compact sets.

Proof. It is enough to consider the case when l = 1, because the fact that Schwarz symmetriza-
tion preserves volume on Cn means that the constant r in the statement of the theorem must
satisfy Vn(rB

n) = Hn(K). Accordingly, let L = Lsm→∞S1,mK and let I = Lim→∞S1,mK. Let
r ≥ 0 be minimal such that L ⊂ rBn. If r = 0, then L = {o} and by (27), the result holds
with r = 0. Otherwise, r > 0 and we may apply Lemma 7.2 with f = Vn to conclude that
rSn−1 ⊂ I. It will suffice to prove that I = rBn, since this implies that I = L.

Suppose that I 6= rBn. Then there is an x0 ∈ rBn\I and hence an ε0 > 0 and a subsequence
(mk) such that

(34) B(x0, ε) ∩ S1,mk
K = ∅

for 0 < ε ≤ ε0 and k ∈ N. As I ⊂ rBn is compact, there is an 0 < ε ≤ ε0 such that

(35) B(x0, ε) ⊂ rBn \ (I + εBn) ⊂ (r − ε)Bn.

Choose v1, . . . , vp ∈ rSn−1 such that

rSn−1 ⊂ ∪{B(vi, ε/2) : i = 1, . . . , p}.

Let i ∈ {1, . . . , p}. Since vi ∈ I, there is an ni such that for each m ≥ ni, there is an
xi ∈ B(vi, ε/2) ∩ S1,mK. Let n0 = max{ni : i = 1, . . . , p} and choose k ∈ N with mk ≥ n0.
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Let x0 = y0+z0, where y0 ∈ Hmk
and z0 ∈ H⊥

mk
. Let v0 = y0+w0 ∈ rSn−1, where w0 ∈ H⊥

mk

and x0 ∈ [y0, v0]. Since v0 6∈ B(x0, ε) by (35), we have ‖x0 − v0‖ > ε. Moreover, z0 ∈ [o, w0]
and ‖z0 − w0‖ = ‖x0 − v0‖. Consequently,

(36) ‖w0‖ > ‖z0‖+ ε.

Choose i ∈ {1, . . . , p} such that v0 ∈ B(vi, ε/2). Since mk ≥ n0, there is an xi ∈ B(vi, ε/2) ∩
S1,mk

K and hence ‖v0 − xi‖ ≤ ε. Let xi = yi + wi, where yi ∈ Hmk
and wi ∈ H⊥

mk
. Then

‖y0− yi‖ ≤ ε and ‖w0−wi‖ ≤ ε, and from the latter and (36), we conclude that ‖wi‖ > ‖z0‖.
It follows that

(B(yi, ‖wi‖) ∩ (H⊥
mk

+ yi)) ∩B(x0, ε) 6= ∅.

However, B(yi, ‖wi‖) ∩ (H⊥
mk

+ yi) ⊂ S1,mk
K, because xi = yi +wi ∈ S1,mk

K and S1,mk
K is a

Schwarz symmetral with respect to Hmk
. This contradicts (34) and completes the proof. �

Theorem 7.4. Let i ∈ {1, . . . , n − 1} and let (Hm) be a Minkowski-universal sequence in
G(n, i). If K ∈ Cn and l ∈ N, the successive Minkowski symmetrals Ml,mK of K, defined by
(8) with ♦ = M , converge to rBn as m → ∞, for some r = r(K) independent of l. In other
words, (Hm) is also Minkowski-universal for compact sets.

Proof. It is enough to consider the case when l = 1. Indeed, since conv (A + B) = convA +
convB for arbitrary sets A and B in Rn, Minkowski symmetrization preserves the mean width
of convex hulls. Then, for any l ∈ N, if Ml,mK converges to rBn, we have that Ml,m(convK)
also converges to rBn. But r must satisfy V1(rB

n) = V1(convK), so r is independent of l.
Let L = Lsm→∞M1,mK and let I = Lim→∞M1,mK. Let r ≥ 0 be minimal such that

L ⊂ rBn. If r = 0, then L = {o} and by (27), the result holds with r = 0. Otherwise, r > 0
and we may apply Lemma 7.2 with f = V1 to conclude that rSn−1 ⊂ I. It will suffice to prove
that I = rBn, since this implies that I = L.

Suppose that I 6= rBn. Then there is an x ∈ rBn \ I and hence an ε > 0 and a subsequence
(mk) such that

(37) B(x, ε) ∩M1,mk
K = ∅

for k ∈ N. Choose v1, . . . , vp ∈ rSn−1 such that

rSn−1 ⊂ ∪{B(vi, ε/2) : i = 1, . . . , p}.

Let i ∈ {1, . . . , p}. Since vi ∈ I, there is an ni such that for each m ≥ ni, there is an
xi ∈ B(vi, ε/2) ∩M1,mK. Let n0 = max{ni : i = 1, . . . , p} and choose k ∈ N with mk > n0.

Let y, z ∈ rSn−1 be such that x = (y + z)/2. Choose i, j ∈ {1, . . . , p} such that y ∈
B(vi, ε/2) and RHmk

z ∈ B(vj , ε/2). Since mk > n0, there are xi ∈ B(vi, ε/2)∩M1,mk−1K and
xj ∈ B(vj, ε/2)∩M1,mk−1K. Then xi ∈ B(y, ε) and xj ∈ B(RHmk

z, ε); the latter implies that
RHmk

xj ∈ B(z, ε).
Let q = (xi + RHmk

xj)/2. Then q ∈ B(x, ε) and q ∈ MHmk
(M1,mk−1K) = M1,mk

K since
xi ∈ M1,mk−1K and RHmk

xj ∈ RHmk
(M1,mk−1K). It follows that B(x, ε)∩M1,mk

K 6= ∅, which
contradicts (37) and completes the proof. �
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Theorem 7.3 with i = n−1 and Theorem 7.4, together with the results mentioned at the end
of Section 4, show that the eight properties (weakly) Steiner-universal, (weakly) Minkowski-
universal, (weakly) Steiner-universal for compact sets, and (weakly) Minkowski-universal for
compact sets are all equivalent.

8. Open problems

Problem 8.1. Can the assumptions in Theorem 5.7 and Proposition 6.3 be weakened?

We do not know if the assumptions of continuity and invariance under translations orthog-
onal to H of H-symmetric sets are needed for Theorem 5.7, nor whether the latter condition
is needed for Proposition 6.3.

Regarding the continuity property, note that SH is not continuous on Kn, despite having
all the properties considered in [4] except projection covariance. Of course SH is continuous
on Kn

n, but Example 5.10 exhibits a ♦H that is monotonic, invariant on H-symmetric sets,
and invariant under translations of H-symmetric sets orthogonal to H , but not continuous. It
may be that projection covariance, either alone or in combination with some other properties,
implies continuity. Certainly this is the case when i = 0, as was proved in [20, Corollary 8.3].
The latter relied on [20, Theorem 8.2], while for i ∈ {1, . . . , n − 2} we have only the weaker
[4, Proposition 4.4] and for i = n− 1 nothing at all.

Problem 8.2. Let i ∈ {1, . . . , n−1}, let ♦ be an i-symmetrization process on Cn that satisfies
the assumptions of Lemma 7.2, and let (Hm) be a ♦-universal sequence in G(n, i) for convex
bodies. Is (Hm) also ♦-universal for compact sets?

Problem 8.3. Do Theorem 5.6 and the second statement in Theorem 5.7, i.e., Klain’s theorem
for fiber and Minkowski symmetrization, hold if the initial set is an arbitrary compact set?

As we remarked at the beginning of Section 7, the answer is positive for the case i = n− 1
of Theorem 5.6, corresponding to Steiner symmetrization, by [3, Theorem 6.1].

Problem 8.4. Does Klain’s theorem hold for Blaschke symmetrization (see [4, p. 59])?
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