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Introduction: Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin

family, involved in neuronal survival and synaptic plasticity. The BDNF Val66Met

polymorphism is known to reduce BDNF expression and secretion; its role in multiple

sclerosis (MS) is poorly investigated.

Objectives and Methods: In this multicenter, retrospective study, we assessed the

role of BDNF Val66Met polymorphism on cognitive and motor disability in MS patients

consecutively referred to the University of Florence and the Hospital of Barletta. All

patients underwent a genetic analysis for the presence of Val66Met polymorphism

and a comprehensive neuropsychological examination on the Rao’s Brief Repeatable

Battery and the Stroop Color Word Test. Possible predictors of the Expanded Disability

Status Scale (EDSS) score and number of failed neuropsychological tests were assessed

through linear multivariable regression models.

Results: Ninety-eight patients were recruited. Patients with the BDNF Val66Met

polymorphism (35.7%) were more frequently males (p = 0.020), more disabled

(p = 0.026) and, marginally, older (p = 0.064). In the multivariable analysis, BDNF

Val66Met polymorphism was associated with a better cognitive performance (B = −1.1

± 0.5, p = 0.027). Higher EDSS score was associated with a progressive disease

course (B = 3.4, p < 0.001) and, marginally, with the presence of the BDNF Val66Met

polymorphism (B = 0.56, p = 0.066).

Discussion: Our results preliminarily suggest a protective role of BDNF Val66Met

polymorphism against cognitive impairment in MS patients, possibly related to a

detrimental effect of increased BDNF concentration in a neuroinflammatory environment.
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory and
neurodegenerative disorder of the central nervous system
(CNS) that affects mainly patients between 20 and 40 years of
age. It is the second cause of neurological disability in the young
adult population, after trauma (1). Cognitive impairment (CI)
is widely acknowledged as a core feature of MS, affecting up
to 70% of the patients, with a significant functional impact in
everyday activities (2). In adult patients, information processing
speed, attention, working and episodic memory, executive
functions, and visuospatial abilities are the cognitive domains
most commonly impaired, with relative sparing of language
and general intelligence (2, 3). CI in MS has been linked to
different risk factors (4): among genetic factors, the role of
brain-derived neurotrophic factor (BDNF) polymorphisms is
receiving growing attention.

BDNF is a member of the neurotrophin family, which also
includes nerve growth factor and neurotrophins 3 and 4. BDNF is
secreted from dendrites to axons and from axons to dendrites, in
autocrine loops, and across long distances through neural circuits
(5, 6). BDNF is involved in different processes within the brain,
such as plasticity, neuronal survival, formation of new synapses,
dendritic branching, andmodulation of excitatory and inhibitory
neurotransmitter profiles (7).

The BDNF single-nucleotide polymorphism rs6265 (also
named Val66Met) determines the substitution of valine with
methionine at codon 66 of the BDNF pro-protein (8). Its presence
leads to interference with BDNF intracellular trafficking and
secretion, as it has been demonstrated in in vitro studies (8,
9). The presence of the abovementioned polymorphism also
results in an 18–30% reduction in BDNF secretion (9). The
Val66Met polymorphism has been reported to be a risk factor
for neurodegenerative disorders (such as Alzheimer’s disease) in
the adult age (10). In addition, it has been associated with CI
in otherwise healthy individuals, particularly with involvement
of episodic and working memory, which require neuroplasticity,
and hence abundant expression of BDNF in related brain areas
(8, 11–14).

In neuroinflammation, the role of BDNF is entangled with the
effects of factors involved in the innate and adaptive immune
response in neurodegenerative and autoimmune disorders (15),
inducing BDNF expression and secretion by immune cells. The
role of BDNF in neuroinflammatory disorders, and especially
in MS, has been poorly investigated so far, with conflicting
results (16). In the first study assessing the role of BDNF
Val66Met polymorphism on magnetic resonance imaging (MRI)
parameters in a group of MS patients, Met carriers showed
a higher risk of developing gray matter (GM) atrophy (17).
Conversely, other subsequent studies showed that Met carriers
had a higher preservation of brain volume (18) and global and
regional GM volumes (19, 20). On the other hand, a large-
scale Norwegian study found no role of the BDNF Val66Met
polymorphism on clinical and neuropsychological variables (21).

With this background, the aim of the present cross-sectional
multicenter study was to assess the influence of Val66Met

polymorphism on both cognitive andmotor disability in a sample
of MS patients.

MATERIALS AND METHODS

Subjects
Patients with MS consecutively referred to the MS Centres
at the University of Florence and the Hospital of Barletta
between 2014 and 2019 were screened for inclusion. Inclusion
criteria were as follows: diagnosis of MS according to the 2010
McDonald’s Diagnostic Criteria (22), relapsing-remitting (RR),
or progressive (either primary progressive, PP, or secondary
progressive, SP) disease course; age >18 years; and no history of
intellectual disability, psychosis, or dementia. Exclusion criteria
were corticosteroid treatment in the 30 days before inclusion and
inability or refusal to perform the blood sampling required for
the study purposes. The study was approved by the local Ethic
Committees, and written informed consent was obtained by all
the subjects.

Clinical and Neuropsychological
Examination
In each center, demographic and clinical data were prospectively
collected every 6 months and in occasion of relapses and
stored in an electronic database (23). For this cross-sectional
analysis, at the time of assessment and blood sampling, the
following demographic and clinical data were collected by a
qualified neurologist: age, sex, education, age at disease onset,
disease course, ongoing treatments, relapses in the last year, and
disability level as measured on the Expanded Disability Status
Scale (EDSS) (24). A well-trained psychologist administered
the Brief Repeatable Battery of Neuropsychological Tests (BRB)
(25) and the Stroop Color Word Test (SCWT). The BRB
assesses the cognitive domains most frequently impaired in MS
and incorporates tests of verbal memory [Selective Reminding
Test (SRT)], visuo-spatial memory [10/36 Spatial Recall Test
(SPART)], complex attention and information processing speed
[Paced Auditory Serial Addition Test (PASAT) and Symbol
Digit Modalities Test (SDMT)], and verbal fluency [Word List
Generation (WLG)]. The SCWT (26) assesses complex attention
and aspects of executive functioning such as the ability to
inhibit cognitive interference. Failure of a test was defined as
a score below the 5th or above the 95th percentile (1.65 SD),
as appropriate, on the basis of Italian normative values after
adjustment for age, sex, and education (27). Premorbid intelligent
quotient (IQ) was estimated through the Italian version of the
National Adult Reading Test (NART)—the “Test di Intelligenza
Breve” (28). Finally, fatigue and depression were assessed through
the Fatigue Severity Scale (29) and the Montgomery and Asberg
Depression Rating Scale (30), respectively.

Genetic Analysis
A blood sample for genetic analysis of the BDNF Val66Met
polymorphism was obtained from each patient. The presence
of the rs6265 polymorphism was analyzed by first extracting
the DNA from peripheral blood samples, using a standardized,
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TABLE 1 | Characteristics of the study sample.

Whole sample (n = 98) BDNF Val/Met (n = 35) BDNF Val/Val (n = 63) p

Females, n (%)a 65 (66.3%) 18 (51.4%) 47 (74.6%) 0.020

Age, mean years (SD)b 43.9 (10.9) 46.7 (10.7) 42.3 (10.8) 0.064

Education, mean years (SD)b 12.1 (3.96) 11.5 (3.8) 12.5 (4.0) 0.213

IQ, median (IQR)c 108.8 (101.6–111.9) 108.2 (98.0–114.0) 109.3 (103.6–111.4) 0.885

Disease course 0.392

RR, n (%)a 80 (81.6) 27 (77.1) 53 (84.1)

CP, n (%)a 18 (18.4) 8 (22.9) 10 (15.9)

Age at onset, mean years (SD)b 35.3 (10.4) 36.9 (10.8) 34.4 (10.2) 0.262

Disease duration, mean years (SD)b 8.6 (7.4) 9.9 (8.5) 7.8 (6.7) 0.225

EDSS score, median (IQR)c 2 (1.5–5.5) 3 (2–5.5) 2 (1.5–4.5) 0.026

No of relapses in the past year, mean (SD)b 0.4 (0.6) 0.26 (0.5) 0.4 (0.7) 0.244

Treated with DMTs, n (%)a 88 (89.8%) 32 (91.4%) 56 (88.9%) 0.691

FSS, median (IQR)c* 5.0 (3.6–6.0) 4.6 (3.7–5.6) 5.2 (2.9–6.1) 0.449

MADRS, median (IQR)c 6.0 (4.0–9.0) 6.0 (4.0–9.0) 6.0 (4.0–8.0) 0.676

No of failed tests, mean (SD)b 1.9 (2.3) 1.5 (1.8) 2.13 (2.5) 0.051

SRT-LTS score, median (IQR)c 38.2 (28.2–45.4) 38.2 (32.2–46.3) 36.2 (25.4–43.4) 0.184

SRT-CLTR score, median (IQR)c 27.4 (19.9–39.1) 27.4 (22.1–39.1) 27.4 (19.1–38.1) 0.784

SRT-D score, median (IQR)c 7.7 (5.0–9.3) 7.9 (5.3–9.5) 7.5 (4.9–9.3) 0.580

SPART score, median (IQR)c 18.7 (15.4–23.7) 19.2 (15.9–23.8) 17.8 (13.9–21.9) 0.252

SPARTD score, median (IQR)c 6.3 (4.9–7.9) 6.9 (5.2–8.9) 6.3 (4.9–7.3) 0.025

SDMT score, median (IQR)c 48.4 (42.2–57.3) 49.2 (42.5–57.6) 47.4 (41.5–57.2) 0.477

WLG score, median (IQR)c 23.0 (18.0–26.7) 21.1 (16.9–26.9) 23.1 (18.9–26.9) 0.333

ST score, median (IQR)c 53.5 (41.4–63.2) 51.1 (34.6–61.7) 54.3 (47.8–63.7) 0.221

Pasat2 score, median (IQR)c 25.5 (8.3–34.4) 29.3 (16.9–34.2) 203.3 (4.9–34.8) 0.104

Pasat3 score, median (IQR)c 40.2 (27.7–49.0) 38.4 (28.9–49.6) 40.5 (23.9–46.5) 0.417

*available in 68 subjects; aChi-squared; bt-test for independent samples; cMann–Whitney U test. IQ, intelligence quotient; RR, relapsing-remitting; CP, chronic progressive; EDSS,

Expanded Disability Status Scale; DMTs, disease-modifying treatments; FSS, Fatigue Severity Scale; MADRS, Montgomery and Asberg Depression Rating Scale; SRT, Selective

Reminding Test; SRT-LTS, Selective Reminding Test–Long Term Storage; SRT-CLTR, Selective Reminding Test–Consistent Long Term Retrieval; SRT-D, Selective Reminding Test–

Delayed; SPART, Spatial Recall Test; SPART-D, Spatial Recall Test–Delayed; SDMT, Symbol Digit Modalities Test; WLG, Word List Generation; ST, Stroop Test; PASAT-2, Paced Auditory

Serial Addition Test−2 seconds; PASAT-3, Paced Auditory Serial Addition Test−3 seconds; SD, standard deviation. The bold values are the statistically significant ones (p < 0.05).

automated method (QIAcube, QIAGEN). After DNA extraction,
a high-resolution melting analysis (HRMA) method was
used to analyze the presence of rs6265 polymorphism, using
the following primers: 5

′

-ACTCTGGAGAGCGTGAATGG-3
′

and 5
′

-ACTACTGAGCATCACCCTGGA-3
′

for the polymerase
chain reaction (PCR) to amplify the subjects’ DNA.

Statistical Analysis
Demographic and clinical characteristics were described as
frequency (percentage) and mean ± standard deviation (SD).
Group comparisons were assessed through the Pearson’s chi-
square, Student t, and Mann–Whitney U tests when appropriate.
Possible predictors of the number of failed neuropsychological
tests were assessed through a backward stepwise linear regression
model, including as covariates BDNF genotype, sex, age,
education, disease duration, disease course, number of relapses
in the year before inclusion, EDSS, treatment, and premorbid
IQ. P < 0.05 were considered as significant. Likewise, possible
predictors of EDSS score were assessed through a backward
stepwise linear regression model, including as covariates BDNF

genotype, sex, age, disease duration, disease course, number of
relapses in the year before inclusion, and treatment.

RESULTS

Ninety-eight patients were included in the analysis, 80 (81.6%)
with a RR, 12 (12.3%) with a SP, and six (6.1%) with a PP course.
SP and PP patients were analyzed as a whole group, named
chronic progressive (CP) MS. The genetic analysis identified 35
(35.7%) patients with the BDNF rs6265 (Val/Met) polymorphism.
The main demographical and clinical characteristics of the whole
sample and of the two groups (Val/Met and Val/Val) are depicted
in Table 1. In the univariate analysis, patients with the BDNF
rs6265 polymorphism were more frequently males (48.6 vs.
24.4%, p= 0.020, chi-squared test), more disabled (median EDSS
score 3, IQR: 2–5.5 vs. 2, IQR 1.5–4.5, p= 0.026, Mann–Whitney
U test), and, marginally, older (46.7 ± 10.7 vs. 42.3 ± 10.8
years, p = 0.064, t-test for independent samples) than Val/Val
patients. Eighty-eight (89.8%) patients were treated with disease-
modifying therapies (DMTs) (two azathioprine; 17 interferon in
its various formulations; nine glatiramer acetate; 39 dimethyl
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fumarate; three teriflunomide; 10 natalizumab; onemethotrexate;
one cyclophosphamide; six fingolimod) (31).

As for cognitive assessment, at the univariate analysis, Val/Met
patients demonstrated a trend toward a lower number of failed
neuropsychological tests as opposed to Val/Val patients (1.5 ±

1.8 vs. 2.1 ± 2.5, p = 0.051, t-test for independent samples).
Moreover, BDNF Val/Met polymorphism patients had higher
mean adjusted score on the SPART-D (median 6.9, IQR: 5.2–8.9
vs. 6.3, IQR: 4.9–7.3, p = 0.025, Mann–Whitney U test). There
were no differences in the other adjusted scores obtained in the
remaining neuropsychological tests. The same was true when
comparing the MADRS and FSS scores obtained by Met carriers
and Val/Val homozygotes.

In the multivariable analysis, the presence of the BDNF rs6265
Val/Met polymorphism (B = −1.1 ± 0.5, p = 0.027) and,
marginally, a higher IQ (B = −0.6 ± 0.03, p = 0.068) were
associated with a lower number of failed cognitive tests. On the
other hand, higher EDSS score was associated with a higher mean
number of failed neuropsychological tests (B = 0.385 ± 0.128,
p = 0.003). The R-square for the model was 21.1%, with an
adjusted R-square for the overall model of 18.4%, a medium size
effect according to Cohen (32) (Table 2).

As for disability, a higher EDSS score was associated with a
CP course (B= 3.4, p< 0.001), while there was a trend toward an
association with Val/Met polymorphism (B = 0.56, p = 0.066).
Other variables included in the model were sex, age, disease
duration, mean number of relapses in the last year, and treatment.
The R-square for the model was 48.4%, with an adjusted R-square
for the overall model of 47.3%, a large size effect according to
Cohen (32) (Table 3).

DISCUSSION

While BDNF has been consistently associated with better
cognitive performances in healthy individuals and was found
to be a protective factor against memory impairment in
neurodegenerative disorders (such as Alzheimer disease) (10), its
role in neuroinflammatory diseases is still poorly understood. In
MS, previous studies on possible relationships between BDNF
and both cognitive andmotor disability have reported conflicting
results (17–20). In our cross-sectional multicenter study, we
assessed the role of the BDNF rs6265 polymorphism on cognitive
functions and disability among MS patients.

Carriers of Met allele showed an overall better cognitive
performance, failing a lower number of neuropsychological tests.
The strength of this association, which was marginal at the
univariate analysis, significantly increased after adjustment for
well-acknowledged demographic and clinical confounders of
cognitive functioning in MS (in particular age and disability,
which were unevenly distributed between the two groups) (33).

Our results are in line with another study exploring
the role of BDNF Val/Met polymorphism in MS on MRI
parameters and cognitive performances on the PASAT, a test
of information processing speed and complex attention (19).
Indeed, in that study, Met carriers had both higher GM volumes
and better cognitive performances than Val/Val carriers. The

TABLE 2 | Predictors of number of failed neuropsychological tests based on a

linear regression model.

β p

EDSS 0.385 0.003

IQ −0.6 0.068

BDNF rs6265 (Val/Met) polymorphism −1.1 0.027

Adjusted R-square for the model: 0.184. EDSS, Expanded Disability Status Scale; IQ,

intelligence quotient; BDNF, brain-derived neurotrophic factor. Covariates that were not

retained in the final model are as follows: disease course, sex, age, disease duration,

treatment with disease-modifying therapies, education, and number of relapses in the

last year. The bold values are the statistically significant ones (p < 0.05).

TABLE 3 | Predictors of EDSS score based on a linear regression model.

β p

CP course 3.382 <0.001

BDNF rs6265 (Val/Met) polymorphism 0.559 0.066

Adjusted R-square for the model: 0.473. EDSS, Expanded Disability Status Scale; CP,

chronic progressive; BDNF, brain-derived neurotrophic factor. Covariates that were not

retained in the final model are as follows: sex, age, disease duration, treatment with

disease-modifying therapies, and number of relapses in the last year. The bold values

are the statistically significant ones (p < 0.05).

same protective role of BDNF rs6265 polymorphism against
brain atrophy was highlighted in other subsequent studies (18,
20). Moreover, in a recent functional-MRI study, the BDNF
Val/Met polymorphism was associated with increased functional
connectivity between the hippocampus and posterior cingulate
cortex in comparison with Val homozygosis during retrieval
phase of an episodic memory task, while the opposite was true
for healthy controls (34).

In general, conversely to what has been demonstrated in
the general population and neurodegenerative diseases, findings
from our and the abovementioned studies suggest a protective
role of BDNF Val/Met polymorphism against cognitive decline
and brain atrophy in MS patients. The impact of BDNF in
MS could potentially be very different from that in healthy
individuals and other pathological conditions, due to differences
in the pathophysiological milieu in which BDNF exerts its effects.
The neuroinflammatory environment of the MS lesions contains
immune cells, such as infiltrating T-cells and macrophages, as
well as activated astrocytes. These cells were found to express
higher BDNF mRNA levels (35–37), contributing to increased
BDNF secretion. In addition, BDNF could have a dual role in the
setting of neuroinflammation, depending on its concentration.
For instance, neurons populating the edges of active lesions
and oligodendrocytes (and their precursors) have been found to
express higher levels of two different BDNF receptors, the TrKB
BDNF receptor (35) and the p75 neurotrophin receptor (NTR)
(38), respectively. These two receptors have different affinities
for BDNF and mediate different effects of this molecule. In
particular, the high-affinity TrKB receptor (active at low BDNF
concentrations) mediates the signaling cascade connected with
neuronal survival, while the low-affinity p75 NTR (binding with
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BDNF at higher concentrations) is thought to mediate a pro-
apoptotic role. Therefore, an increased production of BDNF in a
neuroinflammatory milieu can have a detrimental effect, shifting
the balance toward apoptosis, and neurodegeneration.

Furthermore, BDNF is known to facilitate glutamatergic
synaptic transmission via mechanisms involving the N-
methyl-D-aspartate receptors (39). This action has a
crucial role for neuroplasticity and long-term potentiation,
which are fundamental for learning and memory, and
could account for the positive effect of BDNF in healthy
population and neurodegenerative diseases (6, 12). On the
other hand, in MS patients, LTP activation and glutamate
excitotoxicity can cause oligodendrocytes and neuronal
loss (40). Additionally, neuronal processes requiring
the activity-dependent component of BDNF could be
compromised by the constitutive presence of the immune
cell-derived BDNF.

Against this background, it could be argued that the presence
of abundant BDNF in an inflammatory environment could
be detrimental for neuronal functions, promoting toxicity
mechanisms that could enhance synaptic degeneration. Taken
as a whole, these actions can hinder cognitive functioning,
contributing to neuropsychological impairment.

In our study, beyond BDNF polymorphism, CI was associated
with greater disability levels as measured on the EDSS. This
finding is consistent with the existing literature, showing that age
and disability levels are the main drivers of neuropsychological
dysfunction in MS (33).

As for motor disability, while a potential negative effect of
Val/Met polymorphism emerged in the univariate analysis, in the
multivariable analysis, the only significant predictor of higher
EDSS score was the CP course of the disease. The neutral
role of the BDNF rs6265 polymorphism on disability in MS
was also evident in a large cross-sectional study conducted
in Norway including 2,149MS patients (21). The absence of
a significant relationship between BDNF polymorphism and
motor disability can be due, at least in part, to the differential
expression of BDNF in the CNS. Indeed, greater expression
of BDNF has been reported in brain regions involved in
learning and memory, such as the hippocampal formation and
the prefrontal cortex, where the anatomical effect of Val66Met
polymorphism is most apparent (8, 11, 12). It must be noted
that other regulating factors, which were not assessed in our
study, such as epigenetic mechanisms and DNA methylation,
can modulate the effects of BDNF polymorphism. In a recent
study on 209MS patients, while the presence of Val/Met
polymorphism was not linked to disability accumulation, a
lower BDNF gene DNA methylation, and therefore, higher
gene expression and BDNF secretion, was associated to a
higher risk of reaching EDSS 6.0 (41). Whether higher
BDNF expression is directly responsible of disability worsening
or represents an ineffective compensatory attempt needs to
be clarified.

In interpreting the study findings, a few limitations should
be considered. The sample size was relatively small. In the
univariate analysis, Met carriers were more frequently males,

more disabled, and, marginally, older than Val/Val homozygotes,
reflecting a possible sampling bias. These differences can account,
at least in part, for the marginal association between BDNF
polymorphism and motor disability, which disappeared in the
multivariable model. On the other hand, older age and greater
disability in Met carriers are expected to increase the proportion
of CI in this group: in this respect, as commented above, our
findings seem to reinforce the hypothesis of a protective effect of
BDNF polymorphism against CI in MS. Moreover, data on MRI
evaluations are lacking, as well as measurement of actual levels of
BDNF at the time of clinical and neuropsychological evaluations.
Finally, since genetics has influence during the course of the
disease, the cross-sectional design prevented the assessment
of a possible longitudinal effect of BDNF polymorphism on
study outcomes.

Despite these limitations, our results suggest a protective role
of BDNF Val66Met polymorphism against CI in MS patients,
possibly reflecting a detrimental effect of increased BDNF
concentration in a neuroinflammatory environment. These
preliminary findings indicate that BDNF and its polymorphism
may represent a potential biomarker for susceptibility and
severity of CI in MS, as well as a possible therapeutic
target of pharmacological interventions for neuropsychological
dysfunction. Further studies are needed to confirm our
findings on larger populations, with longitudinal MRI and
clinical evaluations.
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