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Abstract

Univariate conditional models are of core importance in supporting medical reasoning,
as they allow to decompose a joint probability distribution using the chain rule. Although
several methods are available for the elicitation of the joint prior distribution of parame-
ters when the response is a medical categorical variable, the case of a medical continuous
response is typically difficult to address, because its sample space is often bounded to an
interval and its relationship with explanatory variables may be not linear. In these situ-
ations, the elicitation of an informative prior distribution on parameters of a univariate
conditional model is challenging, because some level of statistical training is required to
a medical expert for interpreting parameters and for retrieving appropriate quantitative
information about them. The task can be eased and made efficient by recognizing that
physicians typically distinguish among values involving medically normal and pathological
patient conditions on the grounds of their personal clinical experience. In this paper, we
propose a Generalized Beta regression where parameter elicitation is performed by estab-
lishing a correspondence among measured values expressed as relative positions within
intervals with a clinical interpretation, regardless the original scales of variables. Software
implementing the elicitation procedure is freely available.

Keywords: Bayesian elicitation, degree of belief, informative prior distribution, logistic func-
tion, rescaling procedure.

1. Introduction

Quantitative analysis is particularly challenging in medical problems, because very often a
high number of variables is related into a highly structured stochastic system (see, for ex-
ample, Luciani, Cavuto, Antiga, Miniati, Monti, Pistolesi, and Bertolini 2007; Luciani and
Stefanini 2012; Magrini, Stefanini, and Luciani 2018). The study of such structures starts
with the qualitative knowledge published in the specialized medical literature, and the pro-
cess may benefit from the use of Directed Acyclic Graphs (DAGs), especially as a first step
towards the development of a probabilistic network (Koller and Friedman 2009). In this case,
the DAG describes a factorization of the joint probability distribution into the product of
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univariate conditional models. Quantitative information required to specify a univariate con-
ditional model is frequently scattered in many different sources and varies greatly in quality
(Druzdzel and van der Gaag 2000), so that working with heterogeneous sources of informa-
tion is often the only available option. On these grounds, the elicitation of experts’ degree of
belief is a valuable resource, because medical experts are typically able to retrieve appropri-
ate quantitative information from the literature, or, if unavailable, to refer to their personal
clinical experience. Nevertheless, judgements from experts may be subjected to several biases
(Kahneman, Slovic, and Tversky 1982; Gigerenzer 2002; Kynn 2008), thus elicitation should
be performed under a parametric model with a clear interpretation for the expert and/or
making use of well characterized elicitation methods.

Canonical models (Dı́ez and Druzdzel 2006) have been extensively used in medical problems
involving categorical variables (Onisko, Druzdzel, and Wasyluk 2001; Dı́ez, Mira, Iturralde,
and Zubillaga 1997). In a canonical model, parameters represent conditional probabilities,
thus elicitation is typically easy and reliable. However, continuous variables require to undergo
discretization, thus eventually entailing loss of information.

Logistic regression models are very popular options when the response is a medical categor-
ical variable and continuous explanatory variables are involved (Bagley, White, and Golom
2001). Logistic regression models properly deal with continuous explanatory variables, and
parameters represent odds ratios instead of conditional probabilities. Several elicitation meth-
ods have been proposed for parameters of logistic regression models (see, for example, Chen,
Ibrahim, and Yiannoutsos 1999).

Linear regression is widely used in medical problems when the response is a continuous variable
(Schneider, Hommel, and Blettner 2010). The main advantage of linear regression is that
parameters have a simple interpretation, that is they represent variations in the expected
value of the response given a unitary variation of one explanatory variable at a time. Several
elicitation methods have been proposed for the linear regression model (see, for example,
Kadane, Dickey, Winkler, Smith, and Peters 1980; Kadane and Wolfson 1998).

However, linear regression is not a good solution for many medical applications, because it
assumes that the relationship between the response and explanatory variables is linear and
that errors have the same variance, although the scale of a medical continuous variable is
typically bounded to an interval for living patients. Under these conditions, the regression
model could predict values exceeding the plausible range of the response while disregarding
that the error variance should decrease as predicted values approach the extremes of the scale.
These problems could be addressed by working on a transformed scale (e.g., the logarithmic
or the logit scale), by truncating the Gaussian distribution (DeMaris 2004, Chapter 9), or by
assuming a distribution different from the Gaussian one (for instance the Beta distribution:
Ferrari and Cribari-Neto 2004). Unfortunately, the interpretation of parameters changes and
could become obscure to a physician, as proved by the fact that no relevant applications of
these parametric models have been developed to elicit medical experts’ degree of beliefs. An
interesting proposal is the elicitation under piecewise-linear regression models (Garthwaite,
Al-Awadhib, Fadlalla, and Jenkinsonc 2013), but this method is not specifically focused on
the features which are relevant for physicians, thus additional training besides the medical
standard one is required for the expert in order to obtain reliable assessments.

In our proposal, an informative prior distribution on parameters of a Generalized Beta re-
gression is elicited after piecewise linear rescaling of continuous variables. Intervals in the
piecewise linear rescaling gather medically normal and pathological values, as defined by the
standard medical training. The rescaling procedure allows the expert to focus on clinically rel-
evant concepts during parameter elicitation, like the correspondence among measured values
expressed as relative positions within ranges of clinical interpretation, without considering the
original scales of variables. Uncertainty is computed according to the number of patient cases
on which each assessment is based. If available, evidence from a published clinical study on
any parameter can be taken into account, and uncertainty is derived according to the number
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of sampling units supporting the estimate of that parameter. As such, our proposal allows
to circumvent the lack of quantitative information on pathophysiological and etiopathogenic
relationships, which is mainly attested in animal, rather than human studies. Software im-
plementing the elicitation procedure is available in the online supplementary materials.

This paper is structured as follows. In Section 2, the formal model for eliciting the dependence
of a medical continuous response from each explanatory variable is described. In Section 3,
the quantitative assessment is detailed. In Section 4, our elicitation method is applied to a
variable (respiratory rate) included in a probabilistic network for the diagnosis of pulmonary
embolism. Finally, our proposal is discussed in Section 5.

2. Model and notation

In this section, we detail the model proposed to elicit the dependence relationship between
a medical continuous response, denoted as Y , and its explanatory variables (EVs), denoted
as X1, . . . , Xn, where n is the number of EVs. Firstly, medical continuous scales are char-
acterized on the basis of three different ranges of values, each involving medically normal,
hypo-pathological and hyper-pathological patient conditions, respectively (Subsection 2.1).
Secondly, the conditional expected value is defined as a symmetric logistic function after
piecewise linear rescaling is applied to both the response and EVs (Subsection 2.2). Finally,
the Generalized Beta family of distributions is assumed to complete the probabilistic specifi-
cation of the response (Subsection 2.3).

2.1. Medical continuous scales

Medical continuous variables are typically bounded to an interval of values for living patients,
that is values outside that interval cannot be observed until a patient is alive. The standard
medical training and medical literature provide physicians the ability to properly recognize the
extreme values of a medical continuous variable for a living patient, as well as to distinguish
among values involving medically normal and pathological patient conditions (Jacobs, Oxley,
and DeMott 2001; Irwin and Rippe 2011). On these grounds, the scale of a medical continuous
variable V is partitioned into three intervals: a medical normal range (n-range), in which
values are regarded as non-pathological, a hypo-pathological range (lp-range), including values
lower than non-pathological ones, and a hyper-pathological range (hp-range), including values
higher than non-pathological ones. Extreme values of the scale are denoted as vL2 and vH2,
while the cut points limiting n-range as vL1 and vH1. The mid value of n-range is denoted
as vC, and the mid values of lp-range and hp-range are denoted as vLC and vHC, respectively.
Value vC is taken as a reference for all values representing a fully healthy patient condition,
and is called neutral value. The partitioned scale of a medical continuous variable is shown
in Figure 1. In the remainder, we will refer to n-range, lp-range and hp-range as ranges of
clinical interpretation.

Special cases of continuous EVs are a hyper-restricted and a hypo-restricted medical scale, in
which lp-range or hp-range are (or are supposed to be) of null size, respectively.

Binary EVs are another special case which is handled by assigning value 0 to the state involving
non-pathological patient conditions, and value 1 to the state involving pathological patient
conditions. Any polytomous EV is replaced by a set of dummy indicators, one for each non-
neutral value. In the remainder, these dummy indicators will be considered as distinct EVs
in order to keep the notation as simple as possible.

2.2. Dependence of a medical continuous response from its explanatory
variables

Since physicians are typically able to assign a measured value of a medical continuous variable
to one of the ranges of clinical interpretation, we believe that the most medical tasks, for
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lp−range n−range hp−range

vLC vC vHC
vL2 vL1 vH1 vH2

● ● ●

Figure 1: The scale of a medical continuous variable.

example medical diagnosis, widely depend on the relative position of measured values in
those ranges, thus original scales become inessential for understanding changes in a patient’s
health. Similarly, we also believe that physicians are prepared to appreciate a change in the
expected value of the response due to a change in the value of an EV without considering the
original scales of variables, provided that changes involve an EV at a time while all other EVs
take their respective neutral values, and that changes are still expressed as relative positions
within the ranges of clinical interpretation. On these grounds, we propose to elicit the degree
of dependence of the response from each EV after a rescaling procedure is applied (Algorithm
1) to make n-range, lp-range and hp-range of equal size and to map their mid values to 0, −1
and 1, respectively.

After rescaling, cut points vL2, vL1, vH1 and vH2 are mapped to −1.5, −0.5, 0.5 and 1.5,
respectively (Figure 2). Computations are shown in Appendix. A rescaled variable or a value
of a rescaled variable is indicated by the tilde symbol. For instance, Ỹ denotes the rescaled
response and ỹC denotes its neutral value. Similarly, X̃i denotes a rescaled EV and x̃i,C
denotes its neutral value.

lp−range n−range hp−range

v~LC = −1 v~C = 0 v~HC = 1
v~L2

− 1.5

v~L1

− 0.5

v~H1

0.5

v~H2

1.5

● ● ●

Figure 2: Cut points of a rescaled medical variable.

Algorithm 1 Rescaling procedure

For each variable, apply one of the following:

• if V is a continuous variable, then:

Ṽ =


−1.5 + V−vL2

vL1−vL2
if V < vL1

−0.5 + V−vL1
vH1−vL1

if vL1 ≤ V < vH1

0.5 + V−vH1
vH2−vH1

if V ≥ vH1

• otherwise Ṽ = V .

Our method to elicit the degree of dependence of the rescaled response Ỹ from a rescaled
EV X̃i is based on a reference situation denoted as fully-active: changing X̃i from value 0 to
value −1 or 1 determines a change in the expected value of Ỹ from value 0 to value −1 or
1. If a smaller change of X̃i suffices to change the expected value of Ỹ from value 0 to value
−1 or 1, then we refer to a hyper-active relationship. If a change of X̃i from value 0 to value
−1 or 1 is insufficient to determine an analogous change in the expected value of Y , then we
refer to a hypo-active relationship. Note that the definition of fully-, hypo- and hyper-active
dependence relationship holds if the expected value of the rescaled response can be assumed
equal to 0 when all rescaled EVs take value 0. We believe that this is often the case when no
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relevant EV is omitted, thus we recommend particular care in the selection of EVs.

The expected value of the rescaled response Ỹ given any configuration of rescaled EVs X̃1 =
x̃1, . . . , X̃n = x̃n is assumed to be a member of the generalized logistic family of functions
with horizontal asymptotes at ỹL2 = −1.5 and ỹH2 = 1.5:

E[Ỹ | X̃1 = x̃1, . . . , X̃n = x̃n,β] =

−1.5 +
3

1 + exp {− log(5) · (ν(x̃1), . . . , ν(x̃n))′β}
(1)

where β = (β1, . . . , βn) is a vector of parameters, hereinafter called regression coefficients,
and:

ν(z) = sign(z) · |z|r r =
1

log(2)
log

(
log(5)

log(2)

)
≈ 1.2153

The function ν(·) and the constant log(5) are introduced to ensure that, for any fully-active
EV Xi, parameter βi takes absolute value 1, and, given that all other EVs take their respective
neutral values, the expected value of the rescaled response belongs to n-range if and only if
Xi takes value in n-range. Computations are shown in Appendix.

Figure 3 displays the expected value function for different values of parameter βi associated
to EV Xi, given that all other EVs take their respective neutral values. The expected value
function is defined only for values 0 and 1 of binary EVs, only for values not in lp-range for
hyper-restricted EVs, and only for values not in hp-range for hypo-restricted EVs. If the
response is a hyper- (or a hypo-) restricted variable, its expected value is left-bounded by ỹL1
(or right-bounded by ỹH1). A fully-active relationship is described by a regression coefficient
with absolute value 1, while a hypo- (or hyper-) active relationship is described by a regression
coefficient with absolute value smaller (or greater) than 1. Each regression coefficient has the
same sign of the influence of the corresponding EV on the response.
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Figure 3: Expected value function for different values of parameter βi associated to EV Xi,
given that all other EVs take their respective neutral values. Left panel: monotonically
increasing influence. Right panel: monotonically decreasing influence.

2.3. The Generalized Beta family of distributions

After defining the conditional expected value of the rescaled response for a given configuration
of EVs (Equation 1), we provide a full probabilistic specification of the rescaled response by
assuming that it belongs to the Generalized Beta family (Johnson, Kotz, and Balakrishnan
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1995, Vol. 2). The standard formulation of the Generalized Beta density is:

p(ỹ | a1, a2, ỹL2, ỹH2) =
Γ(a1 + a2)

(ỹH2 − ỹL2)a1+a2−1Γ(a1)Γ(a2)
(ỹ − ỹL2)

a1−1(ỹH2 − ỹ)a2−1 (2)

with a1 > 0 and a2 > 0. A parameterization based on the relative mean 0 < δ = E[Ỹ ]−ỹL2

ỹH2−ỹL2
< 1

and on a precision parameter τ > 0 (Ferrari and Cribari-Neto 2004) is considered here:{
δ = a1

a1+a2

τ = a1 + a2
(3)

The resulting probability density function is:

GenBeta(ỹ | δ, τ,−1.5, 1.5) =
Γ(τ)

3τ−1Γ (τδ) Γ (τ(1− δ))
(ỹ + 1.5)τδ−1(1.5− ỹ)τ(1−δ)−1 (4)

After reparameterization, the expected value and variance are:

E[Ỹ ] = −1.5 + 3δ

Var[Ỹ ] =
9(1− δ)δ

1 + τ

(5)

where explicit conditioning of parameters is omitted to shorten the notation. The precision
parameter τ regulates heteroscedasticity so that the variance of the rescaled response takes
the maximum value 2.25

/
(1 + τ) when the expected value is equal to the neutral value. The

variance has limiting value 0 as the expected value approaches the extreme values of the scale
(Figure 4).
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Figure 4: Conditional variance of the rescaled response as a function of different values of the
conditional expected value.

3. Quantitative assessment

The quantitative assessment of model parameters is performed by means of Algorithm 2.
Afterwards, the elicited joint prior distribution is revised by providing predictive distributions
as feedback to the expert. In the next subsections, Algorithm 2 is illustrated and the revision
procedure is detailed.
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Algorithm 2 Parameter elicitation

1) Repeat for i = 1, . . . , n:

i) if Xi is a continuous variable, then:

- ask the expert for a range, which is not n-range, and for a relative position πi
within that range matching a value of Xi for which he/she is able to assess the
corresponding expected value of the response, given that all other EVs take
their respective neutral values. Compute:

x̃i =

{
−1.5 + πi, if lp-range is chosen

0.5 + πi, if hp-range is chosen

otherwise:

- set x̃i = 1;

ii) ask the expert for a range, which is not n-range, and for a relative position $i

within that range, matching the expected value of the response given that Xi

takes the value chosen in step 1.i and all other EVs take their respective neutral
values. Compute:

m̃i,x̃i =

{
−1.5 +$i, if lp-range is chosen

0.5 +$i, if hp-range is chosen

iii) ask the expert for the number of patient cases qi on which the assessment m̃i,x̃i is
based;

iv) compute:

β̂i =
1

log(5) · ν(x̃i)
· log

(
1.5 + m̃i,x̃i

1.5− m̃i,x̃i

)
(continued on next page)
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2) Ask the expert for sets of interacting EVs. Go to step 3 if no set is provided, otherwise
denote the sets as XS = {XS1 , . . . , XSr}, where r is the number of sets of interacting
EVs. Repeat for j = 1, . . . , r:

i) initialize x̃Sj as an empty vector. For each k ∈ Sj , insert value x̃k into x̃Sj ;

ii) compute the expected value of the response given that variables in Sj take the
values chosen by the expert in step 1.i and all other EVs take their respective
neutral values:

m̃Sj ,x̃Sj
=

1

1 + exp
{
− log(5) · ν(x̃Sj )

′{β̂k : k ∈ Sj}
}

iii) feedback such value to the expert as a relative position within one among lp-range,
n-range, or hp-range. If the expert agrees with such value, remove XSj from XS .
Otherwise:

- ask him/her for a new range and/or a new relative position $Sj within that
range. Compute:

m̃Sj ,x̃Sj
=


−1.5 +$Sj , if lp-range is chosen

−0.5 +$Sj , if n-range is chosen

0.5 +$Sj , if hp-range is chosen

- ask the expert for the number of patient cases qSj on which the assessment
m̃Sj ,x̃Sj

is based;

- compute:

β̂Sj =
1

log(5) ·
∏
k∈Sj ν(x̃k)

· log

1.5 + m̃Sj ,x̃Sj

1.5− m̃Sj ,x̃Sj

−∑
k∈Sj

β̂k

(continued on next page)
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3) Ask the expert for a range and for a relative position % within that range matching the
first quartile of the response when the conditional expected value is equal to the neutral
value yC (whichever the configuration of EVs). Compute:

ỹ0.25 =


−1.5 + %, if lp-range is chosen

−0.5 + %, if n-range is chosen

0.5 + %, if hp-range is chosen

Compute the corresponding value of the precision parameter τ :

τ̂ = arg
τ

∣∣∣∣∣0.25−
∫ ỹ0.25

ỹL2

GenBeta(z, 0.5, τ, ỹL2, ỹH2)dz = 0

∣∣∣∣∣
4) Initialize Λ as an empty matrix.

i) Repeat s times, where s is the number of bootstrap replications:

- initialize z as an empty vector;

- for each row gl of model matrix G:

· sample a value zl such that:

p(zl) = GenBeta

zl , 1

1 + exp
{
− log(5) · ν(gl)′β̂

} , τ̂ , 0 , 1


(a simple Beta distribution);

· insert value zl into z;

- compute maximum likelihood estimation for β and τ , say (βML, τML), given
the model:

p(z | β, τ) =
∏
l

GenBeta

(
zl,

1

1 + exp {−ν(gl)′β}
, τ, 0 , 1

)
(the Beta regression model proposed by Ferrari and Cribari-Neto 2004 without
intercept, where function ν(·) is applied to the values of EVs). Quasi-Newton
optimization with analytic first derivatives provided by Ferrari and Cribari-
Neto (2004) may be used;

- set βREP = βML/ log(5) and τREP = τML;

- insert (βREP, log(τREP)) into Λ as a row.

ii) Compute Σ as the empirical covariance matrix of Λ.

5) Return: (
β

log(τ)

)
∼ MVNn+m+1

((
β̂

log(τ̂)

)
,Σ

)
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3.1. Parameter elicitation

We now illustrate how Algorithm 2 works. In step 1, the expert is asked to consider one
configuration of EVs at a time, such that each EV takes a value x̃i outside n-range at his/her
choice, while all others take their respective neutral values. It is important that the chosen
value is outside n-range because it will be compared to the neutral one. For each of the
considered configurations of EVs, the expert chooses the value x̃i, assesses the expected value
of the response, say m̃i,x̃i , and declares the number of patient cases on which such assessment
is based, say qi. For a binary EV, it is meant that x̃i=1. During the elicitation, the expert
assesses relative positions within the ranges of clinical interpretation, without considering the
original scales of variables.

In step 2, the expert is asked to individuate sets of interacting EVs, then, for each one,
the expected value of the response in the absence of interaction is returned and eventually
adjusted. Evidence from a clinical study published in the literature can be taken into account
by setting values x̃i and m̃i,x̃i coherently with the ones reported. Analogously, qi can be set

equal to the number of sampling units in the study where X̃i = x̃i. Once values m̃i,x̃i are

elicited for each configuration of EVs, the implied value of regression coefficients β, say β̂, is
computed by inverting Equation 1.

In step 3, the expert assesses the first quartile of the response when the conditional expected
value is equal to the neutral value yC, whichever the configuration of EVs, and the implied
value of the precision parameter τ is computed, say τ̂ . Again, the expert assesses relative
positions within the ranges of clinical interpretation, without considering the original scale of
the response.

Note that steps 1 and 2 define a virtual experiment with model matrix:

G =



1q1 x̃1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 1qn x̃n 0 . . . 0

1q1 x̃1 I(1 ∈ S1) . . . 1qn x̃n I(n ∈ S1) 1qS1

∏
k∈S1

x̃k . . . 0

. . . . . . . . . . . . . . . . . .

1q1 x̃1 I(1 ∈ Sr) . . . 1qn x̃n I(n ∈ Sr) 0 . . . 1qSr

∏
k∈Sr

x̃k


(6)

where 1qi is the unitary column vector of qi elements and I(·) is the indicator function. The
model matrix is composed of one row for each assessment and one column for each EV or set
of interacting EVs for which the assessment is performed.

In step 4, the joint prior distribution on

(
β

log(τ)

)
is assumed to be well represented by a

Multivariate Gaussian distribution with mean equal to

(
β̂

log(τ̂)

)
and covariance matrix equal

to the covariance matrix of the maximum likelihood estimator of

(
β

log(τ)

)
in the virtual

experiment, which is computed by parametric bootstrap simulation (Hastie, Tibshirani, and
Friedman 2009, Section 7.11).

3.2. Revision

The joint prior distribution on model parameters resulting from quantitative assessment does
not necessarily correspond to the expert’s actual degree of belief, thus we propose a revision
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procedure providing feedback to the expert on the implied predictive distributions for some
configurations of EVs at his/her choice. The revision procedure exploits the original scale of
the response in order to bring the potential bias due to rescaling procedure into consideration.

The revision starts by displaying to the expert the probability density of the predictive distri-
bution implied by the first configuration of EVs, approximated via Monte Carlo simulation.
If the median of the predictive distribution determines surprise or disbelief in the expert, then
the prior mean of regression coefficients is multiplied by a positive real value g ∈ R chosen
by the expert. If this is the case, the joint prior distribution on model parameters is recom-
puted, the probability density of the predictive distribution is approximated, and its median
is inspected again. When the median of the predictive distribution appears adequate to the
expert, the interquartile range is inspected. If the interquartile range appears too tight (or
wide) to the expert, then he/she is invited to decrease (or to increase) the value of the first
quartile when the conditional expected value is equal to the neutral value yC. If this is the
case, the joint prior distribution on model parameters is recomputed, the probability density
of the predictive distribution is approximated, and its interquartile range is inspected again.
When the interquartile range of the predictive distribution does not raise disbelief anymore,
the procedure is repeated for each predictive distribution implied by the other configurations
of EVs. The revision stops when no predictive distribution raises disbelief anymore.

4. A worked example

Our elicitation procedure was applied to the medical variable ‘respiratory rate’ included in
BayPAD, a probabilistic network for the diagnosis of pulmonary embolism (Magrini et al.
2018). The variable is defined as the number of breaths per minute for a patient. The second
author played the role of medical expert in the elicitation task. The source of information for
each assessment is explicitly reported.

Scale of the response

Since 0 breaths per minute cannot be reported in living patients, vL2 was set at 0, correspond-
ing to a state of apnea (no breathing). Respiratory rate values higher than 40 breaths per
minute are instead observed in experimental settings only, where they also fail to increase ven-
tilation (Braun 1990), thus vH2 was set at 40. The medical normal range varies with age, going
from 15 to 25 breaths per minute in healthy adults (Banner, Kirby, Kirton, DeHaven, and
Blanch 1995). In summary, the elicited cut points for the response were: yL2 = 0, yL1 = 15,
yH1 = 25, yH2 = 40.

Selection of EVs

Altered respiratory rate values often result from an abnormal oxygen and carbon dioxide
content in arterial blood, which is signalled to special chemo-receptors, in turn affecting
the neurological drive controlling respiratory muscles and ventilation. Alterations of the
neurological drive are often distinguished into two main general categories, i.e., increased
intra-pulmonary shunt and increased dead space (Hamid, Shannon, and Martin 2005). Shunt
and dead space are respectively measured as percentage of total cardiac output and total
ventilation failing to reach the alveolar space. When a pulmonary region is characterized
by a pathological value of shunt (or dead space), other pulmonary regions may react by
increasing their dead space (or shunt), a compensatory phenomenon known as mismatching.
On these grounds, the expert considered two EVs representing intra-pulmonary shunt and
dead space to explain altered respiratory rate values in the presence of mismatching. In order
to explain altered respiratory rate values without mismatching, namely when pulmonary
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circulation is bypassed before reaching the lungs, the expert considered two further EVs
representing reduced alveolar space and extra-pulmonary shunt. Furthermore, conditions
affecting the neurological drive and respiratory muscles sustaining ventilation, here denoted
as neuromuscular conditions, were considered to explain low respiratory rate values (Hamid
et al. 2005, Chapter 18). Non-medical conditions like panic disorders were also considered
as a cause of increasing respiratory rate when there is no respiratory gas exchange to restore
(Papp, Martinez, Klein, Coplan, Norman, Cole, de Jesus, Ross, Goetz, and Gorman 1997).

Scale of continuous EVs

Intra-pulmonary shunt, dead space, extra-pulmonary shunt and reduced alveolar space rep-
resent percentage, thus their extreme values were set equal to 0 and 100, respectively. Values
higher than 5 percent for shunt and reduced alveolar space, as well as values higher than 30
percent for dead space, are regarded as pathological (Rhoades and Bell 2012, Chapter 20).
No relevant clinical effects are associated with low values of dead space, extra-pulmonary
shunt and reduced alveolar space, thus their scale was considered as hyper-restricted. Con-
versely, low values of intra-pulmonary shunt may decrease respiratory rate: by applying the
ventilation-perfusion equation (Hamid et al. 2005, Chapter 18) to yield an unsustainable oxy-
gen saturation of 90 percent (Papiris, Kotanidou, Malagari, and Roussos 2002) in the case of
mismatching, the expert found that values lower than 2 percent are pathological. In summary,
elicited cut points were (0, 2, 5, 100) for intra-pulmonary shunt, (0, 0, 30, 100) for dead space,
(0, 0, 5, 100) for both extra-pulmonary shunt and reduced alveolar space.

Quantitative assessment

In step 1 of Algorithm 2, the expert performed the quantitative elicitation of the influence of
each EV at a time. For what concerns panic disorders, the expert retrieved from published
evidence a mean respiratory rate of 28.77 (relative position equal to 0.25 within hp-range)
among 25 patients (Papp et al. 1997). For what concerns neuromuscular conditions, the
mean respiratory rate depends on disease severity. Since the most common scenario pertains
to patients exposed to respiratory muscle fatigue after prolonged and extremely demanding
breathing, the definition of neuromuscular conditions was limited to those cases requiring me-
chanical ventilation, where a low respiratory rate often precedes an apnea event (Braun 1990;
Cretikos, Bellomo, Hillman, Chen, Finfer, and Flabouris 2008). On these grounds, the expert
assessed a relative position equal to 0.6 within hp-range for the conditional expected value
of respiratory rate, based on 100 patient cases. No clinical study was found addressing the
influence of intra-pulmonary shunt, dead space, extra-pulmonary shunt and reduced alveolar
space on respiratory rate, thus the expert assessed a fully active relationship between the
response and each of these EVs based on his personal experience (5 patient cases). In step
2 of Algorithm 2, the expert individuated intra-pulmonary shunt and dead space as a set of
interacting EVs. We returned the current expected value of respiratory rate when both the
two EVs take the mid value of hp-range and all other EVs take their respective neutral values,
that is relative position 0.8846 within hp-range. The expert wanted to increase such relative
position to 0.9, based on his personal experience (5 patient cases). In step 3 of Algorithm
2, the expert was asked for the first quartile of respiratory rate when the conditional mean
is equal to the neutral value and provided a relative position equal to 0.3 within n-range.
Expert’s assessments are summarized in Table 1.

In step 4 of Algorithm 2, we computed the resulting joint prior distribution on parameters
(50000 bootstrap replications):

(
β

log(τ)

)
∼ MVN8(µ,Σ)
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Table 1: Expert assessments during step 1 of the elicitation procedure. In step 2, the expert
assessed %=0.3000 (n-range).

πi $i qi x̃i m̃i,x̃i

Intra-pulmonary shunt 0.50 (hp-range) 0.50 (hp-range) 5 1.0000 1.0000
Dead space 0.50 (hp-range) 0.50 (hp-range) 5 1.0000 1.0000
Extra-pulmonary shunt 0.50 (hp-range) 0.50 (hp-range) 5 1.0000 1.0000
Reduced alveolar space 0.50 (hp-range) 0.50 (hp-range) 5 1.0000 1.0000
Panic disorder – 0.25 (hp-range) 25 1.0000 0.7500
Neuromuscular conditions – 0.60 (lp-range) 100 1.0000 -0.9000
Intra-pulmonary shunt :

0.50 (hp-range); 0.50 (hp-range) 0.90 (hp-range) 5 1.0000 1.4000
Dead space

where:

µ =



1.0000
1.0000
1.0000
1.0000
0.6826

−0.8614
0.0922
3.2526



Σ =



0.019510 0.000161 0.000018 −0.000055 −0.000042 0.000072 −0.019699 0.000962
0.000161 0.019380 0.000325 −0.000051 0.000084 −0.000008 −0.019871 0.000870
0.000018 0.000325 0.019357 −0.000062 −0.000141 −0.000120 0.000733 0.000629

−0.000055 −0.000051 −0.000062 0.019043 −0.000070 0.000048 0.000430 0.000509
−0.000042 0.000084 −0.000141 −0.000070 0.002950 0.000017 0.000464 0.000366
0.000072 −0.000008 −0.000120 0.000048 0.000017 0.000881 −0.000208 −0.000583

−0.019699 −0.019871 0.000733 0.000430 0.000464 −0.000208 0.092830 0.000884
0.000962 0.000870 0.000629 0.000509 0.000366 −0.000583 0.000884 0.014011


Marginal quantile summaries are provided in Table 2.

Table 2: Marginal quantile summaries of the elicited joint prior distribution.

0.025 0.25 0.5 0.75 0.975

Intra-pulmonary shunt 0.6402 0.7262 1.0000 1.2738 1.3598
Dead space 0.6414 0.7271 1.0000 1.2729 1.3586
Extra-pulmonary shunt 0.6416 0.7273 1.0000 1.2727 1.3584
Reduced alveolar space 0.6445 0.7295 1.0000 1.2705 1.3555
Panic disorder 0.5427 0.5762 0.6826 0.7891 0.8225
Neuromuscular conditions -0.9378 -0.9195 -0.8614 -0.8032 -0.7849
Intra-pulmonary shunt : Dead space -0.6926 -0.5049 0.0922 0.6894 0.8770
Precision (τ) 19.0613 20.5027 25.8563 32.6079 35.0737

Revision

The expert chose four configurations of EVs to check the consistency of the elicited prior
distribution on parameters. Each configuration consisted of dead space and reduced alveolar
space taking the minimum value of hp-range, combined with:

1. absence of panic disorder, absence of neuromuscular conditions;

2. absence of panic disorder, presence of neuromuscular conditions;

3. presence of panic disorder, absence of neuromuscular conditions;

4. presence of panic disorder, presence of neuromuscular conditions.

The first configuration was chosen to test the joint influence of two continuous non-interacting
EVs on the response. Since the four EVs involve fully-active dependence relationships with
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the response, it is expected that the predictive distribution is mainly located in hp-range when
they all involve weakly hyper-pathological conditions. The second configuration was chosen
to test if the (negative) influence neuromuscular conditions is able to neutralize the joint
influence of two fully-active EVs involving weakly hyper-pathological conditions. The third
configuration was chosen to explore the addition of the influence of panic disorder, and the
fourth to evaluate to which extent neuromuscular conditions can counterbalance the result.

Probability density of the inspected predictive distributions are shown in Figure 5 (Monte
Carlo approximation with 50000 replications). Their median and interquartile range (within
brackets) appeared coherent with the expert’s expectations, thus revision was not necessary:
27.62 (5.63) breaths per minute for the first configuration, 16.67 (4.46) breaths per minute for
the second configuration, 35.26 (3.84) breaths per minute for the third configuration, 24.86
(5.18) breaths per minute for the fourth configuration.

0 10 20 30 40

Configuration 1

N = 50000 (bw: 0.387658)    Median: 27.62019    IQR: 5.634964

0.00
0.04
0.08
0.12

0 10 20 30 40

Configuration 2

N = 50000 (bw: 0.344346)    Median: 16.675139    IQR: 4.463249

0.00
0.04
0.08
0.12

0 10 20 30 40

Configuration 3

N = 50000 (bw: 0.296528)    Median: 35.264059    IQR: 3.843451

0.00
0.04
0.08
0.12

0 10 20 30 40

Configuration 4

N = 50000 (bw: 0.385096)    Median: 24.858666    IQR: 5.17649

0.00
0.04
0.08
0.12

Figure 5: Probability density of the predictive distributions inspected during the revision of
the joint prior distribution elicited in the worked example (Monte Carlo approximation with
50000 replications). Each configuration of EVs consists of dead space and reduced alveo-
lar space taking the minimum value of hp-range, combined with: absence of panic disorder,
absence of neuromuscular conditions (Configuration 1); absence of panic disorder, presence
of neuromuscular conditions (Configuration 2); presence of panic disorder, absence of neuro-
muscular conditions (Configuration 3); presence of panic disorder, presence of neuromuscular
conditions (Configuration 4). The original scale of the response (respiratory rate) is used.
Vertical straight lines denote the cut points: yL2 = 0, yL1 = 15, yH1 = 25, yH2 = 40.
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5. Discussion

In this paper, we addressed the elicitation of an informative prior distribution on parameters of
a univariate conditional model when the response is a medical continuous variable. Such task
is typically difficult because some level of statistical training is required to a medical expert for
interpreting parameters and for retrieving appropriate quantitative information about them.
Our method is founded on reliable information contained in the medical literature, that is
the correspondence among measured values expressed as relative positions within ranges of
clinical interpretation, regardless the original scales of variables. As such, it can be eventually
applied to elicit an informative prior distribution on the parameters of a probabilistic network.

Three critical phases can be highlighted in our proposal. The first is the selection of explana-
tory variables, which was supported by several medical arguments in the worked example.
Although physicians agree on what the potential explanations of a response are, their se-
lection typically depends on the granularity of the representation required by the medical
context of interest, represented by the diagnosis of pulmonary embolism (Luciani, Marchesi,
and Bertolini 2003; Luciani et al. 2007; Magrini et al. 2018) in the worked example.

The second critical phase is the elicitation of cut points of the original scales, which are
assumed to be known without uncertainty. In the worked example, cut points were elicited
according to variations of clinical relevance with reference to arterial oxygen saturation. This
is a reasonable assumption as long as conclusive evidence is retrievable from the literature.
The choice of cut points may also influence the shape of conditional predictive distributions
on the original scale, in particular the probability density function may show sharp changes
at the cut points.

The third critical phase is the assessment of uncertainty. In our method, the variance of
the joint prior distribution of parameters is computed according to the number of patient
cases on which each assessment is based. In the worked example, the expert paid attention
to assess a number of patient cases substantially lower than the one typically employed by
clinical studies. Such approach fulfills the recommendations of the Evidence-Based Medicine
(Guyatt, Cairns, and Churchill 1992) paradigm for the clinical practice, inviting physicians
to comply with the results of clinical studies as long as they are available, and only upon
unavailability to base judgements on personal clinical experience.

Our proposal is a combination of the CMP (Bedrick, Christensen, and Johnson 1996) and
the g-prior (Geweke 1986; Bové and Held 2011). Similarly to the CMP, we aim to elicit
independent conditional means, but uncertainty on parameters is derived from the number of
patient cases on which each assessment is based, rather than from several elicited quantiles.
In the g-prior, the model matrix of the virtual experiment is taken from data in order to
achieve conjugacy. We instead characterize the virtual experiment according to the elicited
information, in order to obtain a prior distribution which is independent of the data at hand
and closer to the expert’s degree of belief.

The proposed piecewise linear rescaling is expected to enrich the class of relationships ap-
proximately described by a symmetric logistic function, but its adequacy could be empirically
checked by assessing the conditional expected value for several values of the same explanatory
variable (overfitting) (O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley,
and Rakow 2006, Chapter 5.4). Similarly, the adequacy of the conditional variance function
could be investigated by assessing the first quartile of the response for several conditional ex-
pected values. Furthermore, the dependence of the response from each explanatory variable
was assumed to be monotonic, a case that covers a relevant amount of useful applications,
but non-monotonic relationships could be allowed.

Several studies caution against the negative effect of implicit heuristics during the elicitation of
beliefs (Kahneman et al. 1982; Gigerenzer 2002; Kynn 2008). We believe that our proposal is
more robust to implicit heuristics than existing methods, because assessments can be directly
based on the evidence from published clinical studies, or, if unavailable, the expert can focus
on clinically relevant concepts, like the correspondence among measured values expressed as
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relative positions within ranges of clinical interpretation.

Future work could be directed towards the evaluation of the validity of our proposal. On
one hand, the effective availability of the information required to perform the elicitation can
be confirmed by assessing practical difficulties encountered by experts with different clinical
experience or belonging to different medical specialties. On the other hand, the extent to
which the model developed by an expert is accepted by another expert can be evaluated.
Comparative studies with elicitation procedures based on the original scales of variables may
be also addressed, where real patient data could be employed to evaluate the reliability of
predictive distributions obtained with each procedure.

Software implementing the elicitation procedure is available in the online supplementary ma-
terials and, besides efficiently performing the elicitation-revision cycle, it can be used to detect
critical issues emerging from the practical application of our method.

Acknowledgements

This work was partially supported by the University of Florence (Italy), funding framework
Progetto strategico di ricerca di base per l’anno 2015, grant Disegno e analisi di studi sperimen-
tali e osservazionali per le decisioni in ambito epidemiologico, socio-economico, ambientale e
tecnologico, and by the Mario Negri Institute for Pharmacological Research, Milan (Italy).
We thank reviewers for valuable comments that helped improving the presentation of our
work. The authors declare that there are no conflicts of interest.

References

Bagley SC, White H, Golom BA (2001). “Logistic Regression in the Medical Literature:
Standards for Use and Reporting, with Particular Attention to One Medical Domain.”
Journal of Clinical Epidemiology, 54(10), 979–985.

Banner MJ, Kirby RR, Kirton OC, DeHaven CB, Blanch PB (1995). “Breathing Frequency
and Pattern are Poor Predictors of Work of Breathing in Patients Receiving Pressure Sup-
port Ventilation.” Chest, 108(5), 1338–1344.

Bedrick EJ, Christensen R, Johnson W (1996). “A New Perspective on Priors for Generalized
Linear Models.” Journal of the American Statistical Association, 91, 1450–1460.
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Appendix

Cut points after rescaling It is required that n-range, lp-range and hp-range are of equal
size and their mid values are mapped to 0, −1 and 1, respectively.

The constraints are: 
ṽL2+ṽL1

2 = −1
ṽL1+ṽH1

2 = 0
ṽH1+ṽH2

2 = 1

ṽL1 − ṽL2 = ṽH1 − ṽL1 = ṽH2 − ṽH1

which imply: 
ṽL2 = −1.5

ṽL1 = −0.5

ṽH1 = 0.5

ṽH2 = 1.5

Conditional expected value function It is required that, for any fully-active EV Xi, (1)
parameter βi takes absolute value 1; (2) given that all other EVs take their respective neutral
values, the expected value of the rescaled response belongs to n-range if and only if Xi takes
value in n-range.

The first feature is satisfied if:
E[Ỹ | X̃1 = 0, . . . , X̃i−1 = 0, X̃i = 1, X̃i+1 = 0, . . . , X̃n = 0;βi = 1] = 1

E[Ỹ | X̃1 = 0, . . . , X̃i−1 = 0, X̃i = −1, X̃i+1 = 0, . . . , X̃n = 0;βi = 1] = −1

E[Ỹ | X̃1 = 0, . . . , X̃i−1 = 0, X̃i = 1, X̃i+1 = 0, . . . , X̃n = 0;βi = −1] = −1

E[Ỹ | X̃1 = 0, . . . , X̃i−1 = 0, X̃i = −1, X̃i+1 = 0, . . . , X̃n = 0;βi = −1] = 1
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and the second feature is satisfied if:
E[Ỹ | X̃1 = 0, . . . , X̃i−1 = 0, X̃i = 0.5, X̃i+1 = 0, . . . , X̃n = 0;βi = 1] = 0.5

E[Ỹ | X̃1 = 0, . . . , X̃i−1 = 0, X̃i = −0.5, X̃i+1 = 0, . . . , X̃n = 0;βi = 1] = −0.5

E[Ỹ | X̃1 = 0, . . . , X̃i−1 = 0, X̃i = 0.5, X̃i+1 = 0, . . . , X̃n = 0;βi = −1] = −0.5

E[Ỹ | X̃1 = 0, . . . , X̃i−1 = 0, X̃i = −0.5, X̃i+1 = 0, . . . , X̃n = 0;βi = −1] = 0.5

In summary, the constraints are:

1 = −1.5 + 3
1+exp{−h · ν(1) · 1}

−1 = −1.5 + 3
1+exp{−h · ν(−1) · 1}

−1 = −1.5 + 3
1+exp{−h · ν(1) · (−1)}

1 = −1.5 + 3
1+exp{−h · ν(−1) · (−1)}

0.5 = −1.5 + 3
1+exp{−h · ν(0.5) · 1}

−0.5 = −1.5 + 3
1+exp{−h · ν(−0.5) · 1}

−0.5 = −1.5 + 3
1+exp{−h · ν(0.5) · (−1)}

0.5 = −1.5 + 3
1+exp{−h · ν(−0.5) · (−1)}

By choosing ν(z) = sign(z) · |z|r, the solution is unique:{
h = log(5)

r = 1
log(2) log

(
log(5)
log(2)

)
≈ 1.2153
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