
10 April 2024

Sorting with a Popqueue / Lapo Cioni;
Luca Ferrari. - ELETTRONICO. - (2021), pp. 18-22. (Intervento presentato al convegno Permutation
Patterns 2021 nel 15-16 giugno 2021).

Original Citation:

Sorting with a Popqueue

Publisher:

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1251064 since: 2021-12-09T14:30:11Z

Sergey Kitaev

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

Permutation Patterns 2021 Virtual Workshop Xxxday Session X

Sorting with a popqueue

Lapo Cioni

lapo.cioni@unifi.it

Università degli Studi di Firenze

(This talk is based on joint work with Luca Ferrari.)

1 Preliminary notions and results

Stacksort is a classical and well-studied algorithm that attempts to sort an input per-
mutation by (suitably) using a stack. It has been introduced and first investigated by
Knuth [1], and it is one of the main responsible for the great success of the notion of
pattern for permutations. Among the many research topics connected with Stacksort,
one concerns the characterization and enumeration of the permutations sorted by two (or
more) iterations of the algorithm. For example, West [3] described the permutations that
are sortable by two iterations of Stacksort in terms of avoidance of a standard pattern
and a barred pattern, and he also formulated a conjecture regarding their enumeration,
which was later proved by Zeilberger [4].

We will address the same kind of problems for a different sorting device, namely a
popqueue. A popqueue is a sorting device in which we can insert and extract elements,
following some restrictions. Namely, these are the allowed operations:

e: enqueue, insert the current element into the popqueue, in the rightmost position;

p: pop, remove all the elements currently in the popqueue, from left to right, sending
them into the output;

b: bypass, send the current element into the output.

These operations resemble those of a queue. Indeed, the sole difference is the fact that
pop removes all the elements instead of removing only the first one, and this is the reason
for the name ”popqueue”.

Starting from an arbitrary input, we can output several different permutations, just by
executing the operations in different order. Our interest is to sort the permutation, so we
say that a permutation is sortable if there exists a sequence of operations that output the
identity permutation. In particular, we want to give an optimal sorting algorithm, i.e. we
want to describe an algorithm that is able to sort every sortable permutation. We also
want our algorithm to give an output when the input permutation is not sortable, so that
we can study which permutations are sortable by two iterations of the same algorithm.

We start by giving a necessary condition for a permutation to be sortable.

Proposition 1. If a permutation π ∈ Sn contains an occurrence of the patterns 321 or
2413, then it is not sortable using a popqueue.

2 The algorithms Min and Cons

We provide two different sorting algorithms which, although similar, will give us remark-
ably different results when applied twice. The first algorithm is Min.

Algorithm. Min
input: a permutation π = π1 · · · πn
output: a permutation Min(π)

for i = 1, . . . , n do:

• if Front(Q) is the minimal element not yet in the output (i.e., if Front(Q) is
smaller than all the unprocessed elements πi, . . . , πn), then pop and enqueue;

• else compare πi, Back(Q) and Front(Q);

– if Back(Q) < πi, enqueue;

– otherwise, if Front(Q) > πi, then bypass;

– else, pop end enqueue.

Finally, pop.

We will call Min(π) the output of the algorithm Min on input π. The algorithm name,
Min, comes from the first instruction, which empties the popqueue when the first element
of the queue is the first element to be output. Min is an optimal sorting algorithm, as
recorded in the next proposition.

Proposition 2. Let π ∈ Sn. Then Min(π) 6= idn if and only if 321 ≤ π or 2413 ≤ π.

The second algorithm is Cons.

Algorithm. Cons
input: a permutation π = π1 · · · πn
output: a permutation Cons(π)

for i = 1, . . . , n do:

• if πi = Back(Q) + 1, then enqueue;

• else, compare πi and Front(Q);

– if Front(Q) > πi, then bypass;

– else, pop and enqueue.

Finally, pop.

We will call Cons(π) the output of the algorithm Cons on input π. The algorithm name,
Cons, comes from the first instruction, that only allows consecutive elements to be in the
popqueue, and thus forces the content of the popqueue to be consecutive at all times. As
for the Min algorithm, it is an optimal sorting algorithm.

Proposition 3. Let π ∈ Sn. Then Cons(π) 6= idn if and only if 321 ≤ π or 2413 ≤ π.

We thus have two different optimal sorting algorithms, which follow different heuristics
to sort π. It is easy to see that, althought they sort the same permutations, their output
is different in general. For example, Min(2413) = 1243 but Cons(2413) = 2134. Still, it
is important to note that both heuristics are reasonable in the context of permutation
sorting. Indeed, neither Min nor Cons create new inversions in their output. Also, we
can say that if the first element of the popqueue is the minimal element that is not yet in
the output, then we may as well empty the popqueue immediately, as Min does, because
we would surely empty it before outputting any element from the input. On the other
hand, if we were to allow non consecutive elements in the popqueue, then we would be
sure that the output would not be sorted, so it is reasonable to maintain consecutivity
fot elements inside the popqueue, as Cons does. Both ideas give us optimal algorithms,
whose outputs differs only for permutations that are not sortable, moreover the order in
which the operations are executed may be different even for sortable permutations. One
could be tempted to see what happens when using both heuristics, with an algorithm
that only allows consecutive elements in the popqueue, but also empties it whenever
the first element is the smallest not-outputted element. That would actually be an algo-
rithm equivalent to Cons, because the output would be the same, although the operation
would be performed in different orders by prioritizing the outputting of elements over the
insertion into the popqueue.

We end this section by proving some properties of Cons that will be useful later. Given
a permutation π = π1 · · · πn, an element πi is called a LTR maximum if and only if it is
greater than all πj’s for j < i. We have the following lemma.

Lemma 4. Let π = π1 · · · πn ∈ Sn and apply Cons to it. Then an element πi enters
the popqueue if and only if it is a LTR maximum. Moreover, the relative order of the
non-LTR maxima of π is preserved in Cons(π). That is, if a appears before b in π, and
neither are LTR maxima, then a appears before b even in Cons(π).

This lemma does not fully hold for Min, because although every LTR maxima does enter
the popqueue during its execution, some non LTR maxima may also enter it (for example,
the element 4 in 25143 enters the popqueue). It is interesting to note that the algorithm
that sorts using a proper queue (that is, a queue instead of a popqueue) also have the
property described in the lemma.

3 Two passes from a popqueue

In this section we will investigate what permutations are sortable when we apply twice
each of the previous algorithms. This has been done for Stacksort by West [3], and the

resulting set of sortable permutation is not a class, even if it can be expressed by the
avoidance of a pattern and a barred pattern.

We start by defining the sets SortM and SortC of permutations sorted by two applications
of Min and Sort, respectively, so that SortM = {π ∈ S | Min(Min(π)) = idn, n ∈ N}
and SortC = {π ∈ S | Cons(Cons(π)) = idn, n ∈ N}. The following remark shows the
relationships between the two sets.

Remark 5. Consider the permutations 2431 and 35214. Then 2431 ∈ SortC \SortM and
35214 ∈ SortM \ SortC. This shows that each of the two algorithms is able to sort some
permutations that the other algorithm cannot sort.

Clearly, there are permutations that both algorithms can (cannot) sort. For example, it is
easy to see that none of them can sort permutations containing the pattern 4321; on the
other hand both algorithms can sort the permutations 321 and 2413. As we have already
remarked, both algorithms follow natural and easy rules, as Min outputs the smaller non
outputted element whenever possible, while Cons keeps the popqueue consecutive at all
times. Still, the fact that there are two different optimal single-pass sorting algorithm
that follow natural rules is by itself interesting. However the two sets SortC and SortM
are different on a deeper level. In fact, we will see that SortC is a permutation class, while
SortM is not.

Proposition 6. The set SortM is not a permutation class.

Proof. Consider the permutation 241653. Then Min(Min(241653)) = Min(124536) =
123456, but Min(Min(2431)) = Min(2413) = 1243, and 2413 ≤ 241653.

Conversely, the following proposition shows that SortC is a class.

Proposition 7. Let π ∈ Sn. Then Cons(Cons(π)) 6= idn if and only if π contains at
least one of the following nine patterns:

• 4321;

• 35241;

• 35214;

• 52413;

• 25413;

• 246153;

• 246135;

• 426153;

• 426135.

We do not know much about the sequences |SortM,n| of the number of permutations of
length n in SortM , and |SortC,n| of the number of permutations of length n in SortC .
Their first terms are 1, 2, 6, 22, 89, 379, 1660, 7380, 33113, 149059 and 1, 2, 6, 23, 99,
445, 2029, 9292, 42608, 195445, respectively, and do not appear in [2]. Still, it seems that
|SortM,n| is smaller than |SortC,n| for every n > 3.

Conjecture 8. For every n > 3, |SortM,n| < |SortC,n|.

[1] D. Knuth, The Art of Computer Programming, Volume 1, Boston: Addison-Wesley, 1968.

[2] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electronically
at https://oeis.org.

[3] J. West, Permutations with forbidden subsequences and Stack sortable permutations, PhD thesis,
Massachusetts Institute of Technology, 1990.

[4] D. Zeilberger, A proof of Julian West conjecture that the number of two-stack-sortable pemutations
of length n is 2(3n)!/((n+ 1)!(2n+ 1)!). Discrete math. 102 (1992), no. 1, 85-93.

