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A B S T R A C T   

Virtual population generation is an emerging field in data science with numerous applications in healthcare 
towards the augmentation of clinical research databases with significant lack of population size. However, the 
impact of data augmentation on the development of AI (artificial intelligence) models to address clinical unmet 
needs has not yet been investigated. In this work, we assess whether the aggregation of real with virtual patient 
data can improve the performance of the existing risk stratification and disease classification models in two rare 
clinical domains, namely the primary Sjögren’s Syndrome (pSS) and the hypertrophic cardiomyopathy (HCM), 
for the first time in the literature. To do so, multivariate approaches, such as, the multivariate normal distri-
bution (MVND), and straightforward ones, such as, the Bayesian networks, the artificial neural networks (ANNs), 
and the tree ensembles are compared against their performance towards the generation of high-quality virtual 
data. Both boosting and bagging algorithms, such as, the Gradient boosting trees (XGBoost), the AdaBoost and 
the Random Forests (RFs) were trained on the augmented data to evaluate the performance improvement for 
lymphoma classification and HCM risk stratification. Our results revealed the favorable performance of the tree 
ensemble generators, in both domains, yielding virtual data with goodness-of-fit 0.021 and KL-divergence 0.029 
in pSS and 0.029, 0.027 in HCM, respectively. The application of the XGBoost on the augmented data revealed an 
increase by 10.9% in accuracy, 10.7% in sensitivity, 11.5% in specificity for lymphoma classification and 16.1% 
in accuracy, 16.9% in sensitivity, 13.7% in specificity in HCM risk stratification.   

1. Introduction 

The current advances in data science have led to the development of 
an emerging branch of applications which focuses on the augmentation 
of medical data. Its aim is to shed light into the underlying structure of 
clinical problems towards the development of robust machine learning 
models for predicting disease outcomes and their risk levels. Virtual 

population generation [1] refers to the development of computational 
methods that can be used to generate artificial (or synthetic) patient data 
by producing virtual distributions like those in the real world. Its desired 
usage is to enhance the statistical power of clinical research databases 
with significant lack of population size. Data augmentation [2] refers to 
the aggregation of the real with the virtual patient data to yield AI 
(artificial intelligence) models with increased performance for 
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classification tasks. For example, in medical imaging, data augmentation 
refers to the application of data mirroring and data cropping methods to 
enhance the performance of the existing deep learning models for image 
segmentation by increasing the size of the input training data with vir-
tual training data. Clinical data augmentation refers to the aggregation 
of the real with the high-quality virtual clinical data to address various 
clinical unmet needs including the development of robust risk stratifi-
cation and disease classification models, as well as, the detection of 
biomarkers, among others. 

As a result, the clinical value of data augmentation lies on the quality 
of the virtually generated data. Indeed, the aggregation of the real data 
with poor quality virtual data (i.e., virtual data with increased diver-
gence and reduced similarity with the real data) is expected to have a 
negative impact on the performance of the AI models. As a matter of fact, 
particular emphasis must be given on the development of robust virtual 
population generators. In addition, prior the development of the virtual 
population generators it is crucial to apply data curation methods to-
wards the detection and removal of data recording errors, inconsistent 
data types and problematic fields that are present in the input clinical 
data. This step is important since the application of the virtual popula-
tion generators on contaminated data might produce virtual data with 
poor performance and reduced statistical power of downstream appli-
cations. Thus, data curation must be applied to meet standard data 
quality criteria in terms of data completeness and conformity [9–11], 
among others. 

The state-of-the-art methods for virtual population generation can be 
classified into two major categories; the parametric methods which 
resample instances and generate new feature combinations from an 
existing clinical dataset, and the non-parametric methods where virtual 
patients are produced by randomly selecting patients from a clinical 
dataset. Examples of parametric methods include the multivariate 
normal distribution (MVND) and its variant the multivariate log-normal 
distribution originally proposed by Tanenbaum et al. [3] towards the 
generation of virtual patients based on real clinical data. The MVND was 
also deployed in the work of Teutonico et al. [4] to create plausible 
virtual populations. A similar approach has been also introduced by RJ 
Allen [5], where the generated cohort data were able to match the 
observed data without the need for feature weighting. Silverman et al. 
[6] used multinomial logistic models to model sequence count data with 
complex covariance structure. Apart from the conventional statistical 
methods though, machine learning based methods have been also pro-
posed. Bottcher et al. [7] developed a package named “deal” in R, which 
includes Bayesian networks for virtual population generation by taking 
into consideration the conditional probabilities among the features, 
supporting both discrete and continuous type of data. Robnik-Šikonja 
[8] utilized tree ensembles and artificial neural networks with radial 
basis functions (RBFs) as activation functions to detect hidden patterns 
among the features in the real data by either including or excluding a 
target feature yielding virtual data with decreased divergence with the 
real one. 

None of the above virtual population generation studies have 
investigated the effectiveness of clinical data augmentation in terms of 
not only enhancing the size of the real patient data but also aggregating 
the virtually generated patient data with the real data to enhance the 
performance of disease classification and risk stratification models. In 
this work, we deploy five state-of-the art virtual data generation 
methods to produce high-quality virtual patient data for 1000 patients 
with an increased level of similarity to the real patients across two 
clinical domains; the primary Sjogren’s Syndrome (pSS) and the hy-
pertrophic cardiomyopathy (HCM). The number of virtually generated 
patients is relatively large for both clinical domains especially in pSS 
considering that it is a rare systemic autoimmune disease. The novelty of 
the proposed computational pipeline lies on the fact that it: (i) enhances 
the quality of the input clinical data through the precise detection and 
elimination of outliers and data inconsistencies using data curation 
workflows, (ii) augments the curated clinical data with high-quality 

virtual data that enhance the population size of two rare clinical 
research databases through the development of high-performance vir-
tual data generators, including both supervised and unsupervised tree 
ensembles, as well as, artificial neural networks (ANNs) with Gaussian 
kernels, which are extended to resolve overfitting effects during the 
generation stage, and (ii) builds supervised machine learning models on 
the aggregated real and virtual data for the robust classification of 
lymphoma patients with pSS and for the risk stratification of patients 
with HCM. 

Our results highlight the favorable performance of the tree ensem-
bles towards the generation of high-quality virtual data with goodness- 
of-fit (GOF) 0.021 and Kullback Leibler (KL)-divergence 0.029 in the pSS 
domain and 0.029, 0.027 in the HCM domain, respectively. The aggre-
gation of the real and the virtual data from the tree ensembles revealed a 
notable increase in the classification accuracy, sensitivity, and speci-
ficity for both the lymphoma classification, where the XGBoost yielded 
an increase by 10.9% in accuracy, 10.7% in sensitivity, and 11.5% in 
specificity and the HCM risk stratification models, where the XGBoost 
yielded an increased by 16.1% in accuracy, 16.9% in sensitivity, and 
13.7% in specificity. A similar increase is also observed in the case of the 
AdaBoost for HCM risk stratification (7.1% in accuracy, 5.7% in sensi-
tivity, 10% in specificity, and 6.5% in AUC) and lymphoma classification 
(5.5% in the accuracy, 5.3% in sensitivity, 6.3% in specificity, and 
10.1% in AUC), as well as, in the case of the Random Forests for HCM 
risk stratification (9.5% in accuracy, 8.9% sensitivity, 10.8% in speci-
ficity, and 11.2% in AUC) and lymphoma classification (9.4% in accu-
racy, 10.1% in sensitivity, 7.2% in specificity, and 12.2% in AUC). The 
outcomes of the proposed pipeline are promising since the existing lack 
of population size in both HCM and pSS obscure the development of 
robust disease classification and risk stratification models. To our 
knowledge, this is the first computational pipeline which aggregates 
high-quality virtual with real curated clinical data to address crucial 
clinical unmet needs in two rare clinical domains, including the devel-
opment of robust lymphoma classification and HCM risk stratification 
models. 

Section 2 presents the proposed computational pipeline along with 
the mathematical background of the methods for virtual population 
generation and machine learning. Section 3 presents the results of data 
augmentation in each clinical domain. The findings are discussed in 
Section 4. 

2. Materials and methods 

2.1. The proposed pipeline 

The proposed pipeline for data augmentation is depicted in Fig. 1, 
which consists of three modules, namely the: (i) data quality control 
module for assessing the quality of the data, (ii) virtual population 
generation module for producing high-quality virtual data, and (iii) the 
“hybrid” machine learning module for the development of disease 
classification and risk stratification models on the aggregated real and 
virtual patient data. The outcomes of the proposed pipeline include 
curated clinical data, high-quality virtual data and enhanced disease 
classification and risk stratification models. 

A data quality control pipeline presented in a previous study [9] was 
utilized to automatically resolve problematic fields within the input 
clinical data, including outliers, data inconsistencies, and missing 
values. The curated clinical data are introduced into the virtual popu-
lation generation module to yield virtual distributions that “mimic” the 
real ones. Towards this direction, state-of-the art machine-learning and 
statistical methods were developed to ensure the high-quality of the 
virtually generated data, including: (i) the supervised tree ensembles, 
where in each tree node, the generator for each feature is captured 
during the node splitting process based on its univariate empirical cu-
mulative distribution function (ECDF), (ii) the unsupervised tree en-
sembles, where density forest ensembles are built in a top-down manner 
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using the variance of the features as the criterion for the node splitting 
process, (iii) the artificial neural networks (ANNs), where radial basis 
functions (RBFs), such as, the Gaussian kernels are used as multivariate 
generators of virtual data instances, (iv) the Bayesian networks, where 
diverse network topologies are evaluated based on the causal relation-
ships between the features (i.e., nodes in the network), and (v) the 
Log-MVND (multivariate log-normal distribution), where multivariate 
normal distributions are applied on the log transformed data. For each 
virtual population generation method, similarity scores, such as, the 
Kolmogorov-Smirnoff goodness of fit (GOF), the Kullback-Leibler (KL) 
divergence and the correlation coefficient are used to evaluate the level 
of agreement among the real and virtual distributions. 

In the “hybrid” machine learning module, the virtual data from each 
generator are aggregated with the real data to assess whether the per-
formance of the machine learning algorithms that are trained on the 
aggregated data is better than in the case where the algorithms are 
trained on the real data. Two case studies were conducted towards the 
development of robust lymphoma classification models in pSS and risk 
stratification models in HCM. Class imbalance handling was utilized to 
deal with the population imbalance among the control and target groups 
through the application of random downsampling with replacement on 
the control group. The XGBoost was deployed as a robust tree ensemble 
algorithm [12,13] which was trained on aggregated data instances along 
with the Adaptive Boosting (AdaBoost) [10] and the Random Forests 
[10] which were also deployed to evaluate the overall impact of data 
augmentation. An adjusted 10-fold cross validation procedure was uti-
lized to train the algorithms on aggregated data instances and evaluate 
them on testing subsets of real patients. 

2.2. Data quality control module 

An improved version of a data quality control pipeline [9] was used 
to resolve incompatibilities and inconsistencies within the raw clinical 
data, including outliers, and duplicated features, aiming at improving 
the quality of the data in terms of completeness and conformity. 

According to Fig. 1, the data quality control stage produces a data 
quality report, a diagnostic report, and a curated dataset. The data 
quality report includes feature-level meta-information regarding the 
data types, value ranges, and useful descriptive measures. In the diag-
nostic report, the data inconsistencies are marked using color coding 
[9]. The curated dataset is the original dataset, where data in-
consistencies are resolved. 

2.2.1. Data characterization 
The features are annotated according to their data type as integer, 

float, and string or into unknown in the case where the data type is a 
mixture of multiple data types, as well as, into continuous or discrete. In 
case a feature has multiple missing values, the pipeline automatically 
marks it for removal. 

2.2.2. Outlier detection 
The z-score is a univariate approach for the detection of values 

having a large distance from their population mean [10]. Since the 
z-score might lead to misidentified outliers due to the non-robustness of 
the standard deviation, especially in small data samples, we use the 
modified z-score [10]: 

zmod =
x − x̃
MAD

= b
x − x̃

median(|x − x̃|)
, (1)  

where x is the feature vector, x̂ is its mean value, MAD stands for the 
median absolute deviation, x̃ is the median, and b is a correction factor 
that makes the MAD unbiased yielding robust results [10]. 

2.2.3. De-duplication 
De-duplication involves the detection of potentially highly corre-

lated features and/or lexically similar or identical features within the 
input data. In this work, we deploy the Spearman’s rank correlation [10] 
to identify features with increased correlation and the Levenshtein dis-
tance [10] to detect lexically similar features, as potential duplicates. 

Fig. 1. An illustration of the proposed computational pipeline.  
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For two variables, c, d, the Spearman’s rank correlation, sr,d, is defined 
as: 

sc,d = cov(rc, rd)
/

σrc σrd (2)  

where rc, rd are the rank variables of c, d, respectively, σrc , σrd are the 
standard deviations of c, d, respectively and cov(rc, rd) is the covariance 
of rc and rd, respectively. The Levenshtein distance was used to measure 
the similarity between two strings, c and d, by taking into consideration 
the number of deletions, insertions, and substitutions that are needed to 
transform c into d: 

levc,d(i, j)=

⎧
⎪⎪⎨

⎪⎪⎩

max(i, j) ,min(i, j) = 0

min

⎧
⎨

⎩

levc,d(i − 1, j) + 1
levc,d(i, j − 1) + 1
levc,d(i − 1, j − 1) + 1(ci∕=dj)

, o.w. , (3)  

where 0 denotes that c, d are identical and values larger than 1 indicate 
the existence of differences. 

2.3. Virtual population generation module 

The virtual population generation stage includes five virtual data 
generation methods, both supervised and unsupervised, namely the: (i) 
the multivariate log-normal distribution (log-MVND), (ii) the supervised 
tree ensembles, (iii) the unsupervised tree ensembles, (iv) the RBF-based 
artificial neural networks (ANNs), and (v) the Bayesian networks. The 
implementation took place in Python 3.6 through the interconnection of 
R scripts from the packages “deal” [7] for the Bayesian networks and 
“semiArtificial” [8,28] for the tree ensembles and the ANNs. In this 
work, we generated 1000 virtual patients, which was a parameter 
setting of our generators. 

2.3.1. Multivariate lopg-normal distribution (log-MVND) 
Given a univariate feature, X ∈ Rpxn, the multivariate normal distri-

bution (MVND) can be defined as an extension of the normal distribution 
as in: 

f (X)=
1

(2π)p/2
⃒
⃒
⃒Σ|1/2

e− (X− μ)Σ− 1(X− μ)/2, (4)  

where p is the dimension, μ is the mean vector of X, Ʃ is the covariance 
matrix of X, and Σ− 1 is the pseudoinverse of Ʃ. A multi-dimensional 
normal distribution is constructed from the mean vector and the 
covariance matrix of the input data. To ease the assumption of normality 
within the data, the log-normal distribution is defined, where the log-
arithm of the exponential term in (4) fulfills the condition: 

ln
(
ef(x)) ∼ N(μ,Σ). (5)  

2.3.2. Supervised tree ensembles 
A more advanced approach to virtual population generation is to 

train a tree ensemble [8,26–28] for a given set of training features and a 
target feature. During the training phase of the generator, we build an 
ensemble similar to random forests [26–28] with some additional data 
needed for data generation phase. In each interior tree node, we store 
the generator for the splitting feature based on its univariate empirical 
cumulative distribution function (ECDF). In each leaf node, we store 
ECDF-based generators for all variables not encountered on a path from 
the root to that leaf. To avoid overfitting effects which are introduced in 
the training process during the construction of the tree ensemble we 
introduce a new approach according to which one of the trees from the 
ensemble is randomly chosen when producing a new instance which is 
passed down the tree starting in the root node. The ensemble, as the 
generator, approximates the probability density function of the regions 
where features are assumed to be independent (the dependencies are 
likely to be resolved on the path from the root to the leaves). As the 

ensemble contains a sufficient number of different trees, the probability 
density function of the original feature space is reasonable well 
approximated with the generated instances. During the training process, 
the Gini impurity index [8] is used to measure the probability of a 
variable, I, being classified in the wrong class: 

I = 1 −
∑n

i=1
pi

2, (6)  

where pi is the probability of a sample falling in class i ∈ {1,2,…,k}, and 
k is the number of classes. 

2.3.3. Unsupervised tree ensembles 
The unsupervised tree ensemble generator is built in a similar way as 

the supervised tree ensemble, but instead of random forests ensemble, 
this generator builds a density forest ensemble [27]. Here, the ensemble 
members are density trees built with a similar top-down manner as 
decision trees but using the variance of the features as the criterion for 
selection of the splitting feature. To avoid overfitting effects which are 
introduced during the construction of the density forest ensemble, each 
density tree in the ensemble is randomly selected as the one with the 
smallest convergence rate. Any information regarding the target feature 
is not necessary. Other components are identical to the supervised tree 
ensemble both in the learning and generation phase. 

RBF (Radial Basis Function) based artificial neural networks (ANNs). 
Robnik-Šikonja [29] has proposed an approach for virtual popula-

tion generation with artificial neural networks (ANNs), that uses radial 
base functions (RBFs) as activation functions. The RBF-based ANN’s 
output is defined as in: 

y(q)=
∑N

i=1
wi exp

(
− β||q − qi||

2
)
, (7)  

where y(q) is the output of the ANN, wi is the weight of the i-th neuron, qi 
is the center vector of the i-th neuron, ||q − qi|| is the distance of each 
sample in q from the center vector qi in the i-th neuron, and β is a 
standard Gaussian parameter. The RBF generator is created with a 
standard training algorithm which estimates the Gaussian parameters in 
the neurons. In the generation phase, the RBF generator uses Gaussian 
kernels as multivariate generators to deal with overfitting effects and 
produce new instances from each one in proportion to their presence in 
the training set. 

2.3.4. Bayesian networks 
Bayesian networks are based on the idea that during learning, de-

pendencies between variables are explicitly revealed and stored in a 
form of a directed acyclic graph (DAG). The nodes represent features and 
the edges connect nodes with a causal relationship. The weights on an 
edge determine the probability of ending up to a given value of a node 
given its predecessor. To generate new instances the structure is used to 
generate new feature values in a manner consistent with causal de-
pendencies between the features. If the node is discrete, the probability 
distribution is uniform. If the node is continuous, one mean and variance 
is attached per configuration of the discrete parents. 

Performance evaluation of the quality of the generated virtual pa-
tient data. 

Many approaches on how to evaluate generators are shown in 
Ref. [8]. Below we present some of them. 

2.3.5. Goodness of fit (GOF) 
The Kolmogorov-Smirnoff goodness of fit (GOF) test [14] is used to 

evaluate the similarity among the real and the virtual distributions. The 
GOF is defined as in: 

g=max(|f r(x) − f v(x)|), (8)  

where f r(x) and f v(x) are the empirical distribution functions of the 
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original and virtual data, respectively. A large gof value denotes distri-
butions with large distance in at least a part of the distribution whereas a 
small one indicates small distance over the whole range of the distri-
bution. 

2.3.6. Pearson’s correlation coefficient 
For two variables, say xr and xv, coming from the real and virtual 

data, respectively, the correlation coefficient [15], r, is defined as in: 

r =
E
[
(xr − μxr

)
(
yr − μyr

)]

σxr − σyr

, (9)  

where μxr
, μyr 

are the mean values, and σxr , σyr are the standard de-
viations of xr and yr, respectively, and E[.] is the expectation operator. 

2.3.7. Kullback-Leibler (KL) divergence 
For two features, xr and xv, from the real and virtual data, respec-

tively, with probability distributions, pxr 
andpxv 

defined on the same 
probability space, K, the Kullback-Leibler (KL) divergence [16] quan-
tifies the divergence between the two distributions, in an asymmetric 
manner, as in: 

KL
(
pxr ||pxv

)
=
∑

k∈K

pxr (ki)log
(

pxr (ki)

pxv (ki)

)

, (10)  

where KL values close to 0 denote that the two probability distributions 
pxr 

andpxv 
are almost identical in terms of highly reduced divergence or 

highly increased convergence. 

2.4. Hybrid machine learning module 

2.4.1. Class imbalance handling 
Class imbalance handling was used to deal with the increased pop-

ulation imbalance among the control and target groups by randomly 
downsampling the control group with replacement into a 1:1 ratio. The 
process was repeated ten times, where on each round, the downsampled 
control group was matched according to age, gender, and disease 
duration with the target group. 

2.4.2. Supervised machine learning schemas 
The Extreme Gradient Boosting (XGBoost) algorithm was utilized as 

a state-of-the-art tree ensemble approach for the development of lym-
phoma classification models in pSS and risk stratification models in 
HCM. The algorithm is trained on aggregated instances from the real and 
virtual data and tested on the instances of the real patient data, where 
the accuracy, sensitivity, specificity, and area under the curve (AUC) are 
computed. In short, the XGBoost algorithm [12] uses classification and 
regression trees as base learners to sequentially combine multiple tree 
predictions through error minimization using gradient boosting thus 
yielding higher performance over the conventional decision trees and 
related bagging methods, such as, the random forests [12]. Given a set of 
M-features (u,v) = {ui,vi}, i = 1,….,M, the XGBoost adds at a step t, a 
weak tree learner, ft , that minimizes a regularized objective function, 
G(t): 

G(t)=
∑M

i=1
g
(

vi, ṽi,t− 1 + ft(ui)

)

+ γN +
1
2

λ
∑J

j=1
wj

2, (11)  

where g(.) is the loss function at step t, ̃vi,t− 1 is the estimated value at step 
t − 1, γ is a regularization term that avoids overfitting, w is the weight 
vector of the leaves, λ is a regularization scalar value, and N is the total 
number of leaves in each tree. To reduce the complexity, the first- and 
second-order gradients are computed according to Taylor’s theorem 
yielding the objective function [17]: 

G(t)=
∑N

j=1

[

FOjwj +
1
2
(
SOj + λ

)
wj

2
]

+ γN, (12)  

where FOj =
∑

i∈Ij
gi and SOj =

∑

i∈Ij
hi, are compact forms of the first- and 

second-order gradients, gi = ∂l(yi, ỹi,t− 1)/∂ỹi,t− 1 and hi = ∂2l(yi, ỹi,t− 1)/∂ 
ỹi,t− 1 that are assigned to the j-th leaf. 

Additional algorithms, including the Adaptive Boosting (AdaBoost) 
[10] and the Random Forests (RFs) [10] were deployed to evaluate the 
overall impact of data augmentation towards the development of robust 
lymphoma classification and HCM risk stratification models. 

2.4.3. Adjusted 10-fold cross validation 
To better understand the adjusted cross-validation process, lets 

denote the real dataset as T, and the virtual datasets that were generated 
by the methods from Section 2.3 as A for the unsupervised tree ensem-
bles, B for the supervised tree ensembles, C for the supervised RBF-based 
neural networks, D for the Bayesian networks, and E for the multivariate 
log-normal distribution. A 10-fold cross validation process is applied to 
T, yielding a training subset Ttrain and a testing subset Ttest, on each 
iteration. On each round, each virtual dataset is aggregated with Ttrain, 
yielding new training instances, say, A′

, B′

, C′

, D′

, E′ , where A′

= A ∪

Ttrain,B
′

= B ∪ Ttrain,C
′

= C ∪ Ttrain,D′

= D ∪ Ttrain, E′

= E ∪ Ttrain. Each 
supervised machine learning algorithm from Section 2.4.2 is trained on 
the training instances A′

,B′

,C′

,D′

,E′ and tested on the corresponding 
testing instance Ttest where the accuracy, specificity, sensitivity, and area 
under the curve (AUC) scores are computed and averaged across the 
folds. In this way, the training instances of T are augmented with the 
virtual data. 

3. Results 

3.1. Data origins 

We acquired two anonymized datasets. The first one consists of 449 
patients who have been diagnosed with primary Sjögren’s Syndrome 
(pSS) at the University of Athens (UoA) cohort. Τhe number of lym-
phoma pSS patients was 70 with an average age 48.77 (±12.54) whereas 
the number of controls was 140 with an average age 52.47 (±13.86). 
There were 162 features, including demographics, medical conditions 
(e.g., dry eyes), and laboratory measures (e.g., C3), among others [19]. 
The second dataset includes 2454 records of patients who have been 
diagnosed with hypertrophic cardiomyopathy (HCM), at two time-
points, from the Cardiomyopathies Unit at Careggi Hospital, Florence 
(UNIFI cohort) [20]. The number of high-risk patients was 300 with an 
average age 50.13 (±17.67) and the number of low-risk patients was 
476 with an average age 43.95 (±18.42). There were 123 features, 
including demographics, laboratory measures (e.g., Left ventricular in-
ternal diameter end systole), and physical measures (e.g., systolic 
pressure), among others. All clinical data were shared according to the 
EU General Data Protection Regulation (GDPR) requirements [18]. 

3.2. Data preprocessing and quality control 

According to Table 1, the pSS dataset from the UoA cohort consisted 
of 162 features (45% continuous, 36% discrete and 19% unknown). In 
total, 55% of the features had good quality in terms of reduced outliers 
and missing values, and 48% had bad quality and were removed from 
the pipeline. In addition, 19 features had inconsistent data formats and 
were also removed from the analysis. Outliers were detected in 16 fea-
tures which were clinically examined and approved for correction. The 
final dataset included 449 patients with 65 features. To reduce the 
population imbalance among the lymphoma and non-lymphoma pa-
tients, which was approximately 6.4:1, the number of non-lymphoma 
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patients (i.e., the majority class) was set as twice the number of lym-
phoma patients. To do so the majority class was downsampled to pre-
serve a 1:2 ratio among the lymphoma (presence = 1) and the non- 
lymphoma patients (lymphoma presence = 1, lymphoma absence = 0). 

The HCM dataset from the UNIFI cohort (Table 1) consisted of 123 
features (70% continuous, 30% discrete) and 2454 records. In total, 71% 
of the features had good quality, and 29% had bad quality status and 
were removed from the pipeline. No outliers were detected nor un-
known data types or inconsistent fields. The class imbalance was 
acceptable in this case as the ratio of patients who have been diagnosed 
with high risk and low risk is approximately 1:1.58 (high-risk = 1; low- 
risk = 0). The number of missing values was 40% with more than 30 
empty features which required prospective information. To avoid biases, 
the records were averaged across the two timepoints and the missing 
records were discarded yielding a final dataset of 776 records and 20 
clinical features that were selected by the clinical experts. 

3.3. Data augmentation 

3.3.1. Evaluation of the quality of the virtual data in pSS 
The performance of the virtual data generators in the UOA cohort is 

presented in Supplementary Table I for the tree ensembles and the RBF- 
based ANNs, while in Supplementary Table II for the Bayesian networks 
and the log-MVND. The performance of the virtual generation methods 
was favorable. According to Table 2, the average GOF was 0.021 for the 
unsupervised tree ensembles, 0.022 for the supervised tree ensembles, 
0.068 for the RBF-based ANNs, 0.37 for the Bayesian networks and 
0.133 for the Log-MVND. In addition, the average KL-divergence was 
0.0289 for the unsupervised tree ensembles, 0.034 for the supervised 
tree ensembles, 0.033 for the RBF-based ANNs, 5e-05 for the Bayesian 
networks and 0.085 for the Log-MVND. The unsupervised tree ensem-
bles generated virtual distributions with high similarity and conver-
gence with the real data. 

The absolute correlation difference between the real and virtual data 
by the unsupervised tree ensembles is depicted in Fig. 2, where the 
average correlation difference was 0.1±0.22. The white horizontal and 
vertical lines in the features “Renal disease” and “Kidney infiltrates” 
denote the existence of strong correlation differences. This occurs 
because only 4 patients had positive Renal disease while only 7 patients 
had positive kidney infiltrates among the 449 patients and thus the 
virtual distributions included only negative samples. The average cor-
relation difference was 0.102±0.23 for the supervised tree ensembles, 
0.103±0.23 for the RBF-based ANNs, 0.5±0.47 for the Log-MVND, and 
0.06±0.07 for the Bayesian networks. The latter had the smallest cor-
relation difference but lower GOF values than the unsupervised tree 
ensembles. 

Random downsampling with replacement was applied on the real 
data to deal with the increased imbalance (1:6.4) among the lymphoma 
and non-lymphoma groups (Table 1), where the lymphoma over non- 
lymphoma ratio was set to 1:1. The process was repeated 10 times and 
the results were averaged across the random executions. On each 
execution, the downsampled group of non-lymphoma patients was 
matched according to age, gender, and disease duration with the group 
of lymphoma patients. 

The application of the XGBoost on the real data yielded: accuracy =
0.724; sensitivity = 0.679; specificity = 0.814; AUC = 0.802. On the 
other hand, according to Table 3, the average performance of the 
XGBoost on the aggregated real and virtual data from the unsupervised 
tree ensembles achieved the best classification performance, yielding 
accuracy 0.833, sensitivity 0.786, specificity 0.929, and AUC 0.924. The 
performance of the XGBoost using the augmented data from the super-
vised tree ensembles, and the supervised RBF-based ANNs come next. 
Finally, the performance of the XGBoost using the augmented data from 
the Log-MVND, and the Bayesian networks was lower than in the pre-
vious case (using the real data only). 

In a similar manner, the performance of the lymphoma classification 
models from the AdaBoost and Random Forests using the augmented 
data from the tree ensembles was higher than in the case of the real data. 
The application of the AdaBoost on the real data yielded accuracy =
0.719, sensitivity = 0.675, specificity = 0.807, AUC = 0.749. On the 
other hand, according to Table 3, the average performance of the Ada-
Boost on the aggregated real and virtual data from the unsupervised tree 
ensembles achieved better classification performance, yielding accu-
racy = 0.79, sensitivity = 0.732, specificity = 0.907, and AUC = 0.814. 

In the case of the Random Forests, the application on the real data 
yielded: accuracy = 0.729, sensitivity = 0.657, specificity = 0.871, AUC 
= 0.81. On the other hand, according to Table 3, the average perfor-
mance of the Random Forests on the aggregated real and virtual data 
from the unsupervised tree ensembles achieved better classification 
performance, yielding accuracy = 0.824, sensitivity = 0.746, specificity 
= 0.979, and AUC = 0.922. 

The ROC curves are shown in Fig. 3, highlighting the performance of 
the unsupervised tree ensembles (increase by 10.9% in the accuracy, 
10.7% in sensitivity, 11.5% in specificity, and 12.2% in AUC) in the case 
of the XGBoost which suggests a notable performance enhancement. A 
similar increase is also observed in the case of the AdaBoost (7.1% in the 
accuracy, 5.7% in sensitivity, 10% in specificity, and 6.5% in AUC), as 
well as, in the case of the Random Forests (9.5% in the accuracy, 8.9% 
sensitivity, 10.8% in specificity, and 11.2% in AUC). 

Evaluation of the quality of the virtual data in the case of hypertro-
phic cardiomyopathy. 

The performance evaluation outcomes of the five virtual population 
generators in the HCM dataset are presented in Supplementary Table III 
for the unsupervised and supervised tree ensembles, and for the super-
vised RBF-based ANNs, while the Bayesian networks and the Log-MVND 
are shown in Supplementary Table IV. 

According to Table 4, the average GOF was 0.029 for the unsuper-
vised tree ensembles, 0.031 for the supervised tree ensembles, 0.23 for 
the RBF-based ANNs, 0.32 for the Bayesian networks and 0.198 for the 

Table 1 
A summary of the data quality report.  

Metadata UoA 
cohort 

UNIFI 
cohort 

Number of features 162 123 
Number of records (instances) 449 2454 
Number of discrete features 58 37 
Number of continuous features 73 86 
Number of unknown features 31 0 
Number of features with outliers 16 0 
Number of features with inconsistencies 19 0 
Number of bad quality features 77 36 
Number of fair quality features 57 42 
Number of good quality features 26 45 
Class imbalance ratio 1:6.4 1:1.58 
Final number of patients after class imbalance 

handling 
210 776 

Final number of acceptable features 65 20  

Table 2 
Summary of the average performance evaluation measures for assessing the 
quality of the virtual data generated by each virtual population generation 
method for the pSS domain.  

Virtual population generation 
method 

Quality of the virtual data (goodness of fit, 
divergence, similarity) 

GOF KL- 
divergence 

Correlation 
coefficient 

Unsupervised tree ensembles 0.021 0.0289 0.1±0.22  
Supervised tree ensembles 0.022 0.034 0.102±0.23  
Supervised RBF-based ANNs 0.068 0.033 0.103±0.23  
Bayesian networks 0.37 0.000005 0.06±0.07  
Log-MVND 0.133 0.085 0.5±0.47   
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Log-MVND. The average KL-divergence was 0.027 for the unsupervised 
tree ensembles, 0.031 for the supervised tree ensembles, 0.02 for the 
RBF-based ANNs, 0.00047 for the Bayesian networks and 0.121 for the 
Log-MVND. The unsupervised tree ensembles generated virtual distri-
butions with the highest similarity and reduced divergence with the real 
data. 

The absolute correlation difference between the real and virtual data 
that were generated by the unsupervised tree ensembles is depicted in 
Fig. 4, where the average difference was 0.041±0.033. Regarding the 
rest of the algorithms, the average correlation difference was 0.064±
0.076 for the supervised tree ensembles, 0.078±0.085 for the RBF-based 
ANNs, 0.117±0.127 for the Bayesian networks, and 0.031± 0.03 for the 
Log-MVND. Although the Log-MVND schema achieved the smallest 
inter-correlation difference from the virtual population generators, it 
yielded significantly higher GOF and KL values than the unsupervised 
tree ensembles. 

The dark color pattern in Fig. 4 denotes the absence of significant 
correlation differences between the real and the virtual data which 
suggests that in this case the unsupervised tree ensembles schema was 
able to generate virtual distributions with increased similarity (i.e., with 
highly similar correlation patterns) with the real distributions. 

In this case, class imbalance handling is not required since the ratio 
of the patients with low and high risk for HCM (Table 1) is adequate. The 
application of the XGBoost on the real data using a 10-fold cross vali-
dation process yielded accuracy = 0.597, sensitivity = 0.564, specificity 
= 0.708, and AUC = 0.628. According to Table 5, the average perfor-
mance of the XGBoost on the aggregated real and virtual data from the 
unsupervised tree ensembles achieved better classification performance, 
yielding accuracy = 0.758, sensitivity = 0.733, specificity = 0.845, and 
AUC = 0.829. The performance of the XGBoost on the augmented data 
from the supervised tree ensembles comes next along with the RBF- 
based ANNs, the Bayesian networks and the Log-MVND which ach-
ieved slightly better performance than before but with less than 0.6 
sensitivity and thus are excluded from Table 5. 

The performance of the HCM risk stratification models from the 
AdaBoost and Random Forests using the augmented data from the tree 
ensembles was also higher than in the case of the real data. The appli-
cation of the AdaBoost on the real data yielded accuracy = 0.61, 
sensitivity = 0.569, specificity = 0.748, and AUC = 0.611. According to 
Table 5, the average performance of the AdaBoost on the aggregated 
data from the unsupervised tree ensembles achieved better classification 
performance, yielding accuracy = 0.665, sensitivity = 0.622, specificity 

Fig. 2. The absolute difference between the real and virtual correlation matrices for the UoA dataset, in the case of the unsupervised tree ensembles generator. The 
features are ordered according to their appearance in the Supplementary Table I. Values with dark and purple color denote low variations among the real and virtual 
data whereas values with orange/white color denote otherwise. 
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= 0.811, and AUC = 0.712. As for the Random Forests, their application 
on the real data yielded accuracy = 0.629, sensitivity = 0.563, speci-
ficity = 0.853, AUC = 0.641, whereas the average performance on the 
aggregated real and virtual data from the unsupervised tree ensembles 
achieved better classification performance, yielding accuracy = 0.723, 
sensitivity = 0.664, specificity = 0.925, and AUC = 0.763. 

The ROC curves are summarized in Fig. 5, highlighting the classifi-
cation performance of the unsupervised tree ensembles which yielded an 

increase by 16.1% in the accuracy, 16.9% in sensitivity, 13.7% in 
specificity, and 20.1% in AUC compared with the XGBoost trained on 
the real data. A similar increase is also observed in the case of the 
AdaBoost (5.5% in accuracy, 5.3% in sensitivity, 6.3% in specificity, and 
10.1% in AUC), as well as, in the Random Forests (9.4% in accuracy, 
10.1% in sensitivity, 7.2% in specificity, and 12.2% in AUC). Although 
the classification performance is significantly smaller than in pSS, due to 
the nature of the HCM, data augmentation was able to enhance the 
performance of the HCM risk stratification models. 

4. Discussion 

In this work we examined the effectiveness of data augmentation in 
terms of enhancing the real clinical research databases with high-quality 
virtual data to enhance the performance of the disease classification and 
risk stratification models in two different clinical domains, namely the 
primary Sjögren’s Syndrome and the hypertrophic cardiomyopathy. To 
do so, a computational pipeline was developed, where high-quality 

Table 3 
A summary of the lymphoma classification results from the XGBoost, AdaBoost 
and Random Forests before and after data augmentation using the virtual data 
from each virtual population generator.  

Virtual population generation 
method for data augmentation 

Lymphoma classification performance 

Accuracy Sensitivity specificity AUC 

XGBoost 
Before data augmentation 0.724 0.679 0.814 0.802 
Unsupervised tree ensembles 0.833 0.786 0.929 0.924 
Supervised tree ensembles 0.814 0.757 0.929 0.912 
Supervised RBF-based ANNs 0.819 0.764 0.929 0.914 
Bayesian networks 0.752 0.707 0.843 0.787 
Log-MVND 0.8 0.754 0.893 0.824 
AdaBoost 
Before data augmentation 0.719 0.675 0.807 0.749 
Unsupervised tree ensembles 0.79 0.732 0.907 0.814 
Supervised tree ensembles 0.79 0.725 0.921 0.82 
Supervised RBF-based ANNs 0.824 0.764 0.943 0.87 
Bayesian networks 0.69 0.593 0.886 0.76 
Log-MVND 0.767 0.696 0.907 0.784 
Random Forests 
Before data augmentation 0.729 0.657 0.871 0.81 
Unsupervised tree ensembles 0.824 0.746 0.979 0.922 
Supervised tree ensembles 0.767 0.661 0.979 0.877 
Supervised RBF-based ANNs 0.757 0.636 1 0.901 
Bayesian networks 0.762 0.661 0.964 0.839 
Log-MVND 0.757 0.668 0.936 0.852  

Fig. 3. ROC curves depicting the classification performance of the XGBoost, the AdaBoost and the Random Forests for lymphoma classification with and without data 
augmentation. 

Table 4 
Summary of the average performance evaluation measures for assessing the 
quality of the virtual data generated by each virtual population generation 
method for the HCM domain.  

Virtual population generation 
method 

Quality of the virtual data (goodness of fit, 
divergence, similarity) 

GOF KL- 
divergence 

Correlation 
coefficient 

Unsupervised tree ensembles 0.029 0.027 0.041±0.033  
Supervised tree ensembles 0.031 0.031 0.064±0.076  
Supervised RBF-based ANNs 0.23 0.02 0.078±0.085  
Bayesian networks 0.32 0.0047 0.117±0.127  
Log-MVND 0.198 0.121 0.031±0.03   
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virtual data are aggregated with the real data to yield robust lymphoma 
classification models and HCM risk stratification models, where the 
performance of each model was evaluated on testing instances of the real 
data to avoid any biases. The proposed pipeline was able to generate 
virtual distributions with increased similarity, correlation, and reduced 
divergence with the real distributions. The aggregation of the real with 
the virtual patient data in both clinical domains yielded a notable in-
crease in the classification accuracy, sensitivity, specificity, and area 
under the curve scores of the supervised machine learning models which 

were trained on the augmented clinical data compared to those trained 
on real data instances. 

Our results reveal the favorable performance of the unsupervised 
tree ensembles for virtual population generation which outperformed 
the rest of the virtual population generation methods having the 
smallest goodness of fit and Kullback-Leibler divergence values in both 
experimental case studies (see Table 2 regarding the pSS domain and 
Table 5 regarding the HCM domain). The histograms of the virtual data 
that were generated by the unsupervised tree ensembles can be found in 
Supplementary Figs. 1 and 2 for the HCM dataset and in Supplementary 
Figs. 3 and 4 for the pSS dataset. In both cases, the histograms reflect a 
highly qualitative similarity between the real and the virtual distribu-
tions. The supervised tree ensembles had the second-best performance 
(Tables 2 and 5). The results from the supervised RBF-based artificial 
neural networks (ANNs) are close to the two previous methods, with the 
Bayesian networks and the log-MVND trailing behind. The dominance of 
the tree ensembles as a method for generating virtual data with 
increased level of agreement with the real data is in line with a recent 
study [21] which focuses on the generation of virtual data for in-silico 
cardiomyopathies drug development as an extension of [22]. 

Our results also highlight the positive impact of augmenting the real 
with the virtual patient data which were generated by the “unsuper-
vised” tree ensembles through data augmentation towards the devel-
opment of robust disease classification and risk stratification models. 
The XGBoost algorithm was selected as a state-of-the art tree ensemble 
approach the value of which was demonstrated in previous studies [23, 
24] for lymphoma classification in pSS. The performance of the lym-
phoma classification model in the pSS domain showed an increase by 

Fig. 4. The absolute difference between the real and virtual correlation matrices for the HCM dataset, in the case of the unsupervised tree ensembles generator. The 
features are ordered based on their appearance in Supplementary Table III. Risk stratification for hypertrophic cardiomyopathy using data augmentation. 

Table 5 
A summary of the HCM risk stratification results from the XGBoost, AdaBoost 
and Random Forests before and after data augmentation using the virtual data 
from each virtual population generator.  

Virtual population generation 
method for data augmentation 

HCM risk stratification performance 

Accuracy sensitivity specificity AUC 

XGBoost 
Before data augmentation 0.597 0.564 0.708 0.628 
Unsupervised tree ensembles 0.758 0.733 0.845 0.829 
Supervised tree ensembles 0.705 0.672 0.817 0.753 
AdaBoost 
Before data augmentation 0.61 0.569 0.748 0.611 
Unsupervised tree ensembles 0.665 0.622 0.811 0.712 
Supervised tree ensembles 0.653 0.606 0.816 0.672 
Random Forests 
Before data augmentation 0.629 0.563 0.853 0.641 
Unsupervised tree ensembles 0.723 0.664 0.925 0.763 
Supervised tree ensembles 0.686 0.621 0.908 0.705  
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10.9% in the classification accuracy, 10.7% in sensitivity, 11.5% in 
specificity, and 12.2% in area under a curve for lymphoma classification 
(Fig. 3, Table 3) against the one trained only on the real data. A similar 
increase is also observed in the case of the AdaBoost (7.1% in accuracy, 
5.7% in sensitivity, 10% in specificity, and 6.5% in AUC), as well as, in 
the case of the Random Forests (9.5% in the accuracy, 8.9% sensitivity, 
10.8% in specificity, and 11.2% in AUC). 

Moreover, the performance of the HCM risk stratification model 
showed an increase by accuracy, 16.9% in sensitivity, 13.7% in speci-
ficity, and 20.1% in area under the curve against the one trained on the 
real HCM data (Fig. 5, Table 5). A similar increase is also observed in the 
case of the AdaBoost (5.5% in accuracy, 5.3% in sensitivity, 6.3% in 
specificity, and 10.1% in AUC), as well as, in the case of the Random 
Forests (9.4% in accuracy, 10.1% in sensitivity, 7.2% in specificity, and 
12.2% in AUC). In addition, the aggregation of the virtual data from the 
supervised tree ensembles with the real patient data yielded enhanced 
classification models at a similar extent (see Fig. 3, Table 3 for lym-
phoma classification and Fig. 5, Table 5 for HCM risk stratification). 
Finally, the aggregation of the virtual data from the supervised RBF- 
based ANNs, the Bayesian networks and the Log-MVND with the real 
one yielded supervised machine learning models with partially 
enhanced performance while maintaining the increased performance 
than in the case of training on the real data only. 

5. Existing work/Contribution to the state of the art 

Our work contributes positively towards the generation of high- 
quality virtual data that mimic the real data with an increased level of 
similarity and can be applied for data augmentation purposes to increase 
the population size of clinical studies, as well as, increase the robustness 
of the existing disease classification and risk stratification models. The 
current study builds on principles from existing studies (Table 6) to 
develop a beyond the state-of-the art computational pipeline for clinical 
data augmentation. We extend the conventional statistical approaches, 

such as, the MVND and the Log-MVND [3–5], as well as, multivariate 
functions, such as, Bayesian methods, discrete re-sampling techniques 
[5,6,25], through machine learning based generators, such as, the tree 
ensembles, the RBF-based ANNs and the Bayesian networks to produce 
high-quality virtual patient data with increased similarity and decreased 
divergence with the real patient data. 

All in all, our results validate the scientific and technical impact of 
data augmentation in both clinical domains yielding a significant in-
crease in the classification accuracy, sensitivity, and specificity for both 
the lymphoma classification and the HCM risk stratification models. To 

Fig. 5. ROC curves depicting the classification performance of the XGBoost, the AdaBoost and the Random Forests for HCM risk stratification with and without data 
augmentation. 

Table 6 
Contribution to the state-of-the art.  

Study Proposed method for virtual population generation towards 
data augmentation/Rationale 

Teutonico et al. [4] Multivariate and discrete re-sampling techniques to account 
for covariate effects within the target population during the 
generation of virtual data. 

Allen et al. [5] A technique for efficiently generating virtual patients that 
best fit the observed data using multivariate log-normal 
distribution (log-MVND). 

Tannenbaum et al. 
[3] 

Continuous and categorical covariate distribution modeling 
using multivariate statistical functions. 

Silverman et al. [6] Application of logit logistic normal multivariate methods for 
population. 

Krauss et al. [25] Application of Bayesian methods for virtual population 
physiologically based Pharmacokinetic (PPBK) and 
pharmacokinetic modeling. 

Robnik-Šikonja 
[28,29] 

Definition of the tree ensembles and the RBF-based ANNs for 
virtual population generation yielding virtual data that 
mimic the UCI data. 

Current study A computational pipeline with properly designed machine 
learning methods for data augmentation which significantly 
enhances the performance of disease classification and risk 
stratification models across two different clinical domains 
through semi-supervised learning.  
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our knowledge, this is the first study that builds a computational pipe-
line which uses the high-quality semi-artificial patient data which are 
generated by machine learning-based approaches to enhance the per-
formance of lymphoma classification models in pSS and risk stratifica-
tion models in HCM. 

6. Conclusions 

In this work, we deploy high-quality virtually generated patient data 
to enhance the performance of the conventional supervised machine 
learning models for lymphoma classification and HCM risk stratification 
in two rare clinical domains. The proposed computational pipeline can 
be deployed for the augmentation of clinical data although medical 
imaging information can also be used as input. To our knowledge, this is 
the first computational pipeline which aggregates high-quality virtual 
data with real data to deal with clinical unmet needs in two rare clinical 
domains, including the development of robust lymphoma classification 
and HCM risk stratification models. The data quality control module 
enhances the quality of the raw clinical data through the removal of 
outliers and duplicated fields. The virtual population generation module 
provides straightforward virtual data generators, where the tree 
ensemble generators have been extended to avoid overfitting effects 
during the generation stage yielding virtual data with increased quality 
in terms of increased convergence with the real data. A similar strategy 
was developed for the ANNs using Gaussian kernels as activation func-
tions to deal with overfitting during the training stage. The “hybrid” 
machine learning module utilizes supervised machine learning algo-
rithms on the aggregated real and high-quality virtual data to enhance 
the performance of the lymphoma classification and HCM risk stratifi-
cation models. 

Although the application of the proposed pipeline has a strong po-
tential towards the improvement of the existing disease classification 
and risk stratification models in other clinical domains, emphasis must 
be given on its concise application in each domain. The data quality 
control module enhances the quality of the input data by removing data 
inconsistencies and incompatibilities, but it should be utilized prior to 
the application of the virtual population generation module otherwise 
the quality of the virtual data will be poor in terms of reduced confor-
mity and relevance with the real data. In addition, although the virtual 
population generators and specifically the tree ensembles and the ANNs 
have been adjusted to resolve overfitting effects during the training 
stage, emphasis should be given on the precise definition of the data 
types of the input features to avoid the generation of virtual data with 
heterogeneous data structure. The quality of the virtual data should be 
evaluated in terms of increased similarity and reduced divergence with 
the real data, where only the virtual data with the highest quality should 
be augmented with the real data. Finally, the statistical power of the 
augmented clinical data must be sufficient for the application of the 
hybrid machine learning module to yield robust disease classification 
and risk stratification models. 

7. Future work 

As a feature work, we plan to apply the proposed computational 
pipeline in other clinical domains to enhance the population size of 
clinical research databases with reduced statistical power. In addition, 
we plan to expand the hybrid machine learning module with deep 
learning algorithms to support the extraction of biomarkers from time- 
series gene expression data, as well as, enhance the applicability of 
the data quality control module to support the curation of complex ge-
netic data structures. 
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[29] Marko Robnik-Šikonja, Data generators for learning systems based on RBF 

networks, IEEE Transactions on Neural Networks and Learning Systems 27 (5) 
(May 2016) 926–938. 

V.C. Pezoulas et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0010-4825(21)00314-0/sref16
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref16
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref17
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref17
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref18
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref18
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref18
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref18
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref19
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref19
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref19
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref20
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref20
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref20
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref20
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref21
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref21
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref21
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref21
https://doi.org/10.1109/BIBE.2019.00126
https://doi.org/10.1109/BIBE.2019.00126
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref23
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref23
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref23
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref23
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref23
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref24
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref24
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref24
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref24
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref24
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref25
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref25
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref26
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref26
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref26
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref27
http://cran.r-project.org/package=semiArtificial.%20R%20package%20version%201.2.0
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref29
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref29
http://refhub.elsevier.com/S0010-4825(21)00314-0/sref29

	A computational pipeline for data augmentation towards the improvement of disease classification and risk stratification mo ...
	1 Introduction
	2 Materials and methods
	2.1 The proposed pipeline
	2.2 Data quality control module
	2.2.1 Data characterization
	2.2.2 Outlier detection
	2.2.3 De-duplication

	2.3 Virtual population generation module
	2.3.1 Multivariate lopg-normal distribution (log-MVND)
	2.3.2 Supervised tree ensembles
	2.3.3 Unsupervised tree ensembles
	2.3.4 Bayesian networks
	2.3.5 Goodness of fit (GOF)
	2.3.6 Pearson’s correlation coefficient
	2.3.7 Kullback-Leibler (KL) divergence

	2.4 Hybrid machine learning module
	2.4.1 Class imbalance handling
	2.4.2 Supervised machine learning schemas
	2.4.3 Adjusted 10-fold cross validation


	3 Results
	3.1 Data origins
	3.2 Data preprocessing and quality control
	3.3 Data augmentation
	3.3.1 Evaluation of the quality of the virtual data in pSS


	4 Discussion
	5 Existing work/Contribution to the state of the art
	6 Conclusions
	7 Future work
	Author contributions
	Acknowledgement
	Appendix A Supplementary data
	References


