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Abstract: Urban green infrastructure (UGI) and nature-based solutions (NBS) are increasingly
recognized as strategies to address urban sustainability challenges. These solutions are attracting
key scientific and marketing attention thanks to their capability to improve indoor and outdoor
thermal comfort and environmental quality of spaces. In urban areas, where most of the population
worldwide lives, indoor-outdoor environmental quality is compromised by local and temporary
overheating phenomena, air pollution concentration, and impervious surfaces minimizing urban
space resilience to climate change related hazards. In this view, the proposed study concerns the
analysis of a greenery system for enhancing outdoor thermal conditions and local warming mitigation
for pedestrians for the continental Mediterranean climate. The system has the purpose of designing
an outdoor “alive” shading system to be applied in open public spaces, with producing physical
and societal benefits. The experimental results showed that the implementation of the greenery,
characterized by lower surface temperatures and evapotranspiration compared to a simple pergola
system, allows the reduction of outdoor air temperature under the shading system and, thus, higher
relative humidity in summer. Specifically, the hygrothermal cooling and the additional shading thanks
to the presence of greenery provide local air temperature reduction up to 5 ◦C at pedestrian level.
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1. Introduction

Nowadays, a topic with increasing relevance is how an outdoor space affects physical, physiological,
and psychological well-being. The achievement of comfortable outdoor spaces and microclimates in
urban environment is, indeed, fundamental for the exploitation of social activities, often enhanced by
means of a better connection to nature through sunny and/or green spaces [1].

Architects and designers were inspired by nature since long before the term biomimetics
(or bio-inspired architecture) was introduced.

The concept of biomimetic design from nature in the built environment can be understood
in various terms, among others biomimicry, biomimetic, bionic, bio design, biophilia, and bio
derivation. Biomimetics is a rapidly growing discipline in engineering and an emerging design field
in architecture [2]. Systems found in nature offer a large database of strategies and mechanisms that
can be implemented in biomimetic designs [3,4]. Moreover, it is believed that the incorporation of
a thorough understanding of biology and ecology into architectural design will be significant in the
creation of a built environment that contributes to the health of human communities, while increasing
positive integration with natural carbon cycles [5].
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In this context, nature-based solutions (NBS) or urban green infrastructure (UGI) emerged as
a concept to operationalize an ecosystem services approach [6,7] and to foster the functioning of
ecosystems as essential backbones to climate change mitigation and adaptation [8,9]. The benefits of
UGI were widely studied in recent years [10,11]. In fact, green infrastructures can help in achieving
temperature reductions in urban areas and influencing the mitigation of urban heat risks, while
delivering diverse additional benefits such as pollution reduction and biodiversity habitat [12–14].
Concerning street canyons, vegetation can create an efficient urban pollutant filter that improves the air
quality at street-level in dense urban areas [15]. Furthermore, plants have the capability of transforming
the global solar radiation that reaches their surfaces into biomass, oxygen, air humidity, etc. [16].
In particular, urban trees are widely promoted as a solution to cool the urban environment thanks
to shading and evaporative cooling provided by tree canopies [17,18], in addition to other multiple
benefits such as flood management, wildlife habitat and natural pathway creation, neighborhood
beautification, cost-effectiveness, etc. [19]. Regarding the building scale, in addition to their aesthetical
and health benefits, green infrastructure such as green walls and green roof have significant thermal
effects on indoor building environments [20–22] and urban heat island (UHI) effect [23,24].

Another important aspect is that outdoor green spaces promote physical activity and public
health [25,26]. The World Health Organization [27] offered in their report a review of the existing
evidence on the health effects of green spaces in urban areas. Another study [28] found evidence-based
design of greenery solutions to be beneficial for mental health, especially to those diagnosed with
mental disorders. The opportunity of contact with nature or the use of more biodiverse environments
certainly represent an important aspect of healthy ageing and dementia-friendly environments.

In this context, biophilic spaces (i.e., those that learn from nature and emulate natural systems)
must be considered for the development of cities [29]. In fact, a “biophilic city”, as Beatley and
Newman [30] deeply studied, is a city in which residents are actively involved in experiencing nature.
Biophilic design holds that good design, at the building, site, city, and regional scale, must include
nature and natural elements. Moreover, biophilic urbanism can help to protect or strengthen favorable
climate and micro-climate conditions in cities. It can also complement urban greening efforts to
enable a holistic approach, which is conducive to comprehensive, intentional, and strategic urban
greening [31,32], and also to address climate change issues in rapidly growing economies [33,34].

Regarding the effect of greenery in the outdoors, different studies were found in the literature.
Piselli et al. [35] affirmed that pedestrians are in favor of additional green areas and this increase
of vegetation, combined to other solutions for sustainable landscape change, showed a significant
impact in summer overheating mitigation and urban resilience to anthropogenic climate change. Also,
Morakinyo et al. [36] studied the effect of vertical greenery on thermal comfort and air cooling via its
effect on building facade surface energy fluxes and air temperature in Hong Kong. They found that
30–50% of facades in the high-density urban setting of Hong Kong should be greened to potentially
cause a 1 ◦C reduction in both daytime and night time temperatures. Jusuf et al. [37], conducted a
mobile survey to explore both the severity of UHI effect and cooling impacts of green areas in Singapore.
The results indicated a strong correlation between the decrease of temperature and the appearance of
large green areas in the city, and a maximum temperature difference of about 4 ◦C was observed.

Within this background, it appears crucial to consider greenery as an important element in any
contemporary urban planning. However, green systems definitely are not new creations. Vegetation
has existed on earth since the beginning of time. Outdoor shading structures, such as trellises and
pergolas, can be used for providing shade and/or to control air movement [38]. For example, pergolas
developed out of the Etruscan practice of training vines high on trees; their functionality and simplicity
made them a staple in history and will most likely continue to be a popular feature.

Therefore, there is an opportunity to experimentally exploit the influence of greenery for cooling
down air temperatures, which provides benefits not only in terms of outdoor thermal comfort, but also
indoors. In this study, two pergolas, structurally the same, but differing in the presence of greenery,
were analyzed in order to assess the thermal effect of the greenery on outdoor air temperatures.
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This case study took place in Lleida, Spain under a continental Mediterranean climate. Results showed
an encouraging “cooling effect” with the implementation of greenery. Finally, the special aim is to
point out the importance and necessity of increasing vegetation within cities, both at the local level for
the improvement of microclimate and at a wider level for the mitigation of climate change.

2. Materials and Methods

2.1. Experimental Set-up: The Green Pergola

This study was carried out in the experimental set-up in Puigverd de Lleida (Spain), where 22 house-
like cubicles have been tested with active and passive building heating and cooling technologies during
the last decade [39]. The climate in Lleida is a continental Mediterranean climate that is classified as
Cfa by the Koppen-Geiger system [40] with dry summers and foggy winters.

The aim of this study is two create two different shadow systems: one with the implementation of
vegetation and the other only with the ropes. The concept is presented in Figure 1.
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Figure 1. Concept of the pergola.

In this context, a system to create different spaces that can provide thermal comfort to outdoor
users was developed. Both shading systems were composed of two interwoven systems of ropes
running freely between two buildings (Figure 2). The two systems of ropes were east and west oriented
and connected in the middle creating a bench where people could sit. The new space changed constantly
with shadows produced by the ropes and greenery system (using deciduous plants) based on the
season since the solar irradiance was different for each one. Thus, the space became an ever-changing
stage responding to the movement of the visitor, the changing patterns of light through the day, and the
outdoor thermal comfort depending on the season.
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The system was realized in order to be as sustainable as possible. The materials chosen were
either from recycling operations or mostly recyclable (wooden parts and ropes); the remaining metallic
materials (hooks, tie rods, L-profiles) were purchased. In detail, the materials used for the prototype
were the following: the seat was realized with disused pallets (once used for the transport of fruit);
the structure that supports the ropes was built with wooden crossbars coming from rails, treated to
allow their reuse.

As seen in Figure 3, the pergola was made up of tensed ropes fixed by means of hooks to the
seat and by hooks with tie rods to the facade of the cubicle. The ropes were not fixed directly on the
facade of the cubicle but were placed on a wooden crossbeam, in a diagonal way, so as to ensure the
pergola a more pleasant and natural profile. The rope, with a diameter of 16 mm, was intertwined
transversally (i.e., the ropes of the east seat were tied to the west, and vice versa) in order to guarantee
greater structural stability. In detail, the ropes were passed through the screw eyelets, fixed to the seat,
and knotted with a heat-shrinkable sheath.
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Figure 3. Construction process of the pergola.

Each structure was equipped with two seats, one to the east and the other to the west side;
flower boxes were placed between the two seats. Wisteria sinensis climbing plants were placed in
the box of one of the two structures and during the experiment, the growth, usefulness, and type of
maintenance required were observed. The Wisteria sinensis was chosen because it is suitable for the
type of Mediterranean continental climate present in the experimental area of Lleida and for its ability
to develop without the support of a wall, but with the simple aid of a rope (Figure 4). Moreover, due to
the dry climate in the study site, a simple irrigation system was installed and programmed to irrigate
the greenery 4 times per night (9 p.m., 12 a.m., 4 a.m. and 8 a.m.) of minutes each.



Sustainability 2020, 12, 5888 5 of 12
Sustainability 2020, 12, x FOR PEER REVIEW 5 of 13 

 
Figure 4. The Wisteria sinensis on the wall of the shadow element. 

2.2. Instrumentation 

Five sensors to measure air relative humidity (% RH) and temperature (°C) were installed. Two 
sensors (west (A) and east (B) orientation) were installed under the greenery system, two more under 
the ropes system, and the last one in the area without any shadow system (Figure 5). The sensors 
were placed at 1.60 m height from the ground (human torso height for a standard man) and in the 
middle between the bench/pergola and the house-like cubicle, namely at a distance of 2.25 m from 
the cubicle wall. A modified tripod was used to support the sensors as seen in Figure 4. 

 
Figure 5. The experimental set-up. 

The whole experimental set-up was continuously monitored to analyze the thermal performance 
of each tested pergola. The data was registered every 5 min interval. In detail, the sensor used for the 
both shading systems was a TESTO 6651 humidity transmitter compatible with TESTO 6601, with an 
accuracy of ±1.7% RH, a range of 0-100% RH and a temperature range from -20°C to 70°C. 
Measurements were made with a range of 1 s. On the other hand, solar global radiation [W/m2] was 
taken by a weather station which includes two MIDDLETON SOLAR meters SK08 to capture 
horizontal and vertical global solar radiation. Both sensors can be seen in Figure 6. 

Figure 4. The Wisteria sinensis on the wall of the shadow element.

2.2. Instrumentation

Five sensors to measure air relative humidity (% RH) and temperature (◦C) were installed.
Two sensors (west (A) and east (B) orientation) were installed under the greenery system, two more
under the ropes system, and the last one in the area without any shadow system (Figure 5). The sensors
were placed at 1.60 m height from the ground (human torso height for a standard man) and in the
middle between the bench/pergola and the house-like cubicle, namely at a distance of 2.25 m from the
cubicle wall. A modified tripod was used to support the sensors as seen in Figure 4.
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Figure 5. The experimental set-up.

The whole experimental set-up was continuously monitored to analyze the thermal performance
of each tested pergola. The data was registered every 5 min interval. In detail, the sensor used for
the both shading systems was a TESTO 6651 humidity transmitter compatible with TESTO 6601,
with an accuracy of ±1.7% RH, a range of 0–100% RH and a temperature range from −20 ◦C to 70 ◦C.
Measurements were made with a range of 1 s. On the other hand, solar global radiation [W/m2]
was taken by a weather station which includes two MIDDLETON SOLAR meters SK08 to capture
horizontal and vertical global solar radiation. Both sensors can be seen in Figure 6.

In addition, thermal imaging was carried out to compare the surface temperatures of the shading
systems at different times of the day. Therefore, thermal images of the inner surface of the ropes with
and without greenery were taken during a representative summer day (29th June) with peak outdoor
air temperature equal to 45 ◦C. To this aim, a FLIR Vue Pro R camera was used to gather accurate,
calibrated, and non-contact temperature measurements. The thermal camera and its main technical
characteristics are shown in Table 1.
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Thermal Imager Uncooled VOx Microbolometer

Sensor Resolution 336 × 256
Spectral Band 7.5–13.5 µm

Operating Temperature
Range −20 ◦C to +50 ◦C

Measurement Accuracy ±5 ◦C or 5% of reading

2.3. Experiments

The experimental set-up allows conducting different types of experiments. First, differences
in terms of air temperatures and relative humidity between the various scenarios were assessed.
The experiments were done during June and the beginning of July since this is the hottest month
in Lleida, Spain (continental Mediterranean climate). Thus, 8 consecutive days from 27-06-2019 to
04-07-2019 were continuously monitored.

The second experiment consisted of comparing the surface temperatures between the ropes and
the greenery at different hours of the day. These analyses were carried out during the same period as
the previous one.

3. Results and Discussion

3.1. Thermal Analysis

The air temperature under the system with greenery (Green A) and the system with the ropes
(Rope A) on west orientation were analyzed. To consider the most extreme conditions, the week
with the highest temperatures of the whole summer 2019 was chosen as representative week, which
was the one between the end of June and the beginning of July. As shown in Figure 7, all days of
the week had very similar and high solar irradiance. Between these two scenarios, the highest air
temperature (i.e., 45.3 ◦C) was detected under the system with the ropes on the day 29/06/2019 at
3:45 p.m. The maximum temperature reached with the greenery system was 42.9 ◦C on the same day,
which means a difference up to 2.5 ◦C at peak temperatures for the same day with the same external
conditions. Furthermore, the temperature difference during night was overwhelming with up to 3.1 ◦C
at 5:50 a.m. the day 30/06/2019, being the lowest temperature reached by the greenery system and the
system with ropes 9.0 ◦C and 12.1 ◦C, respectively. These differences mean a reduction up to 5% and
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25% during daytime and night-time, respectively, thanks to the implementation of greenery. This high
reduction of temperatures at night might be due to the irrigation effect [41]. Other authors, indeed,
have deeply studied and confirmed that the reduced temperatures on average and hot summer days
are due to irrigation as well as the evapotranspiration effect [18].
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Figure 7. Air temperatures under the west oriented shading systems (Green A/Rope A).

Moreover, these results are confirmed by the thermal images of the two shading systems (Figure 8).
The surface temperatures difference between the ropes and the system with greenery at the time of peak
outdoor air temperature (i.e., 4:00 p.m. on the same day 29/06/2019) was up to 5.3 ◦C. The greenery,
indeed, reached up to about 37 ◦C, compared to the almost 43 ◦C of the ropes. Therefore, this surface
temperature difference affects the air temperature under the shading system, even if the passive cooling
effect is slightly dampened.Sustainability 2020, 12, x FOR PEER REVIEW 8 of 13 
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Figure 8. Thermal image of the shading systems (a) with and (b) without greenery at peak outdoor air
temperature (i.e., at about 4:00 p.m).

Furthermore, when compared to the sensor without any shading system, namely “without
shading”, the difference was even higher. The difference between the highest air temperature with
the greenery system and the maximum non-shaded temperature was 5.1 ◦C, while the minimum
was 1.9 ◦C. On the other hand, the system with the ropes was very similar to the one without any
shading system.

Accordingly, the implementation of the greenery in outdoor surfaces has a cooling effect on the
environment and hence provides more comfortable surroundings to the citizens. Since previous studies
showed that cities and towns are warmer than their surrounding rural areas due to the absorption of
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solar radiation by the urban built surfaces [42], these results highlight the importance of the use of
greenery on the outdoors for cooling down the cities.

On the other hand, air temperature under the east oriented pergolas (Green B / Rope B) were
analyzed in Figure 9. In this case, the air temperature variation differed from the west oriented scenarios
(Green A / Rope A). Again, the system with the greenery showed better results, with maximum air
temperatures up to 44.9 ◦C, while under the system with ropes and without any shading system the
temperature reached up to 48.4 ◦C and 48.0 ◦C, respectively. Regarding the lowest air temperatures,
the greenery system reached 12.1 ◦C during night-time, while the system with ropes 13.9 ◦C. However,
in this case the lowest air temperature was found for the sensor without any shading system equal to
10.9 ◦C. It is worth noting that slightly cooler air temperatures were observed under the west oriented
pergolas, which could mean that in the case study climate context shading systems are more efficient
in the west orientation. Moreover, this outcome highlights that the context and orientation are very
important parameters to consider when planning and designing this type of systems.
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Figure 9. Air temperatures under the east oriented shading systems (Green B/Rope B).

3.2. Hygrometric Analysis

In addition, relative humidity (RH) was studied, since it is another important aspect for outdoor
thermal comfort. Relative humidity indicates the actual amount of water vapor content (percent) in the
air compared to the maximum amount that the air could hold under the same conditions. The warmer
the air, the more moisture it can hold. Humidity is almost always higher in green areas than in built
environments [43], since greenery systems can increase the relative humidity of the surrounding air by
its wet substrate and by the transpiration of plants [44].

Figure 10 presents the comparison of the RH trend under the two shading systems for the west
orientation in two consecutive days. The solid line shows the fluctuation of air temperatures while the
dotted line represents the variation of relative humidity. The air under both shading systems reaches
the saturation during the coolest hours. However, the RH appears always higher under the greenery
up to a minimum equal to 15% in the driest sunny hours, when the RH under the ropes reaches a value
of 12%.

On the other hand, Figure 11 shows the RH under the east oriented shading systems. In this case,
the data show negligible differences in terms of relative humidity with or without greenery, which
confirms the previous findings on the variation of the effectiveness of the green pergola according to
the orientation.
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Figure 10. Relative humidity under the west oriented shading systems for two consecutive days.
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Figure 11. Relative humidity under the east oriented shading systems (Green B/Rope B).

Overall, greenery is quite effective in increasing the RH. In fact, the average relative humidity was
higher under the greenery system thanks to the moisture released by vegetation into the air through
the process of evapotranspiration.

These results confirm other researchers’ findings that declared the cooling effect of different
systems of shades, such as pergolas, trees, buildings, etc. in different regions. Watanabe et al. [45]
analyzed temperature differences between sunlight, building shade, and pergola shade during summer
in a humid subtropical region. The building shade and pergola shade with plants provided cooler
thermal environments with important ETU (universal effective temperature) reductions of 18.4 ◦C
and 16.2 ◦C, respectively, compared with sunlight. In the tropical climate of Singapore, Wong and
Peck [46] carried out a study to see the effect of the vegetation. From the experimental results collected,
the site with higher greenery coverage showed lower temperature and higher relative humidity in
comparison to the other site with lower vegetation. Colter et al. [47] studied the capacity of natural
and artificial shade types to improve outdoor human comfort during normally hot summer midday.
They concluded that selecting trees that mostly attenuate solar radiation is the most effective urban
design strategy.



Sustainability 2020, 12, 5888 10 of 12

4. Conclusions

Responsible actions to deploy UGI are urgently needed in this historic period impacted by
increasing anthropic climate change, accelerated transformation of the urban/peri-urban landscape,
and their related risks. In fact, greening cities is a concept that has gained increasing relevance in the
last decades and more studies that experimentally demonstrate its effectiveness allow promotion of
the implementation of greenery systems among city planning and governments providing measurable
wellness benefits.

In this view, this study aimed to assess the evidence of the effectiveness of greenery as a passive
cooling strategy for outdoor urban spaces. In detail, the purpose was to analyze the effect of greening a
shading system on the temperature of the surrounding environment compared to the same system without
greenery in a Mediterranean continental climate. On-site experiments were conducted in summer 2019.

In clear conditions, for the west oriented pergolas the maximum air temperature difference between
the rope system and the greenery was found at 4:00 p.m. on 29 June 2019 during daytime with a
difference of 2.5 ◦C. At night, a 3.1 ◦C difference was measured on 30 June 2019, concretely at 5:50 a.m.
Concretely, the maximum temperature under the system with the ropes was 45.3 ◦C, while at the same
time the air temperature under the greenery system was 42.9 ◦C. With respect to the east oriented
sensors, the difference was less interesting than the west oriented sensors, which could mean that, in the
Mediterranean continental climate, shading systems are more efficient in the west orientation.

Regarding the air relative humidity, for the west orientation, the RH always appears higher under
the greenery up to a minimum equal to 15% in the driest sunny hours, when the RH under the ropes
reaches a value of 12%. On the other hand, no significant differences were found for the east sensors.

These results highlight that context and orientation are very important parameters to consider
when planning and designing this type of systems. Greenery shading systems can therefore be
recommended to be considered as a complementary solution beside other mitigation strategies.
However, note that the findings obtained in this study should be adapted for particular situations and
climates. The results cannot be generalized for all climates, thus, further research in different contexts
and climate regions should be analyzed.
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