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Abstract

Elicitation, estimation and exact inference in Bayesian Networks (BNs) are often difficult because the dimension of each
Conditional Probability Table (CPT) grows exponentially with the increase in the number of parent variables. The Noisy-
MAX decomposition has been proposed to break down a large CPT into several smaller CPTs exploiting the assumption
of causal independence, i.e., absence of causal interaction among parent variables. In this way, the number of conditional
probabilities to be elicited or estimated and the computational burden of the joint tree algorithm for exact inference are
reduced. Unfortunately, the Noisy-MAX decomposition is suited to graded variables only, i.e., ordinal variables with the
lowest state as reference, but real-world applications of BNs may also involve a number of non-graded variables, like the
ones with reference state in the middle of the sample space (double-graded variables) and with two or more unordered
non-reference states (multi-valued nominal variables). In this paper, we propose the causal independence decomposition,
which includes the Noisy-MAX and two generalizations suited to double-graded and multi-valued nominal variables.
While the general definition of BN implicitly assumes the presence of all the possible causal interactions, our proposal is
based on causal independence, and causal interaction is a feature that can be added upon need. The impact of our proposal
is investigated on a published BN for the diagnosis of acute cardiopulmonary diseases.

Keywords: causal independence, conditional probability table, exact inference, nominal variables, noisy gates, parent
divorcing

1. Introduction

Bayesian Networks (BNs, Pearl, 1988) provide a formal framework to represent uncertain knowledge and to reason
under uncertainty. A BN consists of a directed acyclic graph (DAG), encoding a factorization of the joint probability
distribution over a set of random variables with finite sample space, and a Conditional Probability Table (CPT) for each
variable, containing its probability distribution for each combination of the values of its parents in the DAG.

A CPT is defined by a number of free parameters which is exponential in the number of parent variables, thus elicitation
may require relevant effort for domain experts (Druzdzel and van der Gaag, 2000), and estimation from collected data may
be highly inefficient. Also, the DAG of a BN where variables have many parents involves few but very large CPTs, so that
the joint tree algorithm for exact inference (Lauritzen and Spiegelhalter, 1988) may not be scalable. A widely adopted
solution to this problem is the use of decompositions to break down each large CPT into several smaller CPTs. The most
popular among such decompositions is the Noisy-OR, pioneered by Good (1961) and further studied by Pearl (1988). In
the Noisy-OR, dichotomous parent variables are assumed to influence the value of a dichotomous response through inde-
pendent latent causes. Each latent cause is ‘activated’ by a specific parent variable with a certain probability, and a single
‘active’ latent cause is sufficient for the response to change its value from the reference state to the non-reference one.
The independence among latent causes implies the absence of interaction among parent variables, an assumption called
causal independence (Heckerman and Breese, 1996). In Henrion (1987), the Noisy-MAX decomposition was introduced
as a generalization of the Noisy-OR to graded variables, i.e., ordinal variables with the lowest state as reference. In the
Noisy-MAX, latent causes have the same sample space of the response and each one may ‘activate’ one non-reference
state of the response, which in turn takes value on the highest among the ‘active’ states. Further elaborations of the
Noisy-MAX decomposition were provided by Dı́ez (1993) and Srinivas (1993).

The Noisy-MAX decomposition simplifies elicitation from domain experts and estimation from collected data because,
due to the assumption of causal independence, the number of free parameters is linear in the number of parent variables,
instead of exponential. Also, parent divorcing can be recursively applied to latent causes until each node in the DAG has
no more than two parents. In this way, the number of CPTs is increased, but they have a small size, thus the joint tree algo-
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rithm for exact inference is faster and, moreover, it may become scalable also for high dimensional BNs. Unfortunately,
real-world applications of BNs may also involve a number of non-graded variables, like ordinal variables with reference
state in the middle of the sample space (double-graded variables) and variables with two or more unordered non-reference
states (multi-valued nominal variables).

In this paper, we propose the causal independence decomposition for BNs, which includes the Noisy-MAX and two
generalizations suited to double-graded and multi-valued nominal variables. The software implementing our proposal is
contained in an R (R Core Team, 2020) package available on Github at https://github.com/alessandromagrini/
cibn. The package can be installed from the R console by typing install github("alessandromagrini/cibn")
after loading the devtools package.

This paper is structured as follows. Section 2 includes the definition of BN and the notation used in the paper. In Section
3, an overview of the Noisy-MAX decomposition is provided. In Section 4, the causal independence decomposition and
its properties are detailed, together with the extension to causal interactions. In Section 5, the impact of our proposal
is investigated on a published BN for the diagnosis of acute cardiopulmonary diseases. Section 6 includes concluding
remarks.

2. Definitions and Notation

In this section, the definition of Bayesian network is provided following Pearl (1988), together with the notation used in
the paper.

Bayesian network. A Bayesian Network (BN) consists of the following three elements:

1. a set of variables V with finite sample space;

2. a Directed Acyclic Graph (DAG) G defined on V;

3. a set of Conditional Probability Tables (CPTs), one for each variable in V, containing the probability distribution
of the variable for each combination of the values of its parents in G. �

For each CPT, we denote the response variable as Y (sample space ΩY ) and its parent variables as X1, . . . , Xn (sample
spaces ΩX1 , . . . ,ΩXn ). The states of a variable are labelled by consecutive integer numbers reflecting their order (if one
holds), with value 0 assigned to the reference state. If non-reference states are unordered, they are labelled starting from
value 1. The cardinality of any set S is denoted by |S|. The number of non-reference states of the response variable is
denoted as nY ≡ |ΩY | − 1.

Variables can be either random, i.e., defined by a non-degenerate probability distribution, or deterministic, i.e., defined
by a deterministic function. Each combination of the values of a variable’s parents is called parent configuration. A
generic realization of a random variable is written in lower case, e.g., v denotes a realization of random variable V . A
probability distribution is indicated with the symbol p, with the random variable to which it refers within brackets, e.g.,
p(V). The elements of a probability distribution are indicated within angle brackets, e.g., < π0, π1, . . . >. An unordered
set is indicated within curly brackets, e.g., {X1, X2, . . .}. An ordered set is indicated within round brackets, e.g., (0, 1, . . .).

In a DAG, each node is labelled by the name of the variable it refers to, circles represent random variables, double circles
represent deterministic variables, and squares indicate variables the response is conditioned on (i.e., parent variables).
When possible, the representation through plates (Buntine, 1994) is used: a rectangle contains the nodes to be replicated
as many times as shown by the index in the rectangle.

In this paper, we focus on the number of free parameters defining the CPTs in a BN, which determines the efficiency
of elicitation and estimation, and on the size (number of cells) of each CPT, which determines the efficiency of exact
inference. Proposition 1 states that both these two features increase exponentially with the number of parent variables.

Proposition 1. A CPT has size equal to (nY + 1)
∏n

i=1 |ΩXi | and is defined by a number of free parameters equal to
nY

∏n
i=1 |ΩXi |.

Proof. The total number of parent configurations is equal to the product between the cardinalities of each parent’s sample
space:

∏n
i=1 |ΩXi |. Thus, the size of the CPT is equal to the cardinality of the sample space of Y multiplied by the total

number of parent configurations: (nY + 1)
∏n

i=1 |ΩXi |. Also, since the number of free parameters of each conditional
probability distribution of Y is equal to the number of its non-reference states nY , the total number of free parameters is
equal to nY

∏n
i=1 |ΩXi |. �
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3. The Noisy-MAX Decomposition

A graded variable is an ordinal variable with the lowest state as reference. According to the notation introduced in Section
2, the sample space of a graded response variable is ΩY = (0, 1, . . . , nY ). The Noisy-MAX decomposition for a graded
response variable is defined below following Heckerman and Breese (1996).

Noisy-MAX decomposition. The Noisy-MAX decomposition for a graded response variable Y with parents X1, . . . , Xn

consists of the following steps:

1. latent cause Λ0 is defined with sample space equal to ΩY and such that:

p(Λ0) =< π0,0, π0,1, . . . , π0,nY > (1)

2. for i = 1, . . . , n, latent cause Λi is defined with sample space equal to ΩY , with Xi as parent, and such that:

p(Λi | Xi = j) =< πi, j,0, πi, j,1, . . . , πi, j,nY > j ∈ {ΩXi \ 0} i = 1, . . . , n
p(Λi | Xi = 0) =< 1, 0, . . . , 0 > i = 1, . . . , n

(2)

3. latent causes Λ0, . . . ,Λn determine the value of Y through the MAX function. �

The Noisy-MAX decomposition hypothesizes the existence of one latent cause for each parent (i.e., Λ1, . . . ,Λn) plus one
for unmodeled causes (i.e., Λ0), and assumes that each latent cause may ‘activate’ one non-reference state of the response
variable Y , which in turn takes value on the highest among the ‘active’ states. Note that the constraint p(Λi | Xi = 0) =<
1, 0, . . . , 0 > ∀i = 1, . . . , n means that a parent taking value on its reference state cannot cause the response to take value
on a non-reference state, a feature called amechanistic property in Heckerman and Breese (1996).

The graphical representation of the Noisy-MAX decomposition is shown in Figure 1. Proposition 2 states that the Noisy-
MAX decomposition is defined by a number of free parameters which is linear in the number of parent variables, instead
of exponential.

Figure 1. Graphical representation of the Noisy-MAX decomposition

Proposition 2. The Noisy-MAX decomposition is defined by a number of free parameters equal to nY

(
1 +

∑n
i=1(|ΩXi | − 1)

)
.

Proof. The only random variables in the Noisy-MAX decomposition are latent causes Λ0, . . . ,Λn, each with nY non-
reference states. Since Λ0 has no parents, its probability distribution is defined by nY free parameters. For i = 1, . . . , n,
latent cause Λi has only Xi as parent, which has |ΩXi | − 1 non-reference states, thus the probability distribution of Λi is
defined by nY (|ΩXi |−1) free parameters. Thus, the total number of free parameters is equal to nY

(
1 +

∑n
i=1(|ΩXi | − 1)

)
. �

The linearity of the number of free parameters in the number of parent variables is a good property when CPTs are elicited
from domain experts, as they may focus on the influence on the response of one parent at a time, and/or estimated from
collected data, as estimates have higher efficiency. Note that, in the Noisy-MAX decomposition, probabilities refer to
the states of latent causes rather than of observable variables. For instance, parameter πi, j,l can be elicited from a domain
expert by asking a question like: ‘What is the probability that the event represented by variable Xi taking value j causes
the event represented by variable Y taking value l?’.
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A further property of the Noisy-MAX decomposition is that parent divorcing can be recursively applied to latent causes
Λ0, . . . ,Λn in order to obtain an arbitrary (but no less than two) maximum number of parents for each node in the DAG.
Auxiliary nodes introduced by parent divorcing are determined by the MAX function. We refer to the Noisy-MAX
decomposition where parent divorcing is applied to obtain a maximum of two parents per node as maximal Noisy-MAX
decomposition (Figure 2). The maximal Noisy-MAX decomposition introduces 2n new nodes in the DAG as stated by
Proposition 3, thus replacing the original CPT with several new CPTs of smaller size as stated by Proposition 4. As a
consequence, the joint tree algorithm for exact inference is faster and, moreover, it may become scalable also for high
dimensional BNs.

Figure 2. Maximal Noisy-MAX decomposition for a response variable with four parents. Auxiliary nodes are denoted by
letter A

Proposition 3. The number of new nodes introduced in the DAG by the maximal Noisy-MAX decomposition is equal to
2n.

Proof. By definition, the Noisy-MAX decomposition introduces n + 1 new nodes (i.e., latent causes Λ0, . . . ,Λn) in the
DAG, and parent divorcing achieving the maximal decomposition requires n − 1 additional nodes. Thus, the total number
of new nodes introduced in the DAG by the maximal Noisy-MAX decomposition is equal to (n + 1) + (n − 1) = 2n. �

Proposition 4. The maximal Noisy-MAX decomposition replaces the original CPT of size (nY + 1)
∏n

i=1 |ΩXi | with one
CPT of size nY + 1, n CPTs of size (nY + 1)|ΩXi | (i = 1, . . . , n) and n CPTs of size (nY + 1)3.

Proof. The maximal Noisy-MAX decomposition introduces 2n new nodes in the DAG (Proposition 3), thus implying
2n + 1 CPTs: one for each of the n + 1 latent causes, one for each of the n− 1 auxiliary nodes, and one for Y . Latent cause
Λ0 has nY + 1 states and no parents, thus its CPT has size nY + 1. For i = 1, . . . , n, latent cause Λi has nY + 1 states and Xi

as parent, thus its CPT has size (nY + 1)|ΩXi |. Auxiliary nodes and Y have nY + 1 states and, as parents, two nodes among
latent causes or auxiliary nodes, thus their respective CPT has size (nY + 1)3. �

Since each latent cause is influenced at most by a single parent variable, the Noisy-MAX decomposition implicitly as-
sumes the absence of causal interaction among parents, i.e., that they independently influence the response variable. Such
property is called causal independence in Heckerman and Breese (1996).

4. The Causal Independence Decomposition

The Noisy-MAX decomposition is suited to graded response variables only, but real-world applications of BNs may also
involve a number of non-graded variables, like double-graded and multi-valued nominal ones. In this section, we propose
the Causal Independence Decomposition (CID), which includes the Noisy-MAX and two generalizations suited to double-
graded and multi-valued nominal variables. These two decompositions are detailed in Subsections 4.1 and 4.2. Subsection
4.3 provides the main properties of the CID, while the extension to causal interactions is addressed in Subsection 4.4.
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4.1 Causal Independence Decomposition for a Double-graded Response Variable

A double-graded variable is an ordinal variable with reference state in the middle of the sample space. According to the
notation introduced in Section 2, the sample space of a double-graded response variable is:

ΩY =

(
−

nY

2
, . . . ,−1, 0, 1, . . . ,

nY

2

)
(3)

The definition of the CID for a double-graded response variable is provided below.

CID for a double-graded response variable. The CID for a double-graded response variable Y with parents X1, . . . , Xn

consists of the following steps:

1. two latent causes Λ
(L)
0 and Λ

(R)
0 are defined with sample space:

Ω
Λ

(L)
0

=

(
−

nY

2
, . . . ,−1, 0

)
Ω

Λ
(R)
0

=

(
0, 1, . . . ,

nY

2

)
(4)

and such that:
p(Λ(L)

0 ) ∝ < π0,− nY
2
, . . . , π0,−1, π0,0 >

p(Λ(R)
0 ) ∝ < π0,0, π0,1, . . . , π0, nY

2
>

(5)

2. for i = 1, . . . , n, two latent causes Λ
(L)
i and Λ

(R)
i are defined with sample space:

Ω
Λ

(L)
i

=

(
−

nY

2
, . . . ,−1, 0

)
Ω

Λ
(R)
i

=

(
0, 1, . . . ,

nY

2

)
i = 1, . . . , n (6)

with Xi as parent, and such that:

p(Λ(L)
i | Xi = j) ∝ < πi, j,− nY

2
, . . . , πi, j,−1, πi, j,0 > j ∈ {ΩXi \ 0} i = 1, . . . , n

p(Λ(R)
i | Xi = j) ∝ < πi, j,0, πi, j,1 . . . , πi, j, nY

2
> j ∈ {ΩXi \ 0} i = 1, . . . , n

p(Λ(L)
i | Xi = 0) =< 0, . . . , 0, 1 > i = 1, . . . , n

p(Λ(R)
i | Xi = 0) =< 1, 0, . . . , 0 > i = 1, . . . , n

(7)

3. variable ξ(L) is defined with sample space
(
−

nY
2 , . . . ,−1, 0

)
and such that latent causes Λ

(L)
0 , . . . ,Λ(L)

n determine its
value through the MIN function;

4. variable ξ(R) is defined with sample space
(
0, 1, . . . , nY

2

)
and such that latent causes Λ

(R)
0 , . . . ,Λ(R)

n determine its
value through the MAX function;

5. variables ξ(L) and ξ(R) determine the value of Y through the SUM function. �

The CID for a double-graded response variable hypothesizes the existence of two sets of latent causes: one of type L and
another one of type R. Latent causes of type L may ‘activate’ one non-reference state in the left side of ΩY , and the lowest
‘active’ state is stored into variable ξ(L), while latent causes of type R may ‘activate’ one non-reference state in the right
side of ΩY , and the highest ‘active’ state is stored into variable ξ(R). Finally, the value of Y is determined as a balance
between the ‘active’ states in the left and right sides of ΩY by summing ξ(L) and ξ(R).

The graphical representation of the CID for a double-graded response variable is shown in Figure 3. The maximal CID
is obtained by applying parent divorcing to latent causes (nodes denoted by letter Λ) until ξ(L) and ξ(R) have a maximum
of two parents. Auxiliary nodes introduced by parent divorcing as intermediary between latent causes of type L and ξ(L)

are determined by the MIN function, while those between latent causes of type R and ξ(R) are determined by the MAX
function. Figure 4 displays the maximal CID for a double-graded response variable with three parents.

4.2 Causal Independence Decomposition for a Multi-valued Nominal Response Variable

A multi-valued nominal variable is a variable with two or more unordered non-reference states. According to the notation
introduced in Section 1, the sample space of a multi-valued nominal response variable is ΩY = (0, 1, . . . , nY ), where labels
of non-reference states 1, . . . , nY do not reflect any real order. Note that a dichotomous variable with unordered states can
be considered as graded, provided that one of the two states can be chosen as reference. The definition of the CID for a
multi-valued nominal response variable is provided below.
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Figure 3. Graphical representation of the CID for a double-graded response variable

Figure 4. Maximal CID for a double-graded response variable with three parents. Auxiliary nodes are denoted by letter A

CID for a multi-valued nominal response variable. The CID for a multi-valued nominal response variable Y with
parents X1, . . . , Xn consists of the following steps:

1. for l = 1, . . . , nY , latent cause Λ
(l)
0 is defined with sample space (0, 1) and such that:

p(Λ(l)
0 ) =< 1 − π0,l, π0,l > l = 1, . . . , nY (8)

2. for i = 1, . . . , n and for l = 1, . . . , nY , latent cause Λ
(l)
i is defined with sample space (0, 1), with Xi as parent, and

such that:
p(Λ(l)

i | Xi = j) =< 1 − πi, j,l, πi, j,l > j ∈ {ΩXi \ 0} i = 1, . . . , n l = 1, . . . , nY

p(Λ(l)
i | Xi = 0) =< 1, 0 > i = 1, . . . , n l = 1, . . . , nY

(9)

3. for l = 1, . . . , nY , variable ξ(l) is defined with sample space (0, 1) and such that latent causes Λ
(l)
0 , . . . ,Λ

(l)
n determine

its value through the MAX function;
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4. variables ξ(1), . . . , ξ(nY ) determine the value of Y through the following function:

g :

Y = l if ∃ l > 0 : ξ(l) = 1 ∧ ξ(m) = 0 ∀m , l
Y = 0 otherwise

(10)

�

The CID for a multi-valued nominal response variable assumes the existence of one set of dichotomous latent causes for
each non-reference state of the response. Each set of latent causes is merged through the MAX function into variable ξ(l)

(l = 1, . . . , nY ) to determine the ‘active’ non-reference states, and the response takes value on a non-reference state if and
only if there is a single ‘active’ non-reference state.

The graphical representation of the CID for a multi-valued nominal response variable is shown in Figure 5. The maximal
CID is obtained by applying parent divorcing to latent causes (nodes denoted by letter Λ) until ξ(1), . . . , ξ(nY ) have a
maximum of two parents. Figures 6 and 7 display the maximal CID for a multi-valued nominal response variable with
three parents in the case, respectively, of two and three non-reference states. Note that the maximal CID applied to a
multi-valued nominal response variable reduces the number of parents to two for each node, excepting for node Y which
maintains nY parents, although each of them has only two states (see Figure 7).

Figure 5. Graphical representation of the CID for a multi-valued nominal response variable

4.3 Properties of the Causal Independence Decomposition

The CID is defined by the same number of free parameters as the Noisy-MAX decomposition whichever the type of
response variable, as stated by Proposition 5.

Proposition 5. The CID is defined by a number of free parameters equal to nY

(
1 +

∑n
i=1(|ΩXi | − 1)

)
, whichever the type

of response variable.

Proof. The only random variables in the CID are latent causes (nodes denoted by letter Λ), whichever the type of re-
sponse variable. The CID for a graded response variable equates to the Noisy-MAX decomposition, which, according to
Proposition 2, is defined by a number of free parameters equal to nY

(
1 +

∑n
i=1(|ΩXi | − 1)

)
. In the case of a double-graded

response variable, latent causes have nY
2 non-reference states and include: Λ

(L)
0 and Λ

(R)
0 with no parents; Λ

(L)
i and Λ

(R)
i ,

each with Xi as parent (i = 1, . . . , n). Thus, the number of free parameters is equal to 2 · nY
2 ·

(
1 +

∑n
i=1(|ΩXi | − 1)

)
=

nY

(
1 +

∑n
i=1(|ΩXi | − 1)

)
. In the case of a multi-valued nominal response variable, latent causes have one non-reference

state and include: Λ
(1)
0 , . . . ,Λ(nY )

0 with no parent variables; Λ
(1)
i , . . . ,Λ(nY )

i , each with Xi as parent (i = 1, . . . , n). Thus, the
number of free parameters is equal to nY

(
1 +

∑n
i=1(|ΩXi | − 1)

)
. �

Analogously to the maximal Noisy-MAX decomposition, the maximal CID introduces a number of new nodes in the DAG
as stated by Proposition 6, thus replacing the original CPT with several new CPTs of smaller size as stated by Proposition
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Figure 6. Maximal CID for a multi-valued nominal response variable with two non-reference states and three parents.
Auxiliary nodes are denoted by letter A

Figure 7. Maximal CID for a multi-valued nominal response variable with three non-reference states and three parents.
Auxiliary nodes are denoted by letter A

7. As a consequence, the joint tree algorithm for exact inference is generally faster and, moreover, it may become scalable
also for high dimensional BNs. The properties of the maximal CID are summarized in Table 1.

Proposition 6. The number of new nodes introduced in the DAG by the maximal CID is equal to 2n for a graded response,
to 2(2n + 1) for a double-graded response, and to nY (2n + 1) for a multi-valued nominal response.

Proof. The CID for a graded response variable equates to the Noisy-MAX decomposition, which, according to Proposi-
tion 3, introduces 2n new nodes. By definition, the CID for a double-graded response variable introduces two sets of new
nodes Λ

(L)
i and Λ

(R)
i (i = 0, . . . , n), each requiring n−1 nodes to achieve the maximal CID, plus two further additional nodes

ξ(L) and ξ(R), for a total of 2[(n+1)+ (n−1)]+2 = 2(2n+1) new nodes. By definition, the CID for a multi-valued nominal
response variable introduces nY sets of new nodes Λ

(l)
i (i = 0, . . . , n; l = 1, . . . , nY ), each requiring n − 1 nodes to achieve

the maximal CID, plus nY further additional nodes ξ(l) (l = 1, . . . , nY ), for a total of nY [(n + 1) + (n− 1)] + nY = nY (2n + 1)
new nodes. �
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Table 1. Properties of the maximal CID

Type of response # free parameters # new nodes # CPTs CPT size

Graded nY

(
1 +

∑n
i=1(|ΩXi | − 1)

)
2n 1 nY + 1

n (nY + 1)|ΩXi | i = 1, . . . , n

n (nY + 1)3

Double-graded nY

(
1 +

∑n
i=1(|ΩXi | − 1)

)
2(2n + 1) 2 nY

2 + 1

2n
(

nY
2 + 1

)
|ΩXi | i = 1, . . . , n

2n
(

nY
2 + 1

)3

1 (nY + 1)
(

nY
2 + 1

)2

Multi-valued nominal nY

(
1 +

∑n
i=1(|ΩXi | − 1)

)
nY (2n + 1) nY 2

nY · n 2 |ΩXi | i = 1, . . . , n

nY · n 23

1 (nY + 1) 2nY

Proposition 7. The maximal CID replaces the original CPT of size (nY + 1)
∏n

i=1 |ΩXi | with several new CPTs as follows:

• graded response: one CPT of size nY + 1, n CPTs of size (nY + 1)|ΩXi | (i = 1, . . . , n) and n CPTs of size (nY + 1)3;

• double-graded response: 2 CPTs of size nY
2 + 1, 2n CPTs of size

(
nY
2 + 1

)
|ΩXi | (i = 1, . . . , n), 2n CPTs of size(

nY
2 + 1

)3
and one CPT of size (nY + 1)

(
nY
2 + 1

)2
;

• multi-valued nominal response: nY CPTs of size 2, nY · n CPTs of size 2 |ΩXi | (i = 1, . . . , n), nY · n CPTs of size 23

and one CPT of size (nY + 1) 2nY .

Proof (graded response). The maximal CID for a graded variable equates to the maximal Noisy-MAX decomposition,
which, according to Proposition 4, implies one CPT of size nY + 1, n CPTs of size (nY + 1)|ΩXi | (i = 1, . . . , n) and n CPTs
of size (nY + 1)3. �

Proof (double-graded response). The maximal CID for a double-graded variable introduces 2(2n + 1) new nodes (Propo-
sition 6), thus implying 4n + 3 CPTs: one for each of the n + 1 latent causes Λ

(L)
i (i = 0, . . . , n), one for each of the n + 1

latent causes Λ
(R)
i (i = 0, . . . , n), one for each of the 2(n − 1) auxiliary nodes to achieve the maximal decomposition, one

for ξ(L), one for ξ(R) and one for Y . Since Λ
(L)
0 and Λ

(R)
0 have nY

2 + 1 states and no parents, their respective CPT has size
nY
2 + 1. For i = 1, . . . , n, latent causes Λ

(L)
i and Λ

(R)
i have nY

2 + 1 states and Xi as parent, thus their respective CPT has size(
nY
2 + 1

)
|ΩXi |. Auxiliary nodes to achieve the maximal CID, as well as ξ(L) and ξ(R) have nY

2 + 1 states and, as parents, two

nodes among latent causes and auxiliary nodes, thus their respective CPT has size
(

nY
2 + 1

)3
. Finally, Y has ξ(L) and ξ(R)

as parents, thus its CPT has size (nY + 1)
(

nY
2 + 1

)2
. �

Proof (multi-valued nominal response). The maximal CID for a multi-valued nominal variable introduces nY (2n + 1) new
nodes (Proposition 6), thus implying nY (2n + 1) + 1 CPTs: one for each of the nY (n + 1) latent causes Λ

(l)
i (i = 0, . . . , n; l =

1, . . . , nY ), one for each of the nY (n − 1) auxiliary nodes to achieve the maximal CID, one for each of the nY variables ξ(l)

(l = 1, . . . , nY ) and one for Y . For l = 1, . . . , nY , latent cause Λ
(l)
0 has 2 states and no parents, thus its CPT has size 2. For

i = 1, . . . , n and for l = 1, . . . , nY , latent cause Λ
(l)
i has 2 states and Xi as parent, thus its CPT has size 2|ΩXi |. Auxiliary

nodes to achieve the maximal CID, as well as variables ξ(l) (l = 1, . . . , nY ) have 2 states and, as parents, two nodes among
latent causes and auxiliary nodes, thus their respective CPT has size 23. Finally, Y has ξ(1), . . . , ξ(nY ) as parents, thus its
CPT has size (nY + 1) 2nY . �
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4.4 Extension to Causal Interactions

Suppose that, for a response variable Y , causal interaction holds among the variables in a subset XS of the parents
X1, . . . , Xn. The following two-step technique allows to apply the CID in this case.

1. A new multi-valued nominal variable Z is created with variables in XS as parents, sample space equal to the cartesian
product of the sample spaces of variables in XS, and such that Z takes value on a particular combination of states
xS if and only if each variable in XS takes value on the respective state in xS. The neutral state of Z is the one
combining the neutral states of variables in XS.

2. The edges connecting variables in XS to Y are deleted and an edge from Z to Y is added.

After this technique is implemented, causal independence holds among the new parents of Y , thus the CID can be applied.
As an example, suppose that XS = {X1, X2} and ΩX1 = ΩX2 = (0, 1). In this case, we create the multi-valued nominal
variable Z as follows:

Z =


(0, 0) if X1 = 0 ∧ X2 = 0
(0, 1) if X1 = 0 ∧ X2 = 1
(1, 0) if X1 = 1 ∧ X2 = 0
(1, 1) if X1 = 1 ∧ X2 = 1

(11)

where the reference state is (0, 0), because it combines the reference states of X1 and X2. Figure 8 illustrates the technique
for a graded response variable, but it is identically implemented for a double-graded or a multi-valued nominal one.

Figure 8. Illustration of the technique allowing to apply the CID in presence of causal interactions. Here, Y is a graded
variable with parents X1, X2, X3 and X4, with a causal interaction holding between X1 and X2. Node Z is introduced as
intermediary between the interacting parents and Y (left panel). In this way, the new set of parents {Z, X3, X4} satisfies

causal independence and the maximal CID can be applied (right panel)

5. Practical Application

We investigate the impact of the maximal CID on the BN for the diagnosis of acute cardiopulmonary diseases developed
by Magrini et al. (2018). The BN contains 278 variables, which are distinguished by the authors into dichotomous,
polytomous and continuous. The reference state and an eventual order on the states is established for each dichotomous
and polytomous variable, while a reference range is defined for continuous variables, which can be at the left side of the
sample space (restricted continuous variable), or in its middle (non-restricted continuous variable).

We considered dichotomous, ordinal polytomous and restricted continuous variables as graded (249 variables), non-
restricted continuous variables as double-graded (12 variables), and non-ordinal polytomous variables as multi-valued
nominal (17 variables). Most variables have a single non-reference state (207 variables), all the double-graded variables
have four non-reference states, and, among multi-valued nominal variables, most have two or three non-reference states
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(14 variables out of 17). Also, there are 10 variables with at least two sets of interacting parents, for a total of 36 sets, all
with cardinality equal to two. The BN is characterized by a high structural complexity: the mean size of the parent sets
(inner degree) is 2.1 with a maximum of 10, the mean size of the child set (outer degree) is 2.1 with a maximum of 31, and
the mean size of Markov blankets (i.e., number of parents, children and parents of the children) is 8.5 with a maximum of
50. The distribution of the main structural characteristics of the BN is summarized in Table 2.

Table 2. Distribution of the main structural characteristics of the BN developed by Magrini et al. (2018)

Type of response Min. 1st quartile Median Mean 3rd quartile Max.

# non-reference All 1 1 1 1.4 2 5
states Graded 1 1 1 1.2 1 5

Double-graded 4 4 4 4.0 4 4
Multi-valued nominal 2 2 2 3.0 3 5

# parents All 0 1 2 2.1 3 10
Graded 0 1 1 2.0 3 10
Double-graded 1 1 2 2.5 3 7
Multi-valued nominal 1 2 4 4.1 6 9

# children All 0 0 1 2.1 3 31
Graded 0 0 1 2.0 3 31
Double-graded 0 0 1.5 2.1 3 7
Multi-valued nominal 0 0 3 3.1 3 16

Markov blanket All 1 1 5.5 8.5 13 50
size Graded 1 1 5 8.2 12 48

Double-graded 1 2 5 7.3 14 17
Multi-valued nominal 1 5 13 13.8 18 50

An illustration of the maximal CID applied to three variables in the BN is provided in the Appendix, and the decomposed
BN is available as an R object at https://github.com/alessandromagrini/cibn. Table 3 summarizes the impact of
the maximal CID on the BN with regard to the number of new nodes, the number of free parameters and the size of CPTs.
We see that, at the cost of increasing by 5.7 times the number of nodes (from 278 to 1574) and by 6.6 times the number
of CPTs (from 278 to 1828), the number of free parameters is reduced by 23.5 times (from 47560 to 2023), while the size
of the CPTs is decreased by 24.1 times in mean (from 234 to 9.7) and by 108 times in maximum (from 23328 to 216).

6. Concluding Remarks

We have proposed an extension of the Noisy-MAX decomposition to non-graded variables, called Causal Independence
Decomposition (CID). Our proposal maintains the two desirable properties of the Noisy-MAX: linearity of the number
of free parameters with respect to the number of parent variables and significant reduction of the size of CPTs. The
first property is important for elicitation from domain experts and estimation from collected data, as the addition of a
new parent variable entails an increase in the number of parameters which is proportional to the number of that parent’s
non-reference states. The second property is important for exact inference, because speed and scalability of the joint tree
algorithm depend inversely on the size of CPTs.

The CID is maximally efficient if nominal variables have no more than two non-reference states and all the sets of
interacting parents have cardinality equal to two, situation where the DAG can be decomposed until each node has no
more than two parents. In the Bayesian network for the diagnosis of acute cardiopulmonary diseases developed by
Magrini et al. (2018), the number of nominal variables with more than two non-reference states is small compared to
the dimension of the model, and all the sets of interacting parents have cardinality equal to two. The CID has a very
significant impact in this case, with the number of free parameters and the mean size of CPTs reduced by 23.5 and 24.1
times, respectively.

Oppositely to the general definition of Bayesian network implicitly assuming the presence of all the possible causal
interactions, the CID is based on causal independence, and causal interaction is a feature that can be added upon need.
Evidence in favour of a good fit of the Noisy-MAX decomposition obtained by Zagorecki and Druzdzel (2013) on several
published Bayesian networks gives validity to the assumptions on which the CID relies. Moreover, the characteristics of
the high dimensional Bayesian network developed by Magrini et al. (2018) fit very well to these assumptions: nominal
variables with more than two reference states and variables with interacting parents are the minor part, and most sets of
interacting parents have cardinality equal to two.
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Table 3. Impact of the maximal CID on the BN developed by Magrini et al. (2018)

Before maximal CID

Type of response Total Min. 1st quartile Median Mean 3rd quartile Max.

# free All 47560 1 3 6 171.1 24 19440
parameters Graded 11899 1 2 4 47.8 12 3840

Double-graded 4464 20 20 78 372.0 135 3456
Multi-valued nominal 31197 4 18 48 1835.1 648 19440

CPT size All # CPTs: 278 2 6 10 234.0 36 23328
Graded # CPTs: 249 4 8 8 80.4 24 5760
Double-graded # CPTs: 12 25 25 97.5 465.0 169 4320
Multi-valued nominal # CPTs: 17 6 27 72 2322.2 864 23328

After maximal CID

Type of response Total Min. 1st quartile Median Mean 3rd quartile Max.

# new nodes All 1574 1 2 4 5.7 6 85
Graded 1000 1 2 2 4.0 6 20
Double-graded 144 6 6 10 12.0 14 30
Multi-valued nominal 430 6 10 18 25.3 34 85

# free All 2023 1 3 4 7.3 8 80
parameters Graded 1316 1 2 3 5.3 6 36

Double-graded 356 20 20 30 29.7 36 52
Multi-valued nominal 351 4 10 15 20.7 24 80

CPT size All # CPTs: 1828 2 4 8 9.7 8 216
Graded # CPTs: 1225 2 4 6 9.5 8 216
Double-graded # CPTs: 156 3 9 15 18.4 27 45
Multi-valued nominal # CPTs: 447 2 4 6 7.2 8 192
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Appendix

In this section, we provide an illustration of the maximal CID applied to three variables in the BN developed by Magrini
et al. (2018): one graded variable (Subsection A1), one double-graded variable (Subsection A2) and one multi-valued
nominal variable (Subsection A3).

A1. Illustration on a graded variable

Peripheral Edema is a graded variable with sample space: (0 = ‘absent’, 1 = ‘unilateral’, 2 = ‘bilateral’), labelled as
Edem g and here denoted as Y . It has four parent variables:

• Lower Limbs Fractures, a graded variable with sample space: (0 = ‘absent’, 1 = ‘present’), labelled as Fr and here
denoted as X1;

• Right Heart Failure, a graded variable with sample space: (0 = ‘absent’, 1 = ‘moderate’, 2 = ‘severe’), labelled as
RHF and here denoted as X2;

• Lower Limbs Deep Vein Thrombosis, a graded variable with sample space: (0 = ‘absent’, 1 = ‘present’), labelled
as TVPi and here denoted as X3;

• Chronic Cardiac Muscle Disease, a graded variable with sample space: (0 = ‘absent’, 1 = ‘initial’, 2 = ‘advanced’),
labelled as Cardiomio and here denoted as X4.

The total number of parent configurations is
∏4

i=1 |ΩXi | = 2 · 3 · 2 · 3 = 36, thus the CPT of Y without assuming causal
independence consists of 36 conditional probability distributions, each of size |ΩY | = nY + 1 = 3 and defined by |ΩY | −1 =

nY = 2 free parameters, leading to a CPT size of 3 · 36 = 108 and a total number of free parameters equal to 2 · 36 = 72.
After applying the maximal CID, which in this case coincides with the Noisy-MAX decomposition, the DAG is augmented
as shown in Figure 2, with the following free parameters:

Xi = j
Y

1 2
Unmodeled causes π0,1 π0,2

X1 = 1 π1,1,1 π1,1,2
X1 = 2 π1,2,1 π1,2,2

X2 = 1 π2,1,1 π2,1,2

X3 = 1 π3,1,1 π3,1,2
X3 = 2 π3,2,1 π3,2,2

X4 = 1 π4,1,1 π4,1,2

and the following CPTs:

Λ0
0 1 2

(1 − π0,1 − π0,2) π0,1 π0,2

X1
Λ1

0 1 2
0 1 0 0
1 (1 − π1,1,1 − π1,1,2) π1,1,1 π1,1,2
2 (1 − π1,2,1 − π1,2,2) π1,2,1 π1,2,2

X2
Λ2

0 1 2
0 1 0 0
1 (1 − π2,1,1 − π2,1,2) π2,1,1 π2,1,2
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X3
Λ3

0 1 2
0 1 0 0
1 (1 − π3,1,1 − π3,1,2) π3,1,1 π3,1,2
2 (1 − π3,2,1 − π3,2,2) π3,2,1 π3,2,2

X4
Λ4

0 1 2
0 1 0 0
1 (1 − π4,1,1 − π4,1,2) π4,1,1 π4,1,2

Λ0 Λ1
A1

0 1 2
0 0 1 0 0
0 1 0 1 0
0 2 0 0 1
1 0 0 1 0
1 1 0 1 0
1 2 0 0 1
2 0 0 0 1
2 1 0 0 1
2 2 0 0 1

Λ2 Λ3
A2

0 1 2
0 0 1 0 0
0 1 0 1 0
0 2 0 0 1
1 0 0 1 0
1 1 0 1 0
1 2 0 0 1
2 0 0 0 1
2 1 0 0 1
2 2 0 0 1

A1 A2
A3

0 1 2
0 0 1 0 0
0 1 0 1 0
0 2 0 0 1
1 0 0 1 0
1 1 0 1 0
1 2 0 0 1
2 0 0 0 1
2 1 0 0 1
2 2 0 0 1

A3 Λ4
Y

0 1 2
0 0 1 0 0
0 1 0 1 0
0 2 0 0 1
1 0 0 1 0
1 1 0 1 0
1 2 0 0 1
2 0 0 0 1
2 1 0 0 1
2 2 0 0 1

A2. Illustration on a double-graded variable

Arterial Blood Gas paCO2 is a double-graded variable with sample space: (−2 = ‘very low’, −1 = ‘low’, 0 = ‘normal’,
1 = ‘high’, 2 = ‘very high’), labelled as CO2 and here denoted as Y . It has three parent variables:

• Minute ventilation, a double-graded variable with sample space: (−2 = ‘very low’, −1 = ‘low’, 0 = ‘normal’,
1 = ‘high’, 2 = ‘very high’), labelled as minVent and here denoted as X1;

• Lung perfusion, a graded variable with sample space: (0 = ‘normal’, 1 = ‘moderate’, 2 = ‘severe’), labelled as
pulmPerf and here denoted as X2.

• Pulmonary shunt, a graded variable with sample space: (0 = ‘normal’, 1 = ‘moderate’, 2 = ‘severe’), labelled as
Shu and here denoted as X3.

The total number of parent configurations is
∏3

i=1 |ΩXi | = 5 · 3 · 3 = 45, thus the CPT of Y without assuming causal
independence consists of 45 conditional probability distributions, each of size |ΩY | = nY + 1 = 5 and defined by |ΩY | −1 =

nY = 4 free parameters, leading to a CPT size of 5 · 45 = 225 and a total number of free parameters equal to 4 · 45 = 180.
After applying the maximal CID, the DAG is augmented as shown in Figure 4, with the following free parameters:

Xi = j
Y

-2 -1 1 2
Unmodeled causes π0,−2 π0,−1 π0,1 π0,2

X1 = −2 π1,−2,−2 π1,−2,−1 π1,−2,1 π1,−2,2
X1 = −1 π1,−1,−2 π1,−1,−1 π1,−1,1 π1,−1,2
X1 = 1 π1,1,−2 π1,1,−1 π1,1,1 π1,1,2
X1 = 2 π1,2,−2 π1,2,−1 π1,2,1 π1,2,2

X2 = 1 π2,1,−2 π2,1,−1 π2,1,1 π2,1,2
X2 = 2 π2,2,−2 π2,2,−1 π2,2,1 π2,2,2

X3 = 1 π3,1,−2 π3,1,−1 π3,1,1 π3,1,2
X3 = 2 π3,2,−2 π3,2,−1 π3,2,1 π3,2,2

Note: π0,0 and πi, j,0 (i = 1, 2, 3; j ∈ ΩXi ) are obtained by subtraction from 1.

and the following CPTs (the ones of variables denoted by letter Λ require normalization to sum 1 by row):

Λ
(L)
0

−2 −1 0
π0,−2 π0,−1 π0,0

Λ
(R)
0

0 1 2
π0,0 π0,1 π0,2

65



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 2; 2021

X1
Λ

(L)
1

−2 −1 0
−2 π1,−2,−2 π1,−2,−1 π1,−2,0

−1 π1,−1,−2 π1,−1,−1 π1,−1,0

0 0 0 1
1 π1,1,−2 π1,1,−1 π1,1,0

2 π1,2,−2 π1,2,−1 π1,2,0

X1
Λ

(R)
1

0 1 2
−2 π1,−2,0 π1,−2,1 π1,−2,2

−1 π1,−1,0 π1,−1,1 π1,−1,2

0 1 0 0
1 π1,1,0 π1,1,1 π1,1,2

2 π1,2,0 π1,2,1 π1,2,2

X2
Λ

(L)
2

−2 −1 0
0 0 0 1
1 π2,1,−2 π2,1,−1 π2,1,0

2 π2,2,−2 π2,2,−1 π2,2,0

X2
Λ

(R)
2

0 1 2
0 1 0 0
1 π2,1,0 π2,1,1 π2,1,2

2 π2,2,0 π2,2,1 π2,2,2

X3
Λ

(L)
3

−2 −1 0
0 0 0 1
1 π3,1,−2 π3,1,−1 π3,1,0

2 π3,2,−2 π3,2,−1 π3,2,0

X3
Λ

(R)
3

0 1 2
0 1 0 0
1 π3,1,0 π3,1,1 π3,1,2

2 π3,2,0 π3,2,1 π3,2,2

Λ
(L)
0 Λ

(L)
1

A1
−2 −1 0

−2 −2 1 0 0
−2 −1 1 0 0
−2 0 1 0 0
−1 −2 1 0 0
−1 −1 0 1 0
−1 0 0 1 0

0 −2 1 0 0
0 −1 0 1 0
0 0 0 0 1

Λ
(L)
2 Λ

(L)
3

A2
−2 −1 0

−2 −2 1 0 0
−2 −1 1 0 0
−2 0 1 0 0
−1 −2 1 0 0
−1 −1 0 1 0
−1 0 0 1 0

0 −2 1 0 0
0 −1 0 1 0
0 0 0 0 1

Λ
(R)
0 Λ

(R)
1

A3
0 1 2

0 0 1 0 0
0 1 0 1 0
0 2 0 0 1
1 0 0 1 0
1 1 0 1 0
1 2 0 0 1
2 0 0 0 1
2 1 0 0 1
2 2 0 0 1

Λ
(R)
2 Λ

(R)
3

A4
0 1 2

0 0 1 0 0
0 1 0 1 0
0 2 0 0 1
1 0 0 1 0
1 1 0 1 0
1 2 0 0 1
2 0 0 0 1
2 1 0 0 1
2 2 0 0 1

A1 A2
ξ(L)

−2 −1 0
−2 −2 1 0 0
−2 −1 1 0 0
−2 0 1 0 0
−1 −2 1 0 0
−1 −1 0 1 0
−1 0 0 1 0

0 −2 1 0 0
0 −1 0 1 0
0 0 0 0 1

A3 A4
ξ(R)

0 1 2
0 0 1 0 0
0 1 0 1 0
0 2 0 0 1
1 0 0 1 0
1 1 0 1 0
1 2 0 0 1
2 0 0 0 1
2 1 0 0 1
2 2 0 0 1

ξ(L) ξ(R) Y
−2 −1 0 1 2

−2 0 1 0 0 0 0
−2 1 0 1 0 0 0
−2 2 0 0 1 0 0
−1 0 0 1 0 0 0
−1 1 0 0 1 0 0
−1 2 0 0 0 1 0

0 0 0 0 1 0 0
0 1 0 0 0 1 0
0 2 0 0 0 0 1

A3. Illustration on a multi-valued nominal variable

Prophylaxis or anticoagulation is a multi-valued nominal variable with sample space: (0 = ‘no’, 1 = ‘heparine’, 2 =

‘anticoagulants’), labelled as Prof and here denoted as Y . It has three parent variables:

• Chronic atrial arrhythmia, a graded variable with sample space: (0 = ‘absent’, 1 = ‘present’), labelled as
Arit sopra cron and here denoted as X1;
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• Previous episode of deep venous thrombosis or pulmonary embolism, a graded variable with sample space: (0 =

‘no’, 1 = ‘yes’), labelled as preTVP and here denoted as X2;

• Surgery, a multi-valued nominal variable with sample space: (0 = ‘no’, 1 = ‘general’, 2 = ‘orthopedic’), labelled
as Chir and here denoted as X3.

The total number of parent configurations is
∏3

i=1 |ΩXi | = 2 · 2 · 3 = 12, thus the CPT of Y without assuming causal
independence consists of 12 conditional probability distributions, each of size |ΩY | = nY + 1 = 3 and defined by |ΩY | −1 =

nY = 2 free parameters, leading to a CPT size of 3 · 12 = 36 and a total number of free parameters equal to 2 · 12 = 24.
After applying the maximal CID, the DAG is augmented as shown in Figure 6, with the following free parameters:

Xi = j
Y

1 2
Unmodeled causes π0,1 π0,2

X1 = 1 π1,1,1 π1,1,2

X2 = 1 π2,1,1 π2,1,2

X3 = 1 π3,1,1 π3,1,2
X3 = 2 π3,2,1 π3,2,2

and the following CPTs:

Λ
(1)
0

0 1
(1 − π0,1) π0,1

X1
Λ

(1)
1

0 1
0 1 0
1 (1 − π1,1,1) π1,1,1

X2
Λ

(1)
2

0 1
0 1 0
1 (1 − π2,1,1) π2,1,1

X3
Λ

(1)
3

0 1
0 1 0
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