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Abstract: Background: the prognostic significance of tumor infiltrating lymphocytes (TILs) in interme-
diate/thick primary cutaneous melanoma (PCM) remains controversial, partially because conventional
evaluation is not reliable, due to inter-observer variability and diverse scoring methods. We aimed
to assess the prognostic impact of the density and spatial distribution of immune cells in early stage
intermediate/thick PCM. Materials and Methods: digital image acquisition and quantitative analysis
of tissue immune biomarkers (CD3, CD4, CD8, CD68, PD-L1, CD163, FOX-P3, and PD-1) was carried
out in a training cohort, which included patients with primary PCM ≥ 2 mm diagnosed, treated, and
followed-up prospectively in three Italian centers. Results were validated in an independent Italian
cohort. Results: in the training cohort, 100 Stage II–III melanoma patients were valuable. At multi-
variable analysis, a longer disease free survival (DFS) was statistically associated with higher levels of
CD4+ intratumoral T-cells (aHR [100 cell/mm2 increase] 0.98, 95%CI 0.95–1.00, p = 0.041) and CD163+

inner peritumoral (aHR [high vs. low] 0.56, 95%CI 0.32–0.99, p = 0.047). A statistically significant longer
DFS (aHR [high-high vs. low-low] 0.52, 95%CI 0.28–0.99, p = 0.047) and overall survival (OS) (aHR
[high-high vs. low-low] 0.39, 95%CI 0.18–0.85, p = 0.018) was found in patients with a high density of
both intratumoral CD8+ T-cells and CD68+ macrophages as compared to those with low density of both
intratumoral CD8+ T-cells and CD68+ macrophages. Consistently, in the validation cohort, patients
with high density of both intratumoral CD8+ and CD3+ T-cells were associated to a statistically better
DFS (aHR[high-high vs. low-low] 0.24, 95%CI 0.10–0.56, p < 0.001) and those with high density of both
intratumoral CD8+ and CD68+ were associated to a statistically longer OS (aHR[high-high vs. low-low]
0.28, 95%CI 0.09–0.86, p = 0.025). Conclusion: our findings suggest that a specific preexisting profile of T
cells and macrophages distribution in melanomas may predict the risk of recurrence and death with
potential implications for the stratification of stage II–III melanoma patients.
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1. Introduction

The immune system plays an acknowledged role in melanoma development, progres-
sion and response to treatment [1–3]. Nevertheless, no biomarker has so far been translated
so far into the clinic to define tumor immunity in individual patients. Instead, recognizing
which patient has a “competent” immune system, prone to contribute to tumor control
would help predicting patients who ultimately recur after surgery and those who do not.
Melanoma is an archetype of immune surveillance theory, and it is recognized as one of
the most immunogenic tumors [4].

The metastatic growth is a multistep process that involves interactions between the
tumor and immune system [5]. As for other tumors, mortality is essentially linked to
metastatic spread to sites that are distant from the primary tumor. Prognosticating outcome
in early stage cutaneous melanoma is of paramount importance for several reasons: (i) to
determine the need for further work-up investigations, (ii) to guide appropriate adjuvant
treatment, (iii) to counsel patients, and (iv) to stratify those who enter clinical trials.

The conventional clinical and histopathological features that predict prognosis in
primary cutaneous melanoma (PCM) include Breslow thickness (BT), ulceration, and
sentinel lymph node (SN) status [6]. The presence of tumor infiltrating lymphocytes (TILs)
in melanoma has been associated with a favorable prognosis in some studies [7–13] and
implying a more effective host immunologic response to the tumor. However, other studies
have failed to confirm such correlation [14,15], and the prognostic significance of TILs in
thin vs. intermediate/thick PCM remains controversial.

TILs are a heterogeneous group of immune cells in the context of the tumor mi-
croenvironment mainly comprising of T-lymphocytes, and their assessment is subject to
inter-observer variability, which can limit their applicability in routine use [15]. Among the
immune cells that re recruited in the tumor microenvironment, macrophages are particu-
larly abundant. Clinical and preclinical studies suggest that macrophages generally play
a pro-tumoral role, by stimulating angiogenesis, enhancing tumor cell invasion, motility,
and intravasation [16]. Spatial information and making inferences about the interactions of
different immune cells, including macrophages with immunogenic and immunosuppres-
sive functions, in the tumor tissue could represent a better way to investigate this complex
scenario [17].

In order to assess the prognostic impact of the density and spatial distribution of
immune cells in early stage intermediate/thick PCM, we herein evaluated TILs and
macrophages by immunohistochemistry, digital image acquisition, and quantitative anal-
ysis to identify essential tissue immune biomarkers that are able to capture the immune
contexture of the tumor microenvironment that could independently predict DFS and OS.

2. Materials and Methods
2.1. Patients Characteristics

The cohort of the training set (n = 100) included patients with stage II–III intermedi-
ate/thick PCM ≥ 2 mm diagnosed, treated, and followed-up prospectively in four Italian
centres (Istituto Nazionale Tumori, Milan; Dermatology Section, University of Florence,
Florence, University of Sassari, Sassari and University Hospital of Siena, Siena, Italy) from
2000 to 2015. The clinical and histopathological parameters that were extracted from the
database included: gender, date of birth, date of diagnosis of PCM, date of SN biopsy,
BT, ulceration, SN status, surgical procedures, TILs, and follow-up, including the date of
relapse and death. Haematoxylin and eosin slides were reviewed, and the histopathological
features were re-assessed by two dedicated dermatopathologists (DM, MC). The tumor
stage was assessed according to the American Joint Committee on Cancer (AJCC) TNM
(Tumor, Node, Metastasis) [18]. The tumors were re-evaluated for lymphocytic infiltration
in the vertical growth phase (VGP), and classified as brisk, non-brisk, and absent according
to criteria that were formulated by Clark et al. [19]. Lymphocytes had to surround and
disrupt tumor cells in the VGP to be defined as TILs. These lymphocytes were termed
“brisk” if they infiltrated the entire invasive component diffusely or across the base of the
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VGP. TILs were “absent” if no lymphocytes were present or if they were present, but did
not infiltrate the tumor. When lymphocytes only infiltrated the melanoma focally with one
or scattered foci, the term “non-brisk” was used.

The patients included in the validation cohort (n = 74) were treated at the Papa
Giovanni XXIII Cancer Center Hospital, Bergamo, Italy. Similarly, to the training cohort,
patients with BT ≥ 2 mm and with available tissue samples were included. Information
on demographics as well as data on DFS and OS were retrieved for each patient. Data on
treatment and survival were prospectively collected in the context of Melanoro project, as
previously reported [14].

2.2. Tissue Samples

Formalin fixed paraffin-embedded (FFPE) tissue sections, 4 µm in thickness, were
stained with haematoxylin and eosin and reviewed to confirm the histopathological diag-
nosis and assess tissue quality control.

2.3. Ethical Committee

Approval to conduct the study was obtained from the local Ethics Committees of
the participating Centers. Specifically, the use of FFPE sections of human samples was
approved by the Local Ethics Committee (13676_bio, protocol Id.21073) according to the
Helsinki Declaration and informed consent was obtained.

2.4. Immunohistochemistry

Tumor immune infiltrate characterization was performed by evaluating eight immune
cell markers (CD3, CD4, CD8, FOX-P3, PD-L1, PD-1, CD68, and CD163) via immunohisto-
chemistry on representative FFPE whole tumor sections 3-µm thick of PCM. The sections
were deparaffinized in EZ prep (950–102; Ventana), and antigen retrieval was achieved by
incubation with cell-conditioning solution 1 (950–124; Ventana), a Tris ethylenediaminete-
traacetic acid-based buffer (pH 8.2), for 32 min. at 100 ◦C or with Dako PT-link, EnVision™
FLEX Target Retrieval Solution, Low pH. Sections were incubated with the following
primary antibodies: anti-CD3 (#790–4341, rabbit monoclonal, clone 2GV6 ready to use,
Ventana Medical System, Tucson, AZ, USA), anti-CD4 (#790–4423, rabbit monoclonal, clone
SP35, ready to use, Ventana Medical System, Tucson, AZ, USA), anti-CD8 (#790-4460,
rabbit monoclonal, clone SP57, ready to use, Ventana Medical System, Tucson, AZ, USA),
and anti-FOX-P3 (#b20034, mouse monoclonal, clone 236A/E7, 1:60. Abcam, Cambridge,
UK). The signal was developed with the UltraMap Red anti-Mouse or anti-Rabbit Detec-
tion Kit (Ventana Medical Systems, Tucson, AZ, USA) in an automated Immunostainer
(Ventana Discovery XT, Ventana Medical Systems, Tucson, AZ, USA). In addition, the
sections were incubated with the following primary antibodies: anti-PD-L1 (clone 22c3
Dako Agilent, dilution 1:25), anti-PD1 (clone NAT105 Biocare; dilution 1:50), anti-CD68
(clone KP1, Dako Agilent, dilution 1:3000), and anti-CD163 (clone 10D6, Novus Biological,
dilution 1:200). The signal was developed with EnVision™ FLEX+, Dako, Agilent) in an
automated Immunostainer (Dako Autostainer Link 48). The sections were counterstained
with hematoxylin. Appropriate positive controls were used throughout.

Immunohistochemical scoring was performed in a blinded fashion by experienced
melanoma pathologists (DM, MC). Stained sections were initially assessed at low mag-
nification in order to select the areas with highest density of positive immune cells at
peritumoral and intratumoral location. The assessment of immune cells score density was
compared with evaluation that was obtained by image analysis. An evaluation of PD-L1
was performed in both immune cells and tumor cells, as previously described [20].

2.5. Image Analysis

Stained tissue sections were digitally scanned at ×400 magnification with Aperio AT2
or Aperio ScanscopeXT platform (Leica Biosystems, Wetzlar, Germany) into whole slide
digital images (WSI). Each SVS format file was imported into HALO Link® (Indica Labs,
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Albuquerque, NM) image management system. Two expert pathologists (DM, MC) drew
the image annotations of the whole surface and margins of PCM. The whole tumor area
was defined as the area containing invasive tumor, including the invasive tumor borders,
according to ITWG recommendations.

For all WSI, three different annotation layers were created, one for the intratumoral
area and two, respectively, for the inner peritumoral area and outer peritumoral area,
starting from the tumor border with a thickness of 250 µm (Figure 1). The detection of
immune-stained positive cells, in the three different layers, was performed using HALO®

Multiplex IHC analysis software version v3.1.1076.308 (Indica Labs, Albuquerque, NM),
based on cytonuclear features, such as stain intensity, size, and roundness for CD3, CD4,
CD8, FOX-P3 CD68, CD163, PD-1, and PD-L1. The software automatically excludes tissue
gaps from analysis and the settings were set-up to include the full range of staining intensity
(from weak to strong). The data were expressed as cellular density (i.e., the number of
positive cells divided by the mm2 of the annotation layer area).
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Figure 1. Representative images of melanoma tissue with low (A) and high (B) CD8 positive
cells. (C) Representative annotation mask for intratumoral area and CD8 cells software recognition.
(D) Representative annotation mask for inner (yellow, IN) and outer (green, OUT) portion of the
peritumoral area and CD8 cells software recognition.
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2.6. Statistical Analysis

The aim of this study was to evaluate the prognostic value of intratumoral and
peritumoral immune cell density on DFS and OS in intermediate/thick PCM. DFS was
defined as the time between diagnosis and disease relapse or death from any cause. OS
was defined as the time between diagnosis and death from any cause. Patients who had not
relapsed/died or died were censored at the date of the last follow-up visit. Each immune
cell biomarker was evaluated as a continuous variable and then categorized as low or high
according to its median.

Continuous variables were described using mean and standard deviation (SD), the
median with the first and third quartiles (Q1–Q3; interquartile range, IQR), and minimum
and maximum values, whereas the categorical variables were described using frequencies
and percentages. Chi-square and Wilcoxon tests were performed in order to compare the
distributions of categorical and continuous variable, respectively. The association between
the immune cell biomarkers was assessed by means of the Spearman correlation index.
A MANOVA analysis was performed for each immune cell biomarker to investigate the
difference between intratumoral, inner and outer peritumoral area in terms of cells density.
DFS and OS was evaluated using the univariable and multivariable Cox proportional
hazard models.

Multivariable models were adjusted for the BT, the ulceration, and stage. The results
of the analyses were expressed as hazard ratios (HRs), adjusted HRs (aHRs), and 95%
confidence intervals (95%CIs). The median DFS and OS were estimated with the Kaplan–
Meier (KM) method. The same analysis carried out for the training cohort was adopted for
the validation cohort using, as biomarker cut-offs, those calculated in the training cohort.
Statistical significance was set at p < 0.05 for a bilateral test. Analysis was carried out using
the SAS (Statistical Analysis System, SAS Institute, Version 9.4) software.

3. Results
3.1. Training Cohort

Overall, 100 stage II–III melanoma patients with BT ≥ 2 mm were included in the train-
ing cohort. Table 1 summarizes the demographical and clinical characteristics, whereas
Table 2 provides the distribution of the biomarkers. The mean age of the patients was
63.2 years (SD 16.1), and 62 patients (62.0%) were male. Tables S1 and S2 report the associa-
tion between the density of immune cells and their correlation with stage, BT, and ulcera-
tion. The median follow-up was 83.9 months (IQR 64.5–111.6). Overall, 46 patients (46.0%)
relapsed, 52 patients (52.0%) died, and 52 patients (52.0%) relapsed or/and died (i.e., DFS
events). The median DFS and OS were 38.4 months (IQR 12.2–129.7) and 85.7 months (IQR
38.0–162.2), respectively.

Table 1. Demographic and clinical characteristics.

Variable Training Cohort
N = 100

Validation Cohort
N = 74

Chi-Squared or Wilcoxon
p-Value

Centre -
University Hospital of Siena 15 (15.0) 0 (0.0)

University of Florence 42 (42.0) 10 (13.5)
University of Sassari/NRC 43 (43.0) 0 (0.0)

Papa Giovanni XXIII Hospital,
Bergamo 0 (0.0) 64 (86.5)

Age 0.619
Mean (SD) 63.2 (16.1) 61.4 (18.6)

Median (Q1–Q3) 66.0 (50.3–75.3) 65.8 (46.3–78.2)
Min-Max 24.0–89.4 21.9–88.1

Sex 0.486
Female 38 (38.0) 32 (43.2)
Male 62 (62.0) 42 (56.8)
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Table 1. Cont.

Variable Training Cohort
N = 100

Validation Cohort
N = 74

Chi-Squared or Wilcoxon
p-Value

Tumor site 0.962 a

Limb 45 (45.0) 35 (47.9)
Trunk 45 (45.0) 32 (43.8)

Head/neck 8 (8.0) 6 (8.2)
Other 2 (2.0) 0 (0.0)
NAS 0 1

Histology 0.565
Superficial spreading

melanoma 49 (49.0) 40 (54.1)

Nodular melanoma 36 (36.0) 21 (28.4)
Other 15 (15.0) 13 (17.6)

Breslow thickness (mm) 0.587
Mean (SD) 6.0 (5.3) 5.6 (4.6)

Median (Q1–Q3) 4.3 (3.0–6.5) 4.0 (3.0–6.0)
Min-Max 2.1–35.0 2.0–25.0

Mitotic rate 0.0024
Mean (SD) 9.4 (9.1) 5.9 (4.5)

Median (Q1–Q3) 8.0 (3.0–11.0) 5.0 (3.0–7.0)
Min-Max 0.0–57.0 0.0–23.0

Clark level 0.257
III 8 (8.1) 2 (2.7)
IV 77 (77.8) 58 (78.4)
V 14 (14.1) 14 (18.9)

Missing 1 0
Ulceration 0.628

No 29 (29.0) 19 (25.7)
Yes 71 (71.0) 55 (74.3)

TILs <0.001
Absent 10 (10.0) 33 (45.2)

Non brisk 82 (82.0) 26 (35.6)
Brisk 8 (8.0) 14 (19.2)

Missing 0 1
Stage at diagnosis <0.001 b

I 0 (0.0) 1 (1.4)
IB 0 (0.0) 1 (1.4)
II 58 (58.0) 62 (83.8)

IIA 12 (20.7) 10 (13.5)
IIB 23 (39.7) 32 (43.2)
IIC 23 (39.7) 20 (27.0)
III 42 (42.0) 10 (13.5)

IIIA 0 (0.0) 1 (1.4)
IIIB 7 (16.7) 1 (1.4)
IIIC 30 (71.4) 8 (10.8)
IIID 5 (11.9) 0 (0.0)
IV 0 (0.0) 1 (1.4)

a The Other and NAS categories were not considered for the statistical test. b The comparison was performed considering only stage II and
stage III patients.
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Table 2. Image analysis.

Density Training Cohort
N = 100

Validation Cohort
N = 74

Chi-Squared or Wilcoxon
p-Value

CD3+
Intratumoral density

(cells/mm2) 0.360

Mean (SD) 1543.9 (1448.4) 1202.7 (1051.8)
Median (Q1–Q3) 997.7 (483.8–2163.5) 800.9 (451.2–1590.9)

Min-Max 21.0–6275.8 47.8–5694.4
Missing 19 0

CD3+ intratumoral density
according to the median of

the training cohort
0.453

Low 40 (49.4) 41 (55.4)
High 41 (50.6) 33 (44.6)

Missing 19 0
CD3+ peritumoral IN
density (cells/mm2) 0.014

Mean (SD) 2281.1 (1483.6) 1765.0 (1492.4)
Median (Q1–Q3) 2146.9 (1084.5–3162.3) 1334.0 (775.0–2334.8)

Min-Max 61.4–6619.7 0.0–8655.1
Missing 11 3

CD3+ peritumoral IN
density according to the
median of the training

cohort

0.021

Low 44 (49.4) 48 (67.6)
High 45 (50.6) 23 (32.4)

Missing 11 3
CD3+ peritumoral OUT

density (cells/mm2) <0.001

Mean (SD) 1916.9 (1363.2) 379.5 (335.5)
Median (Q1–Q3) 1611.6 (796.2–2810.5) 263.3 (146.3–483.5)

Min-Max 84.6–5300.5 27.6–1788.6
Missing 11 3

CD3+ peritumoral OUT
density according to the
median of the training

cohort

<0.001

Low 44 (49.4) 70 (98.6)
High 45 (50.6) 1 (1.4)

Missing 11 3
CD4+ intratumoral density

(cells/mm2) 0.340

Mean (SD) 1675.2 (1379.9) 1532.3 (1422.1)
Median (Q1–Q3) 1421.9 (649.5–2333.5) 1224.8 (551.6–2166.8)

Min-Max 0.0–7304.6 11.4–8665.0
Missing 4

CD4+ intratumoral density
according to the median of

the training cohort
0.293

Low 48 (50.0) 43 (58.1)
High 48 (50.0) 31 (41.9)

Missing 4 0
CD4+ peritumoral IN
density (cells/mm2) 0.005

Mean (SD) 2622.3 (1662.8) 1882.2 (1247.8)
Median (Q1–Q3) 2384.0 (1264.5–3727.1) 1714.5 (854.8–2580.0)

Min-Max 0.4–6760.9 16.7–5601.2
Missing 11 4
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Table 2. Cont.

Density Training Cohort
N = 100

Validation Cohort
N = 74

Chi-Squared or Wilcoxon
p-Value

CD4+ peritumoral IN
density according to the
median of the training

cohort

0.005

Low 44 (49.4) 50 (71.4)
High 45 (50.6) 20 (28.6)

Missing 11 4
CD4+ peritumoral OUT

density (cells/mm2) <0.001

Mean (SD) 2177.9 (1467.5) 601.4 (440.3)
Median (Q1–Q3) 1965.3 (1058.0–3124.4) 495.1 (254.3–804.8)

Min-Max 0.0–6137.5 24.4–1979.4
Missing 11 4

CD4+ peritumoral OUT
density according to the
median of the training

cohort

<0.001

Low 44 (49.4) 69 (98.6)
High 45 (50.6) 1 (1.4)

Missing 11 4
CD8+ intratumoral density

(cells/mm2) 0.823

Mean (SD) 868.8 (1028.3) 751.4 (719.6)
Median (Q1–Q3) 553.8 (160.7–1181.2) 441.9 (258.1–1187.4)

Min-Max 13.1–6559.4 32.0–3809.9
MIssing 5 0

CD8+ intratumoral density
according to the median of

the training cohort
0.142

Low 47 (49.5) 45 (60.8)
High 48 (50.5) 29 (39.2)

Missing 5 0
CD8+ peritumoral IN
density (cells/mm2) 0.090

Mean (SD) 1429.1 (1335.5) 1054.4 (1062.0)
Median (Q1–Q3) 1032.2 (447.1–2266.7) 654.9 (320.8–1398.9)

Min-Max 33.2–5911.3 17.6–5334.9
Missing 11 3

CD8+ peritumoral IN
density according to the
median of the training

cohort

0.034

Low 44 (49.4) 47 (66.2)
High 45 (50.6) 24 (33.8)

Missing 11 3
CD8+ peritumoral OUT

density (cells/mm2) <0.001

Mean (SD) 1119.8 (1122.1) 227.0 (287.3)
Median (Q1–Q3) 646.2 (358.1–1406.7) 154.5 (80.0–231.5)

Min-Max 4.8–5088.9 5.3–1651.2
Missing 11 3

CD8+ peritumoral OUT
density according to the
median of the training

cohort

<0.001

Low 44 (49.4) 67 (94.4)
High 45 (50.6) 4 (5.6)

Missing 11 3
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Table 2. Cont.

Density Training Cohort
N = 100

Validation Cohort
N = 74

Chi-Squared or Wilcoxon
p-Value

CD68+ intratumoral density
(cells/mm2) 0.015

Mean (SD) 367.2 (398.5) 583.7 (633.1)
Median (Q1–Q3) 248.1 (95.6–488.8) 363.8 (172.6–763.1)

Min-Max 4.8–1981.5 1.7–2958.6
Missing 6 0

CD68+ intratumoral density
according to the median of

the training cohort
0.296

Low 47 (50.0) 31 (41.9)
High 47 (50.0) 43 (58.1)

Missing 6 0
CD68+ peritumoral IN

density (cells/mm2) 0.281

Mean (SD) 469.7 (494.6) 611.7 (658.4)
Median (Q1–Q3) 264.3 (128.9–661.9) 459.7 (144.1–773.6)

Min-Max 0.0–2589.4 1.3–3022.2
Missing 11 3

CD68+ peritumoral IN
density according to the
median of the training

cohort

0.104

Low 44 (49.4) 26 (36.6)
High 45 (50.6) 45 (63.4)

Missing 11 3
CD68+ peritumoral OUT

density (cells/mm2) <0.001

Mean (SD) 337.9 (312.6) 88.7 (120.3)
Median (Q1–Q3) 243.4 (116.7–476.0) 51.9 (5.9–136.7)

Min-Max 2.9–1775.6 0.0–588.2
Missing 11 3

CD68+ peritumoral OUT
density according to the
median of the training

cohort

<0.001

Low 45 (50.6) 67 (94.4)
High 44 (49.4) 4 (5.6)

Missing 11 3
CD163+ intratumoral
density (cells/mm2) -

Mean (SD) 1188.9 (1073.4) -
Median (Q1–Q3) 757.6 (481.2–1580.8) -

Min-Max 18.8–5017.9 -
Missing 4 -

CD163+ peritumoral IN
density (cells/mm2) -

Mean (SD) 1472.6 (1090.4) -
Median (Q1–Q3) 1205.6 (608.6–2033.9) -

Min-Max 41.4–5147.3 -
Missing 11 -

CD163+ peritumoral OUT
density (cells/mm2) -

Mean (SD) 1061.4 (691.7) -
Median (Q1–Q3) 878.3 (548.9–1388.2) -

Min-Max 101.4–3456.6 -
Missing 11 -
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Table 2. Cont.

Density Training Cohort
N = 100

Validation Cohort
N = 74

Chi-Squared or Wilcoxon
p-Value

FOXP3 intratumoral density
(cells/mm2) -

Mean (SD) 528.5 (1297.7) -
Median (Q1–Q3) 40.5 (2.2–315.3) -

Min-Max 0.0–6794.9 -
Missing 4 -

FOXP3 peritumoral IN
density (cells/mm2) -

Mean (SD) 430.1 (1031.0) -
Median (Q1–Q3) 69.2 (1.5–409.2) -

Min-Max 0.0–7104.4 -
Missing 11 -

FOXP3 peritumoral OUT
density (cells/mm2) -

Mean (SD) 292.4 (602.4) -
Median (Q1–Q3) 40.3 (0.5–306.1) -

Min-Max 0.0–2898.8 -
Missing 11 -

PD1 intratumoral density
(cells/mm2) -

Mean (SD) 440.4 (604.6) -
Median (Q1–Q3) 253.5 (57.9–507.5) -

Min-Max 3.7–3038.4 -
Missing 4 -

PD1 peritumoral IN density
(cells/mm2) -

Mean (SD) 806.4 (959.3) -
Median (Q1–Q3) 512.3 (164.9–1124.6) -

Min-Max 7.2–5068.7 -
Missing 11 -

PD1 peritumoral OUT
density (cells/mm2) -

Mean (SD) 549.9 (678.0) -
Median (Q1–Q3) 361.4 (160.9–654.2) -

Min-Max 6.2–4411.1 -
Missing 11 -

PD-L1 intratumoral density
(cells/mm2) -

Mean (SD) 358.5 (872.7) -
Median (Q1–Q3) 39.9 (11.9–260.2) -

Min-Max 0.1–6251.2 -
Missing 4 -

PD-L1 peritumoral IN
density (cells/mm2) -

Mean (SD) 331.3 (685.1) -
Median (Q1–Q3) 52.0 (8.8–257.5) -

Min-Max 0.0–3501.0 -
Missing 11 -

PD-L1 peritumoral OUT
density (cells/mm2) -

Mean (SD) 108.0 (192.5) -
Median (Q1–Q3) 30.1 (9.4–124.0) -

Min-Max 0.0–919.1 -
Missing 11 -

When comparing the three different regions (Table S3), we observed some striking
spatial differences. A statistically significant higher density was found in the inner per-
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itumoral area for CD3+ (p = 0.001), CD4+ (p < 0.001), and CD8+ (p = 0.002) as compared
to the intratumoral area and for CD68+ (p = 0.035) and CD163+ (p = 0.003) compared to
the outer peritumoral area (Figure S1). A longer DFS was statistically associated with
higher levels of CD4+ intratumoral T-cells (aHR [100 cell/mm2 increase] 0.98, 95%CI
0.95–1.00, p = 0.041) and CD163+ inner peritumoral (aHR[high vs. low] 0.56, 95%CI 0.32–
0.99, p = 0.047) (Table 3). A statistically positive impact on OS was found for higher levels
of CD3+ outer peritumoral T-cells (aHR[100 cell/mm2 increase] 0.98, 95%CI 0.95–1.00,
p = 0.044) and CD68+ intratumoral macrophages (aHR[100 cell/mm2 increase] 0.52, 95%CI
0.29–0.95, p = 0.033) (Table 3).

Table 3. Effect of biomarkers density on disease free survival and overall survival in the training cohort. Univariable and
multivariable Cox proportional hazard models.

DISEASE FREE SURVIVAL OVERALL SURVIVAL
Univariable Analysis Multivariable Analysis Univariable Analysis Multivariable Analysis

HR (95% CI) p-
Value HR (95% CI) p-

Value HR (95% CI) p-
Value HR (95% CI) p-

Value

CD3+

Intratumoral (100 cell/mm2 increase) 0.98 (0.96–1.00) 0.060 0.98 (0.96–1.00) 0.059 0.98 (0.96–1.00) 0.121 0.98 (0.96–1.00) 0.074

Intratumoral (high vs. low) 0.59 (0.35–1.00) 0.050
* 0.59 (0.33–1.05) 0.072 0.72 (0.41–1.27) 0.256 0.66 (0.36–1.20) 0.173

Peritumoral IN (100 cell/mm2 increase) 0.98 (0.96–1.00) 0.072 0.98 (0.97–1.00) 0.090 0.98 (0.96–1.00) 0.112 0.99 (0.96–1.01) 0.179
Peritumoral IN (high vs. low) 0.75 (0.44–1.28) 0.290 0.78 (0.46–1.33) 0.361 0.75 (0.42–1.34) 0.338 0.76 (0.43–1.37) 0.365

Peritumoral OUT (100 cell/mm2 increase) 0.98 (0.96–1.00) 0.120 0.98 (0.96–1.00) 0.055 0.98 (0.96–1.01) 0.183 0.98 (0.95–1.00) 0.044
*

Peritumoral OUT (high vs. low) 0.69 (0.40–1.18) 0.172 0.62 (0.36–1.07) 0.086 0.80 (0.45–1.44) 0.459 0.64 (0.35–1.15) 0.137

CD4+

Intratumoral (100 cell/mm2 increase) 0.98 (0.95–1.00) 0.032
* 0.98 (0.95–1.00) 0.041

* 0.98 (0.95–1.00) 0.073 0.98 (0.95–1.00) 0.104

Intratumoral (high vs. low) 0.67 (0.41–1.09) 0.109 0.70 (0.43–1.16) 0.166 0.67 (0.39–1.17) 0.159 0.75 (0.43–1.31) 0.318

Peritumoral IN (100 cell/mm2 increase) 0.98 (0.96–1.00) 0.056 0.99 (0.97–1.01) 0.196 0.98 (0.96–1.00) 0.086 0.99 (0.97–1.01) 0.296
Peritumoral IN (high vs. low) 0.71 (0.42–1.20) 0.201 0.83 (0.48–1.44) 0.510 0.79 (0.45–1.41) 0.434 0.97 (0.54–1.75) 0.925

Peritumoral OUT (100 cell/mm2 increase) 0.98 (0.97–1.00) 0.123 0.98 (0.96–1.00) 0.096 0.99 (0.97–1.01) 0.412 0.98 (0.96–1.01) 0.175
Peritumoral OUT (high vs. low) 0.74 (0.44–1.26) 0.270 0.70 (0.40–1.22) 0.210 0.80 (0.45–1.42) 0.443 0.64 (0.35–1.18) 0.153

CD8+

Intratumoral (100 cell/mm2 increase) 0.98 (0.95–1.01) 0.108 0.99 (0.96–1.02) 0.387 0.96 (0.92–1.00) 0.050
* 0.98 (0.94–1.01) 0.219

Intratumoral (high vs. low) 0.70 (0.42–1.15) 0.160 0.74 (0.45–1.22) 0.241 0.57 (0.32–0.99) 0.048
* 0.64 (0.36–1.13) 0.122

Peritumoral IN (100 cell/mm2 increase) 0.99 (0.97–1.01) 0.287 1.00 (0.97–1.02) 0.693 0.98 (0.95–1.01) 0.112 0.99 (0.96–1.02) 0.451
Peritumoral IN (high vs. low) 0.90 (0.53–1.52) 0.684 1.05 (0.60–1.81) 0.872 0.73 (0.41–1.31) 0.293 0.87 (0.47–1.60) 0.657

Peritumoral OUT (100 cell/mm2 increase) 0.98 (0.95–1.01) 0.157 0.98 (0.95–1.01) 0.171 0.98 (0.94–1.01) 0.152 0.97 (0.94–1.01) 0.151
Peritumoral OUT (high vs. low) 0.95 (0.56–1.62) 0.853 0.98 (0.57–1.69) 0.947 0.75 (0.42–1.35) 0.336 0.74 (0.41–1.35) 0.323

CD68+

Intratumoral (100 cell/mm2 increase) 1.00 (0.99–1.01) 0.775 1.00 (0.99–1.01) 0.934 1.00 (0.99–1.00) 0.322 1.00 (0.99–1.00) 0.328

Intratumoral (high vs. low) 0.86 (0.52–1.42) 0.547 0.78 (0.46–1.31) 0.349 0.51 (0.29–0.92) 0.025
* 0.52 (0.29–0.95) 0.033

*

Peritumoral IN (100 cell/mm2 increase) 1.00 (0.99–1.00) 0.366 1.00 (0.99–1.00) 0.553 1.00 (0.99–1.00) 0.429 1.00 (0.99–1.01) 0.588
Peritumoral IN (high vs. low) 0.83 (0.48–1.40) 0.478 0.79 (0.46–1.37) 0.408 0.75 (0.42–1.36) 0.345 0.73 (0.40–1.32) 0.298

Peritumoral OUT (100 cell/mm2 increase) 1.00 (1.00–1.01) 0.451 1.00 (1.00–1.01) 0.368 1.00 (0.99–1.01) 0.862 1.00 (0.99–1.01) 0.864
Peritumoral OUT (high vs. low) 1.10 (0.65–1.86) 0.725 1.02 (0.58–1.79) 0.945 0.85 (0.47–1.51) 0.574 0.70 (0.38–1.30) 0.259

CD163+

Intratumoral (100 cell/mm2 increase) 0.97 (0.95–1.00) 0.046
* 0.98 (0.96–1.00) 0.070 0.97 (0.95–1.00) 0.062 0.98 (0.95–1.00) 0.094

Intratumoral (high vs. low) 0.68 (0.41–1.13) 0.135 0.85 (0.51–1.44) 0.548 0.59 (0.33–1.03) 0.063 0.77 (0.43–1.39) 0.387

Peritumoral IN (100 cell/mm2 increase) 0.98 (0.95–1.00) 0.093 0.98 (0.96–1.01) 0.127 0.98 (0.95–1.01) 0.170 0.99 (0.96–1.01) 0.275

Peritumoral IN (high vs. low) 0.53 (0.31–0.90) 0.019
* 0.56 (0.32–0.99) 0.047

* 0.57 (0.32–1.03) 0.064 0.64 (0.35–1.19) 0.158

Peritumoral OUT (100 cell/mm2 increase) 0.97 (0.93–1.01) 0.198 0.97 (0.93–1.01) 0.123 0.98 (0.94–1.03) 0.393 0.97 (0.94–1.01) 0.206
Peritumoral OUT (high vs. low) 0.69 (0.41–1.18) 0.174 0.73 (0.43–1.25) 0.248 0.70 (0.39–1.26) 0.236 0.70 (0.39–1.26) 0.231
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Table 3. Cont.

DISEASE FREE SURVIVAL OVERALL SURVIVAL
Univariable Analysis Multivariable Analysis Univariable Analysis Multivariable Analysis

HR (95% CI) p-
Value HR (95% CI) p-

Value HR (95% CI) p-
Value HR (95% CI) p-

Value

FOXP3

Intratumoral (10 cell/mm2 increase) 1.00 (1.00–1.00) 0.359 1.00 (1.00–1.00) 0.804 1.00 (1.00–1.00) 0.050 1.00 (1.00–1.00) 0.329
Intratumoral (high vs. low) 0.84 (0.51–1.38) 0.498 0.66 (0.39–1.10) 0.112 1.25 (0.72–2.16) 0.432 0.94 (0.53–1.66) 0.827

Peritumoral IN (10 cell/mm2 increase) 1.00 (1.00–1.00) 0.713 1.00 (1.00–1.00) 0.377 1.00 (1.00–1.00) 0.565 1.00 (1.00–1.00) 0.956
Peritumoral IN (high vs. low) 0.72 (0.42–1.21) 0.216 0.59 (0.34–1.02) 0.057 0.81 (0.46–1.44) 0.477 0.63 (0.35–1.14) 0.126

Peritumoral OUT (10 cell/mm2 increase) 1.00 (0.99–1.00) 0.365 1.00 (0.99–1.00) 0.126 1.00 (1.00–1.00) 0.950 1.00 (0.99–1.00) 0.295
Peritumoral OUT (high vs. low) 0.80 (0.47–1.35) 0.401 0.66 (0.39–1.13) 0.130 0.87 (0.49–1.55) 0.642 0.61 (0.34–1.12) 0.109

PD1

Intratumoral (100 cell/mm2 increase) 0.98 (0.93–1.02) 0.287 1.00 (0.95–1.05) 0.916 0.97 (0.91–1.02) 0.227 1.00 (0.94–1.06) 0.893
Intratumoral (high vs. low) 0.84 (0.51–1.38) 0.492 0.96 (0.57–1.62) 0.878 0.58 (0.33–1.03) 0.061 0.63 (0.35–1.12) 0.117

Peritumoral IN (100 cell/mm2 increase) 0.97 (0.94–1.01) 0.116 0.98 (0.95–1.02) 0.308 0.97 (0.93–1.01) 0.116 0.98 (0.94–1.02) 0.376

Peritumoral IN (high vs. low) 0.62 (0.36–1.06) 0.078 0.70 (0.40–1.22) 0.210 0.53 (0.29–0.97) 0.039
* 0.59 (0.32–1.10) 0.095

Peritumoral OUT (100 cell/mm2 increase) 0.97 (0.93–1.02) 0.262 0.98 (0.94–1.03) 0.447 0.97 (0.92–1.02) 0.259 0.97 (0.92–1.03) 0.305
Peritumoral OUT (high vs. low) 0.92 (0.54–1.55) 0.747 1.04 (0.59–1.82) 0.894 0.80 (0.45–1.43) 0.456 0.86 (0.47–1.59) 0.638

PD-L1

Intratumoral (10 cell/mm2 increase) 1.00 (1.00–1.00) 0.764 1.00 (1.00–1.00) 0.823 1.00 (1.00–1.00) 0.847 1.00 (1.00–1.00) 0.624
Intratumoral (high vs. low) 0.90 (0.54–1.49) 0.678 1.03 (0.62–1.74) 0.897 0.83 (0.47–1.46) 0.514 0.98 (0.55–1.75) 0.957

Peritumoral IN (10 cell/mm2 increase) 0.99 (0.99–1.00) 0.069 1.00 (0.99–1.00) 0.128 0.99 (0.98–1.00) 0.085 0.99 (0.99–1.00) 0.154

Peritumoral IN (high vs. low) 0.70 (0.41–1.19) 0.188 0.76 (0.44–1.31) 0.327 0.51 (0.28–0.93) 0.027
* 0.58 (0.31–1.07) 0.079

Peritumoral OUT (10 cell/mm2 increase) 0.99 (0.97–1.00) 0.123 0.98 (0.97–1.00) 0.098 0.99 (0.97–1.01) 0.241 0.98 (0.96–1.00) 0.128
Peritumoral OUT (high vs. low) 0.94 (0.55–1.61) 0.830 0.92 (0.53–1.60) 0.772 0.94 (0.52–1.69) 0.839 0.80 (0.44–1.46) 0.461

Note. Multivariable models adjusted for Breslow thickness, ulceration and stage. * Significant p-value at 0.05 level.

Figure 2 and Figure S2 summarize the analysis of the prognostic impact of the combi-
nation of the density and distribution of CD8+ T-cells with the density and distribution
of other immune cells in the tumor microenvironment. A statistically significant longer
DFS (aHR[high-high vs. low-low] 0.52, 95%CI 0.28–0.99, p = 0.047) and OS (aHR[high-high
vs. low-low] 0.39, 95%CI 0.18–0.85, p = 0.018) was found in patients with a high density of
both intratumoral CD8+ T-cells and CD68+ macrophages as compared to those with a low
density of both intratumoral CD8+ T-cells and CD68+ macrophages.

3.2. Validation Cohort

Overall, 74 stage melanoma patients with BT ≥2 mm were included in the vali-
dation cohort. Data on CD3+, CD4+, CD8+, and CD68+ image analysis were available.
Tables 1 and 2 show a comparison between the training cohort and the validation cohort
in terms of demographical and clinical characteristics and distribution of immune cells.
Tables S4 and S5 show the correlation between the density and spatial distribution of im-
mune cells as well as their correlation with BT in the validation cohort. The median follow-
up was 161.6 months (IQR 126.7–201.0). Overall, 39 patients (52.7%) relapsed, 37 patients
(50.0%) died, and 41 patients (55.4%) relapsed or/and died (i.e., DFS events). The median
DFS and OS were 88.3 months (IQR 14.7–301.1) and 140.8 months (IQR 36.1–301.1), respectively.

In line with data obtained in the training cohort, a statistically significant higher
density was found in the inner peritumoral area when compared to the intratumoral
density for CD3+ (p = 0.0101) and CD8+ (p = 0.0473) but not for CD4+. Moreover, for all the
markers a statistically significant lower density was detected in the outer peritumoral area
(Table S3).
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Figure 2. Effect of combination with CD8+ density on disease free survival (A) and overall survival (B) in the training
cohort. Multivariable Cox proportional hazard models. * indicates significant p-value at 0.05 level.
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At multivariable analysis (Table S6), a longer DFS was statistically associated with
higher CD3+ intratumoral density (aHR[100 cell/mm2 increase] 0.95, 95%CI 0.91–0.99, p =
0.027; aHR[high vs. low] 0.38, 95%CI 0.19–0.78, p = 0.008) and higher CD3+ inner peritu-
moral density (aHR[100 cell/mm2 increase] 0.97, 95%CI 0.93–1.00, p = 0.030). Moreover,
higher intratumoral CD8+ density correlated with both DFS (aHR[100 cell/mm2 increase]
0.94, 95%CI 0.88–0.99, p = 0.030; aHR[high vs. low] 0.23, 95%CI 0.10–0.50, p < 0.001) and
OS (aHR[high vs. low] 0.30, 95%CI 0.13–0.70, p = 0.005). Lastly, a beneficial impact on
DFS (aHR[100 cell/mm2 increase] 0.93, 95%CI 0.88–0.98, p = 0.006; aHR[high vs. low] 0.21,
95%CI 0.08–0.52, p < 0.001) and OS (aHR[100 cell/mm2 increase] 0.93, 95%CI 0.88–0.99,
p = 0.015; aHR[high vs. low] 0.23, 95%CI 0.08–0.61, p = 0.003) was found in patients with
high CD8+ density in the inner peritumoral environment.

Figure 3 summarizes the impact of the combination of the density and spatial dis-
tribution of CD8+ T-cells with other immune cells on DFS and OS. Consistent with the
training cohort, in the validation cohort, patients with high density of both intratumoral
CD8+ and CD3+ T-cells had a statistically better DFS (aHR[high-high vs. low-low] 0.24,
95%CI 0.10–0.56, p < 0.001) and those with high density of both intratumoral CD8+ and
CD68+ had a statistically better OS (aHR[high-high vs. low-low] 0.28, 95%CI 0.09–0.86,
p = 0.025).
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Figure 3. Effect of combination with CD8+ density on disease free survival (A) and overall survival (B) in the validation
cohort. Multivariable Cox proportional hazard models.* indicates significant p-value at 0.05 level.

4. Discussion

The main result of our study is that the density and spatial distribution of CD8+

T-cells and macrophages in the microenvironment predict DFS and OS in clinical stage
II–III intermediate/thick PCM patients. The AJCC staging system acknowledges BT, ul-
ceration, and SN status as the most reliable prognostic factors and, in daily practice, the
AJCC classification has a considerable and direct impact on cancer patients’ care. This is
particularly true in the era of effective melanoma adjuvant therapies [21–23]. However,
outcome prediction of the traditional staging system assumes that melanoma progression
is a melanoma cell-autonomous process, and it does not consider the effects of the host
immune response.

The interplay between melanoma and immune cells is a major determinant in melanoma
progression and TILs are emerging as a powerful prognostic marker and therapeutic target
in oncology [24,25]. Nevertheless, conventional evaluation of TILs is affected by interob-
server variability and diverse scoring methods have been proposed [15,26]. Furthermore,
TME includes a heterogeneous population, including not only T-lymphocytes, but also
macrophages, and, to a lesser extent, B lymphocytes and natural killer cells [27,28]. Conse-
quently, it is important to analyze spatial distribution of TILs subsets and macrophages
separately through digital imaging and objective assessment due to their different physio-
pathological effects in the tumor microenvironment [17,29,30].
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It has been reported in several models that cytotoxic memory CD8+ T cells (CD3+,
CD8+, CD45RO+, Granzyme B+) are strongly associated with a favorable clinical outcome
and it has been suggested to use a combination of any two of these four markers as
prognostic factors [28,31,32]. Because of technical troubles, including background noise
(CD45RO) and granular staining (Granzyme B), the two easiest membrane stains, CD3 and
CD8, seem to be the most reliable biomarkers [28,32].

In our series, by using a digital quantification of T cytotoxic lymphocytes, we were
able to predict the DFS and OS in stage II–III intermediate/thick PCM. Interestingly, the
combination of two markers (CD3+ and CD8+ T cells) in the intratumoral area significantly
predicted the outcome. The fact that only intratumoral high density CD3+ and CD8+ T-
cells were more significant than total density may indicate that spatial distribution and
quantification plays a role in melanoma immune surveillance.

In our study, the combination of high intratumoral CD3+ T-cells and CD8+ T-cells has
been shown to be a favorable predictive biomarker at multivariable analysis. Melanoma
patients that were characterized by an absence or low density of intratumoral infiltration
showed higher recurrence rate and shorter OS. Specifically, the combined analysis of CD8+

and CD3+ cells in the intratumoral location resulted in being a useful classification for the
prediction of tumor recurrence in patients with intermediate/thick early stage PCM. At
5-years of follow-up, the DFS and OS for patients with high density of intratumoral CD8+

T-cell and CD3+ T-cell were 43.4% and 63.6%, respectively. Conversely, the DFS and OS
rates of patients with low densities of these cells were 30.0% and 37.3% (log-rank test, DFS:
p = 0.026).

Our results are partially in agreement with previous reports [13,33]. Piras et al.
showed a significant difference in five-year survival among melanoma patient groups
with high, moderate, and low CD8+ T-cell density [34], irrespective of density and
their spatial distribution.

Importantly, we found that inflamed melanomas, with high CD3+ T-cells and CD8+

T-cells density or high CD8+ T-cells and CD68+ macrophagic infiltration, have a better
prognosis when compared to those with desert melanomas characterized by low CD3+

and CD8+ T-cell density or low CD8+ T-cell and CD68+ macrophagic infiltration. This is
in agreement with previous findings showing a better outcome for inflamed melanomas
when compared to cold melanomas with a desert microenvironment [2].

From a clinical standpoint, our study adds information for intermediate-thick melanomas.
Most of the findings on the prognostic role of TILs derive from studies that did not
evaluate homogeneous cohorts of melanoma with BT >2 mm (7, 8, 14). Here, we show
that the density and spatial distribution of T-cells play a role and predict the outcome of
melanomas ≥2 mm.

This study presents some points of strengths: (i) patients have been enrolled and
treated homogeneously in Italian centers; (ii) automatic assessment upon digital image
acquisition, which allows for unbiased and rapid quantification of the immune infiltrate
in immunostained tissue sections and minimizes significant user errors due to categorical
rankings; and, (iii) the validation of results in an independent cohort. However, we are
aware of the study limitations, including: (i) the retrospective nature of the analysis of
a prospective collected cohort of patients; (ii) the relatively small series in the training
and the validation cohort; and, (iii) digital analysis cannot be considered to be a standard
approach for the practicing pathologists and future prospective studies are needed to better
understand the adding value of this technology as compared to the standard evaluation of
TME in early stages melanoma patients.

Our findings suggest that a specific preexisting profile of T cells and macrophages
distribution in melanomas may predict the risk of recurrence and death with potential
implications for stratification of early stages melanoma patients. This may be particularly
important in stage II AJCC melanoma patients, for whom new adjuvant treatments are
not available and need to be better prognosticated. Because patients with absent/low
intratumoral infiltration of CD8+ T-cell have a statistically significant shorter DFS and



Cells 2021, 10, 422 17 of 19

OS, they may deserve further treatments to reduce the recurrence rate and ultimately
progression of melanoma.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-440
9/10/2/422/s1, Figure S1: Representative immunohistochemical images of CD3 (A), CD4 (B), CD8
(C) and CD68 (D) in melanoma tissue, Figure S2: Representative images of melanoma tissue with
low CD8 (A) and low CD68 (B), Table S1: Biomarkers associations in the training cohort. Spearman
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