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Abstract

This paper aims at assessing agricultural eco-efficiency of 40 European countries, including non-European Union and
ex-USSR ones, in the period 1990–2019 (30 years). A stochastic frontier model with a panel translog specification is
employed to allow technology to change in time and across countries, and both output elasticities and returns to scale to
vary with input levels and time. Our study is original compared to existing ones in the literature because it considers the
almost totality of European countries and focuses on a long and recent period. As such, it is able to draw an exhaustive and
updated picture of agricultural eco-efficiency in Europe that fills both temporal and spatial information gaps left by existing
studies. In our results, countries with a definitely increasing eco-efficiency in the period 1990–2019 are Albania, Croatia,
Iceland, Lithuania, North Macedonia, Portugal and Ukraine, while countries with a definitely decreasing eco-efficiency
are Cyprus, Czechia, France, Greece, Hungary, Malta, Romania and Slovakia. All other countries have an approximately
constant eco-efficiency in the period 1990–2019, ranging, in average, between 0.93 and 0.95, with the exception of
two groups of countries: (i) Denmark, Italy, Serbia-Montenegro, Slovenia and Switzerland, which show a decline of
eco-efficiency in recent years; (ii) Ireland and Latvia, which exhibit an upward inversion of the trend in the penultimate
decade. These two groups of countries should be monitored in the near future to better establish whether the decline or the
increase in eco-efficiency is temporary or permanent. Our study also provides, for the first time, evidence on agricultural
eco-efficiency in non-European Union transition economies, specifically it emphasizes the promising performance of
Albania, North Macedonia and Ukraine.

Keywords: country level, European agriculture, stochastic production frontier, sustainability, technical efficiency

1. Introduction

Agriculture plays a key role in satisfying food demand of the rapidly increasing world population, thus it constitutes one
of the most important sectors for the economic development of countries. On the other hand, agriculture also gives rise to
negative externalities on the environment in terms of soil degradation, groundwater depletion, biodiversity loss and nutri-
ent pollution (Pretty, 2008; Foley et al., 2011). This is particularly true in recent years, because intensive farming practices
have been largely put into practice to meet the increasing demand for fresh goods by developed countries (Oenema and
Oenema, 2021; Domingues et al., 2020; Fabiani et al., 2020; Garcı́a de Jalón et al., 2018). For this reason, one of the
major objectives of the Common Agricultural Policy (CAP) of the European Union (EU) is to promote a balance between
the economic and the environmental performance of agricultural production (Commission of the European Communities,
2000). However, this task is pretty challenging, as it requires a quantitative understanding of the relationship between
agricultural production and the ecosystem. Therefore, there is an increasing need by international decision makers for
methodologies allowing an integrated assessment of both environmental and economic performance of agriculture, so that
appropriate policies can be designed to favour an efficient use of natural resources in agricultural production.

In this context, the term ‘eco-efficiency’ was proposed by Schaltegger and Sturm (1990) to denote a “business link to
sustainable development”, and subsequently adopted by the World Business Council to indicate a management practice
linking “the desired goals of business and environmental excellence to achieve measurable commercial and social benefits”
(Stigson, 1996). Later, eco-efficiency was defined by the Organization for Economic Co-operation and Development
(OECD) as “the efficiency with which ecological resources are used to meet human needs” (OECD, 1998), thus extending
the concept not only to enterprises, but also to entire economic sectors, regions and countries. According to Huppes and
Ishikawa (2005), eco-efficiency is the ratio of economic value created per one unit of environmental impact. As such, it
increases when the economic value of production is maintained or raised while reducing the impact on ecosystem services.
Therefore, eco-efficiency represents an important index for assessing agricultural sustainability in terms of resource use
and environmental pressure (UNESCAP, 2009). In particular, eco-efficiency of agriculture is increasingly attracting the
interest of national and European institutions for what concerns policy development finalized to the achievement of 2030
Sustainable Development Goals (see, for example, Caiado et al., 2017; Quiroga et al., 2017; Toma et al., 2017; Czyzewski
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et al., 2021).

Table 1. Characteristics of studies assessing eco-efficiency of agriculture in European countries through Data
Envelopment Analysis (DEA). All the studies employ yearly measurements and the output variables are valued in
constant US dollars or euros. ‘EU’: European Union. ‘LW’: Labour force (annual working units); ‘LN’: Labour force
(number of economically active persons); ‘A’: total agricultural area (hectares); ‘LS’: livestock (cattle or sheep
equivalent units); ‘K’: value of capital stock (constant US dollars); ‘T’: total number of tractors; ‘F’: total amount of
fertilizers (tonnes)

Authors (year) Analysed countries Units of obs. Period Output variables Input variables
Tonini and Jonge-
neel (2006)

10 eastern EU
countries

Countries 1993–2002 Net agricultural
production.

LN; A; LS; to-
tal number of
machineries; F.

Latruffe et al.
(2012)

France and Hun-
gary.

Farms 2001–2007 Milk production;
cereal, oilseed
and protein crops
production; other
output.

LW; A; K; interme-
diate consumption.

Bojnec et al. (2014) 10 eastern EU
countries.

Countries 2001–2006 Gross value added
of agriculture.

LW; A; LS; T; F.

Kocisova (2015) 27 EU countries Countries 2007–2011 Gross output of
crops and crop
products; gross
output livestock
and livestock
products.

LW; A; K.

Toma et al. (2017) 26 EU countries Countries 1993–2013 Gross agricultural
production.

LN; crop area; irri-
gation area; K; F.

Rybaczewska-
Blazejowska and
Gierulski (2018)

28 EU countries Countries 2015 Gross domes-
tic product of
agriculture.

Energy; water; F;
pesticides; waste;
greenhouse gas
emissions.

Moutinho et al.
(2018a)

27 EU countries Countries 2005–2012 Net value added of
agriculture.

LW; A; energy.

Moutinho et al.
(2018b)

22 EU countries Countries 2005, 2010 Gross value added
of agriculture to
greenhouse gas
emissions.

LW; A; K; F; lubri-
cants.

Coluccia et al.
(2020)

Italy Regions 2004–2017 Gross agricultural
production.

LN; crop area; irri-
gation area; K; F.

Exposito and Ve-
lasco (2020)

21 EU countries Countries 2001–2012 Gross agricul-
tural production;
fertilizer inten-
sity (F/value of
production).

LN; A; K.

Czyzewski et al.
(2021)

25 EU countries Farms 2004–2017 Gross agricultural
production.

A; stock density
(K/A); energy; F;
pesticides.

This paper focuses on the assessment of agricultural eco-efficiency in Europe, which is a quite relevant topic from the view
of international policy makers, due to heterogeneity in the level of development and to the existence of gaps in technical
efficiency among the various countries. Tables 1 and 2 summarize the characteristics of existing studies assessing eco-
efficiency of agriculture in European countries. It can be noted that these studies are restricted to EU countries and to a
period typically no longer than twenty years and no later than 2013, with few exceptions focused on more recent years but
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Table 2. Characteristics of studies assessing eco-efficiency of agriculture in European countries through stochastic
frontier models. All the studies employ yearly measurements and the output variables are valued in constant US dollars
or euros. ‘EU’: European Union. ‘LW’: Labour force (annual working units); ‘LN’: Labour force (number of
economically active persons); ‘A’: total agricultural area (hectares); ‘LS’: livestock (cattle or sheep equivalent units);
‘K’: value of capital stock (constant US dollars); ‘T’: total number of tractors; ‘F’: total amount of fertilizers (tonnes)

Authors (year) Analysed countries Units of obs. Period Output variables Input variables
Tonini and Jonge-
neel (2006)

10 eastern EU
countries

Countries 1993–2002 Net agricultural
production.

LN; A; LS; to-
tal number of
machineries; F.

Tonini and Pede
(2011)

27 EU countries
plus North Mace-
donia and Turkey

Countries 1993–2006 Net agricultural
production.

LN; A; LS; T; F.

Tonini (2012) 28 EU countries
plus North Mace-
donia and Turkey

Countries 1993–2006 Net agricultural
production.

LN; A; LS; T; F.

Cechura et al.
(2017)

24 EU countries Farms 2004–2011 Milk production LW; A; LS; K;
feed.

Hidalgo González
and Rodrı́guez
Fernández (2017)

5 southern EU
countries

Regions 2004–2012 Gross agricultural
production.

LW; LS; K.

Quiroga et al.
(2017)

10 EU countries Farms 1996–2009 Gross output of
crops and crop
products.

LW; A; technology
index derived from
the amount of
seeds, plants, ma-
chineries, fertilizer
and energy in use.

Moutinho et al.
(2018b)

22 EU countries Countries 2005, 2010 Gross value added
of agriculture to
greenhouse gas
emissions.

LW; A; K; F; lubri-
cants.

Auci and Vignani
(2020)

Italy Regions 2000–2009 Crop yields. LW; irrigation area;
citrus area; fruit
area; vegetable
area; seeds; F.

Auci et al. (2020) 8 EU countries Farms 2007–2017 Operating rev-
enues.

A; K; cost of em-
ployment; interme-
diate consumption.

Bakucs et al. (2020) Hungary Regions 2002–2013 Total incomes and
capitalized own
performance.

LW; A; K; interme-
diate consumption.

limitedly to a single country (Coluccia et al., 2020; Auci and Vignani, 2020) or to a farm level analysis (Czyzewski et al.,
2021). The prevalent methodologies adopted by these studies are Data Envelopment Analysis (DEA, Charnes et al., 1978)
and stochastic frontier models (Aigner et al., 1977; Battese and Corra, 1977; Meeusen and van den Broeck, 1977). Both
the two methods are adequate to assess eco-efficiency because they measure the distance between the observed and the
maximum possible output (economic value) given the inputs currently employed in the production process (environmental
pressure). However, the two methods have different characteristics: DEA exploits linear programming to construct a non-
parametric piecewise linear production frontier, while a stochastic frontier model assumes a parametric formulation for
the production frontier. It is important to note that DEA, although more flexible and completely free from assumptions,
has the limitation to attribute all the deviations from the production frontier to technical inefficiency (i.e., perfectible
eco-efficiency), while stochastic frontier models are able to account for shocks beyond the control of producers. See
Hjalmarsson et al. (1996) for a detailed comparison of the two methods.
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In this paper, we employ a stochastic frontier model to assess agricultural eco-efficiency of 40 European countries, inclu-
ding non EU and ex-USSR ones, in the period 1990–2019 (30 years). Our study is original compared to existing ones in
the literature because it considers the almost totality of European countries and focuses on a long and recent period. As
such, it is able to draw an exhaustive and updated picture of agricultural eco-efficiency in Europe that fills both temporal
and spatial information gaps left by existing studies. We prefer the stochastic frontier approach to DEA for two main
reasons: (i) it can disentangle pure technical inefficiency (i.e., perfectible eco-efficiency) from external shocks; (ii) it has
a clear interpretability, allowing to assess differences in technology across countries, interactions among inputs and the
trend of returns to scale. In particular, we criticize DEA because the weights assigned to the inputs are different across
countries and may be equal to zero, thus being difficult or even impossible to interpret.

This paper is structured as follows. In Section 2, the data employed in our study are described. Section 3 includes
technical details on the stochastic frontier model. In Section 4, the results are presented and discussed. Section 5 contains
concluding remarks.

2. Data Description

The data employed in our study are sourced to Food and Agriculture Organization (FAO), International Labour Organiza-
tion (ILO) and United States Department of Agriculture (USDA). They have annual frequency in the period 1990–2019
(30 years) and cover 40 European countries, including non-EU and ex-USSR ones. Table 3 shows the considered countries
partitioned into geographical zones. Note that the eastern zone includes all and only the European transition economies.
Due to lack of data, we excluded Andorra, Holy See, Liechtenstein, Monaco and San Marino. The output variable is the
gross agricultural production, while the input variables consist of five measures: land use, labour force, livestock, ma-
chinery stock and fertilizer use. We basically consider the same output and input variables of existing studies at country
level listed in Tables 1 and 2, but with an improved measure of land use and machinery stock consisting of a weighted
aggregation based on rainfed cropland and 40 horsepower equivalent units, as detailed below.

Table 3. List of the considered countries partitioned into geographical zones

Zone Countries
North Denmark, Finland, Iceland, Norway, Sweden.
West Austria, Belgium-Luxembourg, France, Germany, Ireland, Netherlands, Switzerland, United Kingdom.
South Cyprus, Greece, Italy, Malta, Portugal, Spain.
East Albania, Belarus, Bosnia-Herzegovina, Bulgaria, Croatia, Czechia, Estonia, Hungary, Latvia, Lithuania,

Moldova, North Macedonia, Poland, Romania, Russian Federation, Serbia-Montenegro, Slovakia, Slovenia,
Ukraine.

Gross agricultural production is the official measure by FAO made available in the database FAOSTAT. This is an aggre-
gation of the production quantity for 157 crop and livestock commodities weighted by a fixed set of global average prices
in US dollars from 2004 to 2006.

Land use is measured in hectares of rainfed cropland equivalents (Fuglie, 2012, 2015) and it is sourced to the ERS dataset,
USDA. This is a quality-adjusted measure of land use relying on FAO data defined as the weighted sum of arable land
(weight equal to 1), cropland (weight equal to 1), irrigated cropland (weight equal to 0.094), and permanent meadows and
pastures (weight equal to 2.145). This measure is an improvement of the ones adopted by existing studies, where land use
is either measured as the total agricultural area or distinguished into crop and irrigation area.

Labour force is measured as the number of economically active adults in agriculture, and consists of modeled estimates
from ILO, April 2021 update. These estimates are based on periodic labour force surveys from individual countries, and
are periodically revised and updated as more survey information becomes available.

Livestock is measured in cattle equivalent units, with stocks sourced to FAOSTAT and weights for each species borrowed
from Hayami and Ruttan (1985, p. 450). Precisely, our measure of livestock is the weighted sum of the number of cattle
and buffaloes (weight equal to 1), equidae (weight equal to 1), sheep and goats (weight equal to 0.1), pigs (weight equal
to 0.2), and chicken (weight equal to 0.01).

Machinery stock is measured in 40 horsepower equivalent units (Fuglie, 2012, 2015) by aggregating the number of 2-
wheel tractors (weight equal to 0.3), 4-wheel tractors (weight equal to 1), and combine-harvesters and threshers (weight
equal to 0.5). Data on machinery stocks are sourced to the ERS dataset, USDA, and consist of FAO data for the period
1961–2009 and of modeled estimates after 2009. This measure is an improvement of the ones adopted by existing studies,
where machinery stock is either measured in value or proxied by the number of tractors.
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Fertilizer use is measured as the raw sum of FAOSTAT data on nitrogen, phosphate and potash fertilizer consumption in
metric tonnes.

Table 4 shows mean level, standard deviation and average annual change of the output and each input by decade and zone,
while Figure 1 shows the time series of the output and each input aggregated by geographical zone. We see that, in the
period 1990–2019, agricultural output has a definitely increasing trend in northern, western and southern zones, while,
in eastern Europe, the tendency begins to increase only in 2000 after an initial decrease. For what concerns agricultural
inputs, we see that land use, labour force and livestock have a definitely decreasing trend across all zones, with the
exception of western Europe, where the decline is preceded by an increase until 1998. Instead, the tendency of machinery
stock is downward in northern and western zones, while, in southern Europe, the decrease begins only in 1997 after an
initial increase, and, in Eastern Europe, the trend is initially decreasing and inverted upward in 2010. Fertilizer use shows
a definitely declining tendency in northern and western Europe, while, after an initial decrease, southern and eastern zones
show an upward inversion in 2007 and in 1994, respectively.

Table 4. Data summaries by decade and zone. Values are mean levels aggregated across all countries in each zone, with
standard deviation and average annual percentage change within brackets

Gross agricultural output (million 2004–2006 US dollars)
1990–1999 2000–2009 2010–2019 1990–2019

North 18997.4 (591.3;−0.08) 19311.6 (233.8;+0.04) 19518.6 (447.6;+0.13) 19275.9 (484.9;+0.03)
West 177805.8 (4321.1;+0.04) 176185.2 (4297.1;−0.03) 182114.1 (4642.2;+0.16) 178701.7 (4968.8;+0.04)
South 100056.3 (4533.6;+0.23) 107688.9 (1757.6;−0.12) 106873.1 (4031.9;−0.02) 104872.8 (4949.4;+0.02)
East 214666.0 (28502.5;−1.42) 194284.5 (10946.7;+0.68) 230428.3 (18846.3;+0.86) 213126.3 (25020.0;−0.11)
Land use (hectares of rainfed cropland equivalents)

1990–1999 2000–2009 2010–2019 1990–2019
North 10406.6 (85.5;−0.01) 10233.2 (44.4;−0.02) 9872.1 (256.4;−0.05) 10170.6 (273.1;−0.03)
West 53421.8 (758.4;+0.06) 54040.7 (225.0;−0.11) 53934.4 (291.6;+0.00) 53798.9 (544.2;−0.02)
South 59649.7 (1043.9;−0.11) 57439.8 (1430.9;−0.09) 54766.3 (508.3;+0.02) 57285.3 (2275.5;−0.05)
East 266021.3 (6991.5;−0.66) 247967.8 (3847.4;−0.39) 243132.5 (323.6;−0.07) 252373.8 (10962.0;−0.39)
Labour force (thousand persons)

1990–1999 2000–2009 2010–2019 1990–2019
North 563.2 (55.2;−0.28) 409.6 (39.3;−0.48) 323.9 (14.6;−0.19) 432.2 (107.8;−0.30)
West 3816.8 (306.2;−0.28) 3019.5 (252.1;−0.48) 2402.8 (134.8;−0.44) 3079.7 (633.3;−0.40)
South 2883.6 (229.9;−0.16) 2276.7 (209.7;−0.20) 1777.9 (101.9;−0.35) 2312.7 (494.7;−0.24)
East 30491.7 (1979.0;−0.89) 23146.6 (3052.6;−1.99) 16392.5 (1654.1;−0.85) 23343.6 (6265.0;−1.32)
Livestock (thousand cattle equivalent units)

1990–1999 2000–2009 2010–2019 1990–2019
North 7410.9 (140.7;−0.07) 6633.6 (247.3;−0.11) 6213.8 (141.4;−0.19) 6752.8 (534.6;−0.12)
West 78844.4 (2645.5;−0.17) 71780.1 (2303.4;−0.18) 67573.7 (2488.9;−0.32) 72732.7 (5302.1;−0.22)
South 23062.5 (541.3;−0.02) 22812.1 (525.8;−0.12) 21422.8 (727.7;−0.12) 22432.5 (937.6;−0.08)
East 112007.2 (26075.1;−3.05) 63289.7 (5544.9;−1.03) 52656.4 (2417.4;−0.79) 75984.4 (30216.7;−1.64)
Machinery stock (thousand 40 horsepower equivalent units)

1990–1999 2000–2009 2010–2019 1990–2019
North 735.5 (32.5;−0.23) 621.2 (37.4;−0.17) 500.2 (32.0;−0.25) 619.0 (103.1;−0.21)
West 4136.1 (257.9;−0.26) 3479.9 (145.2;−0.22) 3053.0 (114.2;−0.22) 3556.3 (486.3;−0.23)
South 2599.3 (157.8;+0.26) 2568.4 (82.5;+0.17) 2375.6 (94.6;−0.05) 2514.4 (150.8;+0.11)
East 4527.9 (210.1;−0.22) 3925.0 (117.1;−0.28) 4117.4 (134.0;+0.17) 4190.1 (298.2;−0.10)
Fertilizer use (thousand tonnes of nutrients)

1990–1999 2000–2009 2010–2019 1990–2019
North 1215.9 (96.8;−0.15) 1021.2 (93.6;−0.27) 924.6 (64.3;+0.14) 1053.9 (148.6;−0.13)
West 12010.4 (674.0;−0.48) 9238.3 (1074.3;−0.64) 8279.8 (213.8;−0.03) 9842.8 (1761.2;−0.37)
South 4693.2 (166.9;−0.18) 3829.9 (731.6;−0.83) 3128.4 (181.4;+0.70) 3883.8 (780.2;−0.13)
East 10461.3 (5988.5;−3.93) 7545.0 (1010.4;+0.60) 11351.9 (1457.8;+3.77) 9786.1 (3852.3;+0.02)

3. Model Formulation

Stochastic frontier models were proposed independently by Aigner et al. (1977), Battese and Corra (1977), and Meeusen
and van den Broeck (1977), while Schmidt and Sickles (1984) addressed the extension to panel data. Let i = 1, . . . , n
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Figure 1. Time series of output (gross agricultural output) and inputs (land use, labour force, livestock, machinery stock,
fertilizer use) by geographical zone, indices 1990=100

denote the production units (countries) and t = 1, . . . ,T the time points (years). Also, let yi,t be the output level produced
by unit i at time t and xi, j,t the level of the j-th input ( j = 1, . . . , p) employed by unit i at time t. The general stochastic
frontier model has the following form:

yi,t = f (xi,t; Θ) exp(vi,t − ui,t) i = 1, . . . , n ; t = 1, . . . ,T (1)

where f is the production frontier, representing the maximum output level technically feasible based on a given com-
bination of the inputs xi,t = (xi,1,t, . . . , xi, j,t, . . . , xi,p,t) and a given technology Θ, while vi,t ∈ R and ui,t ∈ R+ are two
random errors representing the deviation from the production frontier f due to shocks, respectively, independent of the
producer and related to the production. As such, according to model (1), the maximum feasible output may differ from
the maximum output level technically feasible due to the occurrence of either favourable or unfavourable events beyond
the control of producers. Specifically, the maximum feasible output for unit i at time t is equal to y∗i,t = f (xi,t; Θ) exp(vi,t).
As a consequence, technical efficiency of unit i at time t, that we denote as TEi,t, is equal to the ratio between the actual
output level yi,t and the maximum feasible one y∗i,t:

TEi,t =
yi,t

y∗i,t
=

yi,t

f (xi,t; Θ) exp(vi,t)
= exp(−ui,t) (2)
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The production unit i achieves the maximum output level at time t if and only if TEi,t = 1, otherwise technical inefficiency
occurs and 0 < TEi,t < 1 measures the relative distance of the actual output level from the maximum feasible one. If
the output is a measure of the production value and the inputs are resources with environmental impact, then TEi,t is the
eco-efficiency of unit i at time t.

A flexible and commonly adopted specification for the production frontier f is the translog function (see, for example,
Greene, 2008):

f (xi,t; Θ) = exp

αi + δ t + γ t2 +

p∑
j=1

β j log xi, j,t +

p∑
j=1

p∑
k= j

β j,k log xi, j,t log xi,k,t +

p∑
j=1

λ j t log xi, j,t

 (3)

where the technology Θ is characterized by the parameters appearing in the equation, specifically:

• for i = 1, . . . , n, parameter αi is the intercept for unit i;

• parameters δ and γ are, respectively, the linear and the quadratic component of the trend;

• for j = 1, . . . , p, parameter β j is the first order coefficient for the j-th input;

• for j = 1, . . . , p and k = 1, . . . , p, parameter β j,k = βk, j is the second order coefficient for the j-th input (if j = k) or
the coefficient for the interaction between the j-th and the k-th input (if j , k);

• parameter λ j is the coefficient for the interaction between the j-th input and time.

The Cobb-Douglas specification is obtained by setting β j,k = 0 ∀ j, k in equation (3). It can be shown that the translog
functional form, compared to the Cobb-Douglas, allows output elasticities and returns to scale to vary with input levels
and imposes no restrictions on substitution elasticities. For this reason, we prefer the translog specification, leading to the
following stochastic frontier model:

log yi,t = αi + δ t + γ t2 +

p∑
j=1

β j log xi, j,t +

p∑
j=1

p∑
k= j

β j,k log xi, j,t log xi,k,t +

p∑
j=1

λ j t log xi, j,t + vi,t − ui,t (4)

Model (4), also employed by Tonini and Pede (2011), Tonini (2012) and Cechura et al. (2017), is characterized by a high
degree of flexibility, because: (i) the production units are allowed to have different technologies due to the intercepts
α1, . . . , αn; (ii) the technology can vary in time according to a second order polynomial trend on the logarithmic scale due
to parameters δ and γ; (iii) the output elasticity of each input can vary in time according to a linear trend on the logarithmic
scale due to parameters λ1, . . . , λp; (iv) the output elasticity of each input depends not only on its level, but also on its
squared level and on the level of the other inputs due to parameters β j,k, j = 1, . . . , p and k = 1, . . . , p.

Although the flexibility of the translog production frontier is widely recognized, it has the disadvantage of requiring
a high number of parameters, thus its estimation may be highly inefficient in short panel data. For this reason, most
existing studies on agricultural eco-efficiency in European countries (precisely, all the ones listed in Table 2 excepting
Tonini and Pede, 2011; Tonini, 2012; Cechura et al., 2017) have adopted the classic Cobb-Douglas specification, which
neglects quadratic terms and first order interactions among inputs, i.e., β j,k = 0 ∀ j, k, with the consequence of assuming
unitary elasticities of substitution. In this paper, we consider a larger number of countries and a longer period of analysis
compared to existing studies, thus the number of parameters required by the translog functional form results reasonably
small compared to the sample size.

We complete the specification of model (4) by assuming the intercepts α1, . . . , αn to be fixed, and random errors vi,t and
ui,t to be independent and identically distributed as, respectively, Normal and half Normal random variables:

vi,t ∼i.i.d. N(0, σ2
V ) ui,t ∼i.i.d. N+(0, σ2) i = 1, . . . , n ; t = 1, . . . ,T (5)

Under this specification, the composed error εi,t = vi,t − ui,t is often denoted as Normal-half Normal. Our preference
towards fixed rather than random effects relies on the fact that the considered production units represent a fixed number of
European countries which, in principle, cannot increase further. Instead, the choice of the half Normal distribution relies
on its good balance between simplicity and flexibility compared to more complex distributions like the truncated Normal
and the Gamma (Stevenson, 1980; Greene, 1980). Parameter estimation is performed by maximizing the likelihood
(Aigner et al., 1977; Battese and Corra, 1977) and technical efficiencies are estimated as T̂Ei,t = exp

[
−E

(
ui,t | εi,t

)]
(Jondrow et al., 1982).
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A final remark on our model formulation regards the alternative specifications for random errors ui,t. Although the use
of the half Normal distribution has become prominent in empirical applications, several different specifications have been
proposed to make technical efficiencies depend on time. For instance, Cornwell et al. (1990) proposed the specification
ui,t = a + bt + ct2 + ui, where a, b and c are parameters to be estimated and ui ∼ N+(0, σ2); Battese and Coelli (1992)
assumed ui,t = ui exp[η(t − T )], where η is a parameter to be estimated and ui follows the truncated Normal distribution
ui ∼ N[0,∞)(µ, σ2); Lee and Schmidt (1993) proposed ui,t = uibt, i.e., parameter b varies across time points; Battese and
Coelli (1995) assumed a specification similar to the one of Cornwell et al. (1990), with the difference that only the linear
component of the trend is considered and several determinants of technical efficiency are included; Cuesta (2000) allowed
parameter η in the specification of Battese and Coelli (1992) to vary across production units, i.e., ui,t = ui exp[ηi(t − T )].
All these specifications for random errors ui,t have the common limitation of making production units share the same
trend of technical efficiency, which is an unreliable assumption preventing production units to change their rank in time
(parallel trends). The specification of different trends for the production units appears as the most reasonable option, but,
although possible in principle (see, for example, Lee, 2006), it may easily lead to an overparameterized model in practice.
For this reason, we adopt the unstructured specification ui,t ∼ N+(0, σ2), which allows to investigate the country-specific
trends of eco-efficiency without a priori constraints. Table 5 summarizes the specifications for the production frontier f
and for random errors ui,t adopted by existing studies listed in Table 2.

Table 5. Model specification of studies assessing eco-efficiency of agriculture in European countries through stochastic
frontier models. The specifications ‘translog with fixed effects’ and ‘translog with random effects’ are identical to model
(4), with the difference that the intercepts are assumed fixed in the former case and random (Normal distribution with
null expected value and constant variance) in the latter case. The Cobb-Douglas specification equates to model (4) with
β j,k = 0 ∀ j, k. Also, ‘time-invariant elasticities’ means that λ j = 0 ∀ j, while ‘unique intercept’ means that αi = α ∀i

Authors (year) Production frontier f Random errors ui,t

Tonini and Jongeneel (2006) Cobb-Douglas with unique intercept
and time-invariant elasticities.

Battese and Coelli (1992).

Tonini and Pede (2011) Translog with fixed effects. Cuesta (2000).
Tonini (2012) Translog with fixed effects. Cuesta (2000) with spatial depen-

dence.
Cechura et al. (2017) Translog with random effects. Unstructured without distributional

assumptions.
Hidalgo González and Rodrı́guez
Fernández (2017)

Cobb-Douglas with fixed effects and
time-invariant elasticities.

Battese and Coelli (1992).

Quiroga et al. (2017) Cobb-Douglas with unique intercept. Battese and Coelli (1995).
Moutinho et al. (2018b) Cross-sectional translog on separate

years.
Unstructured without distributional
assumptions.

Auci and Vignani (2020) Cobb-Douglas with unique intercept,
time-invariant elasticities, and dum-
mies for the years in place of the
trend.

Battese and Coelli (1995).

Auci et al. (2020) Cobb-Douglas with fixed effects,
time-invariant elasticities, and dum-
mies for the years in place of the
trend.

Unstructured: ui,t ∼ N+(0, σ2).

Bakucs et al. (2020) Cobb-Douglas with random effects
and time-invariant elasticities.

Unstructured: ui,t ∼ N+(0, σ2).

4. Results and Discussion

In this section, we present the results of parameter estimation for our stochastic frontier model (Subsection 4.1) and the
estimated eco-efficiencies (Subsection 4.2), then we compare our results with those of existing studies (Subsection 4.3).

4.1 Parameter Estimation

Before estimating the parameters of model (4), the time variable is coded as the year minus 1990, thus t = 0, 1, . . . , 29,
and the input variables are divided by their respective sample mean. This allows first order coefficients β1, . . . , βp to be
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interpreted as the output elasticity of each input evaluated at the sample mean and at the first time point (year 1990),
and makes the output elasticity of the j-th input evaluated at the sample mean and at year s equal to β j + λ j (s − 1990).
Maximum likelihood estimation of model (4) is obtained using the R (R Core Team, 2020) package frontier (Coelli and
Henningsen, 2020) and the results are summarized in Table 6. Below, we discuss these results based on a 5% significance
level.

Table 6. Maximum likelihood estimation of model (4). X1: logarithm of land use; X2: logarithm of labour force; X3:
logarithm of livestock; X4: logarithm of machinery stock; X5: logarithm of fertilizer use. The input variables are divided
by their respective sample mean before applying the logarithmic transformation. The time variable is coded as the year
minus 1990, thus t = 0, 1, . . . , 29

Parameter Estimate Std. error p-value
β1 0.5200 0.0526 0.0000
β2 0.0293 0.0235 0.2124
β3 0.2155 0.0246 0.0000
β4 0.1470 0.0237 0.0000
β5 0.1567 0.0156 0.0000
β1,1 0.0550 0.0172 0.0014
β1,2 0.0927 0.0179 0.0000
β1,3 −0.0600 0.0203 0.0032
β1,4 0.0899 0.0208 0.0000
β1,5 −0.0122 0.0118 0.3005
β2,2 −0.0143 0.0070 0.0423
β2,3 −0.0761 0.0177 0.0000
β2,4 −0.0566 0.0153 0.0002
β2,5 0.0129 0.0094 0.1674
β3,3 0.0923 0.0165 0.0000
β3,4 −0.1219 0.0249 0.0000
β3,5 −0.0149 0.0127 0.2435
β4,4 0.0427 0.0110 0.0001
β4,5 −0.0119 0.0084 0.1563
β5,5 0.0188 0.0047 0.0001
δ 0.0054 0.0016 0.0009
γ 0.0002 0.0000 0.0000
λ1 0.0044 0.0006 0.0000
λ2 0.0000 0.0005 0.9309
λ3 0.0022 0.0007 0.0021
λ4 −0.0059 0.0006 0.0000
λ5 −0.0025 0.0007 0.0004
σ2 0.0107 0.0011 0.0000
σ2

V 0.0051 0.0019 0.0079
αAlbania 8.8119 0.1017 0.0000
αAustria 9.7187 0.0625 0.0000
αBelarus 9.2444 0.0412 0.0000
αBelgium-Luxembourg 9.9858 0.0895 0.0000
αBosnia-Herzegovina 9.0314 0.0832 0.0000

Parameter Estimate Std. error p-value
αBulgaria 9.5571 0.0459 0.0000
αCroatia 9.4437 0.0829 0.0000
αCyprus 9.4082 0.1378 0.0000
αCzechia 9.6657 0.0521 0.0000
αDenmark 10.0005 0.0575 0.0000
αEstonia 8.7300 0.0939 0.0000
αFinland 9.2503 0.0578 0.0000
αFrance 9.6023 0.0906 0.0000
αGermany 9.9885 0.0630 0.0000
αGreece 9.6592 0.0243 0.0000
αHungary 9.9575 0.0380 0.0000
αIceland 8.1788 0.1449 0.0000
αIreland 9.1663 0.0962 0.0000
αItaly 9.7955 0.0660 0.0000
αLatvia 9.1369 0.0774 0.0000
αLithuania 9.2639 0.0587 0.0000
αMalta 8.4929 0.3629 0.0000
αMoldova 9.3851 0.0627 0.0000
αNetherlands 10.3116 0.0670 0.0000
αNorth Macedonia 9.1295 0.0881 0.0000
αNorway 9.0900 0.0788 0.0000
αPoland 9.7324 0.0746 0.0000
αPortugal 9.5400 0.0421 0.0000
αRomania 9.1636 0.0705 0.0000
αRussian Federation 8.3631 0.2536 0.0000
αSerbia-Montenegro 9.6405 0.0468 0.0000
αSlovakia 9.5508 0.0757 0.0000
αSlovenia 8.9864 0.1128 0.0000
αSpain 9.8113 0.1418 0.0000
αSweden 9.4179 0.0534 0.0000
αSwitzerland 9.7008 0.0861 0.0000
αUkraine 9.1413 0.1268 0.0000
αUnited Kingdom 9.7097 0.0587 0.0000
Log likelihood: 1305.037 on 1073 degrees of freedom

The estimates of both linear and quadratic components of the trend (parameters δ and γ) are significantly different from
0, meaning that the technology of each country varies in time. In particular, the maximum technically feasible output
given a unit of each input for country i at year s is estimated as: exp[α̂i + 0.0058(s − 1990) + 0.0002(s − 1990)2], where
α̂i is the estimate of αi (see Table 6). The countries with estimated value of αi above the third quartile, and thus with
the best technology, are: Netherlands, Denmark, Germany, Belgium-Luxembourg, Hungary, Spain, Italy, Poland, Austria
and United Kingdom. Instead, the countries with estimated value of αi below the first quartile, and thus with the worst
technology, are: Latvia, North Macedonia, Norway, Bosnia-Herzegovina, Slovenia, Albania, Estonia, Malta, Russian
Federation and Iceland.

The estimates of first order coefficients are all positive and significantly different from 0 excepting the one for labour

146



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 4; 2021

force, indicating that output elasticities of land, livestock, machinery and fertilizers evaluated at the sample mean and at
year 1990 are significantly greater than 0, while the one of labour force is not. Significance occurs also for the estimates
of second order coefficients, meaning that the output elasticity of each input also depends on the squared input level.
Furthermore, the estimated coefficients for the interaction among inputs are all significantly different from 0 with the
exception of those involving fertilizer use, indicating that output elasticities of land, labour, livestock and machinery
depend each on the level of the others. Note that the output elasticity of labour force, although not significantly different
from 0 when evaluated at the sample mean, can be significantly different from 0 when evaluated at different input levels
and/or time points, because the estimated second order coefficient, as well as the estimated coefficients for the interaction
with the other inputs (excepting fertilizers) and with time, are significantly different from 0.

The estimated coefficients for the interaction between each input and time are all significantly different from 0, excepting
the one for labour force, meaning that the output elasticity of each input besides labour force varies in time. In particular,
output elasticities of land use and livestock increase in time (the estimates of λ1 and λ3 are positive), while those of
machinery stock and fertilizer use decrease in time (the estimates of λ4 and λ5 are negative). Figure 2 shows the time
series of estimated output elasticities at the sample mean, with the bottom-right panel displaying the overall elasticity,
equal to the sum of all output elasticities by time point. The estimated overall elasticity at the sample mean ranges from
1.013 in 1990 to 1.068 in 2019 and is never significantly different from 1, indicating constant returns to scale.
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Figure 2. Time series of estimated output elasticities at the sample mean. The bottom-right panel displays the overall
elasticity at the sample mean, equal to the sum of all output elasticities by time point. Shaded areas indicate 95%

confidence intervals

The estimated variances of random errors ui,t and vi,t result 0.0107 (parameterσ2) and 0.0051 (parameterσ2
V ), respectively,

and are both significantly different from zero, confirming the existence of technical inefficiencies (i.e., perfectible eco-
efficiencies) and external shocks which explain, respectively, 69% and 31% of the deviations from the production frontier.

4.2 Estimated Eco-efficiencies

The time series of estimated eco-efficiencies by country are summarized in Table 7 and displayed in Figure 3. The full
estimates of eco-efficiencies are reported at the end of the paper in Tables 9 and 10.
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Table 7. Summaries of estimated eco-efficiencies by period and country. Values are mean eco-efficiencies, with standard
deviation and average annual percentage change shown within brackets

North 1990–1999 2000–2009 2010–2019 1990–2019
Denmark 0.904 (0.033; +1.02) 0.959 (0.006; +0.15) 0.950 (0.011; −0.39) 0.938 (0.032; +0.22)
Finland 0.928 (0.027; −0.65) 0.953 (0.008; +0.24) 0.944 (0.013; +0.37) 0.942 (0.020; +0.04)
Iceland 0.914 (0.015; −0.18) 0.949 (0.007; +0.08) 0.953 (0.017; +0.61) 0.939 (0.022; +0.20)
Norway 0.932 (0.013; −0.41) 0.940 (0.015; +0.37) 0.955 (0.009; −0.03) 0.942 (0.016; −0.01)
Sweden 0.945 (0.021; −0.27) 0.946 (0.012; −0.09) 0.938 (0.011; +0.27) 0.943 (0.015; −0.11)

West 1990–1999 2000–2009 2010–2019 1990–2019
Austria 0.920 (0.013; +0.28) 0.954 (0.010; +0.30) 0.950 (0.009; +0.19) 0.941 (0.019; +0.13)
Belgium-Luxembourg 0.929 (0.031; +1.05) 0.947 (0.010; −0.13) 0.950 (0.013; +0.25) 0.942 (0.022; +0.43)
France 0.953 (0.009; +0.15) 0.947 (0.013; −0.04) 0.928 (0.014; −0.09) 0.943 (0.016; −0.09)
Germany 0.926 (0.015; +0.09) 0.955 (0.011; +0.07) 0.946 (0.012; −0.06) 0.942 (0.018; +0.01)
Ireland 0.955 (0.012; −0.11) 0.921 (0.016; −0.34) 0.943 (0.022; +0.36) 0.940 (0.022; +0.01)
Netherlands 0.951 (0.011; +0.18) 0.945 (0.012; −0.32) 0.933 (0.013; +0.34) 0.943 (0.014; +0.04)
Switzerland 0.951 (0.009; +0.11) 0.948 (0.008; −0.16) 0.931 (0.015; −0.32) 0.944 (0.014; −0.12)
United Kingdom 0.949 (0.008; +0.08) 0.944 (0.008; −0.10) 0.940 (0.014; −0.11) 0.944 (0.011; +0.01)

South 1990–1999 2000–2009 2010–2019 1990–2019
Cyprus 0.964 (0.017; +0.02) 0.945 (0.041; −1.26) 0.806 (0.042; −1.15) 0.905 (0.079; −0.84)
Greece 0.958 (0.019; +0.59) 0.940 (0.019; −0.32) 0.912 (0.022; −0.58) 0.936 (0.027; −0.09)
Italy 0.935 (0.014; +0.65) 0.955 (0.013; +0.24) 0.932 (0.024; −0.72) 0.941 (0.020; +0.03)
Malta 0.946 (0.022; +0.49) 0.921 (0.022; −0.05) 0.939 (0.032; −1.12) 0.935 (0.027; −0.13)
Portugal 0.922 (0.024; +0.18) 0.942 (0.018; +0.71) 0.954 (0.014; +0.06) 0.939 (0.023; +0.14)
Spain 0.932 (0.039; −0.32) 0.936 (0.022; −0.20) 0.947 (0.024; +0.26) 0.938 (0.029; +0.02)

East 1990–1999 2000–2009 2010–2019 1990–2019
Albania 0.892 (0.048; +0.35) 0.926 (0.028; +0.63) 0.968 (0.006; −0.12) 0.929 (0.045; +0.30)
Belarus 0.925 (0.045; +0.19) 0.944 (0.021; +0.67) 0.942 (0.010; −0.03) 0.937 (0.030; +0.39)
Bosnia-Herzegovina 0.934 (0.037; −0.66) 0.926 (0.057; +1.93) 0.925 (0.038; −0.60) 0.928 (0.043; −0.26)
Bulgaria 0.939 (0.033; −0.01) 0.925 (0.046; −0.27) 0.941 (0.019; −0.27) 0.935 (0.034; −0.09)
Croatia 0.909 (0.036; +1.11) 0.919 (0.051; +1.45) 0.955 (0.020; −0.37) 0.928 (0.042; +0.22)
Czechia 0.965 (0.009; −0.05) 0.933 (0.026; −0.27) 0.901 (0.030; +0.54) 0.933 (0.035; −0.24)
Estonia 0.938 (0.022; −0.61) 0.946 (0.017; +0.34) 0.935 (0.034; +0.58) 0.940 (0.025; +0.10)
Hungary 0.957 (0.017; −0.39) 0.937 (0.036; +0.23) 0.890 (0.031; +0.04) 0.928 (0.040; −0.40)
Latvia 0.924 (0.039; −1.43) 0.914 (0.033; +0.66) 0.958 (0.019; +0.22) 0.932 (0.036; −0.04)
Lithuania 0.916 (0.033; −0.70) 0.925 (0.038; +0.57) 0.953 (0.032; +1.14) 0.931 (0.037; +0.23)
Moldova 0.930 (0.040; +0.38) 0.934 (0.034; +0.38) 0.926 (0.035; +0.07) 0.930 (0.035; +0.19)
North Macedonia 0.886 (0.052; +0.05) 0.930 (0.041; +0.47) 0.966 (0.010; −0.39) 0.927 (0.050; +0.03)
Poland 0.931 (0.033; −0.74) 0.920 (0.019; +0.44) 0.959 (0.007; +0.01) 0.937 (0.027; −0.09)
Romania 0.962 (0.017; +0.13) 0.927 (0.049; +0.19) 0.884 (0.045; +0.23) 0.925 (0.050; −0.23)
Russian Federation 0.945 (0.033; −0.82) 0.937 (0.012; +0.43) 0.935 (0.031; +1.16) 0.939 (0.026; −0.01)
Serbia-Montenegro 0.947 (0.020; +0.36) 0.938 (0.024; +0.71) 0.924 (0.042; −0.19) 0.937 (0.031; +0.10)
Slovakia 0.962 (0.009; −0.05) 0.942 (0.023; +0.48) 0.895 (0.035; +0.08) 0.933 (0.037; −0.31)
Slovenia 0.943 (0.028; +0.22) 0.955 (0.015; +0.31) 0.911 (0.023; −0.57) 0.936 (0.029; −0.08)
Ukraine 0.903 (0.037; −0.25) 0.929 (0.025; +0.65) 0.964 (0.013; +0.39) 0.932 (0.036; +0.39)

From Figure 3, we see that the countries with a definitely increasing eco-efficiency (average annual change in the period
1990–2019 reported within brackets) are Albania (+0.30%), Croatia (+0.22%), Iceland (+0.20%), Lithuania (+0.23%),
North Macedonia (+0.03%), Portugal (+0.14%) and Ukraine (+0.39%). Instead, the countries with a definitely decreasing
eco-efficiency are Cyprus (−0.84%), Czechia (−0.24%), France (−0.09%), Greece (−0.09%), Hungary (−0.40%), Malta
(−0.13%), Romania (−0.23%) and Slovakia (−0.31%). All the other countries have an approximately constant eco-
efficiency in the period 1990–2019, ranging, in average, between 0.93 and 0.95, with the exception of two groups of
countries: (i) Denmark, Italy, Serbia-Montenegro, Slovenia and Switzerland, which show a decline of eco-efficiency
begun in the last decade (average annual change in 2010–2019, respectively, equal to −0.39, −0.72, −0.19, −0.57 and
−0.32%); (ii) Ireland and Latvia, which exhibit an upward inversion of the trend in 2006 and in 1999, respectively (average
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Figure 3. Time series of estimated eco-efficiencies by country

149



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 4; 2021

annual change in 2010–2019 equal to +0.36% for Ireland and +0.22% for Latvia). These two groups of countries should
be monitored in the next years to better establish whether the decline or the increase in eco-efficiency is temporary or
permanent. Note that our study, compared to existing ones, covers a longer and more recent period, thus it has the value
of recognizing which countries should be kept under observation in the near future. On this point, we believe that eco-
efficiency assessments should be performed not only on periods as long and recent as possible, but also with a reasonably
high frequency, for example every three or at most five years: the lack of studies assessing eco-efficiency of European
agriculture in the last decade (2010–2019), that can be noted from Tables 1 and 2, represents a severe information gap for
international policy makers which is filled by our study.

An analysis by geographical zone emphasizes that northern and western countries have a non-decreasing trend and the
highest level of eco-efficiency in the whole period 1990–2019, with only Denmark, France and Switzerland showing a
declining tendency. For what concerns the southern zone, we note a heterogeneity in the trend of eco-efficiency across
countries: Portugal shows a definitely increasing tendency and Spain has a high and almost stable level of eco-efficiency
(mean equal to 0.938 in 1990–2019), but all the other countries exhibit a decreasing trend (Cyprus, Greece and Malta) or
undergo a decline in the last decade (Italy). The trend of eco-efficiency is even more heterogeneous across eastern coun-
tries: Albania, Croatia, Lithuania, North Macedonia and Ukraine show a definitely increasing tendency, while the trend
for Czechia, Hungary, Romania and Slovakia is definitely declining. These results clearly highlight that, among developed
economies, northern and western countries have a better performance in terms of both level and growth of agricultural
eco-efficiency than southern ones, and that several different patterns exist among transition economies, sometimes even
more virtuous than those characterizing developed countries.

4.3 Comparison With Existing Studies

Our results are naturally comparable with those of Tonini and Pede (2011) and Tonini (2012), where a relevant number
of countries (27 and 28, respectively) and time points (14 years from 1993 to 2006) is considered and the same model
specification adopted in this work is exploited. The study in Cechura et al. (2017) adopts the same model specification and
also covers a more recent period, but the comparison is not proper because the focus is on milk production. Our results
can also be compared with those of existing studies employing DEA and considering a relevant number of countries and
time points, like Kocisova (2015, 27 countries in 2007–2011), Toma et al. (2017, 26 countries in 1993–2013), Moutinho
et al. (2018a, 27 countries in 2005–2012), Exposito and Velasco (2020, 21 countries in 2001–2012), and Czyzewski et al.
(2021, 25 countries in 2004–2017). Unfortunately, Exposito and Velasco (2020) and Czyzewski et al. (2021) do not report
the estimated technical efficiencies, thus we excluded these two studies from the comparison.

We compare our study and the selected ones based on the estimated average annual change of eco-efficiency by country.
In order to make the comparison as proper as possible, we computed the average annual change by country from our
estimated eco-efficiencies in three distinct periods: (i) 1993–2006 for the comparison with Tonini and Pede (2011) and
with Tonini (2012), (ii) 2005–2012 for the comparison with Kocisova (2015) and Moutinho et al. (2018a), (iii) 1993–2012
for the comparison with Toma et al. (2017). Table 8 shows the ranks of countries according to the average annual change
of eco-efficiency estimated by each study under comparison. We see that our ranks are quite in line with those of Tonini
and Pede (2011), Moutinho et al. (2018a) and Toma et al. (2017), as confirmed by a Spearman correlation equal to 0.420,
0.452 and 0.528, respectively. Instead, the ranks of Tonini (2012) are in weak agreement with ours, as suggested by a
Spearman correlation equal to 0.082, while a disagreement can be noted with the ranks of Kocisova (2015), as emphasized
by a Spearman correlation equal to −0.265. The weak agreement with Tonini (2012) can be explained by the use of a
Bayesian formulation of the stochastic frontier model, while the disagreement with Kocisova (2015) may be due to the
use of DEA, even if the ranks of Toma et al. (2017), where DEA is employed as well, are in agreement with ours. In
general, it is reasonable to think that the discrepancies between our results and those of existing studies are mainly due to
differences in methodology, model formulation and period under analysis.

5. Concluding Remarks

In this paper, we have estimated agricultural eco-efficiency of 40 European countries, including non-EU and ex-USSR
ones, in the period 1990–2019 (30 years). Our study considers the almost totality of European countries and focuses
on a long and recent period, thus being able to draw an exhaustive and updated picture of agricultural eco-efficiency in
Europe that fills both temporal and spatial information gaps left by existing studies. In particular, our study has identified
two groups of countries with uncertain trend of eco-efficiency requiring to be monitored in the near future: (i) Denmark,
Italy, Serbia-Montenegro, Slovenia and Switzerland, which show a decline in recent years, (ii) Ireland and Latvia, which
exhibit an upward inversion in the penultimate decade. Furthermore, our study has provided, for the first time, evidence
on agricultural eco-efficiency in non-EU transition economies, specifically it has emphasized the promising performance
of Albania, North Macedonia and Ukraine.

A first limitation of our study is represented by quality and availability of data, an issue affecting all the longitudinal
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Table 8. Ranks of countries according to the average annual change of eco-efficiency estimated by each study under
comparison

Country Tonini
and
Pede

(2011)

Tonini
(2012)

Our study
1993–
2006

Kocisova
(2015)

Moutinho
et al.

(2018a)

Our study
2005–
2012

Toma
et al.

(2017)

Our study
1993–
2013

Austria 12 28 5 4 13 11 6 6.5
Belgium-Luxembourg 28 10 13 18 19 17 10 10
Bulgaria 19 11 1 19 23 13 8 1
Croatia 13 18 4 − − 5 25 2
Cyprus 16.5 12 21 25 4.5 24 10 28
Czechia 25 19 25 21 21 25 21 23
Denmark 3 6 2 12 12 14 2 3
Estonia 18 20 12 6 11 8 12.5 15
Finland 16.5 23 7 2 9 22 1 9
France 8 1 15 12 16 20 15 16
Germany 1 9 6 3 24 10 12.5 6.5
Greece 24 27 23 12 14 19 22 26
Hungary 9 17 9 12 22 27 20 21
Ireland 14 25 24 12 26 9 − 20
Italy 15 15 8 12 7 16 10 12
Latvia 22 24 26 22 15 4 − 11
Lithuania 20 8 28 20 1 3 7 13
Malta 7 4 22 12 4.5 1 17.5 8
Netherlands 6 22 19 12 4.5 15 15 18
Poland 23 14 27 26 2 2 15 14
Portugal 11 3 3 24 10 12 4.5 4
Romania 4 2 17 12 20 28 19 25
Serbia-Montenegro 2 16 11 − − 6 − 27
Slovakia 26 7 16 12 25 26 23 22
Slovenia 10 26 10 1 18 23 24 24
Spain 5 13 14 23 4.5 7 4.5 5
Sweden 21 5 20 12 8 18 3 17
United Kingdom 27 21 18 5 17 21 17.5 19

assessments due to the practical difficulty of collecting reliable measurements on a large number of countries and time
points. For this reason, we relied not only on official data, but also on modeled estimates and projections, like the
measurements of labour force sourced to ILO and machinery stock sourced to USDA. On the other hand, differently from
existing studies assessing agricultural eco-efficiency, we employed an improved measure of land use and machinery stock
consisting of a weighted aggregation based on rainfed cropland and 40 horsepower equivalent units.

A second limitation of our study relies on model formulation. We have preferred stochastic frontier models to Data
Envelopment Analysis (DEA) in order to maintain the economic interpretation as much as possible, but, although we
have adopted the most flexible specification employed by existing studies assessing agricultural eco-efficiency, i.e., the
translog functional form, several model assumptions are still restrictive. These include: (i) the trend of country-specific
technologies, which is assumed to be deterministic (second order polynomial on the logarithmic scale) and equal across
all countries (parallel trends); (ii) the trend of output elasticities, which is assumed to be deterministic (linear on the
logarithmic scale); (iii) the unstructured trend of technical efficiencies.

Future work will be directed towards the refinement of our model formulation. In particular, we plan to explore the
potentiality of random intercepts and slopes for countries and of stochastic (autoregressive) trends for input coefficients
(first order, second order and interactions), that could allow non-deterministic trends for output elasticities. Also, a further
refinement deserving attention is to let technical efficiencies depend on climatic (Skevas et al., 2018; Auci and Vignani,
2020; Bakucs et al., 2020) and technological (Auci et al., 2020) conditions, as well as to allow them to be autocorrelated
(Skevas et al., 2018).
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Table 9. Estimated eco-efficiencies

Country 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
Albania 0.885 0.778 0.850 0.908 0.886 0.922 0.948 0.928 0.903 0.913 0.917 0.911 0.886 0.889 0.914
Austria 0.925 0.917 0.909 0.914 0.920 0.908 0.903 0.922 0.934 0.948 0.943 0.950 0.953 0.946 0.959
Belarus 0.850 0.901 0.951 0.980 0.963 0.962 0.959 0.917 0.899 0.865 0.905 0.920 0.930 0.933 0.963
Belgium-Luxembourg 0.858 0.886 0.928 0.935 0.938 0.943 0.955 0.951 0.947 0.943 0.952 0.931 0.956 0.953 0.965
Bosnia-Herzegovina 0.981 0.973 0.960 0.934 0.882 0.888 0.889 0.958 0.944 0.925 0.822 0.876 0.915 0.851 0.967
Bulgaria 0.967 0.948 0.924 0.874 0.933 0.980 0.898 0.944 0.960 0.966 0.941 0.914 0.958 0.920 0.975
Croatia 0.872 0.873 0.881 0.892 0.883 0.911 0.926 0.922 0.971 0.963 0.859 0.936 0.959 0.816 0.902
Cyprus 0.979 0.934 0.966 0.974 0.940 0.975 0.967 0.949 0.974 0.981 0.982 0.977 0.974 0.972 0.974
Czechia 0.979 0.970 0.959 0.966 0.947 0.961 0.963 0.958 0.969 0.975 0.959 0.959 0.924 0.879 0.960
Denmark 0.868 0.869 0.854 0.897 0.892 0.917 0.917 0.930 0.941 0.950 0.952 0.951 0.957 0.961 0.965
Estonia 0.940 0.939 0.943 0.953 0.950 0.960 0.953 0.945 0.911 0.890 0.930 0.931 0.922 0.926 0.947
Finland 0.953 0.925 0.905 0.928 0.932 0.945 0.954 0.962 0.878 0.899 0.943 0.941 0.954 0.948 0.949
France 0.950 0.942 0.963 0.941 0.942 0.945 0.959 0.960 0.962 0.963 0.955 0.939 0.961 0.936 0.962
Germany 0.941 0.927 0.924 0.922 0.895 0.914 0.923 0.928 0.934 0.949 0.957 0.960 0.946 0.929 0.965
Greece 0.915 0.974 0.974 0.972 0.970 0.962 0.954 0.937 0.953 0.964 0.967 0.960 0.957 0.927 0.939
Hungary 0.983 0.980 0.943 0.928 0.956 0.950 0.953 0.962 0.968 0.949 0.927 0.969 0.929 0.881 0.975
Iceland 0.928 0.932 0.928 0.906 0.927 0.913 0.886 0.898 0.911 0.913 0.947 0.947 0.944 0.949 0.955
Ireland 0.969 0.967 0.969 0.955 0.933 0.940 0.958 0.955 0.946 0.959 0.936 0.934 0.911 0.919 0.925
Italy 0.897 0.936 0.945 0.937 0.936 0.937 0.942 0.935 0.932 0.950 0.950 0.951 0.941 0.932 0.970
Latvia 0.965 0.963 0.944 0.950 0.890 0.936 0.917 0.945 0.886 0.848 0.898 0.871 0.887 0.892 0.899
Lithuania 0.914 0.918 0.922 0.956 0.887 0.878 0.937 0.954 0.935 0.858 0.899 0.926 0.947 0.954 0.943
Malta 0.915 0.916 0.932 0.939 0.969 0.935 0.981 0.958 0.964 0.956 0.947 0.947 0.933 0.919 0.903
Moldova 0.895 0.881 0.972 0.989 0.910 0.950 0.879 0.978 0.918 0.925 0.909 0.927 0.938 0.948 0.964
Netherlands 0.948 0.923 0.952 0.957 0.948 0.955 0.961 0.950 0.955 0.964 0.966 0.949 0.958 0.944 0.955
North Macedonia 0.933 0.928 0.922 0.774 0.836 0.867 0.864 0.883 0.915 0.937 0.934 0.888 0.842 0.900 0.938
Norway 0.964 0.934 0.926 0.944 0.923 0.917 0.921 0.930 0.930 0.928 0.925 0.922 0.922 0.929 0.949
Poland 0.976 0.966 0.917 0.967 0.874 0.920 0.934 0.899 0.948 0.913 0.906 0.922 0.923 0.908 0.939
Portugal 0.933 0.957 0.910 0.899 0.906 0.919 0.942 0.924 0.882 0.948 0.905 0.924 0.940 0.931 0.960
Romania 0.959 0.968 0.922 0.968 0.971 0.977 0.963 0.978 0.945 0.970 0.889 0.949 0.929 0.961 0.982
Russian Federation 0.952 0.948 0.969 0.972 0.974 0.956 0.953 0.956 0.885 0.885 0.911 0.934 0.946 0.930 0.938
Serbia-Montenegro 0.917 0.919 0.923 0.971 0.961 0.967 0.957 0.960 0.950 0.948 0.896 0.932 0.940 0.920 0.964
Slovakia 0.976 0.964 0.953 0.944 0.963 0.958 0.962 0.965 0.961 0.972 0.910 0.949 0.954 0.911 0.962
Slovenia 0.922 0.932 0.876 0.945 0.974 0.966 0.957 0.956 0.962 0.940 0.923 0.944 0.973 0.952 0.973
Spain 0.962 0.949 0.958 0.933 0.896 0.835 0.949 0.958 0.943 0.934 0.955 0.948 0.938 0.961 0.934
Sweden 0.974 0.935 0.900 0.951 0.927 0.940 0.954 0.960 0.958 0.950 0.955 0.952 0.954 0.948 0.960
Switzerland 0.947 0.945 0.959 0.951 0.934 0.947 0.959 0.949 0.964 0.956 0.962 0.947 0.956 0.941 0.954
Ukraine 0.866 0.889 0.927 0.967 0.920 0.925 0.910 0.917 0.862 0.847 0.897 0.928 0.929 0.915 0.951
United Kingdom 0.942 0.950 0.959 0.956 0.956 0.959 0.944 0.937 0.941 0.948 0.949 0.929 0.955 0.944 0.943
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Table 10. Estimated eco-efficiencies (continued)

Country 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Albania 0.939 0.931 0.943 0.961 0.970 0.977 0.974 0.972 0.974 0.968 0.965 0.964 0.963 0.961 0.966
Austria 0.946 0.946 0.955 0.972 0.969 0.943 0.964 0.942 0.941 0.959 0.943 0.954 0.944 0.951 0.959
Belarus 0.955 0.950 0.958 0.969 0.961 0.954 0.931 0.953 0.926 0.947 0.941 0.939 0.947 0.930 0.952
Belgium-Luxembourg 0.949 0.939 0.945 0.938 0.941 0.949 0.950 0.931 0.950 0.962 0.956 0.937 0.958 0.931 0.971
Bosnia-Herzegovina 0.959 0.960 0.957 0.975 0.977 0.961 0.959 0.908 0.955 0.874 0.916 0.954 0.857 0.952 0.911
Bulgaria 0.912 0.937 0.808 0.961 0.918 0.964 0.961 0.906 0.968 0.943 0.923 0.934 0.936 0.929 0.941
Croatia 0.906 0.930 0.928 0.974 0.977 0.960 0.958 0.930 0.964 0.968 0.971 0.983 0.962 0.927 0.929
Cyprus 0.963 0.935 0.915 0.882 0.876 0.851 0.863 0.861 0.823 0.762 0.806 0.756 0.791 0.777 0.767
Czechia 0.942 0.903 0.925 0.944 0.936 0.870 0.906 0.840 0.907 0.948 0.908 0.928 0.894 0.891 0.913
Denmark 0.963 0.955 0.956 0.966 0.964 0.958 0.961 0.955 0.947 0.956 0.960 0.943 0.954 0.941 0.925
Estonia 0.953 0.959 0.973 0.956 0.958 0.919 0.937 0.952 0.945 0.950 0.972 0.903 0.943 0.859 0.968
Finland 0.960 0.951 0.959 0.962 0.963 0.932 0.951 0.935 0.951 0.954 0.947 0.948 0.942 0.919 0.963
France 0.954 0.938 0.922 0.951 0.952 0.933 0.947 0.932 0.921 0.944 0.938 0.905 0.931 0.908 0.925
Germany 0.956 0.953 0.951 0.966 0.964 0.948 0.953 0.952 0.949 0.961 0.952 0.946 0.943 0.914 0.943
Greece 0.949 0.927 0.902 0.937 0.939 0.940 0.931 0.929 0.868 0.903 0.934 0.909 0.904 0.908 0.892
Hungary 0.952 0.941 0.875 0.975 0.946 0.873 0.910 0.832 0.885 0.938 0.902 0.929 0.885 0.871 0.876
Iceland 0.939 0.940 0.947 0.963 0.954 0.930 0.933 0.940 0.956 0.941 0.953 0.963 0.970 0.963 0.983
Ireland 0.902 0.899 0.945 0.932 0.907 0.940 0.950 0.900 0.914 0.938 0.951 0.945 0.953 0.966 0.971
Italy 0.963 0.954 0.954 0.966 0.971 0.965 0.966 0.946 0.942 0.910 0.941 0.931 0.907 0.906 0.904
Latvia 0.941 0.887 0.948 0.959 0.953 0.935 0.919 0.969 0.955 0.964 0.982 0.972 0.971 0.964 0.954
Lithuania 0.925 0.830 0.926 0.955 0.947 0.881 0.923 0.966 0.952 0.964 0.981 0.975 0.978 0.936 0.975
Malta 0.889 0.900 0.902 0.923 0.943 0.973 0.975 0.961 0.962 0.964 0.926 0.919 0.921 0.909 0.880
Moldova 0.950 0.941 0.850 0.971 0.941 0.939 0.958 0.869 0.921 0.948 0.858 0.927 0.942 0.955 0.945
Netherlands 0.944 0.932 0.934 0.933 0.938 0.930 0.949 0.934 0.928 0.929 0.922 0.929 0.936 0.917 0.959
North Macedonia 0.944 0.948 0.958 0.968 0.974 0.975 0.967 0.960 0.971 0.961 0.973 0.973 0.969 0.964 0.942
Norway 0.943 0.943 0.947 0.966 0.956 0.963 0.952 0.954 0.954 0.962 0.961 0.958 0.955 0.933 0.961
Poland 0.912 0.881 0.930 0.934 0.942 0.951 0.952 0.960 0.960 0.971 0.955 0.964 0.970 0.958 0.952
Portugal 0.944 0.955 0.941 0.957 0.964 0.966 0.950 0.939 0.943 0.937 0.971 0.949 0.972 0.946 0.971
Romania 0.960 0.958 0.815 0.927 0.904 0.879 0.928 0.784 0.889 0.900 0.844 0.866 0.930 0.927 0.898
Russian Federation 0.939 0.938 0.933 0.958 0.947 0.857 0.952 0.907 0.940 0.953 0.948 0.946 0.956 0.935 0.951
Serbia-Montenegro 0.931 0.980 0.944 0.921 0.955 0.961 0.950 0.943 0.838 0.947 0.933 0.906 0.953 0.863 0.945
Slovakia 0.963 0.938 0.915 0.969 0.950 0.885 0.943 0.855 0.892 0.937 0.847 0.936 0.862 0.906 0.891
Slovenia 0.960 0.955 0.960 0.959 0.949 0.949 0.943 0.902 0.879 0.917 0.926 0.904 0.884 0.909 0.901
Spain 0.883 0.935 0.921 0.949 0.938 0.946 0.962 0.892 0.969 0.930 0.941 0.959 0.935 0.973 0.968
Sweden 0.948 0.922 0.929 0.943 0.948 0.920 0.933 0.930 0.926 0.947 0.956 0.938 0.944 0.944 0.942
Switzerland 0.943 0.937 0.949 0.945 0.949 0.940 0.957 0.943 0.927 0.946 0.930 0.919 0.911 0.924 0.913
Ukraine 0.944 0.929 0.882 0.963 0.951 0.937 0.969 0.944 0.973 0.977 0.966 0.970 0.960 0.971 0.970
United Kingdom 0.949 0.941 0.936 0.955 0.941 0.953 0.957 0.925 0.921 0.954 0.954 0.931 0.939 0.921 0.943
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