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Abstract: The tumour microenvironment (TME) is now recognised as a hallmark of cancer, since
tumour:stroma crosstalk supports the key steps of tumour growth and progression. The dynamic
co-evolution of the tumour and stromal compartments may alter the surrounding microenvironment,
including the composition in metabolites and signalling mediators. A growing number of evidence
reports the involvement of the endocannabinoid system (ECS) in cancer. ECS is composed by a
complex network of ligands, receptors, and enzymes, which act in synergy and contribute to several
physiological but also pathological processes. Several in vitro and in vivo evidence show that ECS
deregulation in cancer cells affects proliferation, migration, invasion, apoptosis, and metastatic
potential. Although it is still an evolving research, recent experimental evidence also suggests that
ECS can modulate the functional behaviour of several components of the TME, above all the immune
cells, endothelial cells and stromal components. However, the role of ECS in the tumour:stroma
interplay remains unclear and research in this area is particularly intriguing. This review aims to shed
light on the latest relevant findings of the tumour response to ECS modulation, encouraging a more in-
depth analysis in this field. Novel discoveries could be promising for novel anti-tumour approaches,
targeting the microenvironmental components and the supportive tumour:stroma crosstalk, thereby
hindering tumour development.

Keywords: endocannabinoid system; tumour microenvironment; immune cells; anti-cancer treat-
ment; preclinical models

1. The Endocannabinoid System

Thirty years after the isolation of Delta-9-tetrahydrocannabinol (∆9-THC) and cannabi-
nol (CBD), the two phytocannabinoids mostly represented in the inflorescences of Cannabis
Sativa, the endocannabinoid system (ECS), a complex intercellular communication system,
was identified and characterised. It is composed by bioactive lipid derivatives with binding
affinity similar to THC and CBD, known as endocannabinoids (eCBs), a heterogeneous
class of receptors and a complex of enzymes responsible for the synthesis, transport, and
hydrolysis of eCBs.

N-arachidonoylethanolamine (AEA) and 2-arachidonoylglicerol (2-AG) are the first
discovered eCBs while other molecules such as O-arachidonoylethanolamine (virod-
hamine), 2-arachidonyl glyceryl ether (noladin), N-arachidonoyldopamine, and palmi-
toylethanolamine (PEA) were recognised and characterised later.

The production of eCBs begins with a synthesis “on demand” from membrane phos-
pholipid precursors. N-acyl transferase (NAT) and N-acyl phosphatidylethanolamine
phospholipase D (NAPE-PLD) are the canonical enzymes which synthesise AEA [1–3]. On
the other hand, a first hydrolysis by phospholipase C-β (PLC-β) and a second reaction by
diacylglycerol lipase (DAGL) are required for 2-AG formation [4–6]. Once synthetised,
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such lipids are metabolised by fatty acid amide hydrolase (FAAH) and monoacylglycerol
lipase (MAGL), releasing arachidonic acid (AA) and ethanolamine or glycerol, for AEA
and 2-AG, respectively (Figure 1). Cyclooxygenase-2 (COX-2), 5-, 12-, 15-lipoxygenase (5-,
12-, 15-LOX), and cytochrome P450 additionally direct eCBs to alternative catabolic routes,
actively contributing to inflammation [7,8]. In this context, the oxygenation of AEA and
2-AG by COX-2 and LOXs can be done thanks to arachidonoyl moiety in eCBs that makes
them vulnerable to these eicosanoid enzymes. So, given these considerations, it is known
that the inhibition of FAAH and MAGL increases AEA and 2-AG levels, enhancing eCBs
oxidation by COX-2, thus the accumulation of prostamides and prostaglandin glycerol
esters (PG-Gs) [9,10].
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the other hand, CB2R (chromosome 1p36.11) is predominantly expressed on lymphoid 
organs and immune cells eliciting anti-inflammatory and immunosuppressive functions. 
However, it was also identified in certain regions of nervous system [23]. 
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Figure 1. The components of endocannabinoid system. The two principal bioactive lipids (AEA,
2-AG), the receptors (CB1R, CB2R, GPR55, TRPV1, and PPARs) and the biosynthetic (NAPE-PLD or
DAGL) and catabolic enzymes (FAAH, MAGL or alternative oxidising enzymes) are shown. Created
with BioRender.com.

The ECS controls many biological events, such as synaptic plasticity, neuroprotection,
immune response modulation, energy homeostasis [11–13], and over the past twenty years,
a growing number of evidence has shown that its alteration correlates with the onset of
various diseases including cancer [14,15].

1.1. Receptors

Cannabinoid receptors (CBRs) are members of the large family of seven α-helical
transmembrane G protein coupled receptors (GPCRs) activating Gi/0 proteins [16,17].
CB1R (chromosome 6q15) is predominantly located in central nervous system where
it modulates the release of neurotransmitters, playing a pivotal role in memory, motor
coordination and emotional processes [18–20]. Some peripheral tissues, such as liver, heart,
skeletal muscle, adipose tissue, and gastro-intestinal tract, also express CB1R [21,22]. On
the other hand, CB2R (chromosome 1p36.11) is predominantly expressed on lymphoid
organs and immune cells eliciting anti-inflammatory and immunosuppressive functions.
However, it was also identified in certain regions of nervous system [23].

In addition to CB1R and CB2R, endocannabinoids also modulate other receptors
and channels defined non-canonical CBRs, including GPR55 (chromosome 2q37.1), the
transient receptor potential vanilloid 1 (TRPV1) (chromosome 17p13.2) and the nuclear
peroxisome proliferator-activating receptors (PPARs) α and γ (chromosome 22q13.31 and
3p25.2, respectively) (Table 1).
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Table 1. Cannabinoid receptors localisation in human organs, function-related and expression in
different tumour types.

RECEPTORS LOCALIZATION FUNCTION TUMOUR REF.

CB1R

Central nervous
system

Peripheral
tissues (e.g.,
liver, heart,

skeletal muscle,
adipose tissue,

gastro-intestinal
tract).

Neurotransmitters
release

Role in memory
Motor

coordination
Emotional
processes

Ovarian tumour
Digestive tract

Hodgkin
lymphoma

Prostate cancer

[18–22,24–26]

CB2R

Lymphoid
organs

Immune cells
Nervous system

Anti-
inflammatory

Immunosuppressive

Breast cancer
Pancreatic

tumour
Thyroid cancer
Prostate cancer

[23,25–27]

GPR55

Brain
Spleen
Bones

Adipose tissue
Langerhans

islets

Vascular tone
Bone turnover

Motor
coordination
Inflammatory

pain
Neurological

disorders
Metabolic/immune

dysregulation

Glioma
Melanoma

Breast cancer
Pancreatic

tumour

[28–40]

TRPV1

Dorsal root
neurons

Trigeminal
Arteriolar

smooth muscle
cells

Bladder
urothelium

Thermoregulation
Involved in

cough
Bladder

hyperactivity

Brain tumour
Pancreatic

tumour
Breast cancer

Prostate cancer
Squamous cell

carcinoma

[41–52]

PPARα

Liver
Heart

Muscles

Involved in fatty
acid catabolism
Inflammatory

processes Colon cancer
Ovarian tumour

Breast cancer
Prostate cancer

[53–56]

PPARγ

(γ1, γ2, γ3)

γ1: ubiquitous
γ2: adipose

tissue
γ3:

macrophages

Adipocyte
formation

Insulin
sensitivity

Inflammation

GPR55 is a de-orphaned GPCR, known as CB3R. It shares a low sequence homology
with CB1R and CB2R and, unlike them, it signals through Gα12/13 and Gαq proteins [28,57].
Different tissues, e.g., brain, spleen, bones, adipose tissue, gastro-intestinal tract, and islets
of Langerhans, were found to express GPR55 mRNA [29]. Despite the limited amount of
literature about the role of this receptor, it was seen to contribute to vascular functions, bone
turnover, motor coordination, and to have some implications in neuropathic/inflammatory
pain, neurological disorders and metabolic/immune dysregulation [31–34,36,58,59].

Some TRP channels, beside to GCPR, belong to non-canonical CBRs. TRPV1 is a
member of that class. It is a six transmembrane non-selective cation channel, particularly
permeable to Na+ and Ca2+ ions [60]. It was found to be prominently expressed in neurons
of dorsal root, trigeminal, vagal ganglia, in arteriolar smooth muscle cells, and in bladder
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urothelium where physical/chemical stimuli, including temperatures over 43 ◦C, acidic
conditions (pH < 6), and vanilloids can prompt its activity [43–47]. TRPV1 detains a
principal role in thermoregulation, pain but it was also found to be implicated in cough
and bladder hyperactivity [47,61–63].

Several evidence reported the involvement of cannabinoid receptors in cancer, high-
lighting the different pro- and anti-tumour actions that can be mediated by CBRs depending
on the ligand, cancer tissue and other environmental factors.

Alterations of CB1R and CB2R expression levels and/or function have been observed
in several cancer types. High levels of CB1R were found, for example, in invasive ovarian
tumours, in cancers of the digestive tract and in Hodgkin lymphoma cells [24,64,65].
In breast tumours elevated CB2R levels correlated with malignancy [66]. High CB2R
expression correlated with the presence of metastases in the lymph node and with the
greatest risk of cancer recurrence in malignant thyroid lesions. In prostate and lung
carcinomas, CB1R and CB2R are often upregulated, particularly in prostate where their
levels increase with the higher degree of malignancy [25–27].

Considering all the potential implications arising from the modulation of CB1R and
CB2R signalling pathways, the targeting of these receptors is becoming a new anti-cancer
strategy. Indeed, CB1R and CB2R drives anti-proliferative and pro-apoptotic effects through
inhibition of adenylate cyclase and the consequent decrease in cyclic Adenosine Monophos-
phate (cAMP)/cAMP-dependent protein kinase (PKA) activity [67]. Moreover, the block
of the extracellular signal regulated kinase (ERK) activates CB1R/CB2R-cell proliferation
arrest. CB1R and CB2R upregulate programmed cell death activating Bcl-2 family, in-
creasing reactive oxygen species (ROS) generation and de novo synthesis of ceramide
(as reviewed in [27]). Specifically, the pro-apoptotic sphingolipid ceramide is a trigger
for p38 mitogen-activated protein kinase (MAPK) pathway and for the upregulation of
the endoplasmic reticulum (ER) stress regulated protein 8 (p8), therefore resulting in an
increased expression of the activating transcription factor 4 (ATF4), C/EBP homologous
protein (CHOP), and the stress-related pseudo-kinase tribbles homolog 3 (TRB3) [68]. CB1R
and CB2R also activate autophagy, downregulate cell migration, angiogenesis, and impair
epithelial-to-mesenchymal transition (EMT) of cancer cells. Autophagy occurs via mam-
malian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) [69]. On
the other hand, reduction in cell migration and angiogenesis is elicited through the inhibi-
tion of the RhoA-focal adhesion kinase (FAK)-proto-oncogene tyrosine-protein kinase (Src)
axis which induces the release of tissue inhibitor matrix metalloproteinases-1 (TIMP-1) and
downregulates proangiogenic factors, such as vascular endothelial growth factor (VEGF),
placental growth factor (PlGF), and angiopoietin-2 (Ang-2). Additionally, CBRs prevent
EMT by interfering with the Wnt/β-catenin pathway (Figure 2) (review in [27]).

For what concerns GPR55, it was found in several cancer types, such as glioma,
melanoma, breast, prostate, ovarian and pancreatic cancer [38–40]. In glioma and pancreatic
cancer, pharmacological and genetic inhibition of the receptor was found to reduce tumour
cell growth [38,70]. In breast cancer, the activation of GPR55 stimulated pro-invasive
features by influencing migration of human breast cancer cells [37,71,72]. Moreover, in
melanoma, the receptor influenced the viability of A375 cell lines [73]. It signals through
Gαq subunit which stimulates PLC activity, resulting in the release of diacylglycerol and
Ca2+ from the ER and thus in the activation of different isoforms of protein-kinase c
(PKC) [32,74]. These, in turn, catalyse the phosphorylation of various targets, such as the
MAPK/ERK proteins, among which ERK1/2 that impacts on gene expression through the
activation of the transcription factors CREB (cAMP response element-binding protein) and
NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) [30]. On the other
hand, signalling through the Gα12/13 pathway, GPR55 can lead the RhoA/ROCK pathway,
further regulating PLC activity, actin cytoskeleton and p38/ATF2 [75]. As is well-known,
MAPKs and RhoA/ROCK pathways are able to orchestrate a plethora of cellular functions
including proliferation, division, differentiation, apoptosis and cytoskeleton remodelling.
Moreover, both signalling were found deregulated in various cancers [29].
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Figure 2. Canonical CBRs signalling in cancer. Cannabinoids inhibit proliferation and
cell cycle (↓ERK/cyclins; ↓Adenylate cyclase/PKA), induce apoptosis (↑Bcl-2; ↑p38MAPK;
↑p8/ATF4/CHOP/TRB3; ↑ROS) and autophagy (↑AMPK; ↑mTOR), decrease angiogenesis
(↓VEGF/PIGF/Ang-2), migration and invasion (↓RhoA; ↓MMPs). The modulation of CB1R/2
also reduce EMT (↓Vimentin, Fibronectin) and stemness (↓Wnt/β-catenin; ↓Twist, Snail and Slug).
Created with BioRender.com.

TRPV1 is also expressed in several neoplasms, among which primary brain tumours,
pancreatic, breast, prostate and squamous cell carcinomas of the human tongue, although
its role in the tumour evolution is still not so clear [49–52,76]. However, it is known that
activation of TRPV1 can influence the balance between cell proliferation and apoptosis, de-
pending on Ca2+ and Na+ influx into the cytosol [77]. In detail, proliferation can be resulted
from Ca2+ entry, ATP release and from the transactivation of epidermal growth factor recep-
tor (EGFR). ATP can bind to the membrane P2Y2 receptor, triggering the PI3K/Akt pathway
and upregulating, via PLC, the inositol 1,4,5-trisphosphate (IP3), which causes Ca2+ release
from the ER. Moreover, the transactivation of EGFR, prompts Ras/Raf/MAPK-ERK ki-
nase (MEK)/ERK1-2 pathway, promoting cell proliferation together with Akt. Conversely,
mechanisms that activate apoptosis occur through mitochondria membrane depolarisa-
tion, ER stress, nucleus and cytosol. The first event is driven by Ca2+ and Na+ influx
into the mitochondria which then releases cytochrome c. On the other hand, ER stress
led to c-Jun N-terminal kinase (JNK) release into the cytosol and to the upregulation of
the nuclear transcription factors ATF4, ATF6, and X-box binding protein (XBP), which
decrease Bcl-2. In addition, Ca2+ entry through TRPV1 in cytosol, activates calcineurin and
ataxia-telangiectasia mutated kinase (ATM) to finally upregulate p53 and consequently Bax,
p16INK4A and p21. These last three factors together with cytochrome c, activates caspase 9
and 3, causing apoptosis (Figure 3) [78–85].
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apoptosis, differentiation, and migration, through different molecular pathway. TRPV1-dependent
mechanisms induce proliferation (↑ERK1/2; ↑PI3K/Akt), or apoptosis (↑cytochrome c/caspases;
↑ROS/JNK/MAPK; ↑AIF; ↑p53/Bax/p21/p16). Created with BioRender.com.

PPARα and PPARγ represent novel discovered CBRs. PPARα is widely distributed in
metabolically active tissues (e.g., liver, heart, and muscle), controlling fatty acid catabolism
and inflammatory processes, while PPARγ (isoform -γ1, -γ2, and -γ3) is differentially
expressed in tissues (-γ1 ubiquitous; -γ2 in adipose tissue; -γ3 in macrophages) and
involved in adipocyte formation, insulin sensitivity, inflammation [53,86]. Fibrates and
thiazolidinediones are the main ligands of PPARα and PPARγ, respectively, and they are
used clinically in the treatment of hyperlipidemia (fibrates) and in the treatment of type 2
diabetes (thiazolidinediones). To date, it is known that several cannabinoids can activate
these receptors (e.g., PEA, OEA activate PPARα; e.g., THC, AEA and 2-AG activate PPARγ)

BioRender.com


Cells 2021, 10, 3396 7 of 34

and that PPARs have an involvement in cancer (e.g., colon, ovarian, breast and prostate
cancer) [55,56]. However, many aspects have to be clarified and, therefore, there is a clear
need for additional studies in this context.

Interestingly, recent discoveries pointed out that CBRs can create heterodimers with
other receptors. In particular, it is known that GPR55 dimerises with CB2R in several
tumours such as breast cancer, with implications in cancer malignancy [87]. Moreover,
these heteromers are over-expressed in bones and hematopoietic cells, probably regulating
cancer-related processes. CB2R can also be coupled to CXCR4 in breast and prostate cancers
where the heteromers impact on cell proliferation, adhesion, invasion, and metastatic
processes. Therefore, it was found that CB2R agonists can reduce CXCR4 activity and
hinder the effects resulting from CXCR4-agonists [88,89]. A recent known hallmark of
cancer is the heteromers CB2R-HER2, typical of breast cancers. In this context, it was
demonstrated that cannabinoid agonists at CB2R can lead to disruption of these heteromers,
hampering HER2 activity (discussed below) [66,90].

1.2. Cannabinoid Receptor Agonists

Cannabinoid receptor agonists represent a group of phyto-, endo-, and synthetic
cannabinoids able to bind cannabinoid receptors with different affinities and efficacies.
Based on their chemical structure, they are distinguished into classical, non-classical
compounds, aminoalkylindoles, and eicosanoids [91].

∆9-THC, ∆8-THC (naturals), and 11-hydroxy-∆8-THC-dimethylheptyl (HU-210) (syn-
thetic) are the principal classical molecules and consist of tricyclic dibenzopiran derivatives.
They bind both CB1R and CB2R, specifically HU-210 with greater affinity than the natural
cannabinoids.

Non-classical ligands share the similar bicyclic and tricyclic structure of ∆9-THC,
lacking the pyran ring. Among these, CP 55,940 works as a full agonist at both CBRs, acting
in a nanomolar range of affinity. Although this compounds directly target both CB1R and
CB2R, the higher specificity for CB2R represent a molecular approach to overcome the
psychotropic effects given by CB1R. Indeed, CB2R selective agonists, such as JWH-133
(classical), JWH-015, and AM1241 (aminoalkylindoles), are becoming optimal candidates
for anticancer therapy.

The cannabimimetic aminoalkylindole WIN 55,212-2 shares an intrinsic activity for
both CBRs similar to CP 55,940 and HU-210, however it showed to be more specific for
CB2R [92,93].

For what concerns eicosanoids, the class principally includes AEA and 2-AG, endoge-
nous ligands for CB1R and CB2R, although AEA is a partial agonist for CB2R with respect
to 2-AG [91]. Together with L-α-lysophosphatidylinositol (LPI) and virodhamine, AEA
and 2-AG modulate the activity of GPR55 [94]. Moreover, AEA is considered a full agonist
(endovanilloid) at TRPV1 in different tumour cell lines, while 2-AG is weakly active on
TRPV1 [95]. Finally, it has been also reported that AEA and 2-AG activate PPARα and
-γ [96].

Although still under study, the anti-cancer activity of several CBRs’ agonists has now
been assessed in many types of tumours (Table 2). Most of them exert anti-proliferative and
apoptotic outcomes by activating different receptors and signalling pathways dependent
on the specific cancer types (see the table for detail). A reduction in the migratory/invasive
potential of cancer cells was also reported for some CBR agonists, mainly driven by the
inhibition of metalloproteinases.

1.3. Other Agonists

R(+)-Methanandamide and Metfluoroanandamide (Met-F-AEA) are two non-hydrolysable
and metabolically stable AEA analogues, with main affinity for CB1R. In prostate and
human cervical cancer cells, R(+)-Methanandamide exerted anti-proliferative and pro-
apoptotic functions, respectively [97,98]. The compound induced an arrest of cell cycle in
G0/G1 phase and induced necrosis in gastro-intestinal cancer in vitro [99]. In breast cancer
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Met-F-AEA inhibited cell cycle, tumour cell adhesion and migration, interfering with the
RhoA/ROCK signalling pathway and FAK phosphorylation [100–102]. In lung, gastro-
intestinal and thyroid tumours apoptosis, and cell growth were modulated [103–105]. The
inhibition of cell growth was also reported in melanoma in vitro [106].

PEA is an endogenous fatty acid amide related to AEA. It principally agonises PPARα
and also activates GPR55 and TRPV1, with modalities yet to be clarified. Moreover, it is
known that PEA is an indirect activator of CBRs, as inhibitor of FAAH which increases AEA
and 2-AG levels [107]. It induced cell death in high-grade astrocytoma/neuroblastoma
cells, it slowed down melanoma cell survival; moreover, it potentiated the cytotoxic effect
of AEA on human breast cancer in vitro [52,108,109].

ACEA (Arachidonyl-2-chloroethylamide) is a CB1R-selective agonist. It activated
apoptosis in colon cancer cells through Tumour Necrosis Factor-α (TNF-α)-mediated
ceramide de novo synthesis [110]. In hepatocellular cancer (HCC) ACEA downregulated
cell viability, invasion as well as MMP-2 and MMP-9 expression [111]. Moreover, invasion
was also blocked in breast cancer stem cells [112]. In pancreatic cancer ACEA induced
ROS-mediated autophagy via activation of AMPK, inhibition of energetic metabolism; it
decreased Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Pyruvate Kinase
M2 (PMK2) expression and enhanced the anticancer potential of gemcitabine [113,114].

As aforementioned, JWH-015 and JWH-133 are selective for CB2R. In PC-3 prostate
cancer, metastatic breast cancer MCF-7 cells and lung cancer cell lines, JWH-015 had anti-
proliferative action; moreover, it inhibited the activation of EGFR in ERα breast cancer
cells [98,115,116]. In lung cancer the compound attenuated growth factor-direct in vitro
chemotaxis and chemo-invasion by reducing focal adhesion complexes, inhibiting Akt
phosphorylation and MMP-9 expression/activity [25]. JWH-133 counteracted proliferation
and migration of glioma, breast cancer cells and decreased trans-endothelial migration of
melanoma cells [117–119].

1.4. Cannabinoid Receptor Antagonists/Inverse Agonists

Due to the “double face” of cannabinoid receptors, that are not only involved in
tumour suppression but also in tumour development and progression, research in the
field of cannabinoids has progressed further towards the synthesis of receptor antagonist
compounds (Table 3). In this regard, SR141716 (Rimonabant) and CBD are well-known
CB1R antagonists. Specifically, CBD can also act as inverse agonist/negative allosteric
modulator at CB1R and partial agonist at CB2R [120,121]. In addition, several reports
demonstrated that it can activate TRPV1, PPAR-γ and antagonise GPR55 [122–124]. AM251
and 6-iodopravadoline (AM-630) are two synthetic cannabinoid CB2R inverse agonists.
However, AM251 is also reported to activate GPR55 [125]. CID16020046 is a selective
GPR55 antagonist recently used in the anti-cancer research.

In breast cancers SR141716 blocked cell proliferation, effect also found in gastro-
intestinal tumours where the compound, after arresting tumour cell population in G2/M
phase, induced mitotic catastrophe [126,127]. In glioma cells SR141716 activated caspase-
dependent apoptosis via G1 phase stasis and it up-regulated the cell membrane MICA/B,
a potent a stress-induced ligand for the natural-killer group 2, member D (NKG2D) recep-
tor, expressed in NKs [128]. Moreover, Fiore et al. reported that SR141716 impacted in
chemoresistance and cancer stemness through inhibition of Wnt/β-catenin pathway in
primary colon cancer stem cells (CSCs) [129].

CBD induced apoptosis pathways in gastro-intestinal cancers through excessive ROS
production, ER stress and Noxa activation [130,131]. Apoptosis linked to ER-stress was
also reported in breast, prostate and in GBM [132–134]. Interestingly, in lung and breast
cancers CBD stimulated apoptosis by direct and indirect regulation of PPAR-γ [135,136].
In breast cancer, CDB induced a crosstalk between apoptosis and autophagy modulating
cancer cell death [137]. CDB induced cell cycle arrest and reduction in cell proliferation in
gastro-intestinal, breast, prostate and in brain cancers [130,133,138]. The reduction in cell
migration and invasion was reported in gastro-intestinal cancer, lung cancer, and breast
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cancer [138–142]. In GMB and glioma, CBD reduced cell invasion through inhibition of
Id-1 expression and downregulation of proteins specifically involved in growth, inva-
sion and angiogenesis (e.g., MMP-9, TIMP-4, VEGF, TGF-β) [143,144]. Moreover, CBD
increased the uptake of doxorubicin (DOXO) in breast cancer cells, it detained synergistic
anti-proliferative effects with docetaxel and/or bicalutamide in prostate cancer cells, it
increased chemosensitivity to Temozolomide (TMZ), Carmustine (BCNU), and DOXO
in glioma [134,145,146]. However, in glioma, CBD failed to exert good cytotoxicity if
compared to its activity in combination with HSP inhibitors [147].

AM251 decreased proliferation and migration in renal cell carcinoma. Moreover, it
induced apoptosis by upregulating Bax and decreasing Bcl-2 expression [148]. Induction of
apoptosis was also addressed in pancreatic cancer via receptor independent mechanisms.
Despite these effects, it was fond that the compound reverts the anti-tumour activities of
Met-F-AEA and ACEA, in gastro-intestinal and breast cancer, respectively, impacting on
proliferation and cancer cell potential [104,112]. Few evidences are reported for AM-630
and CID16020046 in tumours, however it is known that AM-630 induced cell cycle arrest
in G2/M phase and it inhibited migration in renal cell carcinoma [149]. In gastro-intestinal
cancer CID16020046 inhibited cancer cell growth through downregulation of ERK1/2
phosphorylation and it decreased migration and the ability of adhesion to endothelial
cells [150,151]. In breast cancer the compound reduced migration and chemoresistance
through downregulation of multidrug resistance exporters, such as the breast cancer
resistance protein (BCRP) [152].

1.5. Cannabinoid Enzymatic Dysregulations in Cancer

Synthesis and degradation of endocannabinoids were found deregulated in several
malignant tissues. Downregulation and altered activity of NAPE-PLD and FAAH, followed
by a reduction in AEA, was found in glioma tissues where, on the contrary, increased 2-AG
levels correlated with a decrease in MAGL and an unchanged DAGL-α expression [153].
In endometrial carcinoma, AEA amounts were higher with respect to healthy tissues, as
a consequence of FAAH reduction and NAPE-PLD increase [154]. On the contrary, in
prostate adenocarcinomas biopsies FAAH protein expression increased in comparison to
non-tumour biopsies [155]. In HCC MAGL expression was higher in patient with poor
prognosis [156]. To date, MAGL and FAAH inhibitors are the most studied cannabinoid
enzymatic targeting strategies.

1.6. MAGL Inhibitors

JZL184 and URB-602 are two examples of MAGL inhibitors. Nomura et al. attested
that JZL184 impacted on PC3 cell migration, invasion, and survival [157]. In CRC cell lines,
the compound decreased proliferation, increased apoptosis (by regulating the expression
of Bcl-2 and Bax), and it improved tumour cell sensitivity to 5-fluorouracil. Moreover, in
these tumour cells, it suppressed migration and altered the expression of EMT markers for
example increasing E-cadherin, decreasing Vimentin and the Snail family transcriptional
repressor 1 (SNAI1) [158]. Zhang et al. demonstrated that JZL-184 reduced HCC prolifera-
tion, apoptosis and invasion in vitro, suggesting that MAGL activated both proliferation
and invasion of HCC cells through unknown mechanisms involving the prostaglandin E2
(PGE2) and lysophosphatidic acid (LPA) [159]. In osteotropic breast and prostate cancer
cells, JZL184 reduced migration and invasion. Moreover, the compound blocked the ability
of these cells to stimulate osteoclastogenesis in co-cultured models. JZL184 also inhib-
ited the differentiation of primary osteoblast and early differentiated osteosarcoma cells.
In vivo it prevented the formation of bone nodule in the presence and absence of the highly
metastatic osteosarcoma cells. Given the evidence, JZL184 could therefore be considered
an optimal candidate for the treatment of cancer-associated bone diseases. However, it
exerted paradoxical reduction in bone volume via an effect that involved the activation of
the skeletal endocannabinoid system. Further investigations are therefore needed in this
context [160]. For what concerns URB-602, it inhibited tumour growth and angiogenesis in
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xenograft models of colon carcinogenesis. Moreover, it attenuated azoxymethane-induced
pre-neoplastic lesions, polyps and tumours in vivo [161]. Accordingly, González et al.
reported that the compound, given with Cannabigerol (CBG), weakly antagonist at CB1R,
and O-1602 (synthetic GPR55 agonist) induced apoptosis, reduced angiogenesis, tumour
volume, and aberrant crypt foci (ACF) on colorectal cancer (CRC) models in vivo [162].

1.7. FAAH Inhibitors

In lung cancer, the two FAAH inhibitors Arachidonoyl serotonin (AA-5HT) and
URB597 reduced invasion of A549 cells, upregulating TIMP-1. Moreover, the compounds
inhibited metastatic processes in vivo [163]. Always in lung cancer, Ravi et al. reported
that URB597 downregulated cyclin D1 and CDK4, it activated apoptosis (via caspase-9
and PARP) and it inhibited MMP-2 and stress fibre formation [103]. In non-small lung
cancer (NSCLC) URB597 in combination with Met-F-AEA significantly reduced in vitro
EGF-induced proliferative and chemotactic activities with respect to Met-F-AEA given
alone. Moreover, in combination with PEA, the compound decreased B16 melanoma cancer
cell viability [108].
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Table 2. In vitro evidence of the main cannabinoid receptor agonists in different tumour subtypes.

COMPOUND TUMOUR ACTION REF.

∆9-THC
(classical)

Gastro-intestinal cancer Induction of apoptosis through CB1R-mediated inhibition of RAS-MAPK/ERK and PI3K-Akt survival signalling
cascades [164]

HCC Anti-proliferative action associated with accumulation of ceramide, ER-stress and PPARγ activity
Autophagy-mediated cell death in combination with JWH-015 [69,165]

Lung cancer
Inhibition of tumour cell growth (reduction in 3H thymidine and 14C-uridine uptake)
Inhibition of EGF-induced proliferation/migration and invasion, reduction in EGF-induced phosphorylation of ERK1/2,
ERK1/2 and Akt

[166,167]

Breast cancer
Disruption of HER2-CB2R heteromers leading to HER2-proteasome degradation
Induction of cell cycle arrest through Cdc2 downregulation, leading to apoptosis
Reduction in 17β-oestradiol-induced proliferation

[90,168,169]

Prostate cancer Induction of apoptosis independent from CBRs [170]

Pancreatic tumour Induction of apoptosis through de novo synthesis of ceramide and consequent upregulation of ER stress related genes p8,
ATF-4 and TRB3 [171]

Brain cancer

Inhibition of cell proliferation, induction of cycle arrest, ROS production and apoptosis, given alone or in combination
with CBD
Autophagy-mediated cancer cell death
Inhibition of MMP-2 expression and cell invasion in cultured glioma cells via ceramide accumulation and activation of
p8 stress protein
Increase in radiosensivity in combination with CBD

[132,172–175]

Endometrial cancer Inhibition of migration through down regulation of MMP-9 [176]

Leukaemia
Induction of apoptosis via MAPK pathway
Reversion of multidrug resistance together with CBD
Sensitisation to cytotoxic effects of chemotherapy

[177–179]

Melanoma Induction of cell cycle arrest through Akt inhibition, activation of autophagy-mediated apoptosis [180,181]

WIN 55,212-2
(aminoalkyndole)

Gastro-intestinal cancer Inhibition of cell proliferation and induction of apoptosis. Inhibition of Akt, downregulation of MMP-2 and VEGF-A
Inhibition of cell migration/invasion and EMT markers through COX2 downregulation [182–184]

Prostate cancer Inhibition of cell growth, induction of apoptosis, decrease in AR, PSA, PCNA and VEGF in LNCaP
Prevention of neuroendocrine differentiation of LNCaP by inhibition of PI3K/Akt/mTOR axis and stimulation of AMPK [185,186]

Renal carcinoma Inhibition of proliferation and cell viability. Induction of G0/G1 cell cycle arrest, apoptosis and reduced proliferation into
3D spheres [187]

Osteosarcoma Inhibition on cell migration with reduction in MMP-2 and MMP-9 [188]

Lung and testicular cancer Induction of apoptosis [189]
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Table 2. Cont.

COMPOUND TUMOUR ACTION REF.

AEA
(eicosanoid)

Gastro-intestinal cancer
Induction of G0/G1 cell cycle arrest and apoptosis
Reduction in cell proliferation through activation of Wnt5a non-canonical pathway
Inhibition of cell proliferation induced by FAS-death receptor translocation in lipid rafts, mediated by GPR55 activation

[99,190,191]

Lung cancer Reduction in tumour cell spreading, mimicking the anti-invasive action of FAAH inhibitors (same effect given by 2-AG,
OEA, PEA) [163]

Breast cancer Inhibition of cell proliferation through downregulation of adenylate cyclase and activation of MAPK, exerting
downregulation on prolactin and tyrosine kinase levels [192–194]

Prostate cancer
Reduction in EGF-induced cell proliferation, induction of apoptosis and necrosis through EGFR downregulation
Induction of apoptosis mediated by activation of ERK and inhibition of AKT signalling pathways (same effect given by
2-AG and Met-F-AEA)

[195,196]

Non-melanoma skin cancer Induction of apoptosis mediated by oxidative stress and CBR-independent signalling [197]

Lymphoma Reduction of tumour cell viability [198]

R(+)-Methanandamide
(stable AEA analogue)

Prostate cancer Inhibition of cell growth in prostate cells (PC-3) [98]

Cervical cancer Activation of apoptosis mediated by COX-2 and subsequent prostaglandins synthesis via PPARγ [97]

Gastro-intestinal cancer Induction of G0/G1 cell cycle arrest and necrosis [99]

Met-F-AEA
(stable AEA analogue)

Breast cancer Induction of cell cycle arrest correlated with Chk1 activation, Cdc25A degradation and downregulation of Cdk2 activity
Inhibition of adhesion and migration, interfering with the RhoA/ROCK signalling pathway and FAK phosphorylation [100–102]

Melanoma Inhibition of cell growth [106]

Lung cancer Induction of G0/G1 cell cycle arrest leading to apoptosis (in combination with UR597) [103]

Gastro-intestinal cancer Increase in AEA availability, induction of oestrogen receptor β expression, decrease in proliferation rate due to CB1
up-regulation through the transcriptional activation of CNR1 promoter (CRC) [104]

Thyroid cancer Induction of apoptosis via p53 and p21 [105]

PEA

Brain cancer Induction of cell death [52]

Melanoma Reduction of melanoma cell survival in combination with URB597 [108]

Breast cancer Increase in cytotoxic effect of AEA [109]

ACEA

Gastro-intestinal cancer Activation of apoptosis through TNF-α–mediated ceramide de novo synthesis [110]

HCC Reduction of cell viability, invasion and MMP-2/MMP-9 expression [111]

Breast cancer Inhibition of invasion in breast cancer stem cells [112]

Pancreatic cancer Induction of ROS-mediated autophagy via activation of AMPK, inhibition of energetic metabolism. Decrease in GAPDH
and PMK2 expression. Increase the anticancer potential of gemcitabine [113]



Cells 2021, 10, 3396 13 of 34

Table 2. Cont.

COMPOUND TUMOUR ACTION REF.

JWH-015

Prostate cancer Inhibition of cell growth and apoptosis induction via de novo synthesis of ceramide.
Signalling pathways include JNK activation and Akt inhibition. [98]

Breast cancer Reduction of tumour growth, chemotaxis and wound healing. (block of the chemokine receptor CXCR4 signalling)
Inhibition of EGFR activation in ERα breast cancer cells [115,199]

Lung cancer Attenuation of growth factor-directed in vitro chemotaxis and chemo-invasion. Reduction in focal adhesion complex.
Inhibition of Akt phosphorylation and reduction in MMP-9 expression and activity [25]

JWH-133

Brain cancer Inhibition of glioma cell viability [118]

Breast cancer Decrease in cell proliferation, induction of apoptosis, inhibition of cell migration [119]

Melanoma Decrease in trans-endothelial migration in vitro [117]

Table 3. In vitro evidence of the main cannabinoid receptor antagonist/inverse agonists in different tumour subtypes.

COMPOUND TUMOUR ACTION REF.

SR141716
(CB1R selective antagonist)

Gastro-intestinal cancer

Induction of G2/M cell cycle arrest and mitotic catastrophe
Synergic effect in combination with oxaliplatin, blocking cell proliferation
Impact in chemoresistance and cancer stemness, retain of architecture and
heterogeneity of human healthy organoids in ex vivo cultures through inhibition of
Wnt/β-catenin canonical pathway

[126,129,200,201]

Brain cancer Induction of cell proliferation arrest, caspase-dependent apoptosis and
upregulation of the NKG2D ligand MICA/B [128]

Breast cancer Inhibition of cell proliferation via CB1R-interaction with lipid rafts [127]

CBD
(antagonist, inverse agonist and negative

allosteric modulator at CB1R/partial agonist
at CB2R)

Gastro-intestinal cancer

Induction of G0/G1 cell cycle arrest through downregulation of CDK2-cyclin E.
Activation of mitochondrial-dependent apoptosis pathway by increasing ROS
production
Reduction of cell migration
Protection of DNA from oxidative damage, increase in endocannabinoid levels,
reduction in proliferation through CB1R, TRPV1 and PPARγ involvement.
Reduction of invasion and cell migration
Induction of apoptosis through excessive ROS production, ER stress and Noxa
activation

[130,131,139,151]
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Table 3. Cont.

COMPOUND TUMOUR ACTION REF.

CBD
(antagonist, inverse agonist and negative

allosteric modulator at CB1R/partial agonist
at CB2R)

Lung cancer

Induction of PPARγ dependent apoptosis through increased levels of
COX2-dependent prostaglandins
Reduction in cell migration accompanied with decreased PAI-1
Induction of ICAM-1 in cancer cells leading to lymphokine-activated killer (LAK)
cell-mediated cytotoxicity
Upregulation of ICAM-1 and TIMP-1 levels, decreasing cell migration via CBRs,
TRPV1 and p42/44 MAPK

[135,140,141,202]

Breast cancer

Induction of a crosstalk between apoptosis and autophagy in mediating cancer cell
death
Inhibition of cell proliferation, induction of apoptosis, ER stress (MDA-MB-231).
Induction of cell cycle arrest at G1/S phase (MCF-7) via CBRs or TRPV1 receptors
Induction of apoptosis through downregulation of mTOR, cyclin D1 and
upregulation of PPARγ (T47-D, MDA-MB-231)
Inhibition of EGF-induced cell proliferation, colony formation, migration and
invasion. Downregulation in cytokine production
Reduction of proliferation and invasion through Id-1 downregulation
Increase uptake of DOXO and induction of apoptosis, via activation of TRPV2
(TNBC)

[133,136–138,142,145]

Prostate cancer

Cytotoxic effects and downregulation of CB1R, CB2R, VEGF, PSA, IL-6, IL-8 in
LNCaP. Reduction of spheroid formation in LNCaP stem cells
Cytotoxic activity, cell cycle arrest, apoptosis induction. Induction of apoptosis in
LNCaP partially due to TRPM8 antagonism and accompanied by downregulation
of AR, p53, elevated ROS. Synergistic anti-proliferative effects with docetaxel
and/or bicalutamide in DU-145 and/or LNCaP cells

[134,203]

Brain cancer

Inhibition of cell proliferation, modulation of cell cycle, increase in ROS levels and
apoptosis when given in combination with ∆9-THC
Increase in ROS production derived from upregulation of HSP super family genes.
Decrease in cytotoxic effects through HSP upregulation. HSP inhibitors in
combination with CBD lead to increased cytotoxicity respect to CBD alone
Inhibition of cell invasion through Id-1 downregulation
Inhibition of cell proliferation and invasiveness through downregulation in
proteins specifically involved in growth, invasion and angiogenesis,
downregulation of ERK, Akt, and HIF-1α
Inhibition of cell proliferation, induction of apoptosis and chemosensitivity to TMZ,
BCNU, and DOXO through TRPV2 activation

[132,143,144,146,147]



Cells 2021, 10, 3396 15 of 34

Table 3. Cont.

COMPOUND TUMOUR ACTION REF.

AM251
(CB1R inverse agonist/GPR55 agonist)

Pancreatic cancer Induction of apoptosis via receptor-independent mechanisms [204]

Gastro-intestinal cancer Reversion of the Met-F-AEA anti-proliferative effect [104]

Breast cancer Reversion of the effect of ACEA on the decrease in the invasive potential of breast
cancer stem cells [112]

Renal cell carcinoma Decrease in proliferation, induction of apoptosis by upregulating Bax and
decreasing Bcl-2. Inhibition of cell migration [148]

6-iodopravadoline (AM-630)
(CB2R inverse agonist) Renal cell carcinoma Inhibition of cell proliferation, induction of cell cycle arrest in G2/M phase,

anti-migratory effects [149]

CID16020046
(selective GPR55 antagonist)

Gastro-intestinal cancer
Decrease in migration and adhesion to endothelial cell [151]

Inhibition of cell proliferation and ERK1/2 phosphorylation [150]

Breast cancer Decrease filopodia formation and migration [72]

Reduction in chemoresistance through downregulation of MDR (e.g., BCRP) [152]
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2. The Tumour Microenvironment

The TME represents the entire ecosystem adjacent to the cancer cells, consisting of the
extracellular matrix (ECM), blood vessels and supporting cells, including immune cells
(T and B lymphocytes, natural killer (NK) cells, dendritic cells (DCs), tumour-associated
macrophages, etc.), cancer-associated fibroblasts (CAFs), endothelial cells (ECs), adipocytes,
and pericytes [205–209].

The TME participates through dynamic interactions to neoplastic development, ac-
tively contributing to a plethora of phenomena, such as proliferation, angiogenesis, inva-
sion, immune escape, and metastatic spread [210–212].

ECM is one of the major components of the TME. The composition of the ECM
can undergo substantial variation among different tumours/tissues, as well as during
tumour evolution, being susceptible to variation in protein abundance, glycoproteins,
and proteoglycans composition and/or ECM stiffness [213]. In addition to its support-
ing role, ECM is also directly and indirectly involved in different aspects of cancer cell
progression, i.e., cell survival, proliferation, adhesion, and migration [214]. Moreover,
ECM contributes to the development of blood vessels to supply the tumour mass and
to support the metabolic processes [215]. The establishment of an hypoxic environment
also concur to promote the HIF-dependent VEGF expression, resulting in an abnormal
development of neo-angiogenesis and in the suppression of the anti-tumour immune
response [216,217]. ECs also release angiocrine factors and promote a rearrangement of
vessel architecture characterised by altered permeability which is crucial for tumour cells
metastatic spreading [218,219].

Among the cellular components of the TME, CAFs exert a prominent role in several
tumours. CAFs establish a biunivocal crosstalk with cancer cells and other accessory cells,
mainly acting through the release of an altered secretome and producing a large amount
of growth factors, cytokines, chemokines, and metabolites, that influence tumour evolu-
tion [220–222]. Through the release of soluble factors, CAFs are able to promote EMT in
cancer cells, endowing them with pro-invasive features and stem-like properties, ultimately
favouring metastatic dissemination [223–225]. CAFs are also responsible for the arising of
a pro-inflammatory milieu, for new vessels formation and for the recruitment of immune
cells. In particular, CAFs exert an immunomodulating role, mainly enhancing the M2/M1
macrophage and the Treg/Th1 ratio [226–228]. Tumour-associated pericytes (TAPs), in
addition to their supportive role to the angiogenic process, also actively contribute to TME
immunomodulation through disruption of anti-tumour T cells responses [229,230]. In some
contexts, the presence of cancer-associated adipocytes (CAAs) is an additional support to
tumour development. They represent a lipid reservoir for cancer cells, sustaining their
energetic demands [231]. In addition, CAAs exhibit an impairment in adipocyte differ-
entiation markers and over-expression of cytokines, proteases and growth factor termed
adipokines, altogether emerging as key actors in neoplastic progression [232–234].

3. The Involvement of the Endocannabinoid System in the Tumour Microenvironment

Alongside the widely investigated effect of cannabinoid on cancer cells, as deeply
aforementioned, evidence are now emerging about the direct effect of ECS on accessory
cells of the TME.

The different cellular components of the TME surrounded the tumour as a dense
neuralgic network, generating intense crosstalk that supports and promotes neoplastic
growth, and they act as allies in all phases of cancer progression, up to the metastatic
process. Given the wide effects of ECS, as discussed above, the deregulation of different
components of the ECS machinery in the accessory cells may cover an important role in
shaping TME.

The microenvironmental cells that are most affected by ECS are the components of
the immune system. Immune cells (innate and adaptative immunity) are known to release
eCBs and they are also able to respond to these ligands [235,236]. Indeed, CBR expression
has been found in several immune components, among which dendritic cells, T- and B-
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cells, macrophages, and NK cells [237–241]. CB1R and CB2R are mainly expressed in the
immune system and their levels are increased upon exposure to inflammatory cytokines
(e.g., IL-6, TNF-α) [242]. These cytokines are common in cancer diseases and associated
with improvement of cell growth [243–245]. The inflammatory milieu also mediates the
modulation of eCBs [242]. It is known that cytokines stimulation is able to increase the
CBRs expression in peripheral blood mononuclear cells (PBMCs) [246]. However, Staiano
et al. reported that the high expression of CB1R and CB2R in lung-resident macrophages
inhibited the release of several factors (VEGF-A) in vitro inflammatory environments [247].

Notably, the effects of CBs in tumour immune regulation can be different and de-
pendent on tumour types. In murine TNBC cells, the treatment with CBD reduced the
recruitment of the M2 sub-population of macrophages in the primary tumour and in
the metastatic site. Indeed, CBD-treated cancer cells exhibited a reduction in secreted
granulocyte macrophage colony-stimulation factor (GM-CSF) and C-C motif chemokine
ligand 3 (CCL3) cytokines, which are important for macrophage recruitment and activa-
tion [142]. Similarly, in melanoma cells THC treatment reduced infiltration of macrophages
and neutrophils and interfered with cytokines production [248].

Recent evidence highlighted a central role of CB2R in regulating tumour immunity in
melanoma. High intra-tumoural CB2R gene expression correlated to the improvement of
overall survival. In particular, CB2R is predominantly expressed in B cells and responsible
for their differentiation. The impairment of CB2R expression led to less differentiated
B cells, favouring the induction of regulatory T cells (Treg) and the generation of an
immunosuppressive microenvironment in Cnr2−/− mice [249].

In NSCLC, the administration of the CB2R agonist JWH-015 strongly reduced re-
cruitment of macrophages to the tumour site, thereby inhibiting macrophage induced
EMT and the acquisition of pro-invasive skills and contributing to the blockade of tu-
mour progression given by the interplay between cancer and microenvironment host cells,
thus indicating tumour regressive property in A549, CALU-1 cells and in vivo mouse
model [250]. Recently, Haustein and co-workers showed that Met-F-AEA treatment of lung
cancer cells led to ICAM-1 upregulation and increased their susceptibility to the cytolytic
action of LAK cells, suggesting a novel anti-cancer action mode of cannabinoids [202].

Several studies demonstrated that human DCs expressed CBRs and produced eCBs [12,251].
In the pancreatic ductal adenocarcinoma murine model, 2-AG administration exhibited a
direct anti-tumour effect by inducing DC phenotypic maturation and the production of
pro-inflammatory cytokines, but also significantly promoted an immunosuppressive mi-
croenvironment via increasing the suppressive immune cell population of myeloid-derived
suppressor cells (MDSCs) [252].

In HCC, inactivation of CB2R altered immune infiltrates, for instance, leading to
inhibition of CD4+ T-cell-recruitment. Although the authors did not investigate the specific
lymphocyte population, it seems that the increase in tumour growth in CB2R-deficient
HCC model was related to a malfunctioning response in immunosurveillance [253].

In CRC, the GPR55 knockout in mouse models resulted in the alteration of immune
composition, with an increase in the amount of CD4+/CD8+ T cells, indicating a relation
between GPR55 impairment and a more favourable prognosis [150].

In a model of colon cancer, MAGL deficiency drives CB2R-TLR4 axis-dependent
macrophages polarisation towards an M2-phenotype, through 2-AG-CB2R signalling,
which contributed to suppressing cancer-related CD8+ T-cells. In mice bearing MAGL-
deficient macrophages, treatment with CB2R antagonists created a hurdle to cancer pro-
gression, providing potential therapeutic targets [254].

On the contrary, in glioblastoma stem cells (GSCs) ARS2/MAGL axis promoted cancer
progression and M2-like TAM polarisation. Furthermore, pharmacological targeting of
MAGL impacted on survival rate in vivo xenograft model and offered benefits in patients
with glioblastoma multiforme (GBM) [255].

Moreover, cannabinoids have been shown to modulate chemotaxis in various immune
cell types [256–258]. In line with this concept, THC leads to a CB2R-dependent inhibition of
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peritoneal murine macrophages through activation of RANTES/CCL5 signalling [259]. A
parallel report, by other authors, demonstrated that THC treatment of murine macrophages
inhibited their chemotaxis towards CCL2 [260].

In solid tumours, CAFs are one of the most abundant cellular components of the TME.
A recent publication shed new light on an intriguing role of the ECS in regulating stromal
reactivity in a prostate cancer cell model. Indeed, it was shown that patient-derived CAFs,
in response to tumour-secreted inflammatory cytokines, upregulated both CB1R and CB2R
compared to the healthy counterpart. Interestingly, treatment with WIN 55,212.2 was able
to revert CAF activated phenotype or to prevent tumour-induced healthy prostate fibroblast
activation, thereby interfering with the supportive role of the stromal component in prostate
cancer [261]. These observations reinforce the therapeutic potential of WIN 55,212-2 in
prostate cancer treatment and stress the importance of targeting the endocannabinoid
system to simultaneously hinder both cancer cells and stromal compartments and to
disrupt their pro-aggressive interplay.

Although in a non-cancer model, it has been reported that UVA-UVB exposition
of human skin fibroblast increased CB1R/2 and GPR55 expression, resulting in a pro-
inflammatory and pro-oxidant response [262]. This could suggest new approaches to
interfere with the stromal ECS in order to prevent UV-induced inflammation and/or redox
imbalance. The alteration of CB1R expression was also reported during differentiation of
human fibroblast into neurons. Although CB1R was not detected in the early stages of
neurogenesis, it was markedly increased during transformation of pluripotent stem cells
into differentiated neurons [263].

A few evidence are also available about the impact of cannabinoids on ECs and the
angiogenic process in cancer. It was reported that CBD is able to inhibit human umbilical
vein endothelial cells (HUVEC) migration, invasion, and sprouting, and that these effects
are related to a negative modulation of several prominent factors including MMP-9, TIMP1,
PAI1, urokinase-type plasminogen activator (uPA), CXCL16, IL-8, Endothelin-1 (ET-1), and
platelet derived growth factor-AA (PDGF-AA), which are involved in the primary vascular
endothelial cell functions [264]. In addition, AEA-treated breast cancer cells were found
to impair endothelial cell proliferation, which correlated with a decreased synthesis of
VEFG, leptin, interferon-γ and thrombopoietin [265]. The anti-angiogenic activity was
also demonstrated in thyroid cancer cells, using Met-F-AEA. In particular, this compound
reduced endothelial cells proliferation and led to apoptotic process via CB1R. [266].

Recently, Luo and colleagues showed that THC is implicated in the crosstalk between
cancer cells and vascular endothelial cells in a Stat1-dependent manner. In particular,
the authors demonstrated that THC-treated HCCT116 cells were able to promote tube
formation and human-induced pluripotent stem cell-derived vascular endothelial cells
(hiPSC-VECs) migration. The genetic and pharmacological Stat1 inhibition interfered with
these pro-angiogenic effects, dampening the crosstalk between cancer and endothelial
cells [267].

Experimental evidence also demonstrated a role for CBRs activation in mediating
cancer cells extravasation and, in turn, metastatic dissemination. In particular, it was
reported that CB2R activation with JWH-133 significantly interferes with human melanoma
cells adhesion to brain endothelial cells, thereby decreasing the trans-endothelial migration
ability and reducing brain melanoma metastases [117].

Additionally, recent studies reported that, although in a non-neoplastic condition,
the endogenous 2-AG and AEA, as well as the exogenous cannabinoid WIN 55,212-2,
promoted the vasorelaxation of rat retinal capillaries in a CB1R-dependent manner, by
modulating the nitric oxide-cyclic guanosine monophosphate pathway, thus resulting in
an increase in capillary diameter and pericyte width [268]. The ability of cannabinoids to
dilate the retinal capillaries may have therapeutic implications for retinal vascular diseases,
and the CB1R may provide a new target for the regulation of the retinal blood flow.

ECS was also involved as a mandatory role in fat storage through different processes,
including direct effects on adipocytes (e.g., proliferation and differentiation), contributing
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to the development of obesity and metabolic diseases [269–271]. The presence of CAAs in
the tumour milieu, of several solid cancers (e.g., in breast cancer) is associated with cancer
malignancy and it may be supported by the catabolic effects of ECS. Two different studies
reported that the alteration of the catabolic activity in adipocytes led to tumour progression
through PPARγ downregulation in co-cultivated adipocytes [272,273]. Moreover, the
authors discovered that breast cancer cells co-cultivated with mature adipocytes exhibited
an aggressive phenotype, leading to induction of EMT in co-culture condition [273].

Although further investigation and clarification are needed, these studies suggest a
role for the ECS in regulating the TME composition and reactivity, paving the way to novel
pharmacological approaches to fight cancer progression, that not only directly target cancer
cells, but also counteract the supportive role of accessory cells (Figure 4).
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Figure 4. ECS re-shape TME by regulating the functionality and reactivity of different cellular
components. Several TME cells express receptors of the ECS; particularly, immune cells, CAFs,
and endothelial cells. Cannabinoids are able to mediate several anticancer mechanisms; these
bioactive lipids reduce cytokine secretion, T-cell recruitment, proliferation, M2 population rate,
thus acting on immune components; reduce CAFs reactivity and invasive ability. On endothelial
cells, cannabinoids act on migration, invasion, sprouting features and reduce angiogenic factors
release. Cannabinoids showed in the figure: CBD, WIN 55,212-2, ∆9-THC, JWH-015, Met-F-AEA.
Created with BioRender.com. Adapted from “Tumor Microenvironment” template, accessed on 16
November 2021.

4. Cannabinoid-Based Antineoplastic Treatment—Preclinical Studies

Throughout history, cannabinoids have been considered for their therapeutic features
and, in recent decades, they go into the spotlight due to their important role in cancer.
However, despite the growing studies to understand the mechanisms by which ECS
impacts on cancer progression, there are still few developments in this field that consent to
overcome the preclinical phase.

To date, two drugs have been used to fight chemotherapy-induced nausea and vomit-
ing, Dronabinol (Marinol ®—Solvay Pharmaceuticals, Inc. Company. Marietta, GA, USA)
and Nabilone (Cesamet ®—Valeant Pharmaceuticals Int. Costa Mesa, CA, USA), both
synthetic forms of ∆9-THC.

BioRender.com
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Only four pilot clinical studies with cannabinoids in the anti-tumoural therapy were
carried out [274–277]. However, due to the small number of enrolled patients, these studies
could not define reliable data on large cohort. Nevertheless, in a future vision, considering
the results obtained in vitro and in preclinical models as a firm basis, cannabinoids may
potentially be proposed as innovative therapeutic approaches in various cancer types.

In the last decade, several murine preclinical models were set up to test the anti-tumour
effect of cannabinoids, as reported in Table 4.

Table 4. Anticancer cannabinoid effects in murine preclinical models.

EFFECTS TUMOUR TYPES and MEDIATORS REF.

Tumour growth

Glioma (JWH-133; THC; CBD)
Breast cancer (JWH-133; THC; WIN 55,212-2;
JZL184)
Prostate cancer (CBD; JWH-015; WIN 55,212-2;
JZL184)
CRC (CBD; JWH-015; URB597; URB-602;
HU-331; O-1602)
Melanoma (THC; CBD; WIN 55,212-2; URB597)
HCC (JZL184)

[119,134,157,159,160,181,185,248,278–281]

Angiogenesis

Glioma (JWH-133)
CRC (CBD; URB-602; CBG; HU-331)
Melanoma (THC; CBD; WIN 55,212-2)
Breast cancer (WIN 55,212-2)

[98,104,108,118,119,131,161,180,181,248,279,282–285]

MMPs expr. Brain cancer (JWH-133; THC) [174,286]

Apoptosis
CRC (CBD)
Prostate cancer (CBD)
Melanoma (THC; CBD)

[131,134,181,248]

Metastatic incidence

CRC (CBD)
Breast cancer (THC; CBD; WIN 55,212-2;
JZL184)
Melanoma (THC; CBD; WIN 55,212-2; ACEA)
Prostate cancer (WIN 55,212-2; JZL184)
Lung cancer (URB597)
HCC (JZL184)

[106,119,131,157,159,160,163,180,287,288]

Survival
Glioma (CBD; JZL184)
Breast cancer (CBD)
Melanoma (THC)

[101,255,287–291]

Many authors have explored ECS modulation in preclinical glioma models [26,118,175].
Different studies highlighted that synthetic cannabinoids, such as JWH-133, WIN 55,212-2,
HU-210, and KM-233, are promising as anticancer agents for glioma treatment [286]. In
particular, the treatment with JWH-133 significantly decreased tumour size and tumour
angiogenesis, impairing VEGFR activation and reducing blood vessel size and functional-
ity [282,283]. A deregulated expression of Ang2, TIMP and MMPs given by the synthetic
cannabinoid was also observed, resulting in the inhibition of cell invasiveness [286]. Since
the upregulation of MMP-2 is associated with poor prognosis in gliomas, the effect on
MMP-2 is promising for cannabinoid anti-tumour efficacy [174].

Combined treatment of THC with TMZ, the principal pharmacologic approach for
GBM, increased the effect of tumour growth reduction in glioma xenografts. This effect was
also observed in tumour resistant to TMZ [278]. CBD also elicited anti-tumour effects, as
observed by the decrease in ld-1 and Ki67 expression in tumour both in orthotopic (U251)
and xenograft glioma models, significantly prolonging mouse survival [289–291]. Moreover,
a combination of CBD+THC increased ionising radiation anticancer therapy [175].

Both phytocannabinoids, CBG, and the synthetic HU-331 (quinone, synthesised from
CBD) reduced tumour growth in colon cancer xenograft models [279,280]. These treatments
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also impaired angiogenesis, ACF and gave less toxicity with respect to DOXO [284,292].
CBD was also shown to mainly reduce the number of ACF, polyps and area of tumours in
azoxymethane-induced colon cancer, not only impacting on angiogenesis and metastasis,
but also promoting apoptotic process mediated by Noxa activation [131], [285]. In addition,
the atypical cannabinoid O-1602 exerts an anti-inflammatory effect by inhibiting TNF-α
expression and Stat3 and NFkB activation and promoted the decrease in tumour growth in
colon cancer murine models [281].

The cannabinoid therapeutic potential was also studied in orthotopic, genetically
engineered mouse models (GEMMs) and xenograft breast cancer in vivo models [293].
CBD and THC decreased tumour size and metastatic lung incidence, and in some cases,
they additionally increased survival [287]. CBD also acts by decreasing EGFR signal and
Akt expression [142]. In HER2+ breast cancer subtypes, THC also impacted the heteromers
CB2R-HER2, selectively binding to CBR and consequently leading to HER2 inactivation
and decreasing HCC1944-orthotopic xenograft mice tumour size. These findings defined a
new targeted approach in HER2-positive breast cancer in in vivo models [90].

Other evidence demonstrated that WIN 55,212-2 significantly impaired tumour growth,
angiogenesis, and lung metastasis in two different breast cancer murine models, xenograft-
MDA-MB-231 (TNBC subtype) and mouse mammary tumour virus encoding polyomavirus
middle T antigen (GEMM-MMTV-PyMT) [119].

In prostate xenograft-LNCaP murine model, CBD was able to induce pro-apoptotic
effects and to inhibit tumour growth [134]. On the model, synthetic compounds, such as
JWH-015 and WIN 55,212-2, reduced tumour size [98]. In particular, WIN 55,212-2 caused
a decrease in serum PSA level that directly correlated with cancer growth inhibition [185].

WIN 55,212-2 was effective also in skin cancers, especially in melanoma, where it
reduced tumour growth, angiogenesis and metastatic potential in xenograft-B16 [180].
CBD and THC were also effective in murine models of cutaneous melanoma, leading to a
reduction in tumour growth, angiogenesis, and metastatic dissemination, by inducing an
increase in autophagy and apoptosis processes [181,248]. In addition, a recent discovery
evidenced how the double administration of THC+Trametinib reduces cancer survival,
invasion and metastatic potential of MEK inhibitor (MEKi)-resistant melanoma cells [288].
In addition, ACEA was able to inhibit, liver colonisation of human melanoma cells into
severe immunodeficiency (SCID) mice [106].

There are also anti-cancer in vivo evidence regarding ECS degradative enzymes in-
hibitors. It has been reported that URB597, an acknowledged FAAH inhibitor, when
used in combination with PEA or AEA, reduces skin cancer and CRC progression, respec-
tively [104,108]. In lung cancer, URB597 was effective on the metastatic potential [163].

URB-602 is a MAGL inhibitor, which showed an anticancer effect on CRC growth and
angiogenesis [161]. Another MAGL inhibitor, JZL184, exerted its effects mainly attenuating
tumour growth and metastatic process in different murine models, among which, prostate
cancer, HCC, and breast cancer, where the compound acts mainly by reducing the progres-
sion of bone metastasis [157,159,160]. Lastly, JZL184 increased the survival rate in GBM
murine model [255].

These scientific findings concerning in vivo model cannabinoids’ efficacy are positive
and encourage more in-depth research in this area. Although considering the obstacles to
overcome and the aspects to be better explored, it is extremely interesting to deepen the
mechanisms through which ECS deregulation, leads to changes in the tumour milieu which
then impact on cancer evolution.

5. Concluding Remarks

Here, we provide an in-depth overview of the complex endocannabinoid system and
the numerous and compelling evidence in the tumour field. The effects of ECS deregulation
have been studied for decades. Several evidence explain how ECS can impact on cancer
development and what are the signalling pathways that are involved in the observed effects.
Most of the evidence is related to cancer cells, where ECS affects tumour initiation and
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progression through different mechanisms. Cannabinoids induce cell death, cell cycle arrest,
inhibition of tumour angiogenesis, but they have a substantial impact also on migration and
tumour invasion. However, still today many evidence are contradictory, so they need more
in-depth analysis. The surrounding microenvironment is another field that has recently
been explored in relation to this complex system. Although the studies are still limited and
more deep investigations are needed, there are promising evidence on the deregulation of
ECS in the immune system and the role of cannabinoids in cancer immune modulation.
A direct effect of the ECS in regulating stromal reactivity, tumour:stroma crosstalk and
endothelial cell function is also emerging. In detail, the action of phytocannabinoids (CBD,
∆9-THC), but also the treatment with an aminoalkylindoles agonist (JWH-015) on the
immune component, decreases the secretion of cytokines/chemokines, recruitment, and
proliferation. Furthermore, for the macrophage component, there is a decrease in the M2
population rate. The use of Met-F-AEA is able to reduce the release of angiogenic factors,
proliferation, migration, and sprouting in endothelial cells. A similar result was also
obtained with CBD. Finally, it is known, from a recent publication, that the cannabimimetic
aminoalkylindole WIN 55,212-2 acts on stromal reactivity and reversion of activating-
related phenotype.

This shed new light on the potential clinical application of cannabinoids to target not
only cancer cells but also the supportive accessory cells and the tumour:stroma interplay.
On the basis of the in vitro available studies, numerous preclinical studies in mouse models
have been developed to proceed towards the design of novel pharmacological approaches,
based on the use of cannabinoids both alone or in combination with already approved
drugs.
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