
2042

J. Dairy Sci. 100:2042–2056
https://doi.org/10.3168/jds.2016-11543
© American Dairy Science Association®, 2017.

ABSTRACT

Genotype by environment interaction (G × E) in 
dairy cattle productive traits has been shown to ex-
ist, but current genetic evaluation methods do not take 
this component into account. As several environmental 
descriptors (e.g., climate, farming system) are known to 
vary within the United States, not accounting for the G 
× E could lead to reranking of bulls and loss in genetic 
gain. Using test-day records on milk yield, somatic cell 
score, fat, and protein percentage from all over the 
United States, we computed within herd-year-season 
daughter yield deviations for 1,087 Holstein bulls and 
regressed them on genetic and environmental informa-
tion to estimate variance components and to assess pre-
diction accuracy. Genomic information was obtained 
from a 50k SNP marker panel. Environmental effect 
inputs included herd (160 levels), geographical region 
(7 levels), geographical location (2 variables), climate 
information (7 variables), and management conditions 
of the herds (16 total variables divided in 4 subgroups). 
For each set of environmental descriptors, environmen-
tal, genomic, and G × E components were sequentially 
fitted. Variance components estimates confirmed the 
presence of G × E on milk yield, with its effect being 
larger than main genetic effect and the environmental 
effect for some models. Conversely, G × E was moderate 
for somatic cell score and small for milk composition. 
Genotype by environment interaction, when included, 
partially eroded the genomic effect (as compared with 
the models where G × E was not included), suggest-
ing that the genomic variance could at least in part 
be attributed to G × E not appropriately accounted 
for. Model predictive ability was assessed using 3 cross-
validation schemes (new bulls, incomplete progeny test, 
and new environmental conditions), and performance 

was compared with a reference model including only 
the main genomic effect. In each scenario, at least 1 of 
the models including G × E was able to perform better 
than the reference model, although it was not possible 
to find the overall best-performing model that included 
the same set of environmental descriptors. In general, 
the methodology used is promising in accounting for 
G × E in genomic predictions, but challenges exist in 
identifying a unique set of covariates capable of describ-
ing the entire variety of environments.
Key words: genotype by environment interaction, 
genomic prediction, reproducing kernel Hilbert space 
regression, reaction norm model

INTRODUCTION

Dairy cattle breeding programs have ensured an im-
provement of performance over the past decades within 
the United States (CDCB, 2016). Phenotypes for pro-
ductive, reproductive, and type traits recorded over a 
wide variety of environments are currently used in the 
estimation of breeding values for selection candidates. 
Selection has been traditionally based on BLUP and 
pedigree information, but BLUP accuracy in predicting 
breeding values has received a considerable boost from 
the availability of genomic information coming from 
low-cost genotyping assays (Hayes et al., 2009). Yet, 
genomic information represents a promising tool to im-
prove the efficiency of selective breeding in dairy cattle 
when bulls’ daughter information is not available.

Statistical models for the prediction of breeding val-
ues assume the phenotype (i.e., the individual measure 
of a trait on an individual, for example milk yield) as 
the sum of 2 main components, the additive genetic and 
environmental effects. In this model, the single gene 
variants that an individual carries determine its genetic 
potential and the environmental conditions (defined 
as the management, nutrition, and climatic conditions 
where the individual expresses its genetic potential) 
determines the mean performance of individuals in a 
given environment, independent of the genetic makeup. 
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This approach ignores genotype by environment inter-
action (G × E) and may not be well-suited for selec-
tion targeting specific environmental conditions.

The existence, magnitude, and genetic architecture 
of G × E for breeding goals in dairy cattle populations 
have been investigated by several authors (Shariati et 
al., 2007; Hayes et al., 2009; Strandberg et al., 2009), 
and what emerges is that G × E has an effect on most 
breeding goal traits in dairy cattle. Several authors have 
proposed strategies to account for G × E in dairy cattle 
genetic evaluation and breeding scheme design (Kol-
modin and Bijma, 2004; Bryant et al., 2005; Mulder et 
al., 2006). When environmental conditions are stable 
but far from optimal values (e.g., excessive temperature 
and humidity throughout the year), breeders can de-
velop specialist strains (Kassen, 2002) adapted to these 
extreme environments (e.g., hot and humid). On the 
other hand, when conditions are unstable (e.g., diet 
in pasture-based systems), breeders can develop robust 
generalist individuals that are capable of maintaining 
constant performance over different environmental con-
ditions.

Some of these strategies have already been implicitly 
implemented in different dairy breeds and selection 
programs. Bryant et al. (2006) defined the US Holstein 
as a specialist of superior feeding level, whereas New 
Zealand Holstein and Jersey are considered generalists 
because they are more tolerant to changes in environ-
mental conditions. This hypothesis is supported by the 
work of Kolmodin et al. (2003), who showed that selec-
tion of genotypes that are top-performing in specific 
environments increases their environmental sensitivity, 
as gene variants that perform well in that environment 
can reach fixation, leaving individuals and the popula-
tion without the genetic background needed to toler-
ate environmental changes. Performance of specialized 
breeds, such as the US Holstein, could be particularly 
threatened by changes in environmental conditions, 
especially with the more frequent occurrence of heat 
stress due to global warming (Hayes et al., 2009). In the 
next decade livestock will be facing new climatic condi-
tions and, inevitably, different management systems. In 
the presence of G × E, current breeding goals might 
not be appropriate to the future industry (Ravagnolo 
and Misztal, 2000). Breeding programs should therefore 
either consider robustness as a breeding goal or redefine 
the breeding goals for future industry needs; both ap-
proaches require modeling G × E.

The statistical treatment of G × E in genetic evalu-
ations hinges on 2 different approaches (Windig et al., 
2011). The first and classical approach is to consider 
performance in the different environments as different, 
potentially correlated, traits. This approach is used in 
across-country genetic evaluations (Schaeffer, 1994; 

Nilforooshan et al., 2010, 2014) and yields environment 
(country)-specific predictions of breeding values. The 
extent of G × E is quantified by means of the genetic 
correlations across environments. The second approach 
considers the use of environmental parameters (En-
Cov), which are covariates that link the different envi-
ronments (Ravagnolo and Misztal, 2000; Bohmanova et 
al., 2008; Su et al., 2009). Using this approach, breeding 
values are estimated for overall performance (i.e., across 
environments) and for the sensitivity of each individual 
to the changes in EnCov, also known as reaction norm. 
The latter approach has been demonstrated by Calus 
et al. (2004) to be more suitable for genetic evaluations, 
as it combines observations in larger groups and pro-
vides better parameter estimation, although the EnCov 
might not catch part of the G × E. Nonetheless, the 
choice of a set of EnCov that explains the entire G 
× E is not trivial, leading to the necessity of testing 
several EnCov in each population under study (Calus 
and Veerkamp, 2003; Zwald et al., 2003).

In spite of this, the reaction norm model remains 
a powerful and flexible approach for modeling G 
× E; however, implementing a reaction norm model 
with many genetic markers and many EnCov is not 
trivial. Recently, Jarquín et al., (2014) proposed an 
approach that allows modeling interactions between 
large numbers of SNP and large numbers of EnCov 
using Gaussian processes, and Pérez-Rodriguez et al., 
(2015) extended the implementation to accommodate 
pedigree. The methodology proposed by Jarquín et al. 
(2014) falls within the class of Reproducing Kernel Hil-
bert Space regressions, which in animal breeding have 
been considered for genomic prediction (Gianola and 
van Kaam, 2008; de los Campos et al., 2009). Compel-
ling features of these models include the possibility of 
including genomic markers to account for genetic effect 
and using this information in interaction with environ-
ment, even defining complex variance-covariance struc-
tures spanning several EnCov and grouping variables 
(i.e., categories).

The genotyped US Holstein reference population al-
lows genomic selection to leverage phenotypic informa-
tion recorded on daughters across the whole country 
(i.e., under a wide range of environmental conditions). 
Genomic prediction can be performed using models 
that include reaction norms over several EnCov.

The objectives of our study were to (1) assess the ef-
fect of genotype, environment, and their interaction on 
US Holstein performance across the United States, (2) 
test the predictive ability of models that incorporate 
G × E for prediction of daughters’ performance for 
progeny testing bulls, and (3) test predictive ability 
when the validation set consists of performance under 
new climatic conditions.
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MATERIALS AND METHODS

Data

Test-day data files containing cow production infor-
mation from DRMS (Dairy Records Management Sys-
tem, Raleigh, NC) were accessed (https://www.cdcb.
us/CF-RCS/GetRCS.cfm?DocType=formats&DocNa
me=fmt4.html) and used to create the database used 
in this study. A total of 22,593,022 test-day records 
from 1,036,040 cows, daughters of 33,404 bulls, were in-
cluded. Recordings for milk yield (MY) and SCS were 
used as phenotypes. Fat (FP) and protein percentages 
(PP) were calculated by dividing the respective yields 
by milk yield and used as phenotypes, instead of using 
the respective total daily yield. This was done because 
the content (percentages) of fat and protein present a 
relatively oligo-genic architecture as compared with the 
total yield (VanRaden et al., 2009); for instance, FP is 
known to be strongly associated with the DGAT1 locus 
located on chromosome 14 (Kühn et al., 2004).

Step 1: Computation of Daughter Yield Deviations

We first used DRMS data to compute herd-year-
season daughter yield deviations (hysDYD) using the 
following model

 yijklm = µ + parsolmfi + hysj + cowlactkl   

 + addgenl + εijklm, [1]

where yijklm is a phenotypic measure (MY, SCS, FP or 
PP), µ is the overall mean, parsolmfi is the fixed effect 
of the ith class of parity (1st, 2nd, 3rd, >3rd) by stage 
of lactation (forty 15-d classes) by milking frequency 
(2 or 3 times per day), hysj is the random effect of the 
jth herd-year-season class (where seasons were defined 
as 3-mo periods: January to March, April to June, July 
to September, October to December), cowlactkl is the 
permanent environmental random effect of the kth 
lactation of the lth cow, addgenl is the additive genetic 
effect of the lth cow, and εijklm is a random residual. 
Best linear unbiased estimates (BLUE) of fixed ef-
fects and BLUP of random effects were obtained using 
variance components estimated on the present data 
and reported in Supplemental Table S1 (https://doi.
org/10.3168/jds.2016-11543). The model of expression 
[1] was fitted using the BLUPf90 family of programs 
(Misztal et al., 2002), we first used GIBBS2f90 for the 
estimation of variance components, BLUPf90IOD2 to 
obtain BLUE and BLUP solutions, and ACCf90 for 
obtaining EBV reliabilities.

Using estimates and predictions from the model 
described above, we derived hysDYD, which expressed 
the average adjusted performance of the daughters of 
a bull in a given herd-year-season contemporary group. 
We computed hysDYD for each sire as

 hysDYDij = addgeni + hysj + εij, [2]

where hysDYDij is the DYD for the ith bull in the 
jth herd-year-season (HYS), hysj is the effect of the 
jth HYS, addgeni is the genetic effect of the ith bull’s 
daughters, and εij is the average residual from model 
[1] for daughters of sire i in herd-year-season group j. 
The hysDYD were then weighted for the respective 
within-HYS effective daughters contribution, which ac-
counted for the contemporary group (HYS) structure of 
the bull’s daughters, the correlation between the same 
observation of the bull’s daughters, and the reliability 
of the performance of the daughters’ dam (Fikse and 
Banos, 2001).

Step 2: Genotype by Environment Analysis

Only bulls with Illumina 50k Beadchip (San Diego, 
CA) genotypes were included for the G × E analysis. 
Markers were edited for call rate (removed if lower than 
90%) and minor allele frequency (removed if lower than 
5%). This generated 1,500,119 hysDYD observations 
linked to bulls with genotypes. To reduce computation-
al costs while maintaining a meaningful representation 
of all bulls and environment across the country, further 
editing was applied in 2 steps. In step one, hysDYD 
were excluded if showing a value of effective daughters 
contribution smaller than 3 for any traits and if dis-
tance between the herd and the closest weather station 
was larger than 100 km. Herds were removed when 
only having a single HYS block. In step 2, we aimed to 
maximize the number of states and seasons represented 
for each sire. The hysDYD were edited to constrain the 
number of herds used per state while having a continu-
ative presence of the chosen herd across seasons. As 
larger farms were more likely to be picked, we repeated 
this step, creating 3 subsets by splitting herds based on 
the number of cows sampled in a single test-day, with 
classes being less than 100 cows, between 100 and 1,000 
and more than 1,000 cows. After editing, we had 16,664 
hysDYD from 82,495 cows, daughters of 1,087 bulls, 
recorded in 1,875 HYS classes from 160 herds located in 
36 states across the United States. Median (minimum, 
maximum) count of records for sire, HYS, and herd 
number of hysDYD were 8 (3, 165), 7 (3, 67), and 67 
(3, 571), respectively. States were further grouped into 
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7 different regions within the United States [Northeast 
(I: CT, DE, MA, MD; II: ME, NH, NJ, NY, VT), East 
(I: OH, PA; II: VA, WV), Southeast (AL, FL, GA, LA, 
MS, NC, SC), Midwest (I: WI, IL, IN, MI, NE, MO, 
IA; II: KS, OK, AR, KY), Southwest (NM, TX), North 
(ND, SD, MN, MT), and West (CO, WA, OR, ID)]. 
The distribution of records over states of the country is 
reported in Figure 1.

Environmental Parameters. Following the work 
of Parker Gaddis et al. (2016), we used geographical 
location, weather data, and information from DRMS 
herd summaries to describe environmental conditions. 
We computed a total of 25 environmental covariates 
(Table 1). Latitude and longitude (hereafter denoted as 
L) of the herd location were used for geo-referencing. 
Weather records (hereafter denoted as W) were ob-
tained from the National Climatic Data Center Quality 
Controlled Local Climatological Data (https://www.
ncdc.noaa.gov/qclcd/QCLCD?prior=N) database at 
the National Oceanic and Atmospheric Administration. 
Using zip codes, we derived geographical coordinates 
and matched them to the closest weather station, this 
was done using the packages “zipcode” (Breen, 2012) 
and “geosphere” (Hijmans et al., 2012) in R (R Core 
Team, 2014). The assignment of weather stations to 
farms was done ensuring that the distance between the 

central zip code location and the station was not larger 
than 100 km. Weather conditions were described using 
the average, minimum, and maximum daily tempera-
ture, relative humidity, atmospheric pressure, and wind 
speed; for rainfall, we used the total monthly precipi-
tation. All these variables were calculated by weather 
station and then merged to the hysDYD records.

A generic herd size and management profile per HYS 
class (hereinafter denoted as M) was created using test-
day datafile information. We aimed at creating subsets 
of variables that could group the herds into different 
farming systems; therefore, we arbitrarily characterized 
the herd for size (number of cows), breed composition 
(percentage of Holstein cows over total), and milking 
management (number of milking times per day). Herd 
profile was refined using information on specific farm-
ing choices, extracting information from the DRMS 
herd summary. A first set of variables aimed at charac-
terizing the herd for service sire choice (percentage of 
proven sires over total, percentile of genetic merit for 
proven sires, percentile of genetic merit for young sires; 
here called S). A second set of variables was defined to 
characterize the herd level of fertility (days from calv-
ing to first service, calving interval, conception rate; 
called F) and culling practices defined based on culling 
reasons (low production, reproduction, mastitis, feet 

Figure 1. Frequency of observations across the country. hysDYD = herd-year-season daughter yield deviations.
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and legs, injury, disease, death; called C). Herd man-
agement parameters, as defined in S, F, and C, were 
herd averages over the entire period studied. In addi-
tion to the EnCov, we used the herd and geographical 
region to group the observations (these groupings will 
hereby referred to as H and R, respectively).

Statistical Models. Our baseline model (hereafter 
referred to as the genomic model) consisted of a stan-
dard genomic-BLUP regression of hysDYD on genotype 
data. The model was defined as follows

 hysDYDij = µ + gi + εij, [3]

where hysDYDij represents the hysDYD of the ith bull 
in the jth HYS, µ is the overall mean, gi is the addi-
tive genetic effect of the ith bull, and εij is random 
residual. The distribution of the random terms in the 
right-hand-side of expression [3] was 

 ε σεij IID N~ , ,0 2( )  [4]

and

 g ZGZ~ ,N g0 2' ,σ( )  [5]

where IID stands for independent and identically dis-
tributed, σε

2 is the residual variance, σg
2 is a total ge-

nomic variance, g is the vector of additive genomic 
values, Z is a sire incidence matrix, and G is the ge-
nomic relationship matrix built on marker information 
(VanRaden, 2008).

Our second model was a random regression on envi-
ronmental covariates. The EnCov are summarized in 
Table 1. For the R and H effects, as well as for each 
group of EnCov, 3 models were tested. The first model 
included the environmental effect only:

Table 1. Descriptive statistics of the phenotypic data1 and environmental covariates2 used for the study 
(number of herd-year-season daughter yield deviation blocks was equal to 16,664)

Item Mean SD Minimum Maximum

Productive traits
 Milk yield, kg 0.0 17.18 −115.11 92.49
 Fat percentage, % 0.0 14.82 −89.26 120.17
 Protein percentage, % 0.0 5.41 −34.9 30.13
 SCC 0.0 34.17 −213.53 301.97
Geographical coordinates     
 Latitude, degrees 38.96 4.22 28.57 46.43
 Longitude, degrees −85.32 10.36 −114.46 −69.69
Herd size and management descriptors     
 Number of heads, no. 712.78 694.02 9 3,536
 Percentage Holstein cows 95.8 0.1 0.1 1
 Milkings per day, no. 2.54 0.48 2 3
Herd fertility descriptors     
 Days to first service 81.93 15.43 58.08 143.43
 Calving interval, mo 13.95 0.69 12.72 16.85
 Conception rate, % 32.06 7.6 17.92 88
Service sire choice descriptors     
 Proven sires over total sires, % 65.09 19.25 0.61 100
 Proven sires PTA, percentile 60.2 14.42 15.77 90.93
 Young sires PTA, percentile 60.88 18.05 0 86.33
Culling descriptors     
 Culling due to low production, % 11.3 9.15 0 46.04
 Culling due to poor fertility, % 15.4 10.68 1.5 58.27
 Culling due to mastitis, % 11.7 7.72 0 43
 Culling due to feet and legs issues, % 6.57 4.87 0 25.28
 Culling due to general injury, % 12.09 11.5 0.15 85.79
 Culling due to general disease, % 5.98 5.33 0 23.12
 Died cows over total culled, % 17.28 10.92 2.18 71.14
Climate variables     
 Maximum temperature, °C 18.59 9.39 −5.5 35.67
 Minimum temperature, °C 6.96 8.81 −16.5 24.13
 Average temperature, °C 12.9 9.07 −10.47 29.7
 Relative humidity, % 64.83 9.87 23.86 30.14
 Pressure, mmHg 28.91 1.46 0 24.37
 Wind speed, km/h 11.39 3.64 20.82 92.72
 Rainfall, mm 235.6 130.25 0 1,751.58
1Phenotypic data were productive traits.
2Environmental covariates were geographical coordinates, herd size and management descriptors, herd fertility 
descriptors, service sire choice descriptors, culling descriptors, and climate variables.
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 hysDYDij = µ + Ej + εij, [6]

where Ej is the random effect of the environmental con-
ditions at the jth HYS. The vector containing all the 
levels for this random effect were assumed to follow a 
normal distribution,

 E XX~ , ,N E0 2'σ( )  [7]

where XX′ is an environmental similarity matrix, X is 
a matrix containing all environmental descriptors, each 
centered to a null mean and a unit variance, and σE

2  is 
an environmental variance. The covariance XX′ was 
scaled to have an average diagonal value of 1; therefore, 
the variance parameter σE

2  can be interpreted as the 
amount of variance of y explained by the regression on 
environmental covariates.

In a third model we combined the genetic and envi-
ronmental information in an additive fashion

 hysDYDij = µ + Ej + gi + εij, [8]

where elements are as defined above.
Finally, following Jarquín et al. (2014) we considered 

a model that included interactions between markers and 
environmental covariates. Because the number of mark-
ers and of environmental covariates was large, modeling 
all possible interactions between these 2 sets of predic-
tors is not feasible; however, interactions can be mod-
eled implicitly using covariance functions. Jarquínn et 
al. (2014) showed that the covariance function induced 
by a reaction norm model (Falconer, 1990) is simply 
the Hadamard (or cell-by-cell) product of the genomic 
and environmental similarity matrices. Therefore, in a 
third model we combined both main effects using 

 hysDYDij = µ + Ej + gi + gEij + εij, [9] 

where gEij the interaction of the ith bull at the jth 
HYS, contained in vector gE and defined as

 gE ZGZ XX~ ,[ ] ,N gE0 2′° ′( )σ  [10]

where σgE
2  is the variance of the genomic by environ-

ment interaction and ZGZ′°XX′ indicates the Had-
amard product of ZGZ′ and XX′.

The models of expression [8] and [9] were defined 
using different sets of EnCov separately. Models that 
accounted for region cross-classified effects (R) will be 
denoted as R, G + R, and G + R + G × R; those that 
accounted for herd (H) will be denoted as H, G + H, 
and G + H + G × H. Similarly, models that accounted 
for the EnCov were identified with the respective 
EnCov-set name (e.g., models with L were called L, G 
+ L, and G + L + G × L).

An additional model, used to assess the effects (ran-
dom regression coefficients) of the EnCov, was defined 
as 

 hysDYDij = µ + Ej + gi + εij, [11]

where Ej is the environmental effect of all the EnCov 
fit as a set of random covariates and all other terms are 
as described above. Results from this part of the study 
will not be discussed, but are reported as supplemen-
tary material (Supplemental Figure S1; https://doi.
org/10.3168/jds.2016-11543).

Analyses were performed using the BGLR R-package 
(Janss et al., 2012; Jarquín et al., 2014; Pérez and de 
los Campos, 2014). The Markov chain-Monte Carlo al-
gorithm was run for 42,000 iterations, with 2,000 itera-
tions discarded as burn-in, and estimates were derived 
using a thinning interval of 5 iterations. Convergence 
of the models was assessed by visual inspection of trace 
plots and post-Gibbs analyses using the R package 
CODA (Plummer et al., 2006).

Cross-Validation

A cross-validation scheme was designed using 3 cri-
teria.

New Bulls. Bulls that had at least 50 hysDYD were 
randomly assigned to 4 folds and masked successively, 
simulating prediction of daughters’ performance for 
bulls that were not progeny-tested in the United States 
(Table 2). Predictive ability of the models was averaged 
across the 4 folds.

Incomplete Progeny Testing. The objective of 
this second cross-validation was to evaluate the pre-

Table 2. Number of records masked (proportion to the total data set) for each split used in the cross-validation

Item Fold 1 Fold 2 Fold 3 Fold 4

New bulls 679 (4%) 981 (6%) 1,371 (8%) 1,516 (9%)
Incomplete progeny test 217 (1%) 185 (1%) 195 (2%) 815 (5%)
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diction accuracy that can be achieved on bulls that 
have progeny testing records from some regions. To 
this end, we randomly assigned records of a sire from 
different regions to folds. The composition of the 7 
macro-regions is reported in Table 3. To have valida-
tion sets of comparable size, regions with large sample 
size were split into 2 subregions, generating a total of 
10 subregions. Bulls with hysDYD in at least 4 regions 
were selected and randomly assigned to 4 folds. One 
region per bull was masked, simulating progeny-testing 
for bulls’ progeny spread across the country but with 
daughters’ information missing for some regions. This 
procedure was repeated for each fold and results (ac-
curacies of prediction) were averaged.

Missing Region. Data from each of the 10 micro-
regions were alternatively masked. This aimed at pre-
dicting daughters’ performance under environmental 
conditions not found in the training set (i.e., potential 
new management and climatic conditions). Predictive 
ability of the models was averaged across the 10 folds. 
In addition, in an effort to simulate predictive abil-
ity when new conditions are equivalent to a warmer 
climate, we looked specifically at the predictive ability 
for the Southeast and Southwest regions.

Assessment of Predictive Ability. Predictive 
performance was measured using within-herd correla-
tion between cross-validation predictions and observa-
tions. Repeating this for every trait and prediction 
model yielded (per herd) a Pearson’s product-moment 
correlation estimate, rj, and its sampling variance (V), 

V r
r

nj
j( ) = −

−
,

1
2

2

 where n is the number of observations 

for that block. Then, a weighted across-blocks correla-
tion (rw) was calculated using the formula

 r

r
V r

V r

w

j
z j

j

j
z

j

=
( )

( )

=

=

∑

∑

1

1
1

, 

where rj is the intrablock correlation between y and 
ŷ for the jth block, V(rj) is its variance, and z is the 
number of blocks (herds) in that validation set. In the 
scenarios where several folds were involved (new bulls, 
incomplete progeny test, and missing region), rw across 
the folds were averaged (and standard deviation was 
computed) by model and trait and used for model 
evaluation.

RESULTS AND DISCUSSION

Magnitude of the Genomic  
by Environment Interaction

The proportion of variance components explained by 
the different effects is reported in Figure 2 and Supple-
mental Table S2 (https://doi.org/10.3168/jds.2016-
11543). Genomic effect accounted for 28% of total vari-
ance for MY, and 24, 25, and 19% for FP, PP, and SCS, 
respectively, when it was the only effect fitted in the 
model. To the best of our knowledge, no study has been 
conducted with US dairy cattle that estimated genomic 
effect on hysDYD. Nevertheless, if proportion of vari-
ance absorbed by the genomic effect is to be compared 
with the heritability of a trait, our results appear to be 
consistent with what was reported by VanRaden et al. 
(2009) in the US Holstein population.

When blocking factors R and H where included, the 
latter showed a stronger environmental effect: H ac-
counted for approximately 50, 26, 16, and 33% of the 
total variance for MY, FP, PP, and SCS, respectively, 
compared with the 2, 4, 4, and 8% accounted by R for 
the same traits. When fitted in conjunction with G 
(i.e., in G + R and G + H), R and H contribution de-
creased compared with when they were fit as the only 
effect in the model. Null (close to zero) estimates of G 
× E were found fitting G × H, yet sizable when G × R 
was included, with the latter accounting for 22 (MY), 
16 (FP), 6 (PP), and 15% (SCS) of the phenotypic vari-
ance. Farm geographical coordinates, as defined in L, 
accounted for smaller proportions of variance compared 

Table 3. Number of records masked (proportion to the total data set) for each split and fold used in the 
cross-validation

Region  States included Number of records (%)

Northeast I CT, DE, MA, MD 1,727 (10)
Northeast II ME, NH, NJ, NY, VT 2,709 (16)
East I OH, PA 1,145 (7)
East II VA, WV 2,266 (14)
Southeast AL, FL, GA, LA, MS, NC, SC 2,370 (14)
Midwest I WI, IL, IN, MI, NE, MO, IA 2,856 (17)
Midwest II KS, OK, AR, KY 952 (6)
Southwest NM, TX 1,541 (9)
North ND, SD, MN, MT 506 (3)
West CO, WA, OR, ID 592 (4)
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with the blocking factor H, always having negligible 
effect (i.e., smaller than 2%). Nevertheless, the propor-
tion of G × E variance absorbed by model G × L was 
sizable (13, 9, 5, and 14% for MY, FP, PP, and SCS, 
respectively), albeit always smaller than the variance 
absorbed by G × R.

The proportion of variance absorbed by the differ-
ent EnCov and their interaction with the genotype 
was heterogeneous across traits. For MY, the strongest 
environmental effect was found in models that consid-
ered F (12%), followed by W (3.5%) and C (2.2%), 
whereas M and S explained less than 2% of the pheno-
typic variance. Proportions did not change when the 
genomic effect was included in the model (12, 3.5, and 
1.9% for F, W, and C, respectively). When G × E 
was included, the proportion attributable to the en-
vironmental components decreased slightly in models 
that included F (4%), increased in models including W 
(5.6%) and remained unchanged in all other models. 
The G × E accounted for 31% of the total variance 
in G × C. When defined as G × F, G × M, and G 
× W, genotype by environment accounted for 20, 14, 
and 6% of the overall variation, respectively. For SCS, 
the strongest environmental effect was found in models 
that considered W (55%), followed by F (5%) and C 
(4%), whereas negligible effects were found for M and S. 
The effect of W decreased to 35% when genomic effect 
was included. Genotype by environment was strongest 
when fitted as G × C (17%), followed by G × M (12%), 
G × S (11%), G × F (10%), and G × W (1.5%). Fat 
and protein percentages results were similar, with the 
largest environmental component explained by W (7 
and 6% for FP and PP, respectively), and all the other 
environmental effects explaining less than 2% for both 
traits.

Traits Characterization. In the present study G × 
E components were found to be generally small for FP, 
almost null for PP, and moderate for SCS. Regarding 
SCS, environmental effects accounted for a substantial 
amount of the total variation. Large G × E components 
were estimated for MY, with some scenarios where the 
proportion of variation estimated for the interaction 
was larger than the one for the genomic effect itself.

Erosion of the Genomic Effect when Interac-
tion with Environment Was Included. When in-
cluded, G × E partially eroded both genomic and envi-
ronmental effects, but with different magnitude across 
traits and models. Across all 4 traits, accounting for 
the G × E eroded up to 50% of the genomic variance in 
the model with G × R. In contrast, the environmental 
variance was only slightly modified. In G × L models, 
both genomic and environmental variances estimates 
decreased, with more emphasis on the former for MY, 
PP, and SCS. Finally, the interaction term took a large 

part of the genomic variance for MY in models G × S 
and G × C. The results outlined seem to suggest that a 
portion of what is commonly considered genomic vari-
ance could at least in part be attributed to G × E that 
is not accounted for.

Environment. For the majority of traits, H was 
the strongest among environmental effects. This shows 
that, with a few exceptions, clustering herds by geo-
graphical coordinates or region or by using EnCov 
cannot account for the total variation between herds. 
The only exception was for SCS and models that in-
cluded W, where the climate EnCov absorbed a higher 
proportion of variance than the herd permanent en-
vironmental effect H, suggesting that udder infection 
are potentially (partially) driven by temperature and 
moisture conditions. Environmental variance estimates 
of moderate size were also found for W for MY, FP, and 
PP, suggesting that climate will affect milk production 
and composition, probably acting as a result of heat 
stress (Bohmanova et al., 2008). This is also supported 
by the null estimate of L, reflecting the fact that heat 
stress is to some extent a seasonal rather than a re-
gional concern. A sizable effect of the herd reproductive 
performance (as described by EnCov in F) was found 
on MY, confirming the existing relationship between 
fertility and milk production (Lucy, 2001; Windig et 
al., 2006).

Genomic by Environment Interaction. In the 
present study, the G × E contribution was always non-
null (i.e., accounting for more than 2% of phenotypic 
variance) and in some cases stronger than the respec-
tive environmental effect. The only exception was when 
considering the environment as defined by H, which 
always gave null estimates probably as consequence of 
the small size of sire by herd blocks (5,401 levels with 
median size of the block of 3 hysDYD). When we used 
R to define the environments, the proportion of envi-
ronmental variation was always smaller compared with 
H, but G × E was always appreciable. Geographical 
location covariates of the herd seemed to be a good 
equivalent to using the region as a blocking factor, as 
G × L accounted for almost all variation due to G × R 
for PP and SCS and partially for MY and FP. We can 
speculate that there will be reranking of sires across 
regions, given the sum of all environmental conditions 
(i.e., climate and management) that the cows could face 
if reared in different regions across the country. The 
same conclusions were drawn by Tsuruta et al. (2015), 
who found MY to be regulated by a slightly different 
genetic architecture across regions of the United States.

Genomic by climate interaction was small but pres-
ent for MY, yet negligible for all other traits, suggesting 
that the milk production will be the most sensitive trait 
to changing environmental conditions. This is in agree-
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ment with Zwald et al. (2003), who estimated less than 
unity genetic correlations for MY between environments 
with extreme maximum monthly temperature values. 
Ravagnolo and Misztal (2000) also found genetic varia-
tion on MY for the reaction norm on the heat-humidity 
index of Holstein cows raised in Georgia, pointing out 
that the different genetic potential to cope with heat 
stress is expressed only above a certain threshold of 
heat-humidity index.

Genomic by management interaction significantly 
affected all traits. Estimates obtained through G × M 
and G × F were moderate for MY and SCS, and small 
for FP and PP. On the other hand, G × S and G × 
C had moderate effect on MY, SCS, and FP but were 
negligible on PP. The EnCov that we used were able to 
describe the environments in which the G × E can be 
observed, and some were also found relevant in other 
studies, such as calving interval (Calus and Veerkamp, 
2003), herd size (Fikse et al., 2003; Zwald et al., 2003), 
and sire genetic merit (Zwald et al., 2003).

In the present study, we defined the farm productive 
and reproductive levels using herd-level parameters. 
We found that G × E effects were stronger than their 
respective environmental effect. Although some con-
founding between sires and environments could have 
occurred despite the data editing, these results suggest 
that the farming environment would affect cows with 
different genetic background more than how it would 
affect the entire herd. Moreover, for MY, the G × E 
variance estimate was in some case larger than the ge-
nomic variance. Present results could be valuable in a 
precision-mating framework, where farmers could take 
into account herd parameters in the choice of genetic 
material.

Predictive Ability Including Genotype  
by Environment Interaction

New and Progeny Testing Bulls. Predictive 
ability of the models for new and progeny test bulls 
is reported in Figure 3 and Supplemental Table S3 
(https://doi.org/10.3168/jds.2016-11543) and are ex-
pressed on a 0 to 100 scale. Figures report histograms 
that indicate prediction accuracy as averaged over the 4 
folds with standard error bars and the dashed line rep-
resenting the performance of the reference model that 
is also reported on the left-hand column. It should be 
noted that we considered a predictand that includes ge-
nomic, environmental and residual variation, thus it is 
expected that prediction accuracies will be lower than 
what would commonly found in dairy cattle genomic 
prediction that uses deregressed breeding values as pre-
dictand. For each model, accuracy over the 4 folds was 
averaged and the standard deviation was computed; if 

the zero value was included within 1 standard deviation 
unit from the average over the folds, that model was 
not be discussed.

For the new bulls scenario, accuracies were low in 
general and mostly null for MY. Models that accounted 
only for the genomic effect gave prediction accuracies 
of 13.0 for FP, 24.6 for PP, 10.2 for SCS, and 10.0 
for MY. All the other models gave equivalent results, 
with the only exception of G × W, which exceeded the 
other models for FP, PP, and MY (29.8, 47.9, and 16.5, 
respectively).

In the incomplete progeny test scenario, models that 
included only a genomic effect yielded non-null accura-
cies for FP, PP, and SCS only (24.7, 26.0, and 22.3, 
respectively). Other models gave equivalent prediction 
accuracies for SCS, so that no model performed signifi-
cantly better that the reference for this trait. Account-
ing for G × W again increased accuracies for FP (45.6), 
PP (59.8), and MY (21.4).

In the 2 cross-validation scenarios described, models 
that accounted for G × E seldom performed better 
than the simple G model. An exception was for G × 
W, which always performed better than the other mod-
els (except for SCS). Results are supporting evidence 
that climatic EnCov can be valuable to characterize 
the different reaction of the genotypes to environmental 
changes.

New Environmental Conditions. Figure 4 (and 
Supplemental Table S3; https://doi.org/10.3168/
jds.2016-11543) reports the predictive ability for the 
missing region scenario. The reference model always 
had non-null prediction accuracies, with values of 20.6, 
29.8, 35.9, and 26.7 for MY, FP, PP, and SCS, respec-
tively. Alternative models performed similarly to the 
reference with the exception of G × W for FP and PP 
(38.1 and 50.9, respectively) and G × H for MY (26.9). 
Again, models with G × W were shown to be valu-
able alternatives to the reference model for the milk 
composition traits.

When predicting the Southeast region (Figure 5), 
no models performed better than the reference for MY 
(22.3), but G × W improved predictions for all other 
traits (35.6 vs. 29.3 for FP, 50.3 vs. 39.6 for PP, 28.2 
vs. 24.3 for SCS). In addition, G × H increased accura-
cies for SCS (32.5). Predicting the Southwest region, 
accuracies for the reference model were 16.2, 26.0, 
38.5, and 33.4 for MY, FP, PP, and SCS, respectively. 
The best performing model for MY was G × H (28.1), 
followed by G × W (25.3). In summary, no models 
performed better than the reference for SCS, G × H 
was best the performing model for FP (29.2), and G × 
W increased prediction accuracy for PP (50.6). Again, 
for this cross-validation scenario, it was not possible to 
find a specific set of EnCov that consistently provided 
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better performance than the reference model, but on 
2 of the 4 traits G × W was able to increase accuracy 
compared with the genomic only model.

On the Inclusion of Genomic by Environment 
Interaction in Genomic Prediction

To the best of our knowledge, no study comparable 
to the current study is available in dairy cattle breeding 
literature. On a similar subject, Wright and VanRaden 
(2015) analyzed total lactation milk yield on US Hol-
steins using random-regression models with reaction 
norm on temperature-humidity index and herd produc-
tive level, but an advantage over the reference model 
was negligible. Random regression reaction norm mod-
els have been used in prediction of performance under 
different environmental conditions in other livestock 
species. In beef cattle, Mota et al. (2016) compared 
these models to the traditional animal models for pre-
dicting tick resistance, but no advantage was found in 
modeling G × E. On the other hand, Silva et al. (2014) 
found a clear advantage in modeling G × E for the 
prediction of number of piglets born in a multicountry 
swine population. The same methodology used in the 
present study was previously tested on wheat data sets 
by Jarquín et al. (2014) and Lopez-Cruz et al. (2015) 
and on a cotton data set by Pérez-Rodrìguez et al. 
(2015). In all cases, models that accounted for the G 
× E were able to estimate variance components due to 
this effect as well as to provide better predictive per-
formance than models that neglected it. In the present 
study, we confirm that the methodology is reliable for 
the analysis of multienvironmental data, either using 
blocking factors or EnCov. One limitation of our study 
and the model used stems from not including the het-
erogeneity of residual variance in the models, which will 
require further research and model implementation. On 
most of the scenarios tested, models that included the 
G × E outperformed models that included only a ge-
nomic effect. The most promising set of EnCov appears 
to be the one including the climate variables, and this 
could be a consequence of having specified values of 
climate variables that were HYS-specific, as opposed 
to the management variables that were herd-specific. 
In general, the challenge to identify a unique set of 
covariates capable of describing the entire variety of 
environments and the specification of these variables 
with different levels of resolution (herd level vs. herd-
year-season level) should be clarified by future research.

CONCLUSIONS

In the present study we used models that accounted 
for genotype by environment interaction and genomic 
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information on dairy productive traits. Environment 
was defined using several parameters to describe the 
herd. The magnitude of this interaction was seldom 
null, and sometimes stronger than the respective envi-
ronmental effect. This suggests that the farming envi-
ronment will affect the different strains of cows more 
than it affects the entire herd. Moreover, the variance 
explained by the interaction was sizable compared with 
the variance explained by the genomic effect, suggest-
ing that the performance of a cow carrying a given 
genotype will substantially differ from farm to farm. 
Thus, it is confirmed that genetic material that is top 
performing in a given environment is very unlikely to 
be top performing in a different environment. Farmers 
can take advantage of models accounting for genotype 
by climate interaction in a precision-mating framework. 
It was not possible to find a unique model consistently 
giving best performance across all cross-validation sce-
narios, but results point toward climate variables as 
good candidates for this purpose. Further research is 
needed to find further combinations of environmental 
parameters that can describe the conditions that chal-
lenge the productivity of the raised animals.
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