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ABSTRACT Bike-sharing is adopted as a valid option replacing traditional public transports since they are
eco-friendly, prevent traffic congestions, reduce any possible risk of social contacts which happen mostly
on public means. However, some problems may occur such as the irregular distribution of bikes on related
stations/racks/areas, and the difficulty of knowing in advance what the rack status will be like, or predicting if
there will be bikes available in a specific bike-station at a certain time of the day, or if there will be a free slot
to leave the rented bike. Thus, providing predictions can be useful to improve the service quality, especially
in those cases where bike racks are used for e-bikes, which need to be recharged. This paper compares
the state-of-the-art techniques to predict the number of available bikes and free bike-slots in bike-sharing
stations (i.e., bike racks). To this end, a set of features and predictive models were compared to identify
the best models and predictors for short-term predictions, namely of 15, 30, 45, and 60 minutes. The study
has demonstrated that deep learning and in particular Bidirectional Long Short-Term Memory networks
(Bi-LSTM) offers a robust approach for the implementation of reliable and fast predictions of available
bikes, even with a limited amount of historical data. This paper has also reported an analysis of feature
relevance based on SHAP that demonstrated the validity of the model for different cluster behaviours. Both
solution and its validation were derived by using data collected in bike-stations in the cities of Siena and Pisa
(Italy), in the context of Sii-Mobility National Research Project on Mobility and Transport and Snap4City
Smart City IoT infrastructure.

INDEX TERMS Available bikes prediction, bike-sharing, deep learning, machine learning, prediction
models, smart city.

I. INTRODUCTION
Cities are becoming large and complex entities. Today, about
55% of the worldwide population lives in urban areas, and
that figure is expected to achieve 68% in 2050, according
to the ‘‘World Urbanization Prospects 2018’’, published by
the United Nations Department of Economics and Social
Affairs [1]. This growth motivates the need to build cities
more liveable and sustainable, with modern infrastructures
capable to offer smart systems to the citizens [2]. Transporta-
tion is one of the most important causes of air pollution,
while a more efficient use of bikes may represent a part
of the solution. Therefore, bike-sharing systems are widely
used in many cities, offering a sustainable alternative and
complement to public transport [3], [4], to reduce conges-
tion [5]. Bike stations can detect the presence of bikes with
their status, recharge them, indicate when they are ready to
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be rented again ì. Another option could be based on free
floating bike-sharing where bikes are more intelligent and
can communicate their position to the central management
servers, as it occurs with the Mobike solution. On this latter
model, e-bikes are more complex to be managed since they
are left on the road and the recharge phase has to be imple-
mented by some personnel with a relevant effort almost every
day.

In this article, the solution with bikes and rack stations
is addressed. Bikes can be typically released at any station
whenever a free slot is available. A full station may cause
trouble to users discovering that, when arriving to the rack and
then forced to look for another bike rack. One of the problems
of bike-sharing is related to the irregular distribution of bikes
among the various stations and the impossibility of knowing
exactly, or at least with a certain degree of probability, if there
is bike availability at a desired station in a precise time slot of
the day, or just a few minutes in advance. Authors in [6]–[8]
used optimization methods to find the best path for operators
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to rebalance bike stations. On the other hand, in [9] they
studied the inventory optimization in a bike-sharing system.
A more dynamic approach could be used if operators could
know the future status of bike racks 1 hour in advance by
means of short-term predictions. The same thing applies in
favour of users as to the possibility of finding a bike to rent or
return in a station with free slots. Therefore, predicting bike
availability (as well as free slots) per station over time can
be useful to manage the demands for bikes per station, and
perform the redistribution in advance.

In literature, urban bike-sharing systems have attracted
extensive research efforts in past decades and nowadays they
still are a growingly active research topic. In [10], a mathe-
matical model has been proposed to determine the number of
needed docking stations, their locations and the possible cycle
path network, as well as models to make predictions about
possible routes taken by users between stations of origin and
destination. In [11] and in [12], clustering and forecasting
techniques have been used on the network of bike-sharing
stations in Barcelona to obtain useful information to describe
the city mobility. In [13], authors interpreted the system as a
dynamic network by analysing how bicycle flows distribute
spatially along the network. In [14], different bike-sharing
services are analysed to highlight the differences in bike
flows and routes. In [15], clustering techniques have been
used to study the docking network stations in Wien. The
above presented cases studied both dynamics and behaviour
of bike-sharing systems. This study concerns a specific area
of interest: the prediction of bike-sharing related metrics such
as, the number of bikes available in bike sharing systems
with smart stations, the number of check-in and check-out in
stations as in [16], or the prediction of demandwithin a station
as in [17], and [18] how to carry out preventive measures.

A. ARTICLE CONTRIBUTIONS AND STRUCTURE
The main contribution of this paper consists in presenting
a solution which compares the state-of-the-art technologies
for short-term prediction (15, 30, 45, and 60 minutes) as to
available bikes on bike-sharing stations, and thus the number
of free slots according to the size of the station and the number
of broken bikes, within the cities of Siena and Pisa in Italy and
considering a limited data history of 3 months.

Prediction of available bikes is a non-linear process whose
dynamic changes involve multiple kinds of factors, resulting
from the context. To this end, the solution has been based
on different cities and locations, and despite the changes in
Siena and Pisa, the same model has been used and the same
features have been identified in both cases, thus demonstrat-
ing the validity of the obtained outcomes. The validation
has been performed also using XAI approach (explainable
artificial intelligence) to understand the relevance of features
and how this could change in different clusters. The analysis
has proven both validity and flexibility of the model which
has obtained good results for different clusters and thus for
different behaviours of time series, according to the identified
features and different relevance patterns.

The solutions have been implemented in the context of
the Sii-Mobility1 project and infrastructure (national mobil-
ity and transport smart city project of Italian Ministry of
Research for terrestrial mobility and transport), which is
a solution based on the Km4City2 model and Snap4City3

tools [19]–[21]. Sii-Mobility is currently covering the whole
Tuscany region (Italy), which hosts 3.5 inhabitants and
40 million tourists per year. The Sii-Mobility project aimed at
defining solutions for sustainable mobility, suggesting bikes
availability status to users at least 15 minutes - 1 hour in
advance to allow them to take a conscious decision, and
maybe change their own travel schedule. The focus reported
on the paper is related to bike-sharing services in the cities of
Siena and Pisa within the Tuscany region of Italy.

The paper is structured as follows. In Section II, the related
works are presented and discussed. Section III provides a
description of the bike-sharing data, and their characteriza-
tion in terms of group clustering. In addition, the identifi-
cation of several features being the basis of the suggested
predictive models is reported. In Section IV, there are the
machine learning approaches adopted to identify and validate
the predictive models and framework. Conclusions are drawn
in Section V.

II. RELATED WORKS
The problem of Bike-Sharing related metrics such as
bike availability or bike usage etc. has been addressed
through different approaches. The most recent works on the
state-of-the-art use machine learning methodologies, in par-
ticular ensemble learning techniques such as Random Forest
(RF), Gradient Boosting Machines (GB) and Deep learning
methods such as Deep Neural Network (DNN). On the other
hand, on other prediction problems regarding exploiting time-
series, the most used deep learning approaches use deep
recurrent neural networks because of their capability of using
not only the information at any precise instant, but also pieces
of information from previous steps. In Table 1, a summary of
the state-of-the-art solutions, when considering bike-sharing
systems with stations, is reported.

In [22], DNNs have been used to predict the number of
riders for a bike rental company with a prediction target of
1 hour. The input data included also meteorological features
as temperature, humidity, and wind speed, and data derived
from time information such as season, year, month, hour.
They stated that deeper architectures lead to better results
from 70% of accuracy with only 1 hidden layer up to 80%
with deeper neural networks.

In [23], the author compared ensemble learning techniques
Extreme GB (XGBoost) Regression Tree (XGBoost tree) and
RF with a DNN for the hourly prediction of the number of
bike changes in the stations of City Bike in North America.
Two methods were proposed to calculate the number of bike

1Https://www.sii-mobilitty.org
2Https://www.km4city.org
3Https://www.snap4city.org
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TABLE 1. Comparison of related work solutions, with main attention to deep learning aspects and better results.

changes in stations. The first one generates the prediction
of Check-out and Check-in bikes and through the difference
calculates the target. The second one uses the number of
bike change in station as a feature for the predictive model.
Training the models with the second approach leads to better
results and in particular the best algorithm was the XGBoost
Regressor.

In [25], RF has been used for predicting the hourly
rental bike demand in Seoul (South Korea). The dataset
included bike-sharing metrics, meteorological features and
date information collected along 12 months with hourly time
granularity. They found that the trend of the bike demand
is similar in Spring and Autumn, while it assumes a dif-
ferent pattern in Winter and Summer. Developing specific
season-wise predictive models improves the results if com-
pared to an overall model.

In [26], researchers investigated which regression model
is the best for the hourly bike sharing demand prediction
among Linear Regression (LR), GB, Support VectorMachine
(SVM), Boosted Trees and XGBoost for the city of Seoul,
South Korea. The data used included meteorological features
(Temperature, Humidity, Windspeed, Visibility, Dewpoint,
Solar radiation, Snowfall, Rainfall), the number of bikes
rented per hour and date information. For each model a
filtering of the least important features has been applied

so as to eliminate unpredictive parameters and for each
regression model. The hyperparameters for every model have
been optimized. The XGBoost regressor achieved the best
results in terms of R-squared (R2) Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE) and coefficient of
variance (CV). Researchers reported that Temperature and
Hour are the most significant variables for the hourly rental
bike count prediction in each and every model.

In [27], researchers set the problem of predicting the
number of bikes shared per hour, day and month in London
with machine learning regressors techniques. The exploited
algorithms are RF, Bagging regressor (BGR), XGBoost, and
Ada Boosting (AB) regressor. The set of features included
the data related to the bike-sharing system, meteorological
measures, and time information like if the day under obser-
vation was a working day, a holiday or a weekend. RF, BGR
and XGBoost achieved the best performance in terms of R2,
MAE, Mean Squared Error (MSE) and Root Mean Squared
Log Error (RMSLE).

In [24], learning techniques RF and XGBoost achieved
better results compared to the DNN implemented for the
target of predicting rented and returned bikes for the next 1,2,
and 3 hours in Thessaloniki, Greece. The predictions of such
developed models have been incorporated in a tool that can
be used by operators of the bike system.
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Due to the network structure of bike-sharing systems [42]
a Graph Convolutional Neural Network (GCNN) has been
used in order to predict the station-level hourly demand
in New York. The designed architecture is able to cap-
ture not only the temporal dependencies in bike-sharing
demand series, but also the heterogeneous pairwise correla-
tions among stations.

Deep learning techniques have been often used for the pre-
diction of problems on time-series. The state-of-the-art solu-
tions regard neural networks with a recurrent architecture.
This type of networks is best suited for this type of problems
for its capability of using the information at the current
instant, as well as the information from previous steps.

In [28], RF, Long Short-Term Memory networks (LSTM)
and Gated Recurrent Units networks (GRU) have been
compared for the short-term prediction of the number
of available bikes in different time ranges of 1, 5 and
10 minutes, in Suzhou, China. The dataset included only
features related to the bike-sharing system. The Recurrent
Neural Networks, RNNs, performed better than the ensemble
learning techniques.

The same conclusions have been also reported for the
bike-sharing system in Daejeon, Republic of Korea [30].
Researchers used 261 datasets of Tashu Bike stations and
tested the ensemble learning techniques RF and XGBoost
with the deep learning recurrent neural networks: LSTM and
GRU. The features used for the dataset are Station name,
Station location, Time, total rack size and available bikes. The
GRU model had the lowest error predictions about average
MSE and MAE.

In [29], Bidirectional Recurrent Neural Network (BI-RNN)
architecture has been used for predicting rental and return
demand in the forthcoming hour on New York City Bike
Dataset. The features used included data of the bike-sharing
systems, data information and meteorological metrics. The
BI-RNN has been compared Ordinary Least-Squares Regres-
sion (OLSR), RF, and a Feedforward Neural Network, FFNN,
with 4 layers and it achieved the best results on the test set in
terms of MAE, RMSE, RMSLE, MAPE.

III. CLUSTERING, DATA DESCRIPTION
As mentioned in the introduction, the main goal was to find
a solution to predict bike availability for the bike stations
of Siena and Pisa using only a limited history of data in
the Tuscany region in Italy. The total number of bike-racks
is 39, 24 of which are in Pisa and 15 in Siena. The status
of each station is registered every 15 minutes including the
total capacity of the rack, the number of broken bikes and
the number of available bikes. The data refer to 15 stations
located in the municipality of Siena and 24 located in Pisa,
from 2019 to March 2020, see Section IV.A for more details.

As a first step, a clustering approach has been applied
in order to classify bike stations on the basis of their bike
availability trend. The aim of the clustering was to identify
the number of typical trends over time and test the prediction
models for those cases. The K-means clustering method [31]

has been applied to identify clusters based on the mean
hourly trend of the number of available bikes (normalized
between 0 and 1) in the considered history. The optimal num-
ber of clusters resulted to be equal to 3 and it was identified
by using the Elbow criteria [32]. Each cluster represents a
group of stations located in a particular area of Siena/Pisa
municipalities. Clusters include bike racks of both cities and
they characterize the trend only. In Fig. 1, the hourly trends
of the representative sensors related to the computed clusters
are reported. In Fig. 2 and Fig. 3 the position of bike racks on
the map for Siena and Pisa is depicted. The number on each
marker on the map is related to the identifier of the bike rack
and the font color is white for all the representative racks.

Please note that stations/racks belonging to
• Cluster 1 are typically characterized by a decrement
of bike availability at lunchtime and they are mainly
located close to the railway stations, airport, etc. The
representative bike rack is the Bike rack Stazione F.S.
of Pisa.

• Cluster 2 are typically positioned in the central area of
the cities and they are characterized by an increment of
the availability of bikes in the central part of the day
(lunch hours, since most people are parking their bikes
to get lunch). The representative bike rack is the Bike
rack Polo Marzotto of Pisa.

• Cluster 3 presents an almost uniform trend in the bike
availability and bike racks are mainly positioned in the
peripheral areas of the city. The representative rack is the
Bike rack Due Ponti in Siena.

For example, in Siena municipality ‘‘Terminal Bus’’
(id = 12) is a bike-sharing station positioned nearby the train
station in Siena and it actually belongs to Cluster 1. In Pisa,
the ‘‘Duomo’’ station (id = 26) belongs to Cluster 2 and it is
actually positioned in the city centre, while ‘‘Pietrasantina’’
(id = 31) belongs to the third cluster and it is indeed located
in a peripheral area of Pisa.

FIGURE 1. Hourly bikes available for the representative rack of the
clusters determined by the K-means. The trend of the representative bike
rack for Cluster 1 is displayed in blue, the one for Cluster 2 in red, while
green is for Cluster 3.
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FIGURE 2. Positioning of bike racks in Pisa (a) and in Siena (b). The
colour depends on the specific cluster: blue for Cluster 1, red for Cluster 2
and green for Cluster 3. If the selected rack is representative of its cluster,
the font colour is white and the background is darker.

Moreover, we have also detected some changes in the
typical trends between working days and weekends, as shown
in Fig. 3. Fig. 3 (a) focusses on the comparison between
trends for working days and weekends as to ‘‘Curtatone’’
station in Siena, while Fig. 3 (b) shows trends of working
days/weekends as to ‘‘Stazione F.S’’ in Pisa.

With the aim of developing a predictive model, a set of
features has been identified and tested (seeTable 2). Features
belonging to the Baseline (time series) category refer to
aspects related to the direct observation of bike rack status
over time, for instance: date and time whenmeasurements are
taken, information whether it is a working day or not, number
of bikes on racks, etc. Typically, these values are recorded
every 15 minutes. Features describing the differences over
time. Usually, as to the number of bikes the trend is similar
for the same day of the week, as well as for the same day
of the month. Thus, other features have been included in the
model. Considering d the observation day in the time slot t,
the included features are as follows.

• dP: the difference between the number of available bikes
in the observation day (d) at time t and the number of

FIGURE 3. Number of available bike in working days/weekend trends of
the (a) ‘‘Curtatone’’ bike-sharing stations in Siena and (b) ‘‘Stazione F.S’’
stations in Pisa.

available bikes during the previous time slot (t − 1) of
the previous day (d − 1).

dP = availableBikesd,t − availableBikesd−1,t−1

• dS the difference between the number of available bikes
in the observation day (d) at the time slot t and the
number of bikes during the successive time slot (t + 1)
of the previous day (d − 1).

dS = availableBikesd,t − availableBikesd−1,t+1

• PwAB the number of available bikes of the previous
week (d − 7) in the same time slot (t).

PwAB = availableBikesd,t − availableBikesd−7,t

Real-time weather and weather forecasts were also col-
lected every 15 minutes (i.e., temperature, humidity and
rainfall). Weather information can indeed improve the perfor-
mance of predictive models as shown in research papers [33]
and [34]. It is worth noting that, according to our analysis,
significant weather values are the ones related to the current
time and the hour just before the measured bike availability
time. For example, in order to predict the number of available
bikes at a bike rack at 3:00 pm, the weather features at
2:00 pm and at the current time are relevant. In fact, weather
conditions typically have an influence on the user’s decision
as to either ride a bike or take other means of transportation.
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In addition, the weather forecast is relevant, too, for people
may plan to use the bike according to the weather forecast of
that day.

IV. PREDICTION MODELS
In this section, the considered machine learning techniques
are compared, with the aim of creating a solution to
predict the number of available bikes for the representative
bike-racks (resulted from the above presented clustering
process) with temporal targets of 15, 30, 45 and 60 minutes.
Ensemble learning techniques such as RF [35] and

TABLE 2. Overview of the features used in the short-term prediction
models.

XGBoost [36] are powerful techniques that should be con-
sidered for this type of problem. As to the deep learning
techniques for this work, we have compared the DNN archi-
tecture with LSTM [38], [39] and based on the results of
the related works also with a Deep Bidirectional-LSTM
(Bi-LSTM) Neural Network [40].

These models were evaluated in terms of statistical mea-
sures such as R-squared (R2), Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE). This last metric is the one that has
been used to compare these techniques and choose the best
model architecture for the task of short-term predictions of
available bikes.

The R2 is calculated as follows:

y =
1
n

n∑
i=1

obsi

R2 = 1−

(∑n
i=1 (obsi − pred i)

2∑n
i=1 (obsi − y)

2

)
The MAE is calculated as follows:

MAE =

∑n
i=1 |obsi − pred i|

n
The MAPE is calculated as follows:

MAPE =

∑n
i=1 |

obsi−pred i
obsi

|

n
∗ 100

The RMSE is calculated as the Root square of the Mean
Squared Error (MSE):

MSE =

∑n
i=1 (obsi − pred i)

2

n
RMSE =

√
MSE

where:
obsi = observation at time i,
pred t = prediction at time t ,
n is the number of the values in the test set.
Regarding the implementation of the ensemble learning

techniques, the number of trees parameter for the RF was set
to 300, with a minimum sample split set equal to 2, minimum

TABLE 3. Comparison of resulting MAPE obtained by using long and
short range periods of training, best results in bold, C1: Cluster 1, C2:
Cluster 2, C3: Cluster 3.
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number of samples allowed for a leaf equal to 1, without
limits on the maximum number of features considered to
split a node as well as on the number of leaves, with the
construction of bootstrapped datasets to create the related
trees.

The XGBoost regressor uses the least-squares loss func-
tion with learning rate optimized with values 0.1, 0.01, and
0.001 with max depth equal to 3 and minimum sample split,
minimum sample leaf, maximum number of features equal to
the ones chosen for the RF.

The architecture of the Deep Learning neural networks is
made up of 4 layers with specific units of the selected archi-
tecture (e.g.: LSTM units for LSTM networks) and optimized
hyperparameters. A hyperparameter optimization procedure,
based on randomized search, was performed to obtain the
best model in terms of predictive performances, considering
different parameters, as described hereafter. The number of
neurons for the input layer is equal to 64 or 128; for the
2nd layer 64, 32; for the 3rd layer 16, 32. The last layer has
only one neuron with a sigmoid activation function, in order
to obtain a value in the range 0, 1 (the input data for the
models were normalized using a Min Max scaler). The batch
size was set to 32 and 64 samples. Also, the dropout rate for
each layer was optimized with the values 0.1, 0.25, 0.5. For
each model, the AdamOptimizer has been chosen with learn-
ing rate optimized among 0.05, 0.005, 0.0005 and 0.00005.
MSE was selected as loss function to be monitored during the
optimization. The number of epochs was set to a maximum
value of 1000, because the training strategy used the Early
Stopping method for determining the optimum epoch number
minimizing the RMSE of the validation set, restoring the
weights of the best model at the end of the learning process.
As to LSTMs and Bi-LSTMs inputs were organized through
a sliding window with 4 timesteps, which is equivalent to the
values of the previous hourwith respect to the prediction time.

A. EXPERIMENTAL RESULTS
The data used for this training range from the 16th of
December 2019 to the 9th of February 2020. The successive
two weeks (10/02/2020 – 23/02/2020) have been used for
the validation and the test set includes data from the 24th of
February 2020 to the 8th of March 2020. In reality, we have

had much longer time periods of data into Snap4City.org
platform and service. We have initially considered a longer
time range for training, 15 months for Pisa bike racks and
18 months for Siena in the 2019-2020. We tried different
training sets progressively shorter, so as to identify the best
precision. The final choice made, was to use only 3 months
of data, collected from a bike-sharing system with smart
stations, which could be sufficient to obtain useful predictions
on the number of available bikes in a short-term period.
This evidence has been reported in Table 3 where results
in terms of MAPE for 60’ predictions are comparing dif-
ferent techniques by using training set of 14-18 months
and 3 months, according to a test set as above described.
As reported in Table 3, deep learning methodologies perform
better than other machine learning techniques when consid-
ering 3 months of training.

On the basis of the short-training data, the machine learn-
ing solutions were compared based on the MAPE for the
prediction targets of 15, 30, 45 and 60minutes. Results for the
representative bike racks from related clusters are reported in
Table 4. TheminimumMAPEwas registered for Cluster 1 for
the prediction targets by Bi-LSTM.As to Cluster 2, Bi-LSTM
architecture performed better than the others, except for
the prediction target of 45 minutes where the unidirectional
LSTM network achieved a MAPE of 79.3. As to Cluster 3,
Bi-LSTM achieved better results for the prediction target
of 15 and 30 minutes, while LSTM achieved the minimum
MAPEs for the targets of 30 and 60 minutes. In general,
Deep Recurrent Neural Networks architectures outperformed
the ensemble learning techniques, despite the limited amount
of data and the DNN. Overall, the best machine learning
technique for the prediction of the number of available bikes
turned out to be the Bi-LSTM. The details on the hyper-
parameters resulting from Random Search Optimization of
Bi-LSTM for the temporal target of 60 minutes are reported
in Table 5.

The R2, RMSE, MAE, MAPE obtained by Bi-LSTM for
prediction targets of 15, 30, 45 and 60 minutes are reported
in Figure 4. Considering the MAE metric, predictions made
by Bi-LSTM range between 0.87 (for the prediction target
of 15 minutes on Cluster 2) up to 2 bikes (for the temporal
target of 60 minutes on Cluster 1 Fig. 5 (a, b) reports two

TABLE 4. MAPE for the prediction of available bikes in the next 15, 30, 45, 60 minutes on the representative racks of clusters. Comparison of: RF,
XGBoost, DNN, LSTM, and Bi-LSTM. In bold the best values of MAPE.
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TABLE 5. Hyperparameter optimized for the Bidirectional LSTM for the
prediction target of 60 minutes.

examples about predictions made by Bi-LSTM for temporal
target of 60 minutes on the number of available bikes for the
representative racks of clusters 1 and 3, respectively.

B. COMPARISON WITH THE STATE OF THE ART
Let us now compare the obtained results which are pre-
sented in this paper with respect to the above-presented
research papers as to the state-of-the-art for the short-term
bike-sharing related metrics prediction. It is evident that the
target solution is not a simple task because bike-sharing
systems configured with smart stations have many contextual
aspects that are case dependent. For example, the number
of bikes on the racks can vary among different bike-sharing
systems and from station to station. The bike-sharing metrics
chosen as prediction targets can vary and are related to the
studied case. Temporal targets for bike-sharing related met-
rics predictions range from 1, 5, 10minutes up to 1, 2, 3 hours,
yet remaining in the context of short-term predictions and the
metrics used to evaluate results are different, too. In effect,
a reasonable prediction should be in the range of reaching or

FIGURE 4. Resulting metrics for the Bidirectional LSTM on the prediction
targets of 15, 30, 45, 60 minutes on Clusters. (MAPE values are on the
right).

FIGURE 5. Plots of predictions made by Bi-LSTM as to bike racks for
(a) Cluster 1, (b) Cluster 3.

moving to reach the bike rack, probably from 5-15 minutes
to 1 hour.

The solutions reported in Table 1 proposed predictions
of different metrics, namely: number of bikes rented and
returned, number of bike changes within stations, rental bike
demand and available bikes. The number of rented bikes is
more relevant for providers, while other measures can be
somehow reconducted to the number of available bikes, once
each bike rack size is known. The research paper [30] predicts
the number of available bikes only 10 minutes in advance.
The comparison is difficult to be performed, since their
results are reported in terms ofMAE andMSE that depend on
the number of bikes within the system. What is similar is the
consideration on models. Indeed, deep learning techniques
achieved better results in both papers than ensemble learning
techniques.

Papers dealingwith the station’s bike demand, namely [26],
[27], considered ensemble learning techniques, which have
been outperformed by deep learning strategies in the case we
studied. Paper [25] as well uses ensemble learning techniques
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and as prediction target a cumulated metric, the number of
bikes rented in the bike-sharing system, while we predict
a punctual value that is relevant for the user and it is a
more complex piece of information to be predicted, as it
is a disaggregated information per rack. Paper [29] used a
bidirectional recurrent neural network to predict the number
of check-in/out bikes for the next hour. Assuming that these
are bike-sharing areas, their metric is related to the number
of available bikes on the rack. The assessment is performed
in terms of MAE, which, as to the check-in/out, resulted
in an error bigger than 1 bike. In order to provide a global
assessment, the MAE is high, while in our case we obtained
a similar MAE for each single rack.

C. SHAP FEATURE IMPORTANCE ANALYSIS
To evaluate the relevance of features used by Bi-LSTMs
for short-term bike availability prediction on the repre-
sentative bike racks of Pisa and Siena, a SHapley Addi-
tive exPlanations (SHAP) feature importance analysis was
performed [41]. Features with corresponding larger absolute
Shapley values are the most important ones. The feature
importance has been evaluated with respect to the represen-
tative sensors of the three clusters taken into account. The
resulting Shapley values in descending order are reported in
the plots of Fig. 6 for the three representative clusters.
The most important feature is the same for each cluster

and it is the number of available bikes at the observation
time (and before according to LSTM model). The top 5 most
important features for Cluster 1 include month and weekend
(temporal feature), temperature (meteorological feature) and
information about the difference among past values concern-
ing the number of available bikes calculated as the difference
between the number of available bikes in the observation
day (d) at time slot t and the number of bikes during the
successive time slot (t + 1) of the previous day (d − 1) dS
and the previous week number of available bikes (d − 7) at
the same time slot (t) PwAB.
The features regarding the difference in the number of

available bikes are ranked not so important for cluster 2 and 3
which, instead, in the top 5 include other additional temporal
features, the Day Of The Week and the weekend, and a mete-
orological feature, the pressure.

The difference in value between the first most important
feature and the others is quite relevant. So that it has been
reasonable to assess the effect of using only univariate data
as input for Bi-LSTMs, instead of using multivariate data
as above presented. To this end, a new Bi-LSTM model
has been trained using only the most relevant feature: the
number of available bikes at the observation time and tested
for 1-hour prediction for the representative sensors, by means
ofMAE,MAPE, RMSE, R2metrics. The comparative results
are reported inFig. 7 and they provide ameasure of the impact
of using all the features. Such results have demonstrated that
including historical and meteorological features did allow
Bi-LSTMs to perform better than to use only the number of
available bikes in each and every cluster.

FIGURE 6. Feature Importance graphs. The blue bar plot refers to
Cluster 1, the red one to Cluster 2 and the green one to Cluster 3.

D. ECONOMICAL IMPACT
As mentioned in the introduction, most predictive models for
bike-sharing are devoted to the prediction of the solution’s
global usage such as [25], rather than the prediction of the
bike rack status. The prediction of the bike rack status may be
used by operators to redistribute bikes during the day instead
of waiting for the night (which is called passive rebalancing),
as well as to identify potentially all the racks which would
need to be adjusted in size. On the other hand, the prediction
of available bikes over time is an issue of minor interest for
operators, since every time a biker finds a full rack, he/she
is constrained to move to an alternative bike rack, thus con-
suming more minutes and contributing to the redistribution
of bikes on racks, which is a double benefit for the operator.

The rebalancing of bike distribution on racks can benefit
from both an accurate prediction and user mobility, while tak-
ing into account their origin-destination matrices. An active
rebalancing of users could be stimulated by providing incen-
tives and pricing strategies. The assignment of incentives
increases the complexity of the system, as incentives should
be provided to users who effectively could not perform the
action without them. In [43], the solution focussed on the

FIGURE 7. Bi-LSTM results comparison using only the number of
available bikes as input, compared to using all the features in the
dataset. (MAPE values are on the right end).
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analysis of the user behaviour, while identifying the typical
starting/end points and the travel means, by collecting a large
amount of data from a mobile App and processing it in real-
time, which is very expensive (this approach permits the
computation of the origin-destination matrices, which are
also useful for positioning bike racks). An alternative solu-
tion would be to provide systematic incentives, for example,
to provide a bonus every time the user finds full a bike rack
and needs to look for another. This latter condition is avoided
with the services providing prediction of bike rack status
(e.g., providing bike availability, and thus the number of free
slots on the basis of the rack size, as presented in this paper).

From a customer perspective, the prediction of bike rack
status is of greater benefit, since it may imply the reduction of
their traveling time on a bike ride, and thus a higher quality of
service. This aspect has an indirect benefit on the operator’s
revenues, since a happy customer comes back and exploits
the service more often.

V. CONCLUSION
In this paper, we have proposed a predictive approach and
solution for short terms predictions of available bikes in
bike-sharing systems with smart stations and with only
3 months of data. Providing reliable predictions can be useful
for the development of a relevant number of services both for
operators and users.

The solution and its validation have been performed using
data collected in bike stations in the cities of Siena and Pisa.
The clustering process classified bike racks into 3 clusters,
where the representative sensors were identified. The pro-
posed methods use high dimensional time-series data from
each representative station and use real-time and forecast
weather information as input to perform short-term predic-
tions for the next 15, 30, 45 and 60 minutes. The limited
amount of data makes the problem even more difficult for
predictive models. State-of-the-art Ensemble Learning and
Deep Learning solutions have been compared in order to
choose the best one.

The proposed solution demonstrated that when it comes to
short-term prediction, even considering the limited amount of
data, the Bi-LSTM, Bidirectional Long Short-Term Memory
neural network architecture is the most suitable machine
learning technique for this problem. The results in terms of
Mean Absolute Error in the worst-case have achieved an error
of 2 bikes for the 60 minutes prediction on the bike rack.

The most important feature which has been identified by
using SHAP analysis is the number of available bikes in
all the clusters. The other important features are different
from cluster to cluster, but in the top spot there are the
temporal information metrics weekend, month, day of the
week, meteorological metrics as temperature and pressure
and information about the difference between the number
of available bikes at the observation time and past values.
By including also this other category of features, results
improved if compared to the univariate solution using only
the number of available bikes. This analysis has demonstrated

both validity and flexibility of themodel which, with the iden-
tified features and different relevance obtained good results
for different clusters and thus for different behaviours of time
series.

The predictions generated by the predictive models have
been deployed as an additional feature on Smart City
App ‘‘Toscana dove, cosa. Km4City’’ [37] to encourage sus-
tainable mobility.
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