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Summary
The objective of this study was to compare and determine the optimal validation

method when comparing accuracy from single-step GBLUP (ssGBLUP) to tradi-

tional pedigree-based BLUP. Field data included six litter size traits. Simulated

data included ten replicates designed to mimic the field data in order to determine

the method that was closest to the true accuracy. Data were split into training and

validation sets. The methods used were as follows: (i) theoretical accuracy derived

from the prediction error variance (PEV) of the direct inverse (iLHS), (ii) approxi-

mated accuracies from the accf90(GS) program in the BLUPF90 family of pro-

grams (Approx), (iii) correlation between predictions and the single-step GEBVs

from the full data set (GEBVFull), (iv) correlation between predictions and the cor-

rected phenotypes of females from the full data set (Yc), (v) correlation from

method iv divided by the square root of the heritability (Ych) and (vi) correlation

between sire predictions and the average of their daughters’ corrected phenotypes

(Ycs). Accuracies from iLHS increased from 0.27 to 0.37 (37%) in the Large

White. Approximation accuracies were very consistent and close in absolute value

(0.41 to 0.43). Both iLHS and Approx were much less variable than the corrected

phenotype methods (ranging from 0.04 to 0.27). On average, simulated data

showed an increase in accuracy from 0.34 to 0.44 (29%) using ssGBLUP. Both

iLHS and Ych approximated the increase well, 0.30 to 0.46 and 0.36 to 0.45,

respectively. GEBVFull performed poorly in both data sets and is not recom-

mended. Results suggest that for within-breed selection, theoretical accuracy using

PEV was consistent and accurate. When direct inversion is infeasible to get the

PEV, correlating predictions to the corrected phenotypes divided by the square

root of heritability is adequate given a large enough validation data set.
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1 | INTRODUCTION

Multiple genomic validation methods for accuracy compar-
isons have been utilized since the introduction of genomic
selection (GS) (Aguilar et al., 2010; Forni, Aguilar, &

Misztal, 2011; Saatchi et al., 2011). One of the most com-
mon methods is to compare which genomic prediction
model performs best in terms of accuracy and bias. Results
from these studies have reached a similar conclusion; GS
models outperform pedigree-based predictions with little
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variability among GS models (Aguilar et al., 2010;
Habier, Fernando, Kizilkaya, & Garick, 2011; Tusell,
Perez-Rodriguez, Forni, Wu, & Gianola, 2013). In the light
of these results, the swine industry has adopted single-step
methodology for routine evaluation due to its simplicity
and limitations of early marker estimation models (Legarra,
Christensen, Aguilar, & Misztal, 2014; Misztal, 2016). Sin-
gle-step GBLUP (ssGBLUP) was derived to utilize geno-
typed and non-genotyped individuals in the same BLUP
framework by blending the additive relationship matrix (A)
and genomic relationship matrix (G) (Christensen & Lund,
2010; Legarra, Aguilar, & Misztal, 2009).

Much of the focus for GS has been placed on models
and far less on the accompanying validation methods being
used. Many articles use only one or maybe two methods
and have ignored justification of the validation methods
being used for accuracy comparisons between models
(Abell, Mabry, Dekkers, & Stalder, 2012; Christensen,
Madsen, Nielsen, Ostersen, & Su, 2012; Forni et al., 2011;
Guo et al., 2015; Lourenco et al., 2014; Ser~ao et al.,
2016). In a review paper on GS by de los Campos, Hickey,
Pong-Wong, Daetwyler, and Calus (2013), accuracy valida-
tion methods were not thoroughly discussed, yet play a
critical role to compare alternative breeding programmes.
Misztal (2016) discussed validation methods not being
thoroughly investigated and stated, “So the quest for the
perfect validation continues.” There may not be a perfect
validation method, but understanding some properties of
different methods is warranted. Therefore, the objective of
this study was to compare the accuracy of validation meth-
ods for swine litter size traits, real and simulated, to deter-
mine the optimal method for comparing pedigree BLUP to
single-step GBLUP in terms of accuracy and consistency.

2 | MATERIALS AND METHODS

2.1 | Field data

Data provided by Smithfield Premium Genetics (SPG; Rose
Hill, NC, USA) were collected from June 2009 through
May 2013 for the Large White (LW) purebred maternal
breed. It included 8,257 litters from 4,849 LW sows. A
complete pedigree was available going back at least three
generations. At birth, the number of live born and stillborn
piglets was recorded. Litters were recorded and piglets
were processed, weighed and cross-fostered within 48 hr of
birth. Individual mortality dates were recorded on piglets
that died after they were processed. Of the total number of
live born piglets, cross-fostering was minimized and
occurred for 4.9% of piglets and 17% of litters (see Putz,
Tiezzi, Maltecca, Gray, & Knauer, 2015).

Six litter size traits were analysed as follows: total num-
ber born (TNB), number born alive (NBA), litter size at

day 5 and 10 (LS5, LS10), litter size at weaning (LSW)
and number of piglets weaned (NW). All traits were mod-
elled as a trait of the sow. Litter size at day 5, 10 and
weaning assigned piglets to their biological litter (Nielsen,
Su, Lund, & Madsen, 2013; Putz et al., 2015; Su, Lund, &
Sorensen, 2007). In contrast, NW included all piglets that
were present in the litter of that sow at the time of wean-
ing, including any piglets cross-fostered onto the litter (i.e.,
as a nurse dam regardless of biological status).

Animals were genotyped using the Illumina PorcineSNP60
Beadchip. There were a total of 61,565 single nucleotide poly-
morphisms (SNP) in the raw genotype file. Prior to process-
ing, the number of genotyped animals was 3,264. Software in
the BLUPF90 family of programs was utilized for processing
(preGSf90). Genotype processing included removing any
SNPs with minor allele frequency less than 0.05 or a call rate
less than 0.90, mapped to sex chromosomes, and unmapped.
Animal genotypes with a call rate less than 0.90 or a parent–
progeny conflict were removed. After processing, LW had
32,719 SNPs and 3,195 genotyped animals.

2.2 | Simulated data

Simulated data were created using QMSim (Sargolzaei &
Schenkel, 2009) to mimic the field data used in this analysis
as closely as possible given a maternal swine-breeding pro-
gramme. The simulated data were used to help determine the
optimal validation method for litter size, given the TBV was
available. Ten replicates were analysed to calculate the mean
and standard deviation of each method. Historical genera-
tions were run for 1,500 generations and simulated 500 sows
and 500 boars, followed by an expansion to 1,000 sows and
1,000 boars within ten generations in order to sample enough
females for the recent population. These generations were
used to generate historical LD between markers and QTL.
The recent population included 1,000 females and 50 males
per generation and ran for 21 generations. The 21st genera-
tion was needed to identify which individuals were selected
in generation 20 to obtain a validation phenotype. An impor-
tant point is that only those selected obtain a phenotype for
litter size in swine. Generations 14 through 20 (last seven
generations) were selected for data. Only generations 17
through 20 (four generations) were selected as genotyped
individuals. Both of these steps were in attempt to get
approximately the same number of records and genotyped
individuals as seen in the field data. As it was a simulation,
all pedigree records were available on all the recent genera-
tions, and the pedigree was traced back three generations.
The litter size distribution in the simulation was taken from
the LSW distribution in the LW population to mimic the
same population structure as the real data set. From that, the
number of offspring produced for each female would follow
that probability mass function. Overlapping generations were
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simulated; sows were culled at 80% per generation and boars
at 50% per generation based on age. More sows were simu-
lated than were present in the field data, as QMSim does not
allow for repeated records. Phenotypes were sex-limited to
females.

Another limitation was that QMSim simulates pheno-
types for all female offspring when sex-limited. This is an
important point that many simulations overlook. In reality,
not all females will record a phenotype for litter size, only
those selected to be parents in the next generation will gen-
erate phenotypes. Therefore, all other phenotypes (those
that did not become parents, already sex-limited) were
removed to mimic litter size phenotypes in the real data
set. For example, if the female population consisted of 100
sows and they each produced exactly 10 offspring, there
would be 500 male and 500 female offspring. If culling
was 100%, the maximum number of litter size phenotypes
obtainable is only 100, not the 500 that would be simulated
from QMSim. Random selection was practiced due to this
postsimulation data processing step. Selection with EBV
from QMSim would also not represent selection accurately
because there would be far more phenotypes available than
possible with litter size. This could be incorrect if a system
had a daughter nucleus or multiplier in which they were
feeding back data to the nucleus from these purebred litter-
mates, but it is my understanding this is generally not the
case. Even in that case, not all would be selected to move
to the next level. Mating between males and females were
assigned to minimize inbreeding of the simulated popula-
tion. The trait simulated had a heritability of 0.10 and a
QTL heritability of 0.08, leaving a 0.02 polygenic effect.
QTL effects were simulated from a gamma distribution
with shape 0.4 (scaled to total QTL variance). Initial allele
frequencies were randomly assigned for QTL and markers.
Mutation was not simulated for QTL or markers. The phe-
notypic variance was set to 9.0, approximately the same as
litter size (Putz et al., 2015; Su et al., 2007). An important
note is that litter size could not be used as the response
trait in QMSim, thus litter size was independent of the phe-
notype being assigned by QMSim. Each sow would ran-
domly be assigned the number of offspring based on the
litter size distribution specified (LSW from the LW breed).
The response phenotype used was the continuous pheno-
type assigned by QMSim with approximately the same
variance observed for litter size data. It was not the litter
size randomly assigned per litter. Litter size was randomly
assigned to keep the same population structure in terms of
full/half-sib relationships. The resulting simulated data set
had a total of 5,700 records (females) and 3,300 genotyped
individuals (males and females) after processing. Variance
components were estimated within each replicate.

The genome consisted of 18 pairs of chromosomes
100 cM each. Two alleles for 10,000 markers were

simulated per chromosome for a total of 180,000 markers.
In the last historical generation (1,500), 60,000 markers
were randomly selected from those with an allele frequency
greater than 0.01. Each chromosome contained 25 QTL
with two alleles each for a total of 450 QTL at the begin-
ning of the simulation. On average, 242 QTL remained
after the historical populations and 237 were selected for
the recent populations. Both markers and QTL were posi-
tioned randomly throughout the genome in the first histori-
cal generation.

2.3 | Models

Estimated breeding values (EBVs) were calculated using a
traditional BLUP prediction model. Analyses were carried
out with the BLUPF90 family of programs (Misztal et al.,
2002). Models for litter size traits included fixed effects of
year-season, farm and parity. Random effects included ani-
mal and permanent environmental effects of the dam. The
model for simulated data included generation as a fixed
effect for the accf90 program and additive genetics of the
dam (no repeated measures simulated). The full data set
utilizing the pedigree was used to estimate variance compo-
nents as in Guo et al. (2015). Heritability estimates for lit-
ter size traits in the LW ranged from 0.09 to 0.11 (Putz
et al., 2015). The pedigree was traced back three genera-
tions.

Single-step GBLUP was implemented in this analysis
(Christensen & Lund, 2010; Legarra et al., 2009). The
computation for H�1 (Lourenco et al., 2014) was

H�1 ¼ A�1 þ 0 0
0 s aGþ bA22ð Þ�1 � xA�1

22

� �
;

where A�1 is the inverse of the numerator relationship
matrix (A) including all animals; G is the genomic relation-
ship matrix (from default preGSf90, VanRaden, 2008);
A�1

22 is the inverse of the A matrix for only genotyped ani-
mals. The parameter values were a = 0.95, b = 0.05, s = 1
and x = 1. Christensen et al. (2012) showed very small
differences between the standard H and adjusted H, so
there was no attempt to adjust the matrix. Observed allele
frequencies were used to centre and scale the observed
genotype matrix.

2.4 | Validation methods

Forward validation was used in this analysis. In the field
data, the last 3 year-seasons were masked as the validation
data set, and predictions were made using the first 13 year-
seasons as the training data set. The validation data set
contained 29% of the observations for Large White. The
last 3 year-seasons were selected because the goal in a
breeding programme should be to predict breeding values
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of young replacements in the next generation, not multiple
generations. In the simulated data, generation 20 was
masked, and predictions were made from generations 14
through 19 (six generations) to approach a similar data set
size as the field data.

Four general methods were used to calculate accuracy:
using prediction error variance (PEV) from the inverse left-
hand side (iLHS) and calculating the traditional accuracy
(Forni et al., 2011), approximated accuracies (Misztal &
Wiggans, 1988; Misztal et al., 2013), correlating predic-
tions to the GEBV from the full data set (similar to Aguilar
et al., 2010) and correlating predictions to the corrected
phenotypes (Abell et al., 2012; Christensen et al., 2012;
Lourenco et al., 2014). There were three separate imple-
mentations using the corrected phenotypes (see below). For
simulated data, the true breeding values (TBV) were
known and correlated to the genomic and pedigree predic-
tions to obtain the true accuracy of both models. All of the
accuracies calculated were only within the validation data
set.

First, the iLHS (direct inverse) was calculated to obtain the
standard error of prediction (SEP) to calculate the traditional
accuracy. Fortran FSPAK (package for matrix inversions)
solving method was used in the BLUPF90 program (i.e., these
were not approximations). The equation from Mrode (2014)
that was used to calculate traditional accuracy was

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SEP2i =r2

a

� �q
;

where i = 1, 2, . . ., number of animals in validation; SEP
is the SEP output from BLUPF90; and r2

a is the additive
genetic variance of the trait being analysed. Accuracy was
defined as the mean of the vector for genotyped sows in
the validation set.

Second, approximations from the accf90 or accf90(GS)
program in the BLUPF90 family of packages were calcu-
lated (Approx, Misztal & Wiggans, 1988; Misztal et al.,
2013). It is unknown what method was implemented from
Misztal et al. (2013), as it is proprietary software (it has
been updated more recently). Year-season was used as the
major fixed effect in the approximations for the field data
set. In simulated data, generation was used as the only
fixed effect for approximations. As for iLHS, accuracy was
defined as the mean of the vector for genotyped sows in
the validation set.

Third, single-step GBLUP predictions from the full data
set (GEBVFull, i.e., not split between training and valida-
tion) were used to correlate predictions (Aguilar et al.,
2010). Accuracy was defined as

r ¼ cor Gð ÞEBVt; GEBVFullð Þ;
where (G)EBVt was either the GEBV from the ssGBLUP
prediction (H�1) or the EBV from the BLUP pedigree

(A�1)-based prediction from the training data set for valida-
tion animals. The correlation was carried out only for the
validation animals in both the field data set and the simu-
lated data set. This was in an attempt to mimic a method
used by Aguilar et al. (2010) where he used EBV09 (full
data set, corresponding to year 2009) as the response in a
model and predictions from EBV04 (training data).

Fourth, the corrected phenotypes (Yc) from the full data
set adjusted for fixed effects (parity, farm and year-season)
were used as the response to be predicted. Accuracy was
defined as in Lourenco et al. (2014) as

r ¼ cor Gð ÞEBVt; Ycð Þ;
where Yc was the corrected phenotypes for sows from the full
data set; (G)EBVt as previously defined. Three different
implementations using corrected phenotypes were used.
They are: (i) the correlation between the (G)EBV and the
corrected phenotypes of the genotyped sows in validation
with no records in the training data set (Yc; Lourenco et al.,
2014), (ii) the correlation from (i) divided by the square root
of heritability (Ych; similar to Guo et al., 2015; Ser~ao et al.,
2016) and (iii) the correlation in the validation data set
between the breeding value prediction of genotyped sires
and the average of their daughters’ corrected phenotypes
(Ycs; Abell et al., 2012). Sires had to have at least five daugh-
ter phenotypes in validation. Daughters used to calculate the
average corrected phenotype had no phenotypes in the train-
ing data set, only from the validation data set.

Any sow with a record in the training data set was
removed from the validation data set (left in the training
data). This resulted in 194 genotyped LW sows. There
were 34 genotyped sires with at least five daughters in the
validation data set. For the simulated data, 800 genotyped
females and 25 genotyped males were used for validation.

3 | RESULTS

3.1 | Field data

Theoretical accuracies from iLHS were consistent across
traits (SD ranging from 0.01 to 0.03) and showed an
improvement from 0.27 to 0.37 for EBV and GEBV selec-
tion in LW (Table 1). This was an increase of 37%.
Approximated accuracies showed only a slight improve-
ment from pedigree predictions (0.41 to 0.43) and were
slightly higher than iLHS with very little variation (~0.01).
Correlating predictions to GEBVFull yielded very high
accuracies for ssGBLUP (0.35 to 0.79), but were consistent
across traits. Corrected phenotypes methods tended to show
more variation than the other methods and underestimated
the iLHS accuracies (0.04 to 0.27). The most amount of
variation was observed for Ycs.
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Each validation method’s accuracy across trait was pre-
sented in a separate facet (validation method) with the y-scale
fixed across all methods within figure (Figure 1). Estimates
for iLHS, Approx and GEBVFull were higher for GEBV than

EBV for all six traits. For these three methods, the increase
ranged from 0.08 to 0.13, 0.02 to 0.02 and 0.41 to 0.48,
respectively. These three methods also showed less variation
across traits, although some variation was observed. Approx-
imations were only slightly higher than the iLHS accuracies
with GEBV slightly outperforming EBV. Three corrected
phenotype methods (Yc, Ych and Ycs) were more variable and
had one trait reranked each between GEBV and EBV. NW
was reranked for Yc and Ych, while TNB was reranked for
Ycs. The range of increase for Yc, Ych and Ycs was �0.02 to
0.09, �0.04 to 0.32 and �0.03 to 0.15, respectively.

3.2 | Simulated data

Correlations between TBV with EBV and GEBV (i.e., true
accuracies) were 0.34 and 0.44, respectively (Table 2). The
increase was the same (0.10) as the field data set. This was
a 29% increase for ssGBLUP on average. Averaged across
replicate, the Ych method performed the best in terms of
being the closest to the TBV correlations (difference of
0.02 and 0.01 for EBV and GEBV, respectively). As
expected, the iLHS was also very close to the true accuracy
with a difference of 0.04 for EBV predictions and 0.02 for
GEBV predictions. As in the field data, the GEBVFull

method showed high accuracies of 0.56 for EBV and 0.82
for GEBV. Variability across replicate was much higher for

TABLE 1 Accuracies (SD) averaged across trait for single-step
GBLUP (GEBV) and pedigree (EBV) predictions from the training
data set in Large White population (n = 194, n = 34 for Ycs)

EBV GEBV

iLHSa 0.27 (0.01) 0.37 (0.03)

Approxb 0.41 (0.01) 0.43 (0.00)

GEBVFull
c 0.35 (0.05) 0.79 (0.04)

Yc
d 0.04 (0.03) 0.09 (0.04)

Ych
e 0.12 (0.08) 0.27 (0.12)

Ycs
f 0.09 (0.17) 0.18 (0.15)

aAverage theoretical accuracy calculated from the PEV from the direct inverse
of LHS.
bAverage accuracy from approximations obtained from the accf90(GS) (geno-
mic selection) program.
cCorrelation between single-step GEBV predictions from the full data set and
predictions from the training data set.
dCorrelation between corrected phenotypes of dams and predictions.
eYc divided by the square root of the heritability.
fCorrelation between average corrected phenotypes of daughters for sires with
at least five daughters in validation and predictions.

FIGURE 1 Accuracies across trait for single-step GBLUP (GEBV) and pedigree (EBV) predictions from the training data set in the Large
White population (n = 194, n = 34 for Ycs). TNB—total number born, NBA—number born alive, LS5—litter size at day 5, LS10—litter size at
day 10, LSW—litter size at weaning, NW—number weaned. iLHS—average theoretical accuracy calculated from the PEV from the direct
inverse of LHS, Approx—average accuracy from approximations obtained from the accf90(GS) program, GEBVFull—correlation between single-
step GEBV predictions from the full data set and predictions from the training data set, Yc—correlation between corrected phenotypes of dams
and predictions, Ych—Yc divided by the square root of the heritability, Ycs—correlation between average corrected phenotypes of daughters for
sires with at least five daughters in validation and predictions. [Colour figure can be viewed at wileyonlinelibrary.com]
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the Ycs method than any other, followed by Ych and Yc.
Both Ycs and Yc were less than half of the true accuracies
(0.11 to 0.17). Approximations were consistent with the
field data, showing almost no variation across replicates
and a slight increase in accuracy for GEBV predictions.

Correlations between predictions and TBV were higher
for GEBV than EBV for all but replicate six (Figure 2).
The increase in accuracy ranged from 0 to 0.16 for TBV.
Approximations were the most consistent followed by
iLHS, GEBVFull, Yc/Ych and Ycs. Corrected phenotype
methods performed better than in the field data, most likely
due to a larger validation size (n = 800). In eight of the ten
replicates, GEBV outperformed the EBV predictions for Yc
and Ych. It is worth noting that Yc and Ych closely followed
the true accuracy correlations by replicate. For instance,
replicates 3 and 6 accuracy values showed little increase
for GEBV in both TBV and Ych, while in replicates 7–10,
the increase was higher for both methods. The Ycs method
showed a dramatic amount of variability and did not seem
to mimic the true accuracies well. In six of the ten repli-
cates, the EBV predictions outperformed the GEBV predic-
tions. This method included only 25 sires, which most
likely caused much of the variation observed.

4 | DISCUSSION

Many methods have been used in genomic accuracy valida-
tion; this research begins to address some of the pros and
cons of using different accuracy validation methods.
Results from the simulation were in general consistent with

accuracies calculated in the field data set for litter size
traits. These simulated data validated the effectiveness of
using the iLHS and Ych to estimate the true accuracy,
which were more consistent across trait and replicate. How-
ever, this was done for within-breed selection in a purebred
line. Be careful not to extrapolate results to other scenarios
without further validation (e.g., validate across lines/breeds
or crossbred performance). This should be a direction for
future research. Also be careful not to extrapolate to other
species or traits without further investigation. Results may
be sensitive to population structure (number of full/half-sib
families) or the trait in terms of when data are collected
(i.e., growth and feed intake prior to selection and litter
size after selection). The corrected phenotype methods
showed more variability in terms of reranking of models
across traits and replicates so care should be taken inter-
preting these results with small sample sizes.

Accuracies were quite high for the GEBVFull method
and turned out to be a very poor method for accuracy vali-
dation for swine litter size traits. This was expected
because of extensive overlapping information (not indepen-
dent) between the GEBV predictions from the training data
set and the predictions from the full data set. Only one
generation of data was added to these predictions for a
lowly heritable trait. This was in contrast to Aguilar et al.
(2010) in which 5 years of data were covered by the vali-
dation data set. This could span multiple generations for
cows and could decrease the accuracy estimated. Accura-
cies reported in terms of reliability were 0.50 for the best
model, which corresponds to an accuracy of 0.71 (Aguilar
et al., 2010). This method may be better to measure the
stability of the models used and/or better utilized in dairy
cattle because dairy bulls can have a very high accuracy
with a large number of progeny in the validation popula-
tion. It is not recommended for litter size accuracy in swine
based on the data presented (see tables and figures).

Results showed the Yc method underestimated the true
accuracy in simulated data and the iLHS accuracy in the
real data set. The Yc method may help with model compar-
isons (H versus A), but lacks the ability to estimate the
true accuracy in terms of absolute value without dividing
by the square root of heritability. The Ych method was suc-
cessful at estimating the true accuracy in simulated data.
Abell, Dekkers, Rothschild, Mabry, and Stalder (2014)
showed that adoption of GS would depend on the true
increase in accuracy and economic considerations of logis-
tics, data collection/analysis and cost of genotyping. For
example, in the LW, the increase in accuracy was 125%
(from 0.04 to 0.09) using the Yc method. In contrast, the
increase in accuracy for iLHS method was only 37% in
LW (from 0.27 to 0.37). Furthermore, the absolute value is
too small from the Yc method to make a significant impact
on the decision to adopt GS as observed in the LW

TABLE 2 Accuracies (SD) averaged across replicate from
simulated data using single-step GBLUP (GEBV) and pedigree
(EBV) predictions in the training data set (n = 800, n = 25 for Ycs)

EBV GEBV

TBVa 0.34 (0.06) 0.44 (0.06)

iLHSb 0.30 (0.02) 0.46 (0.01)

Approxc 0.34 (0.00) 0.37 (0.00)

GEBVFull
d 0.56 (0.06) 0.82 (0.03)

Yc
e 0.11 (0.05) 0.14 (0.03)

Ych
f 0.36 (0.15) 0.45 (0.11)

Ycs
g 0.14 (0.22) 0.17 (0.22)

aCorrelation of predictions to true breeding values.
bAverage theoretical accuracy calculated from the PEV from the direct inverse
of LHS.
cAverage accuracy from approximations obtained from the accf90(GS) program.
dCorrelation between single-step GEBV predictions from the full data set and
predictions from the training data set.
eCorrelation between corrected phenotypes of dams and predictions.
fYc divided by the square root of the heritability.
gCorrelation between average corrected phenotypes of daughters for sires with
at least five daughters in validation and predictions.
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population in the current study. Low values such as 0.09
for the Yc accuracy in the LW make it appear insignificant
and might result in other programmes waiting to adopt GS
while genotyping costs come down. This should also be
considered as the swine industry considers replacing the
current SNP panel with higher density SNP panels or
whole-genome sequencing (see Hickey, 2013) as well as
continual comparison of GS models.

Using corrected phenotypes of sows was expected to
perform poorly when the heritability is low. The R2 for
litter size models was ~0.05 or below. For this reason,
daughter residuals were averaged for sires (Ycs) in an
attempt to negate the extra noise and regain more of the
genetic merit. This was a simple solution to evaluate
sires in the past (Thompson, 1979). In the preliminary
analysis, it was discovered that a minimum number of
daughter records were needed to obtain better accuracies.
Abell et al. (2012) used a cut-off of ten daughters, but
given the limited sample size of sires in the current
study for validation, five was chosen. This balance
between increasing the number of daughters averaged
and sample size needs to be considered. In the LW,
there were 160 more genotyped sows than genotyped
sires with at least five daughters in validation. As with
Yc or Ych, results suggest using Ycs with a limited num-
ber in validation will result in highly variable results and

should be considered prior to analysis. In general, pure-
bred lines in swine will suffer from a small number of
sires used in a validation data set leading to the method
performing poorly.

It was observed in the LW population that iLHS,
approximations and GEBVFull methods all showed that
GEBV predictions outperformed the EBV predictions. In
contrast, Yc showed that EBV and GEBV performed
equally well for NW in LW, for example. This may weigh
in the decision to adopt one litter size trait over another
depending on which validation method is chosen.

There still does not seem to be a standard among
researchers for selecting a G matrix and blending the G
and A matrices. However, the default for the BLUPF90
programs is to use observed allele frequencies for centring
and scaling and a weight of 0.95 and 0.05 for G and A,
respectively (i.e., a = 0.95, b = 0.05). Results from Forni
et al. (2011) show that GEBV estimates from different G
matrices resulted in extremely high correlations among one
another (~0.99 or above). Therefore, no attempt was made
to utilize different relationship matrices in the current
study, as the accuracy wouldn't change for methods such
as Yc. Forni et al. (2011) reported an accuracy increase
from 0.22 to 0.30 using the observed frequencies for G
using the PEV. Other methods for obtaining G have been
compared, and the results for theoretical accuracy seemed

FIGURE 2 Accuracies across replicate
for the simulated data sets comparing
single-step GBLUP (GEBV) and pedigree
(EBV) predictions from the training data set
(n = 800, n = 25 for Ycs). iLHS—average
theoretical accuracy calculated from the
PEV from the direct inverse of LHS,
Approx—average accuracy from
approximations obtained from the accf90
(GS) program, GEBVFull—correlation
between single-step GEBV predictions from
the full data set and predictions from the
training data set, Yc—correlation between
corrected phenotypes of dams and
predictions, Ych—Yc divided by the square
root of the heritability, Ycs—correlation
between average corrected phenotypes of
daughters for sires with at least five
daughters in validation and predictions,
TBV—correlation of predictions to true
breeding values. [Colour figure can be
viewed at wileyonlinelibrary.com]
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inflated for several of them (Forni et al., 2011). Lourenco
et al. (2014) used 0.7, 0.3, 0.7 and 0.8 for a; b; s and x,
corresponding to the weights for G, A22, G*�1 and A�1

22 ,
respectively. These weights are not expected to change the
accuracy much and could be used to increase stability, but
it could change based on what validation method is used.

Forward validation was used as opposed to a common
cross-validation technique. Cross-validation can lead to
very high, unrealistic estimates of accuracies (Misztal,
2016). The goal of GS is to have the ability to genotype at
a young age prior to phenotyping and predict breeding val-
ues accurately. Cross-validation can be useful to predict
true accuracy from predictive ability (Legarra, Manfredi, &
Elsen, 2008), but does not mimic a real breeding pro-
gramme. This study used highly correlated traits (litter size,
see Putz et al., 2015) to obtain a degree of replication and
replicates in simulation.

It is highly desirable that the method used to validate
be stable and predict the true accuracy well in terms of
absolute value. The biggest unanswered question will be
how these validation method results change with the trait
(genetic architecture) and species (population structure).
Data from the simulation had to be processed to mimic
the true phenotypes in a swine-breeding programme. Only
animals that became parents for the next generation can
generate phenotypes for litter size. Traits such as average
daily gain should have phenotypes for most offspring
whether they become parents or not, thus changing the
advantage for GS, unless preselection is needed for traits
such as feed intake. Carcass traits will also have a differ-
ent level of phenotyping depending on the breeding pro-
gramme. This may change the results from the current
study because relatively few full and half-sibs would also
have phenotypes for litter size and are expected to have
lower accuracy. More research could also be completed,
extending to estimating bias, as the true accuracies are
never known to regress on. No method such as iLHS
exists for bias, which increases the need to find an alter-
native method even if the inversion of LHS is feasible for
accuracy.

One important discovery of this research was that the
data set size in validation had an impact on accuracies,
especially with the corrected phenotype methods. In an ini-
tial analysis, Landrace was included but had a very limited
number of genotyped individuals in validation so accura-
cies from Yc, Ych and Ycs fluctuated dramatically and were
subsequently removed due to the results (many were over
1, the upper bound for accuracy). LW had 194 genotyped
sows for validation and still seemed to show a large
amount of variation compared to the simulated data. How-
ever, iLHS and Approx were not affected greatly in Lan-
drace compared to Large White, leading to about the same
increase in accuracy. Future research may be needed to

address how large the validation population needs to be so
these correlations are stable.

5 | CONCLUSIONS

When inverting LHS is possible, it appears to be the best
validation method available when using ssGBLUP, in terms
of stability and accuracy within population. Results of this
study suggest that the theoretical accuracy from inverse
LHS was very consistent and approximated the true accu-
racy in the simulated data well. With simulated data, the
correlation between corrected phenotypes of dams and the
predictions divided by the square root of heritability per-
formed very well averaged across replicate. With field data
it did not perform as well when compared to iLHS. It is
important to ensure that enough genotyped validation ani-
mals exist if using corrected phenotypes compared to other
methods due to instability of this method. Breeding pro-
grammes need to be careful which validation method they
choose and should investigate multiple methods if possible.
Future research is needed to address this topic across dif-
ferent traits (architectures) and species, as they are expected
to change based on the trait and/or population.
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