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Structural variants (SVs) are genomic rearrangements that involve at least 50 nucleotides
and are known to have a serious impact on human health. While prior short-read
sequencing technologies have often proved inadequate for a comprehensive
assessment of structural variation, more recent long reads from Oxford Nanopore
Technologies have already been proven invaluable for the discovery of large SVs and
hold the potential to facilitate the resolution of the full SV spectrum. With many long-read
sequencing studies to follow, it is crucial to assess factors affecting current SV calling
pipelines for nanopore sequencing data. In this brief research report, we evaluate and
compare the performances of five long-read SV callers across four long-read aligners using
both real and synthetic nanopore datasets. In particular, we focus on the effects of read
alignment, sequencing coverage, and variant allele depth on the detection and genotyping
of SVs of different types and size ranges and provide insights into precision and recall of SV
callsets generated by integrating the various long-read aligners and SV callers. The
computational pipeline we propose is publicly available at https://github.com/
davidebolo1993/EViNCe and can be adjusted to further evaluate future nanopore
sequencing datasets.
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1 INTRODUCTION

Structural variants (SVs) are defined as DNA rearrangements ≥50 bp and include copy number
variants (CNVs; deletions and duplications) as well as insertions, inversions, translocations, and
more complex combinations of these described events (Alkan et al., 2011; Sudmant et al., 2015).
Although single nucleotide variants (SNVs) were initially thought to contribute the majority of
genomic variation in humans (Sachidanandam et al., 2001; Zou et al., 2020), SVs can extend to well
over megabases of sequence, accounting for more varying base pairs than any other class of sequence
variants (Ho et al., 2020).

Several studies have implicated SVs in human health, with associated phenotypes ranging from
cognitive neurological disorders (Rovelet-Lecrux et al., 2006; Pytte et al., 2020) to obesity (Walters
et al., 2013) and cancer (Li et al., 2020; Aganezov et al., 2020), among others (Weischenfeldt et al.,
2013).

Despite the importance of SVs, they have been largely understudied compared to SNVs because of
dominant short-read sequencing technologies hindering their identification, especially in low-
complexity regions, which are known to be SV hotspots (Mills et al., 2011). Indeed, it has been
shown that from a computational perspective, repeats create ambiguities in short-read alignment and

Edited by:
Ka-Chun Wong,

City University of Hong Kong, China

Reviewed by:
Paola Bonizzoni,

University of Milano-Bicocca, Italy
Jean-Stéphane Varré,

Lille University of Science and
Technology, France

*Correspondence:
Davide Bolognini

davidebolognini7@gmail.com

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 20 August 2021
Accepted: 11 October 2021

Published: 18 November 2021

Citation:
Bolognini D and Magi A (2021)
Evaluation of Germline Structural

Variant Calling Methods for Nanopore
Sequencing Data.

Front. Genet. 12:761791.
doi: 10.3389/fgene.2021.761791

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7617911

BRIEF RESEARCH REPORT
published: 18 November 2021

doi: 10.3389/fgene.2021.761791

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.761791&domain=pdf&date_stamp=2021-11-18
https://www.frontiersin.org/articles/10.3389/fgene.2021.761791/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.761791/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.761791/full
https://github.com/davidebolo1993/EViNCe
https://github.com/davidebolo1993/EViNCe
http://creativecommons.org/licenses/by/4.0/
mailto:davidebolognini7@gmail.com
https://doi.org/10.3389/fgene.2021.761791
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.761791


assembly which, in turn, introduces errors in calling genetic
variants (Treangen and Salzberg, 2011; Mantere et al., 2019).

Long-read sequencing from Pacific Biosciences and Oxford
Nanopore Technologies (ONT) has emerged in recent years
(Chaisson et al., 2015; Jain et al., 2016) and proved invaluable
in identifying previously intractable DNA sequences (Li and
Freudenberg, 2014; Bolognini et al., 2020) and close gaps in
the human genome assemblies and unraveling otherwise
undetected SVs at population-scale (Beyter et al., 2020; Wu
et al., 2021).

The idea of sequencing DNA fragments using a protein
nanopore dates back to the 1980s and culminated in the ONT
MinION device being released in June 2014 (Deamer et al., 2016).
A single MinION flowcell has 512 sensors collecting
measurements from 2048 nanopores and currently allows us
to sequence a full human genome at 3-4X coverage with read
lengths up to ∼800 kbp (Jain et al., 2018). While low-coverage
data can be used to detect CNVs at array resolution (Magi et al.,
2019), higher throughput facilitates the resolution of the full SV
spectrum with base-pair resolution and can be achieved by
combining multiple MinION runs (Cretu Stancu et al., 2017)
or by sequencing through the high-performance PromethION
platform (De Coster et al., 2019).

Thanks to the efforts of the Human Genome Structural
Variation (Chaisson et al., 2019) and Genome in a Bottle
(GIAB) (Zook et al., 2020) consortia, high-coverage nanopore
sequencing data have been released to the research community
together with high-quality SV callsets that enable an accurate
estimation of precision and recall of SV calling methods.
Moreover, with many other studies to follow, such as the All
of Us research program and the Human Pangenome project (De
Coster et al., 2021), a throughout benchmark of available
strategies for the identification and characterization of SVs
from nanopore data is greatly needed.

In this article, we present an evaluation of current long-read
SV calling pipelines applied to nanopore sequencing data.
Specifically, we focus on germline SVs identified by read
alignment–based approaches and evaluate each SV caller’s
ability to detect genomic breakpoints of different SV types and
size ranges and the effects of read alignment, sequencing
coverage, variant allele depth, and integration of multiple call
sets on SV detection and genotyping. A scalable workflow for SV
calling based on the popular workflow language Snakemake
(Köster and Rahmann, 2012) is available at https://github.com/
davidebolo1993/EViNCe and can be used to reproduce findings
described in this article and adapted to future nanopore
sequencing datasets.

2 METHODS

The evaluation workflow used in this work is outlined in short
below. Additional details are provided in the accompanying
Supplementary Material.

We benchmarked 5 SV calling methods, namely, Sniffles
(Sedlazeck et al., 2018), SVIM (Heller and Vingron, 2019),
cuteSV (Jiang et al., 2020), npInv (Shao et al., 2018), and pbsv

(https://github.com/PacificBiosciences/pbsv), using real ONT
PromethION data released by the GIAB consortium for the
NA24385 Ashkenazim individual (Shafin et al., 2019) and
synthetic ONT data generated using the SV simulator VISOR
(Bolognini et al., 2019), aligned to the GRCh37 and GRCh38
versions of the human reference genome, respectively, using the
long-read aligners minimap2 (Li, 2018), NGMLR (Sedlazeck et al.
, 2018), lra (Ren and Chaisson, 2021), and pbmm2 (https://
github.com/PacificBiosciences/pbmm2) (Supplementary
Datasheet S1).

By randomly down-sampling the original alignments and
filtering the generated SV callsets on different numbers of
reads supporting a reported SV, we evaluated the influence of
various depths of coverage and variant allele depths on SV callers’
ability to detect genomic breakpoints and identify their genotype.

Precision and recall of the SV callsets generated by combining
the different long-read aligners and SV callers were calculated
using truvari (https://github.com/spiralgenetics/truvari) against
the truth SV callsets from GIAB and VISOR. In accordance with
similar studies (Gong et al., 2020), the following criteria were used
to pick out true-positive calls: 1) the genomic position of the
breakpoints identified for a candidate SV must be within a
predefined reference distance (500 bp) from at least one SV in
the truth callset, 2) the SV type reported for the candidate SV
must match the SV type of the SV in the truth callset, and 3) for
genotyping, the genotype of the candidate SV must match the
genotype of the SV in the truth callset. Candidate SVs absent
(and, for genotyping, also those not having a matching genotype)
from the truth callset were considered false positives, and vice
versa for false negatives.

3 RESULTS

3.1 Nanopore Sequencing Datasets and
Truth SV Callsets
For benchmarking, we used the ultra-long ONT data released by
the GIAB consortium for the NA24385 individual. These data
were generated running 3 flow cells in parallel on the ONT
PromethION sequencing platform and yielded ∼157 Gbp
throughput. A high-quality callset of insertions and deletions
derived from short-, long-, and linked-read sequencing and
optical mapping is available for the same individual on the
human GRCh37 reference genome and was used as the truth
callset. The NA24385 truth SV callset contains 12,745 SVs (with
the FILTER “PASS”), divided into 7,281 insertions and 5,464
deletions with the size ranges reported in Supplementary
Table S1.

Since not all the SV types are included in the NA24385 truth
callset, we additionally generated synthetic ONT data (∼154 Gbp
throughput) that we refer to as SI00001 from now on, harboring
deletions and insertions as well as inversions, duplications, and
translocations using the SV simulator VISOR (average length and
standard deviation of reads are ∼15,000 bp and 12,000 bp,
respectively, and minimum and maximum identity of
sequences is set to ∼88% and ∼98%). In greater detail, we
inserted 10,676, randomly generated, heterozygous SVs in
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chromosomes 1 to 22, X and Y of the human GRCh38 reference
genome, divided into 5,027 deletions, 5,027 insertions, 300
duplications, 300 inversions, and 22 cut-paste translocations
(Supplementary Table S1).

Further references to the data mentioned above are available in
the Data Availability Statement section.

3.2 Long-Read Aligners and SV Callers
NA24385 and SI00001 ONT reads were aligned to the GRCh37
and GRCh38 decoy versions of the human reference genome,
respectively, using the long-read aligners minimap2, NGMLR,
lra, and pbmm2 (Supplementary Table S2). Read depth of the
resulting alignments was calculated using mosdepth (Pedersen
and Quinlan, 2017) and additional alignment statistics using
NanoPack (De Coster et al., 2018).

As shown in Supplementary Figure S1, minimap2 produced
the highest coverage alignments (∼138 Gbp aligned in the
NA24385 dataset and ∼142 Gbp in the SI00001 dataset) and
lra the lowest (∼116 Gbp aligned in the NA24385 dataset and
∼135 Gbp in the SI00001 dataset), with NGMLR and pbmm2
performing intermediately (∼127 Gbp and ∼128 Gbp aligned in
the NA24385 dataset; ∼137 Gbp and ∼139 Gbp aligned in the
SI00001 dataset). Alignments from NGMLR and pbmm2 hit the
highest N50 score (∼63 Kbp for the NA24385 dataset and ∼22
Kbp for the SI00001 dataset), minimap2 the lowest (∼49 Kbp for
the NA24385 dataset and ∼21 Kbp for the SI00001 dataset), and
lra placed in-between (∼55 Kbp for the NA24385 dataset and
∼21 kbp for the SI00001 dataset). Among the tested aligners,
minimap2 was the fastest (i.e., ∼26 min to align 100,000 reads,
randomly sampled from the NA24385 dataset, using a single core
on our SUSE Linux Enterprise Server—average of three
consecutive measurements) and NGMLR the slowest
(∼190 min, ∼7 times slower than minimap2), with lra and
pbmm2 performing similarly (∼30 and ∼34 min, respectively).

We used the generated NA24385 and SI00001 alignments to
benchmark 5 SV calling methods, namely, Sniffles, SVIM,
cuteSV, npInv, and pbsv. We tuned the settings of the
different SV callers to report only variants ≥50 bp, having at
least 2 reads supporting the identified SVs (Supplementary
Table S2).

While Sniffles, SVIM, cuteSV, and pbsv can detect all SV types,
npInv is developed specifically to identify inversions. Because the
recommended aligner for pbsv is pbmm2, neither was pbmm2
tested with other SV callers nor was pbsv with other long-read
aligners. Furthermore, because pbmm2 wraps minimap2 but uses
lower gap penalties for SV discovery, results from pbsv are
reported after minimap2 alignment in all figures and tables of
this article.

Supplementary Table S3 summarizes by SV type the SVs
identified by the different combinations of long-read aligners and
SV callers in the NA24385 and SI00001 datasets, before and after
filtering for high-quality SVs (i.e., SVs with the FILTER “PASS”
that fall in assembled chromosomes only and are supported by ≥
10 reads). The size distribution of the high-quality SVs is shown
in Supplementary Figure S2 (NA24385) and Supplementary
Figure S3 (SI00001). SVIM following minimap2 alignment
detected more deletions (9,566) and insertions (12,818) than

the other aligner–SV caller combinations in the NA24385
dataset, pbsv more duplications (1941), and cuteSV more
inversions (156) and translocation breakpoints (37), following
NGMLR and minimap2 alignment, respectively. For the SI00001
dataset, cuteSV following minimap2 alignment detected more
deletions (4,763) and insertions (4,320), SVIM after minimap2
more duplications (358), cuteSV after NGMLR more inversions
(590), and pbsv more translocation breakpoints (i.e., BNDs, 39).

For each aligner, we also calculated the number of SVs
overlapping between the high-quality SV callsets and the
corresponding truth callset using SURIVOR (Jeffares et al.,
2017). SVs were considered to be shared among the callsets if
their distance was ≤500 bp, as measured pairwise between
breakpoints, and their type was concordant. As shown in the
resulting upset plots for minimap2 (Supplementary Figure S4),
the largest overlap is shared between the truth callset and the
different SV callers (with the obvious exception of npInv) and
mostly contains deletions (4,022 for the NA24385 dataset and
3,368 for SI00001) and insertions (4,054 for the NA24385 dataset
and 3,101 for SI00001). Comparable results are obtained with the
NGMLR (Supplementary Figure S5) and lra (Supplementary
Figure S6) alignments.

3.3 Structural Variant Caller’s Performances
We calculated precision, recall, and F-score (i.e., the harmonic
mean of precision and recall) of the generated high-quality SV
callsets using truvari (see Methods and Supplementary
Datasheet S2). Figure 1 and Supplementary Table S4 show
these findings for the datasets tested. CuteSV following NGMLR
alignment reached the highest F-score at SV calling and
genotyping (∼0.93 and ∼0.91, respectively) in the NA24385
dataset; for the SI00001 dataset, SVIM after minimap2 reached
the highest F-score at SV calling (∼0.93) while cuteSV after
NGMLR reached the highest F-score at SV genotyping
(∼0.92). Overall, cuteSV, SVIM, and pbsv performed similarly
well at SV calling, with F-score values ∼0.90. With the obvious
exception of npInv, which is specifically tailored to identify
inversions, Sniffles achieved the lowest recall, especially in the
SI00001 dataset after lra alignment.

Supplementary Figure S7 illustrates precision and recall of
the high-quality SV callsets when resolved by SV type. CuteSV,
SVIM, and pbsv compared favorably to Sniffles for the detection
of deletions in both NA24385 and SI00001 datasets (F-score
> 0.90 vs. F-score < 0.90), while for insertions, only cuteSV, after
NGMLR in the NA24385 dataset and after NGMLR/minimap2 in
SI0001, hit F-score> 0.90. With respect to duplications, SVIM
and cuteSV following NGMLR alignment outperformed the other
combinations, and for inversions, SVIM after minmimap2,
Sniffles after minimap2 and NGMLR, npInv after minimap2,
and pbsv reached F-score > 0.90. Last, pbsv and SVIM following
minimap2 alignment had the highest F-score for the detection of
translocations (F ∼0.90). Notably, no high-quality duplications or
translocations were reported by any SV callers when tested on
alignments from lra.

The number of true-positive, false-positive, and false-negative
SV calls relative to their length is reported in Supplementary
Figure S8. The peaks in the NA24385 dataset at ∼300 bp and
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∼6,000 bp correspond to SVs involving Alu and L1 elements,
respectively (Audano et al., 2019), while those in the SI00001
dataset at ∼1,000 bp and ∼10,000 bp correspond to the average
size of simulated SVs.

By randomly down-sampling the NA24385 and SI00001
original alignments to various fractions of the original datasets
(i.e., 5X, 10X, 15X, 20X, 25X, and 35X), we evaluated the influence
of genome coverage on SV callers’ precision and recall. Figure 2,
Supplementary Figure S9, and Supplementary Table S5 show
these findings for the NA24385 and SI00001 datasets,
respectively. While recall for both SV calling and genotyping
increased significantly when moving on from low- (i.e., 5X) to
mid-range (i.e., 15X-20X) coverage, this effect was less marked for
higher depths of coverage and came at the cost of a reduction in
precision for Sniffles (NA24385 dataset) and SVIM (NA24385
and SI00001 datasets). For low-coverage NA24385 data, CuteSV
after NGMLR alignment hit the highest F-score (∼0.80 for SV
calling and ∼0.72 for genotyping) and Sniffles after lra the lowest
(∼0.60 for SV calling and ∼0.28 for SV genotyping). For low-
coverage SI00001 data, cuteSV after NGMLR alignment hit the

highest F-score at SV calling (∼0.70) and pbsv the lowest (∼0.43),
while Sniffles after NGMLR reached the highest F-score at SV
genotyping (∼ 0.61) and SVIM after lra the lowest (∼ 0.32).

We furthermore examined how filtering on the minimum
number of reads supporting the variant alleles affects precision
and recall of SV callers. As expected, for all the combinations
tested in the NA24385 (Figure 3) and SI00001 (Supplementary
Figure S10) datasets (see also Supplementary Table S6), the
recall was the highest (and precision the lowest) when less
support for a candidate SV (i.e., 2) is used and decreased
(while precision increased) when higher support was required
(i.e., up to 50 supporting reads for the NA24385 dataset and up to
25 for SI00001). From our tests, a good trade-off between
precision and recall was achieved when SVs were minimally
supported by 5–10 reads (see above for details on the F-score
when filtering on a minimum number of 10 supporting reads).

Last, we evaluated how much of the false positive rate from
individual SV callsets we could reduce by integrating multiple SV
callers for the same sample. For each aligner tested, we calculated
precision and recall of all the combinations of the SV callers

FIGURE 1 | Precision (y axis), recall (x axis) and F-score (dashed lines) of the high-quality SV callsets from Sniffles, SVIM, cuteSV, npInv and pbsv (hue palette) after
minimap2 (top panels), NGMLR (mid panels) and lra (bottom panels) alignments. Results for both SV calling (left panels) and genotyping (right panels) in the NA24385
(circle symbol) and SI00001 (triangle symbol) datasets are shown.
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tested, as shown in Figure 4 for the NA24385 dataset and
Supplementary Figure S11 for the SI00001 dataset. An
additional consensus callset including SVs supported by at
least 4 (minimap2) or 3 (NGMLR and lra) SV callers and at
least 2 long-read aligners was also produced. Results are
documented in Supplementary Table S7 as well. The different
combinations of SV callsets were generated using SURVIVOR,
following the strategy described in the previous section. For the
NA24385 dataset, combining high-quality SV calls from cuteSV,
Sniffles, and SVIM led to a ∼2% increase in precision at both SV
calling and ∼3% at SV genotyping with respect to the
corresponding highest precision values reached by Sniffles
(∼0.96) and cuteSV (∼0.92), respectively, after NGMLR
alignment. For SV calling, the consensus callset reached
comparable precision (∼0.96) but improves on recall (∼0.89)
with respect to the other combinations tested. For the SI0001
dataset, combining multiple SV callsets did not show significant
improvement over precision of single SV callsets. For instance,

most of the combinations tested hit ∼1.00 precision at SV calling,
but Sniffles alone after NGMLR reached precision > 0.99.

4 DISCUSSION

While short-read sequencing has been considered the gold
standard for the majority of sequencing projects for years
(Roberts et al., 2021), such data have biases in whole-genome
sequencing studies due to the uneven coverage of regions with
high/low GC and difficulty of mapping short reads in low-
complexity regions. Long-read sequencing has already proved
invaluable in overcoming these limitations, improving on short
reads for the resolution of SVs in comparative and clinical studies
(Sanchis-Juan et al., 2018).

In this article, we provided a succinct yet comprehensive
evaluation of long-read SV calling pipelines applied to ONT
data. In particular, we focused on germline SVs, and as such, our

FIGURE 2 | Precision (y axis), recall (x axis) and F-score (dashed lines) of the SV callers Sniffles (square symbol), SVIM (cross symbol), cuteSV (circle symbol) and
pbsv (triangle symbol) after minimap2 (top panels), NGMLR (mid panels) and lra (bottom panels) alignments. Results for both SV calling (left panels) and genotyping (right
panels) are reported. The plot shows the influence of average genome coverage after down-sampling NA24385 alignments to different fractions (5X, 10X, 15X, 20X, 25X,
35X–hue palette) of the original coverage (total) on SV callers’ performances.
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findings are likely not reproducible in different contexts, such as
somatic variant calling, for which alternative strategies exist
(Shiraishi et al., 2020).

We tested four general-purpose SV callers (Sniffles, SVIM,
cuteSV, and pbsv) and a tool tailored specifically to inversions
(npInv) across four long-read aligners (minimap2, NGMLR, lra,
and pbmm2) using both real and simulated ONT data. In
particular, we used the ultra-long ONT reads released by the
GIAB consortium for the NA24385 Ashkenazim individual, for
which a truth set of deletions and insertions based on the
integration of multiple technologies is available, and synthetic
long reads generated using the SV simulator VISOR (SI00001) to
complement SVs missing in the real dataset (inversions,
duplications, and translocations). Also, although the NA24385
truth set from GIAB is assumed to be sufficiently complete, which
is supported by the fact that the majority of the SVs identified by
the different SV calling pipelines is shared with the ground truth,
a consistent number of deletions and insertions identified by
multiple SV callers are absent from the truth callset, suggesting

that at least part of them could have been missed in the
ground truth.

We first calculated the precision, recall, and F-score of the
different SV calling pipelines after filtering for high-quality
variants (“PASS” SVs not falling in decoy contigs and
supported by at least 10 reads—which is the default for SV
callers like Sniffles and cuteSV) and evaluated the impact of
each SV type and various SV sizes on the SV callers’
performances. In accordance with prior evaluations (De Coster
et al., 2019; Zhou et al., 2019), we observed the highest precision
at SV calling with Sniffles following NGMLR alignment in both
the NA24385 (∼0.96) and SI00001 (∼0.99) datasets but at a cost of
low recall, with most of the false-negative SVs being shorter than
500 bp in the real dataset. However, cuteSV, SVIM, and pbsv all
performed better than Sniffles in terms of the F-score across the
different aligners, and Sniffles also hit the lowest F-score values at
SV genotyping in both datasets. When taking into account the
individual SV types, cuteSV, SVIM, and pbsv had the best
performances for the detection of deletions, and cuteSV after

FIGURE 3 | Precision (y axis), recall (x axis) and F-score (dashed lines) of the SV callers Sniffles (square symbol), SVIM (cross symbol), cuteSV (circle symbol) and
pbsv (triangle symbol) after minimap2 (top panels), NGMLR (mid panels) and lra (bottom panels) alignments. Results for both SV calling (left panels) and genotyping (right
panels) are reported. The plot shows the influence of the number of reads minimally supporting a SV (2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50–hue palette) on SV callers’
performances for the NA24385 dataset.
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NGMLR (NA24385 and SI0001) and minimap2 (SI00001) hit the
highest F-score for the detection of insertions and duplications
together with SVIM after NGMLR. For inversions, SVIM (after
minimap2), Sniffles, npInv (after minimap2 or NGMLR), and
pbsv all hit an F-score of ∼ 0.9 or higher, while SVIM after
minimap2 and pbsv performed better than the other aligner–SV
caller combinations for the detection of translocation
breakpoints. Notably, none of the SV callers tested were able
to identify high-quality duplications or translocations after lra
alignment, especially in the SI00001 dataset where they are
known to occur. Manual investigation of the variant files
generated by the different SV callers before filtering revealed

that most duplications and translocations had few supporting
reads (< 3 in most cases) and were not flagged as “PASS.” As a
consequence, being more permissive with the filters used could
improve on the detection of these SV categories in datasets
aligned with lra.

When further evaluating the influence of genome coverage on
the SV caller’s performances, we concluded that adding more
than 15X–20X produced only little increment in sensitivity but
was associated with a marked decrease in precision for Sniffles
and SVIM. On the other hand, a slight increase in precision could
be reached by combining multiple callsets and the consensus
from cuteSV, Sniffles, and SVIM after NGMLR hit the highest

FIGURE 4 | Precision (y axis), recall (x axis) and F-score (dashed lines) of the combination of the SV callers Sniffles, SVIM, cuteSV and pbsv (hue palette) after
minimap2, NGMLR and lra alignments as well as after consensus generation (top-to-bottom panels). Results for both SV calling (left panels) and genotyping (right panels)
are reported. The plot shows the influence of the integration of multiple high-quality callsets on reducing false positive calls in the NA24385 dataset.
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precision values in our tests. Last, we highlighted that having at
least 5–10 reads supporting a called SV represents a good trade-
off to optimize precision and recall.

Given the results presented in this article, we recommend
using cuteSV for the initial assessment of the data as it
achieves substantial precision and recall at both SV calling
and genotyping, even when analyzing low-coverage data.
Because the choice of the pipeline could depend on the
need of the users to retrieve SV calls with either high
precision or high recall, we conclude that Sniffles should be
preferred when looking for high precision, while cuteSV or
SVIM should be preferred when high recall is required.
However, due to low F-score values at SV genotyping, we
do not recommend using Sniffles for an accurate estimation of
the zygosity of SV calls, as it often misclassified or missed
heterozygous variants in our tests. Combining SV calls from
cuteSV, Sniffles, and SVIM can be helpful in further reducing
the final false positive rate.
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