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This paper introduces and studies a class of evolutionary dynamics—pairwise interact-and-imitate
dynamics (PIID)—in which agents are matched in pairs, engage in a symmetric game, and imitate the
opponent with a probability that depends on the difference in their payoffs. We provide a condition
on the underlying game, named supremacy, and show that the population state in which all agents
play the supreme strategy is globally asymptotically stable. We extend the framework to allow for
payoff uncertainty, and check the robustness of our results to the introduction of some heterogeneity
in the revision protocol followed by agents. Finally, we show that PIID can allow the survival of strictly
dominated strategies, leads to the emergence of inefficient conventions in social dilemmas, and
makes assortment ineffective in promoting cooperation.

In evolutionary game-theoretic models, it is standard practice to assume that agents make decisions according
to short-sighted adaptive rules. These include avoidance of strategies that performed poorly in the past, best
response to the empirical distribution of opponents’ strategies, and imitation of successful peers?. The last
has been shown to be common in both humans and animals, and is generally recognized as a cognitively par-
simonious social heuristic*. An important aspect of imitative dynamics is the relation between the structure
of interactions and agents’ reference groups. The interaction structure specifies how agents are matched, e.g. in
a purely random manner or assortatively in some respect®'!; an individual’s reference group consists instead
of those agents whom that individual observes and takes as a reference for comparison purposes. This paper
examines the case where agents compare their payoff to that of their opponent, obtaining clear-cut and perhaps
surprising results in a variety of games. In doing so, it shows that the interplay of interaction structure and refer-
ence groups, which so far has received little attention in the literature, plays a fundamental role in determining
evolutionary outcomes.

Distinctions among imitative rules can be made as to what drives behavior, who is imitated, and how much
information is needed for decision making'>!®. For example, rules of the kind ‘copy the first person you se€’
make actions depend only on their popularity, whereas other rules consider actions to be a function of observed
payofts. The target of comparisons may consist of either a single agent or a (possibly large) group of individuals,
and information requirements can range from very low to extremely high levels, yielding a wide range of differ-
ent behavioral rules'-?!. Often, these rules treat interaction structure and reference groups as separate entities:
whenever an agent receives a revision opportunity, she randomly selects another individual as reference, observes
this individual’s strategy, and switches to it with a probability that depends on relative payoffs**-2%. This is most
plausible in the case of games against nature or when agents cannot observe their opponents” payoft. However,
cases also exist in which the decoupling of interaction structure and reference groups does not hold, as often
people can only observe, and act upon, the behavior of those with whom they interact. This idea is recurrent in
the literature on games on networks, where typically agents play with and imitate their nearest or next-nearest
neighbors®=.

Building on this insight, this paper introduces and studies a class of evolutionary dynamics in which interac-
tion structure and reference groups overlap, that is, where those whom one interacts with are also those with
whom she compares herself. When given a revision opportunity, an agent playing strategy i against an opponent
playing strategy j will switch to j with positive probability if the payoff from j against i is greater than the payoft
from i against j. We name this revision protocol Pairwise Interact-and-Imitate. Intuitively, this appears to be a
reasonable criterion for strategy updating in situations where interacting with another agent suffices to make
that agent salient as a comparison reference, which may occur, for instance, when interaction and observation
opportunities are constrained by the same factors, be them physical, social or cultural. In such cases an overlap
between interaction structure and reference groups is established indirectly, as the result of both interaction and
observation being determined by the same factors.

!Laboratory for the Analysis of CompleX Economic Systems, IMT School for Advanced Studies Lucca, 55100 Lucca,
Iltaly. 2Department of Economics and Management, University of Florence, 50127 Florence, Italy. 3Department of
Economics and Management, University of Pisa, 56124 Pisa, Italy. “email: leonardo.boncinelli@unifi.it

Scientific Reports |

(2021) 11:13221 | https://doi.org/10.1038/s41598-021-92512-5 natureporl.‘folio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-92512-5&domain=pdf

www.nature.com/scientificreports/

Our work is close in spirit to pairwise comparative models of traffic dynamics, where changes from one
route to another occur at a frequency that depends on differences in traveling costs®'. It is also related to local
replicator dynamics®?, in which agents are uniformly matched at random in groups of size n, engage in pairwise
interactions with members of their group, and imitate each other depending on the difference in their payoffs;
when n = 2 these models yield a Pairwise Interact-and-Imitate dynamic with uniform random matching (while
here we also consider matching processes that are not uniformly random).

The purpose of our paper is twofold. First, we introduce the Pairwise Interact-and-Imitate revision protocol
and study the resulting dynamics in symmetric games. We give a condition on the stage game, named supremacy,
and show that the population state in which all agents choose the supreme strategy is globally asymptotically
stable. Roughly speaking, a strategy is supreme if it always yields a payoff higher than the payoff received by
an opponent playing a different strategy. We then generalize the framework to allow for payoff uncertainty, we
check the robustness of our results to the introduction of some heterogeneity in revision protocols, and we show
that PIID can allow the survival of strictly dominated strategies. Second, we apply the revision protocol to social
dilemmas, showing that PIID causes the emergence of inefficient conventions and makes assortment ineffective
in facilitating cooperation.

Results
The model. Consider a unit-mass population of agents who repeatedly interact in pairs to play a symmetric
stage game. The set of strategies available to each agent is finite and denoted by S = {1, .. ., n}. A population state

isavectorx € X = {x e RY, : ", ¢x; = 1}, with x; the fraction of the population playing strategyi € S. Payoffs
are described by a function F : § x § — R, where F(j, j) is the payoff received by an agent playing strategy i
when the opponent plays strategy j. As a shorthand, we refer to an undirected pair of individuals, one playing i
and the other playing j, as an ij pair. The set of all possible undirected pairs is denoted by 2.

The interaction structure is modeled as a function p : X x 2 — [0,1/2] subject to ), » pij(x) = 1/2
(since the mass of pairs is half the mass of agents), with p;;(x) indicating the mass of ij pairs formed in state x.
Note that the mass of ij pairs can never exceed min{x;, x;}, that is, p;j(x) < min{x;, x;} for all x. We assume that
p is continuous in X, and that p;j(x) > 0if and only if x; > 0 and x; > 0—meaning that the probability of an ij
pair being formed is strictly positive if and only if strategies i and j are played by someone. In the case of uniform
random matching, p;; = x?/2and p;; = x;x;for any iand j # i.

The revision protocol is modeled as a function ¢ : X x § x § — [—1, 1], where ¢;;(x) € [—1, 1]is the prob-
ability that an ij pair will turn into an #i pair minus the probability that it will turn into a jj pair, conditional on
the population state being x and an ij pair being formed. We assume that ¢ is continuous in X. We note that by
construction ¢;; = —¢j; foralli,j € S, and hence ¢;; = 0foralli € S. Our main assumption on the revision pro-
tocol is the following, which is met, among others, by pairwise proportional imitative and imitate-if-better rules®.

Assumption 1 For every x € X, ¢;j(x) > 0if F(i,j) > F(j, i).

In what follows we consider a dynamical system in continuous time with state space X, characterized by the
following equation of motion.

Definition 1 (Pairwise interact-and-imitate dynamics—PIID) For every x € X and everyi € S:

k=) pix);0). (1)

jes

Main findings. Global asymptotic convergence. In any purely imitative dynamics, if x;(t) = 0, then
x;(t") = 0 for everyt' > t. This implies that we cannot hope for global asymptotic convergence in a strict sense.
Thus, to assess convergence towards a certain state x in a meaningful way, we restrict our attention to those states
where all strategies that have positive frequency in x have positive frequency as well. We denote by X, the set of
states whose support contains the support of x.

Definition 2 (Supremacy) Strategy i € S is supreme if F(i,j) > F(j, i) for every j € S\ {i}.

We note that under PIID, the concept of supremacy is closely related to that of asymmetry***, in that
F(i,j) > F(j, 1) implies that agents can only switch from strategy j to strategy i.

Proposition 1 Ifi € S is a supreme strategy, then state x* = {x € X : x; = 1} is globally asymptotically stable for
the dynamical system with state space X+ and PIID as equation of motion.

Relation to replicator dynamics. To further characterize the dynamics induced by the pairwise interact-and-
imitate protocol, we make two additional assumptions. First, matching is uniformly random, meaning that eve-
ryone in the population has the same probability of interacting with everyone else; formally, p; = x2/2 and
pij = xixjforalliand j # i. Second, the probability that an agent has to imitate the opponent is proportional to
the difference in their payoffs if the opponent’s payoft exceeds her own, and is zero otherwise. As a consequence,
¢ij = F(i,j) — F(j, i) up to a proportionality factor. Let
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Figure 1. A game where the supreme strategy is strictly dominated.

F(i,x) := Zj ijE;',jg,
F(x,i) := > xjF(j, i), and
Flox) = 3 8, % F (i),

Under these assumptions, at any point in time, the motion of x; is described by:
ko= lF (i) — F(.0)] = Y s [F(6) ~ F(.)
J#i J
= xi[F(i,x) — F(x, )],

)

which is a modified replicator equation. According to (2), for every strategy i chosen by one or more agents in
the population, the rate of growth of the fraction of i-players, ;/x;, equals the difference between the expected
payoff from playing i in state x and the average payoff received by those who are matched against an agent play-
ing i. In contrast, under standard replicator dynamics™®, the fraction of agents playing i varies depending on the
excess payoff of i with respect to the current average payoft in the whole population, i.e., X; = x;[F(i,x) — F(x, x)]

A noteworthy feature of replicator dynamics is that they are always payoff monotone: for any i,j € S, the
proportions of agents playing i and j grow at rates that are ordered in the same way as the expected payoffs from
the two strategies®. In the case of PIID, this result fails.

Proposition 2 Pairwise-Interact-and-Imitate dynamics need not satisfy payoff monotonicity.

To verify this, it is sufficient to consider any symmetric 2 x 2 game where F (i,j) > F(j,i)but F (j,x) > F(i,x)
for some x € X, meaning that i is the supreme strategy but j yields a higher expected payoff in state x. See Fig. 1
for an example where, in the case of uniform random matching, the above inequalities hold for any x; if strate-
gies are updated according to the interact-and-imitate protocol, then this game only admits switches from i to j,
therefore violating payoff monotonicity. Proposition 2 can have important consequences, including the survival
of pure strategies that are strictly dominated.

Survival of strictly dominated strategies. An recurring topic in evolutionary game theory is to what extent does
support exist for the idea that strictly dominated strategies will not be played. It has been shown that if strategy
i does not survive the iterated elimination of pure strategies strictly dominated by other pure strategies, then the
fraction of the population playing i will converge to zero in all payoff monotone dynamics®*”*®. This result does
not hold in our case, as PIID is not payoff monotone.

More precisely, under PIID, a strictly dominated strategy may be supreme and, therefore, not only survive but
even end up being adopted by the whole population. This suggests that from an evolutionary perspective, support
for the elimination of dominated strategies may be weaker than is often thought. Our result contributes to the
literature on the conditions under which evolutionary dynamics fail to eliminate strictly dominated strategies
in some games, examining a case which has not yet been studied.

To see that a strictly dominated strategy may be supreme, consider the simple example shown in Fig. 1. Here
each agent has a strictly dominant strategy to play A; however, since the payoff from playing B against A exceeds
that from playing A against B, strategy B is supreme. Thus, by Proposition 1, the population state in which all
agents choose B is globally asymptotically stable.

Figure 1 can also be used to comment on the relation between a supreme strategy and an evolutionary stable
strategy, which is a widely used concept in evolutionary game theory***!. Indeed, while B is the supreme strategy,
A is the unique evolutionary stable strategy because it is strictly dominant. However, if F(B, A) were reduced
below 2, holding everything else constant, then B would become both supreme and evolutionary stable. We
therefore conclude that no particular relation holds between evolutionary stability and supremacy: neither one
property implies the other, nor are they incompatible.
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Figure 2. A2 x 2 stage game.

Applications. Having obtained general results for the class of finite symmetric games, we now restrict the
discussion to the evolution of behavior in social dilemmas. We show that if the conditions of Proposition 1 are
met, then inefficient conventions emerge in the Prisoner’s Dilemma, Stag Hunt, Minimum Effort, and Hawk-
Dove games. Furthermore, this result holds both without and with the assumption that agents interact assorta-
tively.

Ineffectiveness of assortment. Considerthe2 x 2gamerepresentedinFig.2.Ifc > a > d > b, then mutual coop-
eration is Pareto superior to mutual defection but agents have a dominant strategy to defect. The resulting stage
game is the Prisoner’s Dilemma, whose unique Nash equilibrium is (B, B). Moreover, since F(B,A) > F(A, B),
B is the supreme strategy and the population state in which all agents defect is globally asymptotically stable.

We stress that defection emerges in the long run for every matching rule satisfying our assumptions, and
therefore also in the case of assortative interactions. Assortment reflects the tendency of similar people to clump
together, and can play an important role in the evolution of cooperation*~*°. Intuitively, when agents meet
assortatively, the risk of cooperating in a social dilemma may be offset by a higher probability of playing against
other cooperators. However, under PIID, this is not the case: the decision whether to adopt a strategy or not is
independent of expected payoffs, and like-with-like interactions have no effect except to reduce the frequency
of switches from A to B.

Emergence of the maximin convention. Ifa > c > b,a > dandd > b, then the game in Fig. 2 becomes a Stag
Hunt game, which contrasts risky cooperation and safe individualism. The payoffs are such that both (4, A)
and (B, B) are strict Nash equilibria, that (4, A) is Pareto superior to (B, B), and that B is the maximin strategy,
i.e., the strategy which maximizes the minimum payoff an agent could possibly receive. We also assume that
a+ ¢ # ¢+ d, so that one of A and B is risk dominant®. If a + b > ¢ + d, then A (Stag) is both payoff and risk
dominant. When the opposite inequality holds, the risk dominant strategy is B (Hare).

Since F(B,A) > F(A, B), B is supreme independently of whether or not it is risk dominant to cooperate.
This can result in large inefficiencies because, in the long run, the process will converge to the state in which all
agents play the riskless strategy regardless of how rewarding social coordination is. As in the case of the Prisoner’s
Dilemma, this holds for all matching rules satisfying our assumptions.

Evolution of effort exertion. Ina minimum effort game, agents simultaneously choose a strategy i, usually inter-
preted as a costly effort level, from a finite subset S of R. An agent’s payoff depends on her own effort and on the
minimum effort in the pair:

F(i,j) = emin {i,j} — Bi,

where 8 > 0and @ > B are the cost and benefit of effort, respectively. From a strategic viewpoint, this game can
be seen as an extension of the Stag Hunt to cases where there are more than two actions. The best response to
a choice of j by the opponent is to choose j as well, and coordinating on any common effort level gives a Nash
equilibrium. Nash outcomes can be Pareto-ranked, with the highest-effort equilibrium being the best possible
outcome for all agents. Thus, choosing a high i is rationalizable and potentially rewarding but may also result
in a waste of effort.

Under PIID, anyi > jimplies ¢;; < 0by Assumption 1, meaning that agents will tend to imitate the opponent
when the opponent’s effort is lower than their own. The supreme strategy is therefore to exert as little effort as
possible, and the population state in which all agents choose the minimum effort level is the unique globally
asymptotically stable state.

Emergence of aggressive behavior. Consider again the payoff matrix shown in Fig. 2. If ¢ > a > b > d, then the
stage game is a Hawk-Dove game, which is often used to model the evolution of aggressive and sharing behav-
iors. Interactions can be framed as disputes over a contested resource. When two Doves (who play A) meet, they
share the resource equally, whereas two Hawks (who play B) engage in a fight and suffer a cost. Moreover, when
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(a) Row player owns the resource. (b) Column player owns the resource.

Figure 3. The Hawk-Dove-Bourgeois game.

a Dove meets a Hawk, the latter takes the entire prize. Again we have that F(A, B) < F(B, A), implying that B is
the supreme strategy and that the state where all agents play Hawk is the sole asymptotically stable state.

The inefficiency that characterizes the (B, B) equilibrium in the Hawk-Dove game arises from the cost that
Hawks impose on one another. This can be viewed as stemming from the fact that neither agent owns the resource
prior to the interaction or cares about property. A way to overcome this problem may be to introduce a strategy
associated with respect for ownership rights, the Bourgeois, who behaves as a Dove or Hawk depending on
whether or not the opponent owns the resource*. If we make the standard assumption that each member of a
pair has a probability of 1/2 to be an owner, then in all interactions where a Bourgeois is involved there is a 50
percent chance that she will behave hawkishly (i.e., fight for control over the resource) and a 50 percent chance
that she will act as a Dove.

Let R and C denote the agent chosen as row and column player, respectively, and let wg and wc be the states
of the world in which R and C owns the resource. The payofts of the resulting Hawk-Dove-Bourgeois game are
shown in Fig. 3. If agents behave as expected payoff maximizers, then All Bourgeois can be singled out as the
unique asymptotically stable state. Under PIID, this is not so; depending on who owns the resource, an agent
playing C against an opponent playing B may either fight or avoid conflict and let the opponent have the prize.
It is easy to see that F(C, B | wg) = F(B, C | wc) = d, meaning that the payoff from playing C against B, condi-
tional on owning the resource, equals the payoff from playing B against C conditional on not being an owner. In
contrast, the payoff from playing C against B, conditional on not owning the resource, is always worse than that
of the opponent, i.e., F(C,B | wc) = b < ¢ = F(B, C | wr). Thus, in every state of the world, B (Hawk) yields a
payoft that is greater or equal to that from C (Bourgeois). Moreover, since F(B, A) > F(A, B) in both states of the
world, strategy B is weakly supreme by Definition 4, and play unfolds as an escalation of hawkishness and fights.

Discussion

We have studied a novel class of evolutionary dynamics, named pairwise interact-and-imitate dynamics, in which
agents choose whether or not to change strategy by comparing their payoff with that of their opponent. Our main
result is that under PIID, if there exists a supreme strategy (that is, a strategy that always yields a payoff higher
than the payoff received by an opponent playing a different strategy), then the state in which the whole population
chooses the supreme strategy is globally asymptotically stable. Importantly, the supreme strategy may be a domi-
nated strategy, and the strategy profile played in the asymptotically stable state may not be a Nash equilibrium.

Under PIID, externalities have an important role. Whenever a strategy, say i, generates an increase (decrease)
in the payoff of an opponent playing a different strategy, say j, it is more (less) likely that i will be updated in
favor of j. Moreover, this is so regardless of the payoff received when using the same strategy as the opponent.
Thus, ceteris paribus, strategies that impose negative (positive) externalities are more (less) likely to be selected
by evolution, possibly leading to inefficient outcomes.

However, it is worth noting that PIID do not necessarily lead to inferior outcomes as compared to other
evolutionary dynamics. The simple example of Fig. 4 shows this. For instance, under Pairwise Proportional
Imitation'>?, if the fraction of agents playing A is sufficiently large, then the system will move to the state where
the whole population plays A—which, however, is Pareto dominated by everyone playing B. Conversely, under
PIID, the system always moves to the state where everyone plays B (since B is supreme). This result holds in
general, i.e., even without the additional assumptions required to represent evolution by means of the modified
replicator equation.
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Figure 4. A game where PIID selects an efficient outcome.

Opverall, our findings provide a case for why individual behaviors may direct evolution towards outcomes that
do not meet Pareto efficiency and strategy dominance criteria. Rather, our dynamics depend on which strategy, if
any, is supreme, i.e. systematically outperforms other strategies when these are chosen by one’s opponents. This
implies that the outcome of evolution can be either very undesirable or very desirable, depending on how large
the payoft from the supreme strategy is when this strategy is chosen by everyone in the population. Moreover,
since the structure of interactions plays no role in determining which strategy is supreme, the long-run equilib-
rium selected by PIID is not affected by institutions and other factors that influence how agents interact, such
as those generating assortment.

These results may help explain previous findings in the literature showing that local interactions favor the evo-
lution of cooperation when considering death-birth processes, but not when considering birth-death processes*’.
This can be interpreted as originating from differences in the relation between the interaction structure and
agents’ reference groups: death-birth processes assume a distinction between matching and comparisons, whereas
birth-death processes make them coincide (as is the case in our model), thereby causing cooperation to be
selected against in the long run.

We have shown that when applied to the evolution of behavior, pairwise interact-and-imitate dynamics lead
to clear-cut and sometimes surprising results in a variety of games. However, not all classes of games are suited
to our revision protocol; in this paper we have considered only symmetric games, leaving aside those cases
where agents can choose among different strategies or have different payoft functions. When agents’ strategy
sets differ from one another, it does not seem very reasonable to assume that choices are updated according to a
pairwise imitative rule based on payoff differentials. Nevertheless, we believe that an imitative protocol like ours
may still be applied in a meaningful way to those cases in which agents have the same strategy set but differ in
some other respect. For instance, in a setting where agents differ in wealth, a poor individual may be driven to
imitate the strategy chosen by a rich individual earning a high payoff, even if this is due to differences in wealth
rather than in strategy.

An extension of the model developed here would be to consider the case of a finite population of agents. This
would facilitate comparisons with some of the literature®?, but would come at the cost of hindering the analysis
when introducing payoft uncertainty and studying how PIID relate to replicator dynamics. Another extension
would be to move from two-player to n-player symmetric games, which would require defining the class of
Groupwise Interact-and-Imitate Dynamics and adjusting the notion of supremacy to consider the relative per-
formance of a strategy towards profiles of others’ strategies.

Finally, a question that may be worthy of further investigation is how the dynamics will behave when no
supreme strategy exists. To answer this question, one may define a binary relation = such that i = j if and only
if F(i,j) > F(j,i). One may then define >=* as the transitive closure of =, and let S :={i € S: i =* jVj € S} be
set of supremal strategies. Our conjecture is that, under PIID, all strategies that do not belong to S will die out
independently of the structure of interactions; however, the precise characterization of limit sets may depend
on details of the payoff structure, the interaction structure, and the revision protocol.

Methods
Lyapunov’s method. To prove Proposition 1 we use Lyapunov’s second method for global stability. We
want to show that f : X+ — [0, 1), with

fx)=1-x,

is a strict Lyapunov function. It is easy to see that fis of class C', that f(x) > 0for every x € Xy« \ {x*}, and that
f(x*) = 0. We are left to show that (i) f(x*) = 0 and (ii) f(x) < 0 for every x € X,+ \ {x*}. Taking the time
derivative of fand using Definition 1, we can write:

; f ) .
f = ="% == pj)gix).
: jes
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We observe that p;;(x™) = 0 for every j € S, which implies f(x*) = 0. Forevery x € X+ \ {x*}, there exists k # i
such that x; > 0. Since x; > 0 and x; > 0, we therefore have that p; (x) > 0. Moreover, since F(i,j) > F(j, i)
for every j € S\ {i}, we have that ¢;(x) > 0 by Assumption 1. To see that f(x) < 0 for every x € X \ {x*},
we finally note that p;;(x) is always non-negative and that ¢;; (x) is positive for all j € S\ {i} by the definition of
supremacy and Assumption 1.

Supremacy under uncertainty. So far we have only considered games in which payoffs are not subject to
any uncertainty in their realization. Here we extend our analysis by allowing for this possibility, which is relevant
for a variety of applications (e.g., the Hawk-Dove and Hawk-Dove-Bourgeois games).

Let Q2 be a finite set of states of the world and g, be the probability of state w € €2 occurring. We write F (i, j|w)
to denote the payoff received by an agent playing strategy i against an opponent playing j when state of the world
w occurs. For every x € X and everyw € Q,let ¢ (x|w)be the n x n-matrix with typical element ¢;; (x|w), the latter
being the net inflow from j to i when the population state is x, the state of the world is w, and an ij pair is formed.

We replace Assumption 1 with the following.

Assumption 2 For every x € X and every o € R, ¢;j(x|w) > 0if F(i, jlw) > F(j, i|w).

We also assume that, at any point in time, the net population inflow from j to i is obtained by averaging ¢;;
over the set of states of the world, i.e.:

$i(0) =) dudij(x|o). 3)

we

The convergence result of Proposition 1 can be extended to the case of uncertainty if we define supremacy as
follows.

Definition 3 (Supremacy under uncertainty) In the presence of uncertainty, strategy i € S is supreme if
F(i,jlw) > F(j,ilw) for every w € Qand every j € S\ {i}.

To see that the result holds, note that if strategy i is supreme by Definition 3 and Assumption 2 holds, then
¢ij(x) > Oforevery j € S\ {i}and every x € X. Moreover, ¢ is continuous in X if ¢ (-, ) is continuous in X for
every w € Q2. By a reasoning analogous to that used in the proof of Proposition 1, we therefore have that state
{x € X : x; = 1} is globally asymptotically stable for the dynamical system with state space Xy« and PIID as
equation of motion.

A less restrictive definition of supremacy under uncertainty is given below.

Definition 4 (Weak supremacy under uncertainty) In the presence of uncertainty, strategyi € S is weakly supreme
if F(i, jlw) > F(j,ilw) for every w € Qand every j € S\ {i}, and if for every j € S\ {i} there exists ® € Q such
that F(i, j|@) > F(j, i|®).

Under the conditions of Definition 4, our convergence result holds if we strengthen Assumption 2 as follows.
Assumption 3 For every x € X and every w € 2, ¢;j(x|w) > 0if and only if F(i, jlw) > F(j, i|w).

Here the ‘only if is required to deal with those states of the world where F(i, j|lw) = F(j, i|w), which are not
ruled out by Definition 4.

An even weaker definition of supremacy can be given when focusing on a specific ¢. For instance, consider
the case where the probability that agents have to imitate the opponent is proportional to the difference in their
payoffs if the opponent’s payoft exceeds their own, and is zero otherwise. Under this protocol, letting the expected
payoff from playing i against j be E[F(i,j)| = Y, cq 4wF (i»jlw), we can define the following.

Definition 5 (Supremacy in expectation under uncertainty) In the presence of uncertainty, strategy i € S is
supreme in expectation if E[F(i,§)| > E[F(j, i) for every j € S\ {i}.

It can now be seen that:

$ij(x) > 0 > gy [Fi,j| ©) = F(i,i | @)] > 0 & E[FG,j)] > E[F( ],

we

meaning that the net population inflow from j to i is positive if and only if i is supreme in expectation. This suf-
fices to replicate the result of Proposition 1.

Heterogeneous revision protocols. Although we believe the interact-and-imitate protocol to be reason-
able in many circumstances, it may well be the case that agents also rely on other revision protocols occasionally.
If our results crucially hinged on the assumption that agents always follow the interact-and-imitate rule, they
would be of little interest.

Scientific Reports |

(2021) 11:13221 | https://doi.org/10.1038/s41598-021-92512-5 nature portfolio



www.nature.com/scientificreports/

Let the set of possible states of the world be 2 = {w;, w,}. Suppose that agents follow the pairwise interact-
and-imitate protocol in state w; and a different revision protocol in state w,. Now let us define a continuous
function p : X x # — [~1,1], where p;j(x) € [—1,1]is the probability that an ij pair will turn into an i pair
minus the probability that it will turn into a jj pair, conditional on the population state being x, an ij pair being
formed, and the state of the world being w,. Note that p may also reflect the fact that members of a pair interact
after, rather than before, having updated their strategies, in which case the interact-and-imitate protocol cannot
be applied.

We define:

Gii(x) := (1 — &)y (x) + 03 (x), (4)

with e € (0, 1). The equation of motion for this dynamical system is the following.

Definition 6 (Quasi pairwise interact-and-imitate dynamics—QPIID) For every x € X and everyi € S:

X = szj(x)ff;ij(x)~ (5)

jes

Note that Assumption 1 concerns ¢ only, and that we have no analogous assumption for p. This notwith-
standing, a convergence result in the spirit of Proposition 1 can be obtained if agents follow the p protocol rarely
enough.

Proposition 3 IficS is supreme, then there exists ¢ > 0 such that, for everye € (0,8), statex™ = {x € X : x; = 1}
is globally asymptotically stable for the dynamical system with state space X, and QPIID as equation of motion.

We want to show that if F(i,j) > F(j, i) for every j € S\ {i}, then there exists £ > 0 such that, for every
€ € (0,8), ¢(x) > 0 for every x € X. Moreover, since both ¢ and p are continuous in X, ¢ is continuous in X as
well. As a consequence, the statement in Proposition 3 can be proven by replicating the argument used in the
proof of Proposition 1. A ~

We consider the worst case to have ¢ (x) positive. For every j € S \ {i}, we have that ¢;; := minycx ¢;;(x) exists,
since ¢;j is a continuous function on a compact set. Moreover, by continuity of ¢;; and noting that ¢;;(x) > 0
due to F(i,j) > F(j, i) and Assumption 1, we also have that ¢;; > 0. We define ¢; := min;; ¢;;, and note that
¢; > 0. Also, we define:

_ %
1+ ¢i

Since p;j cannot be smaller than —1, if& < &then we have that qS(x) > 0 for every x € X, as can be easily checked
from (4).

We stress that the bound on ¢ given in (6) is independent of which p protocol is being considered. A more
precise value for the bound can be obtained by making specific assumptions about the strategy revision process.
For example, suppose that in state of the world wy, agents imitate the opponent with unit probability whenever
the latter receives a higher payoff than they do, so that ¢;; = 1if F(i,j) > F(j, ). In this case, we can have the
maximum possible amount of heterogeneity in revision protocols (i.e., &€ = 1/2) and still have global asymptotic
stability of the state in which the whole population chooses the supreme strategy.

e:

(6)
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