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50134 Firenze, Italy

2 Department of Mathematics and Statistics, The University of Western Australia, 35 Stirling
Highway, Crawley, Perth, WA 6009, Australia

† This contribution is part of the Special Issue: Partial Differential Equations from theory to
applications—Dedicated to Alberto Farina, on the occasion of his 50th birthday
Guest Editors: Serena Dipierro; Luca Lombardini
Link: www.aimspress.com/mine/article/5752/special-articles

* Correspondence: Email: giorgio.poggesi@uwa.edu.au.

Abstract: We prove interpolating estimates providing a bound for the oscillation of a function in terms
of two Lp norms of its gradient. They are based on a pointwise bound of a function on cones in terms
of the Riesz potential of its gradient. The estimates hold for a general class of domains, including,
e.g., Lipschitz domains. All the constants involved can be explicitly computed. As an application,
we show how to use these estimates to obtain stability for Alexandrov’s Soap Bubble Theorem and
Serrin’s overdetermined boundary value problem. The new approach results in several novelties and
benefits for these problems.
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1. Introduction

Let Ω ⊂ RN be a bounded domain. For 1 ≤ p ≤ ∞ the number ‖ f ‖p,Ω, will denote the Lp-norm of a
measurable function f : Ω→ R with respect to the normalized Lebesgue measure dµx = dx/|Ω|.

In Theorems 2.4 and 2.7, for N < q ≤ ∞, we prove the following interpolating inequalities, which
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hold true for any f ∈ W1,q(Ω):

max
Ω

f −min
Ω

f ≤ c


‖∇ f ‖p,Ω for p > N

‖∇ f ‖N,Ω log
(
e ‖∇ f ‖q,Ω/‖∇ f ‖N,Ω

)
, for p = N,

‖∇ f ‖αp,q

p,Ω‖∇ f ‖1−αp,q

q,Ω , for 1 ≤ p < N.

(1.1)

Here,

αp,q =
p (q − N)
N (q − p)

for N < q < ∞, αp,∞ =
p
N
.

Notice that simply combining the Morrey-Sobolev embedding W1,r ↪→ C0,1−N/r for r > N and
the classical interpolation of Lp spaces (i.e., Hölder’s inequality) for p < r < q is not sufficient to
obtain (1.1). In fact, we would find that

max
Ω

f −min
Ω

f ≤ c ‖∇ f ‖r,Ω ≤ c ‖∇ f ‖αp,q,r

p,Ω ‖∇ f ‖1−αp,q,r

q,Ω , (1.2)

where
αp,q,r =

q − r
r(q − p)

.

Now, as r → N+, we see that αp,q,r tends to the exponent αp,q appearing in (1.1). However, in this limit,
the first inequality in (1.2) fails to be true, as one can see by taking f (x) = log log(1 + 1/|x|) in the unit
ball B in RN for N ≥ 2. In fact, f belongs to W1,N(B), but has infinite oscillation. Nevertheless, (1.1)
still holds in the relevant case.

In order to prove (1.1), a different approach is needed. The one we present here has also the
advantage to give a unified treatment for all the cases of p ∈ [1,∞]. These not only include the
inequalities for 1 ≤ p ≤ N and the noteworthy logarithmic profile in the threshold case p = N, but
also the classical case p > N, which may be directly deduced from the classical Morrey-Sobolev
embedding. In addition, our proof clearly unveils the dependence of the constant c in (1.1) on the
relevant geometric parameters in hand.

Our proof holds when Ω is a bounded domain satisfying a uniform interior cone condition (see
Section 2.2 for the definition). Notice that some regularity of Ω (or, alternatively, some information on
the boundary traces) is needed for the validity of (1.1), as a simple counterexample shows. In fact, if
in the planar domain

Ω =
{
x = (x1, x2) ∈ R2 : 0 < x1 < 1, |x2| < xr

1
}
, for r > 1,

we consider the function f (x) = x−1/q
1 , we see that f ∈ W1,q(Ω) if q < r. Nevertheless, the oscillation

(and the L∞-norm) of f is infinite. Thus, for any q < ∞, we can find r such that (1.1) fails on Ω.
The proof of (1.1) is given in Section 2 and is based on a pointwise bound on cones for f in terms of

the Riesz potential of its gradient (see Lemma 2.1). When 1 ≤ p ≤ N, (1.1) is obtained by combining
that bound with an interpolation procedure performed on cones (see Lemma 2.5).

As an application of our inequalities, we shall use them to give an alternative way to obtain, and
even improve, certain estimates proved by the authors in [10, Theorems 2.10 and 2.8]. These have been
a crucial ingredient to obtain the stability of the spherical configuration for Alexandrov’s Soap Bubble
Theorem (SBT), Serrin’s and other related overdetermined problems (see, e.g., [3, 4, 8–10, 13–15]).
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More precisely, (1.1) can be used as a substitute of [15, Lemma 3.14] when aiming to obtain those
stability results in the spirit of [10, Theorems 2.10 and 2.8]. We shall detail in Section 3 how this
agenda can be carried out. We emphasize that, while [15, Lemma 3.14] can only be proved for sub-
harmonic functions (see also [11] for a version for sub-solutions of elliptic equations in divergence
form), our new bounds do not need this requirement. Thanks to this feature, they can also be useful in
different and more general contexts. More on this will be clarified in forthcoming research. See also
the recent paper [16].

In the remainder of this introduction, for the case of the SBT, we briefly describe the main steps of
the argument that motivates the application of our interpolating inequalities. Alexandrov’s SBT states
that a closed surface Γ, embedded in RN , and that has constant mean curvature H must be a sphere.
Roughly speaking, by stability of the spherical configuration in this problem, we mean an inequality
of the type:

measure of closeness to a sphere ≤ Ψ(‖H − H0‖).

Here, Ψ is a non-negative continuous function vanishing at 0 and ‖H − H0‖ is the deviation of H from
a reference constant H0, in a suitable norm. In the literature, there are many different ways to quantify
the deviations of H from H0 and of a surface from a sphere (we refer the reader to the works [7,10,15]
for a quite exhaustive list of references). It is clear that the weaker the norm ‖H−H0‖ is and the stronger
the distance of Γ from a sphere is, the better the estimate is. On the other hand, in such a weak-strong
setting, it may be difficult to obtain for Ψ the most desirable linear profile: Ψ(σ) = cσ. Here, c is some
constant depending on some geometric parametes of the surface, easy to compute if possible. When
this occurs, the optimality can be proved by considering sequences of ellipsoids.

In the works [8–10], we assume Γ to be the boundary of a bounded domain Ω, we set H0 to be the
ratio |Γ|/N|Ω|, and we adopt an L2(Γ) (or even L1(Γ)) deviation of H from H0. Also, we measure the
distance of Γ from a sphere, by the quantity ρe − ρi, where ρi and ρe, ρi ≤ ρe, are the radii of the best
spherical annulus containing Γ. This will be given by Bρe(z) \ Bρi(z) for some z ∈ Ω. In other words,
we obtained a bound of this type:

ρe − ρi ≤ c Ψ
(
‖H − H0‖L2(Γ)

)
.

In this setting, in [10] we obtained a linear profile for Ψ in low dimension (N = 2, 3) and a Hölder
profile with exponent 2/(N − 2), for N ≥ 5. For the threshold case N = 4, we got, in a sense, a profile
“arbitrarily close to a linear one” (see Remark 3.10 or [10], for details).

In Section 3 of this paper, for surfaces of class C2, we show that the interpolating bounds obtained
in Section 2 help to improve the profile for N ≥ 4. In fact, in Theorem 3.9, for N = 4 we improve
the older estimate (that was Ψ(σ) = cε σ1−ε, for any fixed ε > 0) to a sharper and more plausible one:
Ψ(σ) = cσ log(1/σ). Moreover, when N ≥ 5, we are able to upgrade the profile Ψ(σ) = cσ2/(N−2) to
Ψ(σ) = cε σ4/N−ε, for any fixed ε > 0. This profile can be further improved to Ψ(σ) = cσ4/N , if we
consider surfaces of class C2,γ, 1 < γ ≤ 1. For N = 2, 3, we just show that the new bounds in (1.1)
provide an alternative way to recover the optimal profile previously obtained in [9, 10].

Another novelty of this paper is that we show that our new improvements also hold if we enforce
the quantity ρe − ρi by replacing it with the stronger deviation:

ρe − ρi + R
∥∥∥∥∥ν − ∇Qz

R

∥∥∥∥∥
2,Γ
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Here, R = 1/H0, ν is the exterior unit normal vector to Γ, and Qz is defined by

Qz(x) =
|x − z|2

2
for x, z ∈ RN . (1.3)

(Also in this case, the relevant norm is defined in the the corresponding normalized measure dS x/|Γ|.)
Thus, the smallness of this new measure of closeness to a sphere tells us not only that Γ is uniformly

close to a sphere, but also that the Gauss map of Γ is quantitatively close in the average to that of the
same sphere. Therefore, all in all, in Theorem 3.9, we enhance the last up-to-date bounds of [10] for
the stability of the SBT as follows:

ρe − ρi + R
∥∥∥∥∥ν − ∇Qz

R

∥∥∥∥∥
2,Γ
≤ c Ψ

(
‖H − H0‖L2(Γ)

)
, (1.4)

where

Ψ(σ) =


σ if N = 2, 3,
σmax

[
log(1/σ), 1

]
if N = 4,

στ if N ≥ 5,

(1.5)

where τ = 4/N if Γ is of class C2,γ, 1 < γ ≤ 1. If Γ is of class C2, instead, when N ≥ 5, we obtain
that, for any sufficiently small ε > 0, there exists a constant c = cε such that (1.4) and (1.5) hold with
τ = 4/N − ε. The constant c only depends on N, the diameter dΩ of Ω, and parameters associated
with the assumed regularity of Γ. If Γ is of class C2, these are the radii ri and re of the uniform interior
and exterior ball condition (see Section 3). If Γ is of class C2,γ, c depends on a suitable modulus of
C2,γ-continuity for Γ. For details, see Theorem 3.9 and Remark 3.8. We stress that, for the second
summand on the left-hand side of (1.4), we can actually obtain an optimal linear profile of stability, in
every dimension (see (3.10)).

We spend a few final words to explain how the bounds derived in Section 2 come into play to
obtain (1.4). To this aim, we let u ∈ C1(Ω) ∩C2(Ω) be the solution of the problem:

∆u = N in Ω, u = 0 on Γ.

Also, we define the harmonic function h = u − Qz. Notice that, if z ∈ Ω, then we have that

1
2

(
|Ω|

|B|

)1/N

(ρe − ρi) ≤
1
2

(ρ2
e − ρ

2
i ) = max

Γ
h −min

Γ
h.

Here, B is a unit ball in RN . Thus, a bound for the term ρe − ρi in (1.4) descends from the following
identity

1
N − 1

ˆ
Ω

|∇2h|2dx +
1
R

ˆ
Γ

(uν − R)2dS x =

ˆ
Γ

(H0 − H) (uν)2dS x, (1.6)

which was proved in [8]. In fact, since the right-hand side can be easily bounded in terms of the L2(Γ)
norm of H − H0, then the desired bound for ρe − ρi can be obtained if we can control the oscillation
of h on Γ in terms of the first summand in (1.6). This goal is achieved by combining the bounds (1.1)
(applied to h and its gradient) with some Poincaré-type inequality.
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The second summand on the left-hand side of (1.4) can instead be estimated by observing that

|R ν − ∇Qz| ≤ |R ν − uν ν| + |∇u − ∇Qz| = |R − uν| + |∇h| on Γ.

The two quantities on the rightest-hand side can be estimated in L2(Γ)-norm by means of (1.6) and,
again, by some inequalities derived in [10]. These involve a trace-type formula,

ˆ
Γ

|∇h|2dS x ≤ c
ˆ

Ω

(−u) |∇2h|2 dx,

and another identity (stated in [8] and proved in [9]):
ˆ

Ω

(−u) |∇2h|2 dx =
1
2

ˆ
Γ

(u2
ν − R2) hν dS x. (1.7)

This last identity, immediately gives radial symmetry for Ω in Serrin’s overdetermined problem
(that prescribes that uν is constant on Γ, see [17,18]). Together with the arguments used to obtain (1.4),
(1.7) will also help us to upgrade an analogous stability bound for radial symmetry in Serrin’s problem.
This task will be accomplished in Theorem 4.4.

2. Interpolating estimates for Sobolev functions

Let SN−1 be the unit sphere in the Euclidean space RN , N ≥ 2. For θ ∈ [0, π/2] and e ∈ SN−1, we set

Sθ = {ω ∈ SN−1 : cos θ < 〈ω, e〉}.

This is a spherical cap with axis e and opening width θ. We also denote by

Cx,a = {x + aω : ω ∈ Sθ, 0 < s < a},

the finite right spherical cone with vertex at x, axis in some direction e, and height a > 0. In what
follows, |Cx,a| and |Sθ| will denote indifferently the N-dimensional Lebesgue measure of Cx,a and the
(N − 1)-dimensional surface measure of Sθ.

2.1. Pointwise estimates on cones

We start by proving some useful pointwise estimates in cones (see also [1]). In what follows, we
set Cx = Cx,a and use the normalized Lebesgue measure dµy = dy/|E| for any measurable set E ⊂ RN

of finite measure.

Lemma 2.1. For any f ∈ C1(Cx), it holds that∣∣∣ f (x) − fCx

∣∣∣ ≤ ˆ
Cx

|∇ f (y)|
|y − x|N−1

aN − |y − x|N

N
dµy. (2.1)

In particular, we have that ∣∣∣ f (x) − fCx

∣∣∣ ≤ aN

N

ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy. (2.2)
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Proof. By the change of variables y = x + sω for s ∈ (0, a) and ω ∈ Sθ, we write:

f (x) − fCx = f (x) −
ˆ
Cx

f dµy =
1
|Cx|

ˆ
Cx

[ f (x) − f (y)] dy =

1
|Cx|

ˆ a

0
sN−1

{ˆ
Sθ

[ f (x) − f (x + sω)] dS ω

}
ds,

where dS ω denotes the surface element on SN−1. Next, the fundamental theorem of calculus gives:

f (x) − f (x + sω) = −

ˆ s

0
ω · ∇ f (x + tω) dt.

Thus, we can infer that∣∣∣ f (x) − fCx

∣∣∣ ≤ 1
|Cx|

ˆ a

0

ˆ
Sθ

sN−1
[ˆ s

0
|∇ f (x + tω)| dt

]
dS ω ds =

1
|Cx|

ˆ a

0
sN−1
ˆ
Sθ

[ˆ s

0

|∇ f (x + tω)|
|x + tω − x|N−1 tN−1 dt

]
dS ω ds =

1
|Cx|

ˆ a

0
sN−1

[ˆ
Cx,s

|∇ f (y)|
|y − x|N−1 dy

]
ds.

Now, by an application of Fubini’s theorem we obtain thatˆ a

0

(ˆ
Cx,s

|∇ f (y)|
|y − x|N−1 dy

)
ds =

ˆ
Cx

|∇ f (y)|
|y − x|N−1

aN − |y − x|N

N
dy.

Thus, (2.1) and (2.2) easily follow. �

As a corollary, we have the following Morrey-Sobolev-type inequality. The relevant Lebesgue norms
are defined with respect to the normalized measure dµy.

Corollary 2.2. If N < p ≤ ∞ and f ∈ C1(Cx), we have that∣∣∣ f (x) − fCx

∣∣∣ ≤ a
N
β

(
1 −

p′

N′
, p′ + 1

)1/p′

‖∇ f ‖p,Cx , (2.3)

where β(ξ, η) denotes Euler’s beta function. When p = ∞, (2.3) reads as∣∣∣ f (x) − fCx

∣∣∣ ≤ a
N
β

(
1
N
, 2

)
‖∇ f ‖∞,Cx ,

which can be obtained by taking the limit as p→ ∞ in (2.3).

Proof. The desired result follows from (2.1) by applying Hölder’s inequality to the right-hand side and
the calculation:
ˆ
Cx

(
aN − |y − x|N

|y − x|N−1

)p′

dµy =
|Sθ|

|Cx|

ˆ r

0

(
aN − sN

sN−1

)p′

sN−1ds =

ap′
ˆ 1

0
(1 − t)p′t−

N−1
N p′dt = ap′β

(
1 −

N − 1
N

p′, p′ + 1
)
.

Since β(ξ, η) is well-defined only if ξ, η > 0, we get the restriction p > N. As already mentioned, the
case p = ∞ can be derived by taking the limit as p→ ∞. �
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2.2. Global estimates for the oscillation of functions

Let Ω ⊂ RN be a bounded domain (i.e., a connected bounded open set) with boundary Γ. Given
a > 0 and θ ∈ [0, π/2], we say that Ω satisfies the (θ, a)-uniform interior cone condition, if for every
x ∈ Ω there exists a cone Cx with opening width θ and height a, such that Cx ⊂ Ω and Cx ∩ Γ = {x},
whenever x ∈ Γ. The following result easily follows from Corollary 2.2.

Corollary 2.3. Let N < p ≤ ∞ and Ω ⊂ RN be a bounded domain that satsfies the uniform interior
(θ, a)-cone property. For every x ∈ Ω and f ∈ W1,p(Ω), we have that

| f (x) − fΩ| ≤ k(N, p, θ) a1−N/p |Ω|1/p‖∇ f ‖p,Ω,

for some constant k(N, p, θ) only depending on N, p, and θ.

Proof. For any x ∈ Ω, there is a cone Cx contained in Ω. Hence, we apply (2.3) to the function
f − fΩ + fCx and infer that

| f (x) − fΩ| ≤
a
N
β

(
1 −

p′

N′
, p′ + 1

)1/p′

‖∇ f ‖p,Cx ≤

a
N
β

(
1 −

p′

N′
, p′ + 1

)1/p′ (
|Ω|

|Cx|

)1/p

‖∇ f ‖p,Ω ≤

β
(
1 − p′

N′ , p′ + 1
)1/p′

N1/p′ |Sθ|
1/p a1−N/p |Ω|1/p‖∇ f ‖p,Ω.

In the second inequality, we use the monotonicity of Lebesgue’s integral with respect to set inclusion.
�

In this section, we aim to derive inequalities that bound from above the oscillation on Ω of a function
f with the Lp-norm of its gradient on Ω.

Theorem 2.4 (The case p > N). Set N < p ≤ ∞. Let Ω ⊂ RN be a bounded domain satisfying the
(θ, a)-uniform interior cone condition.

There exists a constant k(N, p, θ) only depending on N, p, and θ such that, for any f ∈ W1,p(Ω), it
holds that

max
Ω

f −min
Ω

f ≤ k(N, p, θ) a1−N/p |Ω|1/p ‖∇ f ‖p,Ω. (2.4)

Proof. Notice that the oscillation of f at the left-hand side of (2.4) is well defined, since f is continuous
on Ω.

Let xm, xM ∈ Ω be points at which f attains its minimum and maximum. Then, we have that

max
Ω

f −min
Ω

f ≤ f (xM) − fΩ + fΩ − f (xm)

and we conclude by applying twice Corollary 2.3. �

It is clear that the proof of Corollary 2.2 fails when 1 ≤ p ≤ N, because of the singularity at x.
However, in this case, we can still obtain a slightly different estimate by means of an interpolation
procedure, if information on higher integrability of the gradient of f is available.
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Lemma 2.5. Let f ∈ C1(Cx). Let 1 ≤ p ≤ N, N < q ≤ ∞, and set

αp,q =
p (q − N)
N (q − p)

. (2.5)

(i) If 1 ≤ p < N, we have that

aN−1
ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤ kN,p,q ‖∇ f ‖1−αp,q

q,Cx
‖∇ f ‖αp,q

p,Cx
, (2.6)

for some positive constant kN,p,q only depending on N, p, and q.

(ii) If p = N. we have that

aN−1
ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤

2q
q − N

‖∇ f ‖N,Cx log
(
e ‖∇ f ‖q,Cx

‖∇ f ‖N,Cx

)
. (2.7)

Proof. For any σ ∈ (0, a), we compute that
ˆ
Cx

|∇ f (y)|
|y − x|N−1 dy =

ˆ
Cx,σ

|∇ f (y)|
|y − x|N−1 dy +

ˆ
Cx\Cx,σ

|∇ f (y)|
|y − x|N−1 dy ≤[ˆ

Cx,σ

dy
|y − x|q′(N−1)

]1/q′ (ˆ
Cx,σ

|∇ f (y)|qdy
)1/q

+[ˆ
Cx\Cx,σ

dy
|y − x|p′(N−1)

]1/p′ (ˆ
Cx\Cx,σ

|∇ f |pdy
)1/p

, (2.8)

by Hölder’s inequality. Now, a direct computation shows that[ˆ
Cx,σ

dy
|y − x|q′(N−1)

]1/q′

=

[
q − 1
q − N

|Sθ|

]1/q′

σ
q−N

q ,

[ˆ
Cx\Cx,σ

dy
|y − x|p′(N−1)

]1/p′

=


[

p−1
N−p |Sθ|

(
σ−

N−p
p−1 − a−

N−p
p−1

)]1/p′

if 1 ≤ p < N,[
|Sθ| log a

σ

]1/N′
if p = N.

(2.9)

For p = 1, this formula must be intended in the limit as p→ 1.

(i) Let 1 ≤ p < N. By (2.8), (2.9), and some algebraic manipulations, we can infer that

aN−1
ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤

[
N (q − 1)

q − N

]1−1/q

‖∇ f ‖q,Cx

(
σ

a

)1−N/q
+[

N (p − 1)
N − p

]1−1/p

‖∇ f ‖p,Cx

(
σ

a

)1−N/p
(2.10)

for any σ ∈ (0, a]. The minimum of the right-hand side is attained either at

σ = a
[
N(p − 1)

N − p

] q(p−1)
N(q−p)

[
q − N

N(q − 1)

] p(q−1)
N(q−p)

(
1 − αp,q

αp,q

‖∇ f ‖p,Cx

‖∇ f ‖q,Cx

) pq
N(q−p)

,
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or at σ = a. In the former case, we plug σ into (2.10) and obtain (2.6) with some computable constant
k′. In the latter case, we have that[

N(p − 1)
N − p

] q(p−1)
N(q−p)

[
q − N

N(q − 1)

] p(q−1)
N(q−p)

(
1 − αp,q

αp,q

‖∇ f ‖p,Cx

‖∇ f ‖q,Cx

) pq
N(q−p)

> 1,

since σ > a. Hence, by means of this inequality and the fact that we have that

ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤

1
aN−1

[
N(q − 1)

q − N

]1−1/q

‖∇ f ‖q,Cx

(
σ

a

)1−N/q
,

thanks to (2.8), we again obtain (2.6) for some possibly different computable constant k′′. Thus, we
conclude that (2.6) holds true with kN,p,q = max(k′, k′′).

(ii) Let p = N. We proceed as in the case (i) by putting together (2.8) and (2.9). After some
calculation, we obtain:

aN−1
ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤

[
N(q − 1)

q − N

]1−1/q

‖∇ f ‖q,Cx

(
σ

a

)1−N/q
+

(
N log

a
σ

)1−1/N
‖∇ f ‖N,Cx .

If we assume that 0 < σ < a/e, being as N(q − 1) ≥ q − N, we can simplify this inequality to get that

aN−1

N

ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤

q − 1
q − N

‖∇ f ‖q,Cx

(
σ

a

)1−N/q
+ ‖∇ f ‖N,Cx log

a
σ
. (2.11)

Thus, the minimum of the right-hand side is attained either at

σ = σ = a
[
q′ ‖∇ f ‖N,Cx

‖∇ f ‖q,Cx

] q
q−N

or at σ = a/e.

In the former case, we get that

aN−1

N

ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤

2q
q − N

‖∇ f ‖N,Cx log
(

e ‖∇ f ‖q,Cx

q′ ‖∇ f ‖N,Cx

)
,

and hence (2.7) holds true, being as q′ ≥ 1. In the latter case, we have that

e−1 ≤

[
q′ ‖∇ f ‖N,Cx

‖∇ f ‖q,Cx

] q
q−N

,

since σ ≥ a/e. Thus, we get that

aN−1

N

ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤

q − 1
q − N

‖∇ f ‖q,Cxe
N/q−1 + ‖∇ f ‖N,Cx ≤

2q − N
q − N

‖∇ f ‖N,Cx ≤
2q − N
q − N

‖∇ f ‖N,Cx log
(
e ‖∇ f ‖q,Cx

‖∇ f ‖N,Cx

)
,

being as ‖∇ f ‖N,Cx ≤ ‖∇ f ‖q,Cx . Since 2q − N ≤ 2q, (2.7) still holds true. �
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We obtain the following consequence.

Corollary 2.6. For any cone Cx ⊂ Ω of height a and opening width θ, it holds thatˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤ k(N, p, q, θ)

|Ω|

a2N−1 ‖∇ f ‖1−αp,q

q,Ω ‖∇ f ‖αp,q

p,Ω ,

for 1 ≤ p < N and, if p = N,
ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤ k(N, p, q, θ)

|Ω|1/N

aN ‖∇ f ‖N,Ω log
(
e ‖∇ f ‖q,Ω
‖∇ f ‖N,Ω

)
,

for some constant k(N, p, q, θ) only depending on N, p, q, and θ.

Proof. The monotonicity of Lebesgue’s measure with respect to set inclusion and (2.11) easily give:

aN−1

N

ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤

q − 1
q − N

(
|Ω|

|Cx|

)1/q

‖∇ f ‖q,Ω
(
σ

a

)1−N/q
+

(
|Ω|

|Cx|

)1/N

‖∇ f ‖N,Ω log
a
σ
.

By using that (|Ω|/|Cx|)1/q−1/N ≤ 1 (being as Cx ⊂ Ω and q > N), the above inequality becomes:

aN−1

N

ˆ
Cx

|∇ f (y)|
|y − x|N−1 dµy ≤

(
|Ω|

|Cx|

)1/N {
q − 1
q − N

‖∇ f ‖q,Ω
(
σ

a

)1−N/q
+ ‖∇ f ‖N,Ω log

a
σ

}
.

Thus, we can proceed as in the last part of the proof of Lemma 2.5, with similar algebraic
manipulations. �

In light of Corollary 2.6, we can somewhat extend the bound (2.4) to the case 1 ≤ p ≤ N, provided
f ∈ W1,q(Ω) for q > N. The proof is straightforward and runs as that of Theorem 2.4.

Theorem 2.7. Let 1 ≤ p ≤ N, N < q ≤ ∞, and set αp,q as in (2.5). Let Ω ⊂ RN be a bounded domain
satisfying the (θ, a)-uniform interior cone condition.

For any f ∈ W1,q(Ω), it holds that

max
Ω

f −min
Ω

f ≤ k(N, p, q, θ)
|Ω|1/p

aN/p−1 ‖∇ f ‖αp,q

p,Ω‖∇ f ‖1−αp,q

q,Ω ,

if 1 ≤ p < N and, if p = N,

max
Ω

f −min
Ω

f ≤ k(N, p, q, θ)
|Ω|1/N

aN ‖∇ f ‖N,Ω log
(
e ‖∇ f ‖q,Ω
‖∇ f ‖N,Ω

)
.

Here, k(N, p, q, θ) is some constant only depending on N, p, q, θ.

3. Application to quantitative symmetry for the Soap Bubble Theorem

As already mentioned, Theorems 2.4 and 2.7 give an alternative way to obtain, and even upgrade,
the bounds in [10, Theorems 2.10 and 2.8]. As a by-product, we also obtain new upgraded versions
of stability estimates for the Soap Bubble Theorem and Serrin’s symmetry result. In this and the next
section, we shall give some details on how to obtain the new versions of those stability results. Of
course, a similar reasoning can be applied to other stability results contained in [4, 8, 10, 15].
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3.1. Preliminary notations and useful bounds

For a point z ∈ Ω, ρi and ρe shall denote the radius of the largest ball contained in Ω and that of the
smallest ball that contains Ω, both centered at z; in formulas,

ρi = min
x∈Γ
|x − z| and ρe = max

x∈Γ
|x − z|. (3.1)

We say that Ω satisfies a uniform interior sphere condition (with radius r) if for every p ∈ Γ there
exists a ball Br ⊂ Ω such that ∂Br ∩ Γ = {p}; Ω satisfies a uniform exterior sphere condition if RN \ Ω

satisfies a uniform interior sphere condition. From now on, we will consider a bounded domain Ω with
boundary Γ of class C2, so that Ω satisfies both a uniform interior and exterior sphere condition. We
shall denote by ri and re the relevant respective radii. It is trivial to check that when Ω satisfies the
interior condition with radius ri, then it satisfies the uniform interior (θ, a)-cone condition with

θ =

√
2

2
, a = ri. (3.2)

Next, we consider the solution u ∈ C0(Ω) ∩C2(Ω) of

∆u = N in Ω, u = 0 on Γ. (3.3)

It is well-known that u ∈ Cm,γ(Ω) if Γ is of class Cm,γ, 0 < γ ≤ 1, for m = 1, 2, · · · .
By M we denote a uniform upper bound for the gradient of u on Ω, in formulas,

M ≥ max
Ω

|∇u| = max
Γ

uν.

As shown in [8, Theorem 3.10], we can choose an explicit value for M:

M = (N + 1)
dΩ(dΩ + re)

2re
. (3.4)

By following [10, 15], we consider the harmonic function

h = Qz − u,

where Qz is defined in (1.3). Notice that, if z ∈ Ω, it holds that

max
Γ

h −min
Γ

h =
1
2

(ρ2
e − ρ

2
i ) ≥

(
|Ω|

|B|

)1/N
ρe − ρi

2
≥

ri

2
(ρe − ρi). (3.5)

The left-hand side of this inequality can be estimated by Theorems 2.4 and 2.7.
As in [10], it will be convenient to choose z ∈ Ω as a global minimum point of u. We know from [12]

that, in this case, the distance δΓ(z) of z to Γ can be estimated from below in terms of the inradius rΩ

(the radius of a maximal ball contained in Ω). In fact, in light of [12, Theorem 1.1], it holds that

δΓ(z) ≥
rΩ
√

N
, (3.6)

if Γ is mean convex (i.e., H ≥ 0). If Γ is a general surface of class C2, [12, Corollary 2.7] gives instead
the slightly poorer bound:

δΓ(z) ≥
rΩ
√

N

[
1 +

N2 − 1
2N

dΩ

re

(
1 +

dΩ

re

)]−1/2

. (3.7)
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Remark 3.1 (On the normalized norms). For the sake of consistency with the previous sections, we
will continue to denote by ‖ · ‖p,Ω and ‖ · ‖p,Γ the Lp-norms in the relevant normalized measure. Since it
holds that

|B| rN
Ω ≤ |Ω| ≤ |B| d

N
Ω and N |B| rN−1

Ω ≤ |Γ| ≤ N
|Ω|

ri
,

such norms are equivalent to the standard ones. The first three inequalities follow from the inclusions
BrΩ
⊂ Ω ⊂ BdΩ

. The last inequality is obtained by putting together the identity

N |Ω| =
ˆ

Γ

uν dS x

with the inequality uν ≥ ri, which holds true at any point in Γ, by an adaptation of Hopf’s lemma
(see [8, Theorem 3.10]).

Notice that, since rΩ ≥ ri, rΩ can be replaced by ri in all the relevant formulas.

In what follows, we use the letter c to denote a constant whose value may change line by line. The
dependence of c on the relevant parameters will be indicated whenever it is important. All the constants
c can be explicitly computed (by following the steps in the relevant proofs) and estimated in terms of
the indicated parameters only.

3.2. Bounds for ρe − ρi in terms of h

By applying Theorems 2.4 and 2.7 to h, we easily obtain the starting point of our analysis.

Lemma 3.2. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with boundary Γ of class C2. Let z be a point
in Ω, and consider the function h = Qz − u, with Qz defined in (1.3).

There exists a constant c = c(N, p, ri) such that

ρe − ρi ≤ c


‖∇h‖p,Ω if p > N;

‖∇h‖N,Ω log
(
e ‖∇h‖∞,Ω
‖∇h‖N,Ω

)
if p = N;

‖∇h‖(N−p)/N
∞,Ω

‖∇h‖p/N
p,Ω if 1 ≤ p < N.

Proof. We apply Theorems 2.4 and 2.7, with f = h and q = ∞. By taking into account (3.5) and (3.2),
the desired estimates easily follow. (Notice that (3.2) informs us that in Theorems 2.4 and 2.7 we can
take a = ri.) �

Remark 3.3 (Weighted Poincaré inequality). Here, we recall a bound for the gradient of h, which we
will need in the sequel. Since z is a critical point of h (being as ∇h(z) = ∇Qz(z) − ∇u(z) = 0), we know
from [10, Corollary 2.3] that h satisfies the weighted Poincaré inequality

‖∇h‖r,Ω ≤ c ‖δαΓ∇
2h‖p,Ω.

Here, r, p, α are three numbers such that

1 ≤ p ≤ r ≤
N p

N − p (1 − α)
, p (1 − α) < N, 0 ≤ α ≤ 1.
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The constant c can be explicitly estimated by putting together item (iii) of [10, Remark 2.4], (3.7), and
the normalizations discussed in Remark 3.1. In detail, we can compute that

c ≤ kN,r,p,α |Ω|
1−α

N (dΩ/ri)N

[
N + (N2 − 1)

dΩ

2re

(
1 +

dΩ

re

)]N/2

,

for some constant kN,r,p,α only depending on N, r, p, α. When Γ is mean convex, by using (3.6) in place
of (3.7), we obtain the finer bound:

c ≤ kN,r,p,α |Ω|
1−α

N (dΩ/ri)N .

As described in the introduction, in order to obtain stability estimates for the Soap Bubble Theorem,
we must associate the difference ρe − ρi with the L2-norm of the hessian matrix ∇2h. The following
result gives this association.

Theorem 3.4. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with boundary Γ of class C2. Let z ∈ Ω be
a global minimum point of u in Ω and set h = Qz − u. Then, there exists a constant c = c(N, ri, re, dΩ)
such that

ρe − ρi ≤ c


‖∇2h‖2,Ω for N = 2, 3;

‖∇2h‖2,Ω max
[
log

(
e ‖∇h‖∞,Ω
‖∇2h‖2,Ω

)
, 1

]
, for N = 4;

‖∇h‖
N−4
N−2
∞,Ω
‖∇2h‖

2
N−2
2,Ω , for N ≥ 5.

Proof. (i) Lemma 3.2 with p = 6 gives that

ρe − ρi ≤ c ‖∇h‖6,Ω ≤ c ‖∇2h‖2,Ω.

The last inequality follows from Remark 3.3 with r = 6, p = 3/2, and α = 0, and Hölder’s inequality,
for N = 2, and directly from Remark 3.3 with r = 6, p = 2, and α = 0, for N = 3.

(ii) Let N = 4. We use Lemma 3.2 with p = N = 4 and get:

ρe − ρi ≤ c max
{
‖∇2h‖4,Ω log

(
e ‖∇h‖∞,Ω
‖∇2h‖4,Ω

)
, ‖∇2h‖4,Ω

}
.

Next, Remark 3.3 with r = 4, p = 2, α = 0, gives:

‖∇h‖4,Ω ≤ c ‖∇2h‖2,Ω.

Thus, the desired conclusion ensues by invoking the monotonicity of the function
t 7→ t max{log(A/t), 1} for every A > 0.

(iii) When N ≥ 5, we can use Lemma 3.2 with p = 2N/(N − 2) and put it together with Remark 3.3
with r = 2N/(N − 2), p = 2, and α = 0. �

Remark 3.5. For N ≥ 4 the estimates of this theorem depend on ‖∇h‖∞,Ω. Thus, as done in [10], since
we know that

‖∇h‖∞,Ω ≤ M + dΩ,
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we can easily bound ρe−ρi in terms of some constant (which possibly depends on ri, re, and dΩ, thanks
to (3.4)) and the number ‖∇2h‖2,Ω. Thanks to identity (1.6), this number is connected to the deviation
H − H0. This will lead to the asymptotic profile in the quantitative symmetry estimate for the Soap
Bubble Theorem obtained in [10], with an improvement for the case N = 4.

However, notice that, when Ω is near a ball in some good topology, the function h tends to be a
constant, and hence ‖∇h‖∞,Ω tends to be zero. Thus, we expect to improve the relevant bounds in
Theorem 3.4, once we can control ‖∇h‖∞,Ω in terms of ‖∇2h‖2,Ω. This control will in turn benefit the
quantitative symmetry estimate we are aiming to. It turns out that an adaptation of our Theorem 2.7
gives such desired bound for ‖∇h‖∞,Ω, if an a priori bound for ‖∇2h‖q,Ω for large q is available, as the
following corollary states.

Corollary 3.6. Let Ω ⊂ RN be a bounded domain with boundary of class C2. Let 1 ≤ p < N,
N < q ≤ ∞, and set αp,q as in (2.5). Then, if h ∈ W2,q(Ω), it holds that

‖∇h‖∞,Ω ≤ c
|Ω|1/p

rN/p−1
i

‖∇2h‖αp,q

p,Ω‖∇
2h‖1−αp,q

q,Ω .

Here, c is a constant only depending on N, p, q.

Proof. Since Γ is of class C2 , Ω has the uniform interior cone property with θ =
√

2/2 and a = ri.
Let x ∈ Ω and let ` be any unit vector. Applying Theorem 2.7 and using that, with our choice of z,
|h`(x)| = |h`(x) − h`(z)|, we have that

|h`(x)| ≤ k(N, p, q)
|Ω|1/p

rN/p−1
i

‖∇h`‖
αp,q

p,Ω‖∇h`‖
1−αp,q

q,Ω ≤ k(N, p, q)
|Ω|1/p

rN/p−1
i

‖∇2h‖αp,q

p,Ω‖∇
2h‖1−αp,q

q,Ω ,

where we used the pointwise inequality |∇h`| ≤ |∇2h|. Hence, taking the supremum over all directions
` yields the desired conclusion.

An inspection of the proof tells us that the corollary could be stated for a domain satisfying an
interior cone condition. �

This corollary allows us to upgrade Theorem 3.4 for N ≥ 5. Notice that, for N = 4, we would
not get any subtantial improvement, due to the presence of the logarithm in the relevant claim of that
theorem.

Corollary 3.7. Let Ω ⊂ RN , N ≥ 5, be a bounded domain with boundary Γ of class C2. Let z ∈ Ω

be a global minimum point of u in Ω, set h = Qz − u, and suppose that h ∈ W2,q(Ω). Then, for every
q ∈ (N,∞], there exists a constant c = c(N, q, ri, re, dΩ) such that

ρe − ρi ≤ c ‖∇2h‖
q(N−4)
(q−2)N

q,Ω ‖∇2h‖
4
N −

2(N−4)
N(q−2)

2,Ω .

Proof. Our claim simply follows by combining Theorem 3.4 and Corollary 3.6 with the choice p =

2. �
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3.3. Quantitative symmetry results

We are now in position to obtain our new quantitative estimates of radial symmetry per the Soap
Bubble Theorem. As already mentioned, all we have to do is to relate the norm ‖∇2h‖2,Ω to the deviation
of H from H0 in some norm.

The quantities ‖∇h‖∞,Ω and ‖∇2h‖q,Ω in Theorem 3.4 and Corollary 3.7 will contribute to the
computation of the constant in the desired stability profile, as explained in the next remark.

Remark 3.8. We shall consider two regularity assumptions on Γ.
(i) When Γ is of class C2, we have that u ∈ W2,q(Ω) for any q ∈ [1,∞) and an a priori bound for

‖∇2h‖q,Ω can be obtained, by the standard Lq estimates for elliptic equations, being as ∇2h = I − ∇2u.
In fact, by putting together [6, Theorems 914 and 9.15], even under the weaker assumption of Γ ∈ C1,1,
we can obtain for u the bound

‖∇2u‖q,Ω ≤ C for N < q < ∞,

where C only depends on N, q, |Ω|, and the regularity Ω (and may blow up as q→ ∞). It is well known
that Γ is of class C1,1 if and only if it satisfies both the interior and exterior ball condition. Thus, we
can claim that C only depends on N, q, dΩ, ri, and re.

(ii) When Γ is of class C2,γ with 0 < γ ≤ 1, we can obtain an a priori bound also for ‖∇2h‖∞,Ω, by
standard Schauder’s estimates for ∇2u (see [6]), in terms of the C2,γ-modulus of continuity ω2,γ of Γ.
(For a definition of ω2,γ, see e.g., [2, Remark 1].)

The following theorem clearly gives (1.4).

Theorem 3.9 (Soap Bubble Theorem: enhanced stability). Let N ≥ 2 and let Ω ⊂ RN be a bounded
domain with boundary Γ of class C2. Denote by H the mean curvature of Γ and set R = N|Ω|/|Γ| and
H0 = 1/R.

Let z ∈ Ω be a global minimum point of the solution u of (3.3) and let ρi and ρe be defined by (3.1).
Then, the following inequalities hold true.

(i) If 2 ≤ N ≤ 4, there exists a constant c = c(N, dΩ, ri, re) such that

ρe − ρi ≤ c

‖H0 − H‖2,Γ, if N = 2, 3,
‖H0 − H‖2,Γ max

[
log

(
1

‖H0−H‖2,Γ

)
, 1

]
, if N = 4.

(3.8)

(ii) If N ≥ 5, for any q ∈ (N,∞), there exists a constant c = c(N, q, dΩ, ri, re) such that

ρe − ρi ≤ c ‖H0 − H‖
4
N −

2(N−4)
N(q−2)

2,Γ . (3.9)

Moreover, (for any N ≥ 2) we have that

R
∥∥∥∥∥ν − ∇Qz

R

∥∥∥∥∥
2,Γ
≤ c ‖H0 − H‖2,Γ. (3.10)

If Γ is of class C2,γ, 0 < γ ≤ 1, the exponent in (3.9) can be replaced by its limit as q → ∞, i.e.,
4/N. In this case, the relevant constant c only depends on N, dΩ, and the C2,γ-modulus of continuity of
Γ.
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Proof. Inequalities (3.8) and (3.9) will simply follow from the inequality:

‖∇2h‖2,Ω ≤ c ‖H − H0‖2,Γ. (3.11)

This was proved in [10].
For the reader’s convenience, we summarize the main steps in the proof of [10, Theorem 3.5], which

lead to (3.11), with the necessary modifications. As usual, the constant c may change from line to line
and only depends on quantities (e.g., R, ‖uν‖∞,Γ, ‖Qz

ν‖∞,Γ) that, in turn, can be bounded in terms of the
parameters indicated in the statement.

The starting point is a modification of the fundamental identity (1.6):

1
N − 1

ˆ
Ω

|∇2h|2dx +
1
R

ˆ
Γ

(uν − R)2dS x = −

ˆ
Γ

(H0 − H) hν uν dS x +

ˆ
Γ

(H0 − H) (uν − R) Qz
ν dS x.

Next, if we discard the first summand in this identity, by Cauchy-Schwarz inequality we obtain that

‖uν − R‖22,Γ ≤ c ‖H − H0‖2,Γ
(
‖hν‖2,Γ + ‖uν − R‖2,Γ

)
. (3.12)

Instead, if we discard the second summand, we can infer that
ˆ

Ω

|∇2h|2dx ≤ c ‖H − H0‖2,Γ
(
‖hν‖2,Γ + ‖uν − R‖2,Γ

)
. (3.13)

Now, we use the fact that we can control ∇h (and hence hν) on Γ in terms of the deviation uν − R.
This is obtained by combining a trace-type inequality for h derived in [10, Lemma 2.5] and identity
(1.7), as follows:
ˆ

Γ

|∇h|2dS x ≤ c
ˆ

Ω

(−u) |∇2h|2 dx =
1
2

c
ˆ

Γ

(u2
ν − R2) hν dS x ≤

c ‖uν − R‖2,Γ‖hν‖2,Γ ≤ c ‖uν − R‖2,Γ ‖∇h‖2,Γ.

This then gives:
‖hν‖2,Γ ≤ ‖∇h‖2,Γ ≤ c ‖uν − R‖2,Γ. (3.14)

Thus, inserting this inequality into (3.12) gives that

‖uν − R‖2,Γ ≤ c ‖H − H0‖2,Γ. (3.15)

Also, by plugging it into (3.13), we infer that
ˆ

Ω

|∇2h|2dx ≤ c ‖H − H0‖2,Γ‖uν − R‖2,Γ ≤ c ‖H − H0‖
2
2,Γ.

Therefore, (3.11) follows at once.

Now, we proceed to prove (3.8) and (3.9). The cases N = 2, 3 easily follow from Theorem 3.4.
Thus, we are left to prove it for N ≥ 4.

For N = 4, we simply combine Theorem 3.4 and the first part of Remark 3.5. Indeed, ‖∇h‖∞,Ω is
bounded by a constant which only depends on ri, re, and dΩ.
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For N ≥ 5, instead, we use Corollary 3.7 and Remark 3.8, which give

ρe − ρi ≤ c ‖∇2h‖
4
N −

2(N−4)
N(q−2)

2,Ω .

Hence, (3.9) ensues from (3.11). The case in which Γ is of class C2,γ can be dealt similarly.
To conclude the proof, we are left to show that (3.10) also holds. To this aim, as done in the

introduction, we observe that∣∣∣∣∣ν(x) −
x − z

R

∣∣∣∣∣ ≤ |R − uν(x)| + |∇h(x)|
R

for x ∈ Γ.

Hence, we infer that

R
(ˆ

Γ

∣∣∣∣∣ν(x) −
x − z

R

∣∣∣∣∣2 dS x

|Γ|

)1/2

≤ ‖uν − R‖2,Γ + ‖∇h‖2,Γ ≤ c ‖uν − R‖2,Γ,

where we applied the triangle inequality and the second inequality in (3.14). By using (3.15), then
(3.10) easily follows from the last inequality above. �

Remark 3.10. In order to compare the results of Theorem 3.9 to previous estimates, we recall what we
obtained in [10, Theorem 3.5] — the last up-to-date bound for stability in the Soap Bubble Theorem.
In fact, there we obtained the bound

ρe − ρi ≤ c Ψ
(
‖H − H0‖L2(Γ)

)
,

with

Ψ(σ) =


σ if N = 2, 3,
σ1−ε if N = 4,
σ2/(N−2) if N ≥ 5,

where the case N = 4 must be interpreted thus: for any 0 < ε < 1, there exists a constant c = cε (which
may blow up as ε → 0), such that case N = 4 holds. Theorem 3.9 clearly improves these profiles if
Γ is either of class C2 or C2,γ. Moreover, it also states that we can control linearly the deviation of the
Gauss map from that of a sphere, at least in the L2-norm.

4. Application to quantitative symmetry in Serrin’s overdetermined problem

In order to obtain stability estimates for Serrin’s problem, we must use identity (1.7). In fact, this
relates the weighted integral at the right-hand side to the deviation uν − R. Since the torsion u can be
easily bounded below by δΓ (see [9, Lemma 3.1]), we understand that this time we must associate the
difference ρe − ρi with the weighted L2-norm ‖δ1/2

Γ
∇2h‖2,Ω. The following result goes in that direction.

Theorem 4.1. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with boundary Γ of class C2 and z ∈ Ω be a
global minimum point of the solution u of (3.3). Consider the function h = Qz − u, with Qz given by
(1.3). Then, there exists a constant c = c(N, dΩ, ri, re) such that

ρe − ρi ≤ c


‖δ1/2

Γ
∇2h‖2,Ω if N = 2;

‖δ1/2
Γ
∇2h‖2,Ω max

log

 e ‖∇h‖∞,Ω
‖δ1/2

Γ
∇2h‖2,Ω

 , 1 if N = 3;

‖∇h‖(N−3)/(N−1)
∞,Ω

‖δ1/2
Γ
∇2h‖2/(N−1)

2,Ω if N ≥ 4.
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Proof. (i) Let N = 2. By using Lemma 3.2 with p = 4 we have that

ρe − ρi ≤ c ‖∇h‖4,Ω.

By applying Remark 3.3 with r = 4, p = 2, and α = 1/2, we obtain that

‖∇h‖4,Ω ≤ c ‖δ1/2
Γ
∇2h‖2,Ω,

and the conclusion follows.
(ii) Let N = 3. By using Remark 3.3 with r = 3, p = 2, α = 1/2, we get

‖∇h‖3,Ω ≤ c ‖δ1/2
Γ
∇2h‖2,Ω.

The conclusion follows by using Lemma 3.2 with p = N = 3.
(iii) When N ≥ 4, we use Lemma 3.2 with p = 2N/(N − 1) and put it together with Remark 3.3

with r = 2N
N−1 , p = 2, α = 1/2. �

By recalling Remark 3.5, to gain better stability for Serrin’s problem for N ≥ 3, we need to obtain
a bound similar to that in Corollary 3.6, but with ‖∇2h‖p,Ω replaced by ‖δ1/2

Γ
∇2h‖p,Ω. This time, we

proceed differently.

Lemma 4.2. Set 1 ≤ p ≤ ∞ and q > N. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with boundary Γ of
class C2 and assume that h ∈ W2,q(Ω). Then, there exists a constant c = c(N, p, q) such that

‖∇h‖N+p (1−N/q)
∞,Ω

≤ c |Ω| ‖∇h‖p (1−N/q)
p,Ω ‖∇2h‖Nq,Ω. (4.1)

Proof. For any x ∈ Ω there is a cone Cx,a ⊂ Ω. Applying (2.3) with p = q to any cone Cx,σ ⊂ Cx,a gives
that

| f (x)| ≤
ˆ
Cx,σ

| f | dµy + cσ ‖∇ f ‖q,Cx,σ ≤ ‖ f ‖p,Cx,σ + cσ ‖∇ f ‖q,Cx,σ ,

where we used Hölder’s inequality at the second inequality. Here, c = c(N, q). Thus, we have that

max
Ω

f −min
Ω

f ≤ 2 max
Ω

| f | ≤ c
(
|Ω|1/pσ−N/p‖ f ‖p,Ω + c |Ω|1/qσ1−N/q ‖∇ f ‖q,Ω

)
,

for every σ ∈ (0, a), where in the second inequality we also used the monotonicity of Lebesgue’s
integral with respect to set inclusion. Here, c = c(N, p, q) (notice that the dependence on θ can be
dropped, since θ =

√
2/2, being as Γ of class C2). We now minimize in σ as done before. This time,

we omit the details. We end up with the formula:

max
Ω

f −min
Ω

f ≤ c |Ω|
1

N+p(1−N/q) ‖ f ‖
p(1−N/q)

N+p(1−N/q)

p,Ω ‖∇ f ‖
N

N+p(1−N/q)

q,Ω .

This holds for any x ∈ Ω and 1 ≤ p < q ≤ ∞. By choosing f as any directional derivative h` of h and
using that, with our choice of z, |h`(x)| = |h`(x) − h`(z)|, we thus get that

|h`(x)|N+p (1−N/q) ≤ c |Ω| ‖h`‖
p (1−N/q)
p,Ω ‖∇h`‖Nq,Ω for any x ∈ Ω.

Hence, (4.1) follows by observing that |h`| ≤ |∇h|, |∇h`| ≤ |∇2h|, and by choosing ` such that
h`(x) = |∇h(x)| and x ∈ Γ that maximizes |∇h| on Ω.

As for Corollary 3.6, the lemma could be stated for a domain satisfying an interior cone condition.
�
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Corollary 4.3. Set 1 ≤ p < 2N and q > N. Under the assumptions of Lemma 4.2, we have that

‖∇h‖2N−p+2p (1−N/q)
∞,Ω

≤ c ‖∇2h‖2N−p
q,Ω ‖δ1/2

Γ
∇2h‖2p (1−N/q)

p,Ω . (4.2)

Here, the constant c only depends on N, p, q, dΩ, ri, and re.

Proof. We use Remark 3.3 with r, p, and α replaced by 2pN/(2N − p), p, and 1/2, respectively. We
thus get that

‖∇h‖ 2pN
2N−p ,Ω

≤ c ‖δ1/2
Γ
∇2h‖p,Ω.

Therefore, (4.2) follows by combining this bound and (4.1) with p replaced by 2pN/(2N − p). �

Theorem 4.4 (Serrin’s problem: enhanced stability). Let Ω ⊂ RN , N ≥ 2, be a bounded domain with
boundary Γ of class C2 and set R = N |Ω|/|Γ|.

Let u be the solution of problem (3.3) and z ∈ Ω be a global minimum point of u in Ω. Then, there
exists a constant c = c(N, dΩ, ri, re) such that

ρe − ρi ≤ c


‖uν − R‖2,Γ if N = 2;

‖uν − R‖2,Γ max
[
log

(
1

‖uν − R‖2,Γ

)
, 1

]
if N = 3.

When N ≥ 4, for any q ∈ (N,∞), there exists a constant c = c(N, q, dΩ, ri, re) such that

ρe − ρi ≤ c ‖uν − R‖
4−2N/q

N+1−2N/q

2,Γ . (4.3)

Moreover (for any N ≥ 2),

R
∥∥∥∥∥ν − ∇Qz

R

∥∥∥∥∥
2,Γ
≤ c ‖uν − R‖2,Γ,

for some constant c = c(N, dΩ, ri, re).
If Γ is of class C2,γ, 0 < γ ≤ 1, the stability exponent in (4.3) for N ≥ 4 can be replaced its limit as

q→ ∞, i.e., 4/(N + 1). In this case, c only depends on N, dΩ, and the C2,γ-modulus of continuity of Γ.

Proof. It is sufficient to notice that, thanks to (1.7) and the pointwise inequality δΓ ≤ −2u/ri, we can
infer that

‖δ1/2
Γ
∇2h‖22,Ω ≤ c

ˆ
Ω

(−u) |∇2h|2dx ≤ c ‖uν − R‖2,Γ ‖hν‖2,Γ.

Thus, by (3.14), we obtain that
‖δ1/2

Γ
∇2h‖2,Ω ≤ c ‖uν − R‖2,Γ.

Therefore, with this inequality in hand, we can proceed similarly to the proof of Theorem 3.9 by also
taking into account Remark 3.8. For instance, the claim for N ≥ 4 simply follows from Theorem 4.1
and Corollary 4.3 with p = 2.

The remaining claims follow from Theorem 4.1 at once. �

Remark 4.5. In order to compare the results of Theorem 4.4 to previous estimates, it is sufficient
to recall what we obtained in [10, Theorem 3.1] — the last up-to-date bound for stability in Serrin’s
problem. In fact, there we obtained the bound

ρe − ρi ≤ c Ψ
(
‖uν − R‖L2(Γ)

)
,
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with

Ψ(σ) =


σ if N = 2,
σ1−ε if N = 3,
σ2/(N−1) if N ≥ 4.

The case N = 3 must be interpreted thus: for any 0 < ε < 1 there exists a constant c = cε (which may
blow up as ε→ 0), such that case N = 3 holds.

The comparison with Theorem 4.4 is left to the reader.
As already mentioned in the introduction for the Soap Bubble Theorem, if one adopts a stronger

norm for the deviation uν − R, linear stability can also be obtained (with some restrictions) in general
dimension. See for instance [5].

Remark 4.6. A direct inspection of the corresponding proofs tells us that the dependence of the
relevant constant c on the parameter re can be removed whenever Γ is mean convex. In fact, in this
case, the bounds in (3.4), (3.7) and the former inequality for c in Remark 3.3 can be replaced
by [10, Formula (2.4)], (3.6) and the latter inequality for c in Remark 3.3.
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