
IFAC PapersOnLine 53-2 (2020) 14570–14575

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2020.12.1463

10.1016/j.ifacol.2020.12.1463 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

2D Forward Looking SONAR in
Underwater Navigation Aiding: an
AUKF-based strategy for AUVs �

Matteo Franchi ∗,∗∗ Alessandro Ridolfi ∗,∗∗

Leonardo Zacchini ∗,∗∗

∗ Department of Industrial Engineering, University of Florence,
via di Santa Marta 3, 50139, Florence, Italy (e-mail:

matteo.franchi@unifi.it).
∗∗ Interuniversity Center of Integrated Systems for the Marine

Environment (ISME), www.isme.unige.it

Abstract: This paper proposes an underwater navigation system where linear speed estima-
tions, obtained with a 2D Forward-Looking SONAR (FLS), are integrated within a navigation
filter and this solution is shown to work satisfyingly in the absence of Doppler Velocity Log
(DVL) readings. Both to provide a better description of the system, which is a dynamic entity in
a dynamic environment and to characterize FLS measurements, an Adaptive Unscented Kalman
Filter (AUKF)-based estimator is here proposed. The solution has been tested and validated
offline making use of navigation data obtained during sea trials performed in July 2018 with
FeelHippo AUV at the basin of the NATO Science and Technology Organization Centre for
Maritime Research and Experimentation (CMRE), La Spezia (Italy).
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1. INTRODUCTION

Most of the underwater navigation systems are based on
the Kalman Filter (KF) (Kalman, 1960) or its variants
to nonlinear systems such as the Extended Kalman Fil-
ter (EKF) (Bar-Shalom et al., 2004), or the Unscented
Kalman Filter (UKF) (Allotta et al., 2015) where, most of
the times, the linear speed of the Autonomous Underwater
Vehicle (AUV) is retrieved using the Doppler Velocity Log
(DVL).
An Adaptive Unscented Kalman Filter (AUKF)-based
solution with Forward-Looking SONAR (FLS) measure-
ments to aid underwater navigation is here proposed and it
is shown to work satisfyingly without exploiting DVL read-
ings. Nevertheless, it is worth stressing that cooperation
with the DVL is possible, this way obtaining more linear
speed measurements. In the following, the here proposed
solution is tested in the worst-case scenario, so any read-
ings from the DVL is employed. Navigation-aiding using
an FLS could outline several advantages. Indeed, employ-
ing an augmented set of devices for navigation purposes
represents a boost in redundancy and, in addition to this,
multitasking on-board sensors represent a solution that
avoids the use of some instruments and offers compactness
(e.g., thinking about small marine robots).
It is well known that the KF is an optimal estimator in
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the Minimum Mean Square Error (MMSE) sense under
linear Gaussian assumptions (Bar-Shalom et al., 2004).
However, generally speaking, the optimality of Bayesian
state estimators depends on the quality of the process noise
and measurement noise statistics. In practical situations,
they are either unknown or approximately known and,
therefore, often tuned and adjusted while performing the
estimation. Poor knowledge of the a priori statistics will
either worsen the precision of the estimator (producing
unwanted estimation errors) (Obsharsky et al., 1969) or
cause the divergence of the filter (Mehra, 1972). To over-
come the above-mentioned issues, researches often relied
on the Adaptive Kalman Filter (AKF) (Mohamed and
Schwarz, 1999) or its variants applied to EKF (Jetto
et al., 1999) or UKF (Soken and Hajiyev, 2012). Adaptive
techniques intrinsically place less reliance on the a priori
information and the problem of unknown or approximately
known noise statistics is solved by continuously exploiting
the filter learning history. In addition to this, having a
dynamic adaptation that evolves in a dynamic environ-
ment usually leads to better performance (Mohamed and
Schwarz, 1999).
Moreover, employing registration methods 1 to FLS im-
ages poses relevant issues on measurement noise descrip-
tion. Some authors, such as (Pfingsthorn et al., 2010) and
(Hurtós et al., 2015), proposed heuristic methods based on
metrics calculated during the registration process. How-

1 Registration is intended as the process through which a pair of
overlapped images that insonify a common region are related each
other.
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1. INTRODUCTION

Most of the underwater navigation systems are based on
the Kalman Filter (KF) (Kalman, 1960) or its variants
to nonlinear systems such as the Extended Kalman Fil-
ter (EKF) (Bar-Shalom et al., 2004), or the Unscented
Kalman Filter (UKF) (Allotta et al., 2015) where, most of
the times, the linear speed of the Autonomous Underwater
Vehicle (AUV) is retrieved using the Doppler Velocity Log
(DVL).
An Adaptive Unscented Kalman Filter (AUKF)-based
solution with Forward-Looking SONAR (FLS) measure-
ments to aid underwater navigation is here proposed and it
is shown to work satisfyingly without exploiting DVL read-
ings. Nevertheless, it is worth stressing that cooperation
with the DVL is possible, this way obtaining more linear
speed measurements. In the following, the here proposed
solution is tested in the worst-case scenario, so any read-
ings from the DVL is employed. Navigation-aiding using
an FLS could outline several advantages. Indeed, employ-
ing an augmented set of devices for navigation purposes
represents a boost in redundancy and, in addition to this,
multitasking on-board sensors represent a solution that
avoids the use of some instruments and offers compactness
(e.g., thinking about small marine robots).
It is well known that the KF is an optimal estimator in
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the Minimum Mean Square Error (MMSE) sense under
linear Gaussian assumptions (Bar-Shalom et al., 2004).
However, generally speaking, the optimality of Bayesian
state estimators depends on the quality of the process noise
and measurement noise statistics. In practical situations,
they are either unknown or approximately known and,
therefore, often tuned and adjusted while performing the
estimation. Poor knowledge of the a priori statistics will
either worsen the precision of the estimator (producing
unwanted estimation errors) (Obsharsky et al., 1969) or
cause the divergence of the filter (Mehra, 1972). To over-
come the above-mentioned issues, researches often relied
on the Adaptive Kalman Filter (AKF) (Mohamed and
Schwarz, 1999) or its variants applied to EKF (Jetto
et al., 1999) or UKF (Soken and Hajiyev, 2012). Adaptive
techniques intrinsically place less reliance on the a priori
information and the problem of unknown or approximately
known noise statistics is solved by continuously exploiting
the filter learning history. In addition to this, having a
dynamic adaptation that evolves in a dynamic environ-
ment usually leads to better performance (Mohamed and
Schwarz, 1999).
Moreover, employing registration methods 1 to FLS im-
ages poses relevant issues on measurement noise descrip-
tion. Some authors, such as (Pfingsthorn et al., 2010) and
(Hurtós et al., 2015), proposed heuristic methods based on
metrics calculated during the registration process. How-

1 Registration is intended as the process through which a pair of
overlapped images that insonify a common region are related each
other.
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ever, this way of thinking is prone to provide, according
to the metrics employed, different results. To obtain a
more sophisticated, reliable and dynamic description of the
system and to characterize FLS measurements, an AUKF
estimator is then here proposed. Indeed, with regards
to FLS noise description, adaptive methods intrinsically
solve the problem of unknown noise characterization by
continuously exploiting current and past measurements
and estimations. As a consequence, even if the registration
process can be deemed as successful basing on some met-
rics calculated during the registration step, its uncertainty
is adaptively computed by the navigation filter. For what
concerns UKFs, AUKF-based proposals can be found for
example in (Sun et al., 2011), (Hajiyev and Soken, 2014),
(Gao et al., 2015), and (Zheng et al., 2018), whereas
marine robotics applications, which involve a standard
inertial navigation sensor set (any FLS employed), are very
limited and few contributions can be found for example in
(Zhu et al., 2009) where only simulations are presented, in
(Mehrjouyan and Alfi, 2019) where data obtained during
sea trials are post-processed and in (Davari and Gholami,
2016) where experimental tests conducted on a vessel are
presented. To the authors’ best knowledge, adaptive filter-
ing in the marine field has not been completely tackled
yet and it is still a niche and open problem. Although
the mathematical and theoretical foundations have been
widely investigated since the ’70s, applications to under-
water navigation are very limited.
The solution has been tested and validated offline mak-
ing use of navigation data obtained during the European
Robotics League/Student Autonomous Underwater Ve-
hicles Challenge 2018 (ERL/SAUC-E 2018) competition
(Ferri et al., 2017), held in La Spezia (Italy) at the NATO
Science and Technology Organization Centre for Maritime
Research and Experimentation (CMRE) in July 2018 with
FeelHippo AUV, an autonomous vehicle developed by the
Department of Industrial Engineering of the University of
Florence (UNIFI DIEF).
The remainder of the paper is organized as follows: Section
2 is dedicated to preliminaries, whereas Section 3 addresses
the mechanical design and the hardware architecture of
FeelHippo AUV. Section 4 treats the proposed navigation
strategy, whereas Section 5 describes the offline tests.
Finally, Section 6 draws conclusions.

2. PRELIMINARIES AND NOTATION

This chapter covers the notation employed in the rest of
the work and gives a complete review of the fundamental
theoretical and mathematical concepts used throughout
this contribution. The kinematic and dynamic modeling
of an AUV is treated in Section 2.2, whereas the main
concepts about linear speed estimations with an FLS are
discussed in Section 2.1.
The pose of the AUV is described with respect to two
reference frames. The first one is a local Earth-fixed
reference frame whose axes point, respectively, North,
East, and Down (NED frame)

{
ONxNyNzN

}
, whereas the

second one is centered on the Center of Gravity (CG) of
the vehicle with the forward motion direction represented
by the x-axis (surge) and the z-axis (heave) pointing
down. Lastly, the y-axis (sway) completes a right-handed
reference frame

{
Obxbybzb

}
(body frame). In addition to

this, a reference frame centered on the FLS center with the

x-axis pointing forward, the z-axis pointing down and the
y-axis in accordance with a right-handed reference frame{
OFLSxFLSyFLSzFLS

}
, is considered.

2.1 2D FLS imaging model and phase correlation technique
for speed estimation

The acoustic insonification of the scene can be described
using three parameters: the azimuth angle (α), the el-
evation angle (β), and the delivering range (R→), see
Fig.1 and (Franchi et al., 2019) for further information.
According to the authors’ previous works (Franchi et al.,

Fig. 1. FLS imaging model.

2018) and (Franchi et al., 2019), the nonlinear model
that projects a generic 3D point P onto the image plane
(p in Fig.1) can be simplified, under the hypotheses of
small tilt angle (for the mounting configuration) and small
elevation angle, to a 2D approximated model (orthographic
projection model, see p̂ in Fig.1). It is worth stressing that
the two conditions above are usually met; indeed, a small
tilt angle permits to insonify wider areas (and so it is
a largely employed configuration), whereas the elevation
angle is typically around 7◦-10◦ for most FLS devices. In
such a situation, neglecting roll and pitch variations (if
roll and pitch variations are consistent, a tilt unit can
be employed to maintain the FLS to an approximately
desired configuration), two different FLS views are related
through a plane roto-translation (3-parameter Euclidean
transformation), and thus phase correlation methods can
be suitably employed for image registration (Hurtós et al.,
2015) and (Ferreira et al., 2015).
The key concept of phase correlation is based on the so-
called Fourier shift property. In fact, in the Fourier do-
main, a shift between two images appears as a linear phase
shift. Given two images it1(x, y) and it2(x, y) translated

of a quantity s = [ sx sy ]
T ∈ R2 (1), where the subscript

indicates the absolute acquisition time, s is the translation
on the image plane and t1 < t2, it can be shown (De Castro
and Morandi, 1987), (Hurtós et al., 2015) and (Franchi
et al., 2019) that s can be obtained from the location of
the peak of the cross-power spectrum (2), (3), and (4).

it1(x, y) = it2(x− sx, y − sy), (1)

C(m,n) =
It1(m,n)I∗t2(m,n)∣∣It1(m,n)I∗t2(m,n)

∣∣ = e−j2π(msx+nsy), (2)

c(x, y) = F−1{C(m,n)} (3)

s =

[
sx
sy

]
= argmax

(x,y)
{c(x, y)} (4)

where It1 and It2 are the Fourier Transform (FT) of it1 and
it2 respectively, C(m,n) is the cross-power spectrum in the
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frequency domain, c(x, y) is the cross-power spectrum in
the spatial domain, F−1 is the inverse FT operator, and
∗ denotes the complex conjugate. By taking advantage
of a linear transformation that considers the maximum
range of the FLS and the dimension of the FLS images,
s is mapped from pixel to meters (or another similar
physical quantity). Afterward, the speed estimation can
be computed by using the arrival time of the FLS images.
See (Franchi et al., 2020) for more information.

2.2 Kinematic and dynamic modeling of the AUV

The AUV pose with respect to the NED frame is indicated

with η =
[
ηT
1 ηT

2

]T ∈ R6, where η1 is the position of the
CG of the vehicle with respect to the NED frame and η2
its orientation; here, a triplet of Euler angles expressed
with respect to the NED frame, namely Roll (φ), Pitch
(θ), and Yaw (ψ), is used (RPY). The linear and angular
velocities of the vehicle with respect to the body frame

reference frame are denoted with ν =
[
νT
1 νT

2

]T
. The

NED frame and the body frame are visible in Fig.2. The

Fig. 2. NED frame and body frame representation.

kinematic model is reported in (5). For more information
the interested reader can refer to (Fossen et al., 1994).(

η̇1
η̇2

)
=

[
RN

b (η2) 03×3

03×3 TN
b (η2)

](
ν1

ν2

)
, (5)

where RN
b is the rotation matrix between the body and the

fixed reference system and TN
b (η2) represents the Euler

matrix. With regard to the dynamic modeling of the AUV,
the classic description of (Fossen et al., 1994), reported in
(6) is employed.

Mmν̇ + C(ν)ν +D(ν)ν + gη(η) = τ (ν,urpm), (6)

where Mm is the mass matrix, C(ν) is the centripetal
and Coriolis matrix, D(ν) is the damping matrix, gη(η)
takes into account the effects of gravity and buoyancy, and
τ (ν,urpm) describes the map between the vehicle speed
(ν) and the rotational speed of the motors (urpm) to the
resultant thrust action on the vehicle. Equation (6) can be
simplified exploiting the following assumptions:

• the longitudinal motion only is considered for the
AUV. Indeed, the longitudinal direction is that of
minimal drag. Therefore, most of the underwater mis-
sions are performed along the longitudinal direction;

• the mass matrix is considered as diagonal;
• given the low speed involved, the coupling between
the dissipative effects are neglected;

• added masses are neglected, gravitational, centripetal,
and Coriolis effects are not considered.

The above-mentioned assumptions are similar to those
already exploited by the authors (Franchi et al., 2020).

In light of the above-mentioned assumptions, the AUV
dynamics can be represented as in (7).

mν̇1x = τ1x(ν,u)− δxν
2
1x sgn (ν1x) , (7)

where m is the dry mass of the vehicle, τ1x(ν,u) is the
component of τ along the surge axis of the AUV, ν1x is
the component of ν along the surge axis of the AUV, and
δx represents the coefficient for the longitudinal drag. The
adopted propulsion model (namely the relation τ1x(ν,u))
is described by the authors in (Allotta et al., 2016b) and
(Franchi et al., 2020), whereas δx has been estimated by
applying a Least Squares (LS) technique and for further
information the interested reader can refer to (Allotta
et al., 2018).

3. FEELHIPPO AUV DESCRIPTION

FeelHippo AUV has been designed and developed by the
UNIFI DIEF both for the participation in student robotics
competitions and for undertaking research topics. From
the first low-budget prototype to the final version, Feel-
Hippo AUV has been substantially changed over the years
and its current version, which is described in the following,
is visible in Fig.3. FeelHippo AUV reduced dimensions and

Fig. 3. On the left, FeelHippo AUV, whereas on the right,
an image obtained with the FLS.

weight leads to a compact underwater platform and, in ad-
dition to this, the presence of top-of-the-line sensors makes
FeelHippo AUV capable of undertaking complex tasks and
missions. The main physical features are reported in table
1. A list of all the electronic devices and the sensors with

Table 1. FeelHippo AUV physical data and
performance.

FeelHippo AUV main characteristics

Dimensions [mm] approx. 600×640×500
Dry mass [kg] 35
δx [N/s2m2] 65
Max longitudinal speed [m/s]
(kn)

approx. 1 (2)

Max lateral speed [m/s] (kn) approx. 0.2 (0.4)
Max depth [m] 30
Autonomy [h] 2-3

which FeelHippo AUV is equipped is here listed:

• Intel i-7-based LP-175-Commel motherboard (used
for onboard processing);

• U-blox 7P precision Global Positioning System (GPS);
• Orientus Advanced Navigation Attitude Heading Ref-
erence System (AHRS);

• KVH DSP 1760 single-axis high precision Fiber Optic
Gyroscope (FOG);

• Nortek DVL1000 DVL, measuring linear velocity and
acting as Depth Sensor (DS);

• EvoLogics S2CR 18/34 acoustic modem;
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frequency domain, c(x, y) is the cross-power spectrum in
the spatial domain, F−1 is the inverse FT operator, and
∗ denotes the complex conjugate. By taking advantage
of a linear transformation that considers the maximum
range of the FLS and the dimension of the FLS images,
s is mapped from pixel to meters (or another similar
physical quantity). Afterward, the speed estimation can
be computed by using the arrival time of the FLS images.
See (Franchi et al., 2020) for more information.
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kinematic model is reported in (5). For more information
the interested reader can refer to (Fossen et al., 1994).(

η̇1
η̇2

)
=

[
RN

b (η2) 03×3

03×3 TN
b (η2)

](
ν1

ν2

)
, (5)

where RN
b is the rotation matrix between the body and the

fixed reference system and TN
b (η2) represents the Euler

matrix. With regard to the dynamic modeling of the AUV,
the classic description of (Fossen et al., 1994), reported in
(6) is employed.

Mmν̇ + C(ν)ν +D(ν)ν + gη(η) = τ (ν,urpm), (6)

where Mm is the mass matrix, C(ν) is the centripetal
and Coriolis matrix, D(ν) is the damping matrix, gη(η)
takes into account the effects of gravity and buoyancy, and
τ (ν,urpm) describes the map between the vehicle speed
(ν) and the rotational speed of the motors (urpm) to the
resultant thrust action on the vehicle. Equation (6) can be
simplified exploiting the following assumptions:

• the longitudinal motion only is considered for the
AUV. Indeed, the longitudinal direction is that of
minimal drag. Therefore, most of the underwater mis-
sions are performed along the longitudinal direction;

• the mass matrix is considered as diagonal;
• given the low speed involved, the coupling between
the dissipative effects are neglected;

• added masses are neglected, gravitational, centripetal,
and Coriolis effects are not considered.

The above-mentioned assumptions are similar to those
already exploited by the authors (Franchi et al., 2020).

In light of the above-mentioned assumptions, the AUV
dynamics can be represented as in (7).
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UNIFI DIEF both for the participation in student robotics
competitions and for undertaking research topics. From
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Fig. 3. On the left, FeelHippo AUV, whereas on the right,
an image obtained with the FLS.

weight leads to a compact underwater platform and, in ad-
dition to this, the presence of top-of-the-line sensors makes
FeelHippo AUV capable of undertaking complex tasks and
missions. The main physical features are reported in table
1. A list of all the electronic devices and the sensors with

Table 1. FeelHippo AUV physical data and
performance.

FeelHippo AUV main characteristics

Dimensions [mm] approx. 600×640×500
Dry mass [kg] 35
δx [N/s2m2] 65
Max longitudinal speed [m/s]
(kn)

approx. 1 (2)

Max lateral speed [m/s] (kn) approx. 0.2 (0.4)
Max depth [m] 30
Autonomy [h] 2-3

which FeelHippo AUV is equipped is here listed:

• Intel i-7-based LP-175-Commel motherboard (used
for onboard processing);

• U-blox 7P precision Global Positioning System (GPS);
• Orientus Advanced Navigation Attitude Heading Ref-
erence System (AHRS);

• KVH DSP 1760 single-axis high precision Fiber Optic
Gyroscope (FOG);

• Nortek DVL1000 DVL, measuring linear velocity and
acting as Depth Sensor (DS);

• EvoLogics S2CR 18/34 acoustic modem;

• Teledyne BlueView M900 2D FLS;
• Ubiquiti Bullet M2 WiFi access point;
• 868+ RFDesign radio modem;
• one bottom-looking ELP 720p MINI IP camera;
• one Microsoft Lifecam Cinema forward-looking cam-
era;

• two lateral ELP 1080p MINI IP cameras;
• two Intel Neural Compute Stick 2 for Artificial Intel-
ligence (AI) applications.

4. PROPOSED SOLUTION

The navigation filter employs a parallel structure to obtain
an accurate estimate of the pose of the AUV. In particular,
attitude is independently estimated from the position and
its output represents an input for the position estimation
filter. More information can be found in (Allotta et al.,
2016a).
In the following, the AUKF filter for position estimation,
which is the proposed contribution, is described. The
behavior of the AUV is described with the following state
variables:

x = [ ηT
1 νT

1 ]T , (8)

with x ∈ R6. In light of the discussion presented in Section
2.2, the model employed for the evolution of the state is
given in (9). [

η1
ν1

]

k

=

[
η1
ν1

]

k−1

+

∆T




RN
B

(
(η2)k−1

)
(ν1)k−1

τ1,x(νk−1,uk−1)
m − (δx)k−1ν

2
1x sgn(ν1x)
m

0
0


+wk−1

, (9)

where ∆T is the sampling time. The measurement vector
is:

yk =
[
(PGPS)

T
dDS (vFLS)

T
]T
k
, (10)

where PGPS is the GPS measurement, dDS is the DS
reading, and vFLS is the speed estimated with the FLS.
Therefore, the measurement equation becomes (11).

yk = Hkxk + vk, (11)

where it is easy to understand that Hk is a matrix
that contains 0 or 1. w and v are modeled as zero
mean stationary white noise and initial state and process
and measurement noises are assumed to have zero cross-
correlation, E

[
wk−1w

T
k−1

]
= Qk−1 is the process noise

covariance matrix, and E
[
vkv

T
k

]
= Rk is the measurement

noise covariance matrix.
The residual vector is defined as υk = yk − hk(xk|k) and
the innovation vector is µk = yk −hk(xk|k−1), where the
notation j|k stands for “at iteration j given information
up to the k-th iteration”.

4.1 Adaptive estimation of R

With regard to the estimation of the matrix R, under
the hypotheses of the classic linear KF, (Mohamed and
Schwarz, 1999) shown that an estimate of R at the instant
k can be obtained, exploiting the residual υk:

R̂k =
1

NRw

k∑
i=i0

υiυ
T
i +HkPk|kH

T
k , (12)

where P is the state covariance, •̂ denotes an estimate,
i0 = k−NRw

+1, and NRw
∈ N+ is the size of the moving

window. In conclusion, when applied to the UKF, (12)
becomes:

R̂k =
1

NRw

k∑
i=i0

υiυ
T
i +

2na∑
i=0

W
(c)
i (Hi − ŷk|k)(Hi − ŷk|k)

T ,

(13)

where W
(c)
i is the i-th weight to compute the mean

in the Unscented Transform (UT), Hi are the σ-points
propagated through the measurement model, and na is the
state dimension (in this case 6). It is easy to understand

that the estimated R̂k matrix is positive definite.

4.2 Adaptive estimation of Q

With regard to the estimation of the matrix Q, making
use of linearization approximations, it can be shown that
Qk−1 = E[wk−1w

T
k−1] can be approximated with:

Qk−1 ≈ LkE[µkµ
T
k ]L

T
k , (14)

where Lk is the Kalman gain at the instant k. E[µkµ
T
k ]

is calculated (at the instant k) with an average through a
moving window of size NQw ∈ N+.

1

NQw

k∑
i=i0

µiµ
T
i , (15)

where i0 = k −NQw
+ 1.

In conclusion, an estimate of Qk−1 is:

Q̂k−1 = Lk
1

NQw

k∑
i=i0

µiµ
T
i L

T
k (16)

It is easy to understand that the estimated Q̂k−1 matrix
is positive definite.

4.3 Method

The proposed approach is to test if the filter is consistent
and if not to apply a suitable adaptation to the prior
filter statistics (namely matrix R and Q). To this end, the
innovation process µk is hypothesized to be well described
by a zero-mean white sequence. In such a condition, (17)
can be used to test the consistency of the filter (which
obviously is necessary for its optimality).

(ϕχ)k = µT
k S

−1
k µk, (17)

(ϕχ)k ∈ R presents a χ2
ς distribution where ς denotes the

degrees of freedom (equal to the dimension of the vector
µk). The following test is well known in the literature
as Normalized Innovation Squared (NIS) test, see (Bar-
Shalom et al., 2004) for more information.
In particular, if (18) holds, an adaptation of the prior
statistics R and/or Q is pursued.

(ϕχ)k > χ2
ς,�, (18)

where χ2
ς,� is a scalar that depends upon ς and 
, where

the latter is the reliability level chosen by the designer.
Because of the different sampling rates of the available
sensors, the structure of the matrix Hk might change
at each iteration. Furthermore, during real tests at sea,
FLS-based speed measurements have an unpredictable
rate. Indeed, if the sea bottom presents poor informative
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content, FLS estimations might not be achieved.
If one or more measurements are not available at the
iteration k, the corresponding rows of the innovation
vectors µk and υk are replaced with zero. This way only
current measurements give a contribution. Consequently,
(13) and (16) become (19) and (22) respectively.

R̂k = [

k∑
i=i0

υ�
iυ

�T

i ]÷[N�
Rw

]+

2na∑
i=0

W
(c)
i (Hi−ŷk|k)(Hi−ŷk|k)

T ,

(19)
where ÷ represents the element-wise division,

υj�

i =

{
υj
i Hj

i �= 01×na

0 Hj
i = 01×na

(20)

with the superscript is denoted the j − th row of υ�
i .

N�
Rw

=
k∑

i=i0

IyiI
T
yi, (21)

where Iyi at the instant i is a column vector whose rows
are 1 if the corresponding measurement has arrived or 0
otherwise and k = NRw

+ i0 − 1.

Q̂k−1 = Lk

k∑
i=i0

[µ�
iµ

�
i
T ÷N�

Qw
]LT

k , (22)

where ÷ represents the element-wise division,

µj�

i =

{
µj
i Hj

i �= 01×na

0 Hj
i = 01×na

(23)

with the superscript is denoted the j − th row of µ�
i .

N�
Qw

=

k∑
i=i0

IyiI
T
yi, (24)

where Iyi is defined above and k = NQw + i0 − 1.

5. OFFLINE TESTS

In this section, the navigation data retrieved during an
underwater mission performed at the ERL-SAUCE 2018
competition held in La Spezia (Italy) in July 2018 are used.
The mission lasted 960 s and it covered approximately
220 m; the desired depth was 2 m (the altitude resulted
approximately constant and equal to 2 m too) and the
reference longitudinal cruise speed was 0.5 m/s. Moreover,
the FLS maximum range was set to 10 m.
A rectangle with the approximate dimensions 36×20 m
was the area of interest. The final results are visible in
Fig.4, where the ground-truth navigation is a DVL-based
Dead Reckoning (DR) strategy. Furthermore, GPS fixes
were acquired before diving and after resurfacing. The
metrics defined in (25) and (26) are used to evaluate the
proposed solution and the results are depicted in Fig.5 and
Fig.6.

ek =
∥∥∥η1GTk

− η1PSk

∥∥∥ (25)

ek =

∑i=k
i=0 ei
k

, (26)

where ek ∈ R+ denotes the navigation error at the instant
k, η1GTk

and η1PSk
indicate the position of the AUV at

the instant k according to the ground-truth and to the
proposed solution respectively. ek ∈ R+ is the mean of all
the computed errors ek.

Fig. 4. Navigation results for the AUKF. The proposed
solution is in green and the ground-truth path is in
blue. “GPS FIX” is the GPS position after resurfac-
ing. The resurfacing error, according to the GPS fixes,
is around 3.7 m. In addition, the results using a simple
UKF with DVL readings are presented in red.

Fig. 5. Error as defined in (25). The jump at the end,
around 1000 s, is due to the resurfacing.

Fig. 6. Error as defined in (26). During underwater oper-
ations, due to the lack of absolute position measure-
ments, the error increases over time (remaining below
0.5 m). However, by suitable employing absolute po-
sitioning systems, such as Long BaseLine (LBL) and
the Ultra-Short BaseLine (USBL), or integrating the
proposed navigation system within a Simultaneous
Localization And Mapping (SLAM) framework, the
error can be bounded.

6. CONCLUSION

This work presents an AUKF-based navigation strategy
tailored to AUVs where linear speed estimations are ob-
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content, FLS estimations might not be achieved.
If one or more measurements are not available at the
iteration k, the corresponding rows of the innovation
vectors µk and υk are replaced with zero. This way only
current measurements give a contribution. Consequently,
(13) and (16) become (19) and (22) respectively.

R̂k = [

k∑
i=i0

υ�
iυ

�T

i ]÷[N�
Rw

]+

2na∑
i=0
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(c)
i (Hi−ŷk|k)(Hi−ŷk|k)
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(19)
where ÷ represents the element-wise division,
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i =
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i Hj
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0 Hj
i = 01×na

(20)

with the superscript is denoted the j − th row of υ�
i .

N�
Rw

=
k∑

i=i0

IyiI
T
yi, (21)

where Iyi at the instant i is a column vector whose rows
are 1 if the corresponding measurement has arrived or 0
otherwise and k = NRw

+ i0 − 1.

Q̂k−1 = Lk
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i=i0

[µ�
iµ

�
i
T ÷N�

Qw
]LT

k , (22)

where ÷ represents the element-wise division,
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i =

{
µj
i Hj

i �= 01×na
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i = 01×na

(23)

with the superscript is denoted the j − th row of µ�
i .

N�
Qw

=

k∑
i=i0

IyiI
T
yi, (24)

where Iyi is defined above and k = NQw + i0 − 1.

5. OFFLINE TESTS

In this section, the navigation data retrieved during an
underwater mission performed at the ERL-SAUCE 2018
competition held in La Spezia (Italy) in July 2018 are used.
The mission lasted 960 s and it covered approximately
220 m; the desired depth was 2 m (the altitude resulted
approximately constant and equal to 2 m too) and the
reference longitudinal cruise speed was 0.5 m/s. Moreover,
the FLS maximum range was set to 10 m.
A rectangle with the approximate dimensions 36×20 m
was the area of interest. The final results are visible in
Fig.4, where the ground-truth navigation is a DVL-based
Dead Reckoning (DR) strategy. Furthermore, GPS fixes
were acquired before diving and after resurfacing. The
metrics defined in (25) and (26) are used to evaluate the
proposed solution and the results are depicted in Fig.5 and
Fig.6.

ek =
∥∥∥η1GTk

− η1PSk

∥∥∥ (25)

ek =

∑i=k
i=0 ei
k

, (26)

where ek ∈ R+ denotes the navigation error at the instant
k, η1GTk

and η1PSk
indicate the position of the AUV at

the instant k according to the ground-truth and to the
proposed solution respectively. ek ∈ R+ is the mean of all
the computed errors ek.

Fig. 4. Navigation results for the AUKF. The proposed
solution is in green and the ground-truth path is in
blue. “GPS FIX” is the GPS position after resurfac-
ing. The resurfacing error, according to the GPS fixes,
is around 3.7 m. In addition, the results using a simple
UKF with DVL readings are presented in red.

Fig. 5. Error as defined in (25). The jump at the end,
around 1000 s, is due to the resurfacing.

Fig. 6. Error as defined in (26). During underwater oper-
ations, due to the lack of absolute position measure-
ments, the error increases over time (remaining below
0.5 m). However, by suitable employing absolute po-
sitioning systems, such as Long BaseLine (LBL) and
the Ultra-Short BaseLine (USBL), or integrating the
proposed navigation system within a Simultaneous
Localization And Mapping (SLAM) framework, the
error can be bounded.

6. CONCLUSION

This work presents an AUKF-based navigation strategy
tailored to AUVs where linear speed estimations are ob-

tained making use of a 2D FLS only (cooperation with the
DVL is possible anyway). The proposed solution has been
tested and validated, showing remarkable results, using
data gathered during sea trials undertaken in La Spezia
(Italy) at the NATO STO CMRE in July 2018. The final
results are encouraging and the navigation error is always
maintained below 2 m with respect to a DVL-based DR
strategy, whereas the resurfacing error, after about 220 m
of navigation, is around 3.7 m.
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