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We investigate the relation between the subleading soft graviton theorem and asymptotic symmetries in
gravity in even dimensions d ¼ 2þ 2m higher than four. After rewriting the subleading soft graviton
theorem as a Ward identity, we argue that the charges of such identity generate DiffðS2mÞ. In order to show
that, we propose suitable commutation relation among certain components of the metric fields. As a result,
all DiffðS2mÞ transformations are symmetries of gravitational scattering.
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I. INTRODUCTION

Over the last few years a triangular equivalence relation
was discovered connecting three apparently different
topics: asymptotic symmetries, soft theorems and memory
effects. This equivalence relation can be drawn potentially
in every theory with a massless particle, for example in
QED, QCD, SUSY and gravity [1–11]. In this paper we
examine the relationship between the subleading soft
graviton theorem and asymptotic symmetries in gravity
in even dimensions higher than four.
In gravity the asymptotic symmetries are diffeomor-

phisms that leave invariant the asymptotic structure of
spacetime transforming an asymptotically flat metric into
an other asymptotically flat metric [12–14]. In order to
define precisely asymptotic flatness, we need to specify the
rate at which the metric approaches a Minkowski metric at
asymptotically large distances. Unfortunately there is no
unambiguous method of determining such asymptotically
flat falloff conditions which are often only a posteriori
justified. There are however guidelines that must be
followed: the falloff conditions should be weak enough
so that all interesting solutions are allowed, but strong
enough to rule out unphysical solutions, such as those with

infinite energy. Various options are discussed in the
literature leading to different results. We decided to choose
falloff conditions leading to nontrivial relations among
S–matrix elements. Indeed, Ward identities, associated to
proper asymptotic symmetries, turn out to be nothing but
soft theorems.
The soft graviton theorem [15–17] is a universal formula

relating scattering amplitudes that differ only by the
addition of a graviton whose energy ω is taken to zero

Mnþn0þ1ðq ¼ ωq̂;p1;…; pnþn0 Þ
¼ ½Sð1Þ þ Sð2Þ�Mnþn0 ðp1;…; pnþn0 Þ þOðωÞ ð1:1Þ

where fp1;…png are the momenta of the incoming
particles, while fpnþ1;…pnþn0 g are the momenta of the
outgoing particles. Sð1Þ and Sð2Þ are given by
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where κ2 ¼ 32πG and Jρνk is the total angular momentum
(orbitalþ spin) of the kth particle and εμν is the polarization
tensor of the graviton. In the soft limit ω → 0, the leading
term given by Sð1Þ is of order 1=ω, while the subleading
term given by Sð2Þ is constant in ω. The formula indeed
comprises the leading and subleading soft graviton
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theorem. We are not concerned with higher order terms in
our analysis.
In four dimensions the leading soft theorem is equivalent

to the supertranslation Ward identity [1,2], while the
subleading soft theorem is equivalent to the DiffðS2Þ
Ward identity [18,19].1 Together, supertranslations and
DiffðS2Þ make up the asymptotic symmetry group.
The equivalence relation between asymptotic sym-

metries and soft theorems seems to be somewhat more
obscure in dimensions higher than four. Indeed soft
gravitons theorems hold in any dimension d ¼ 2mþ 2

while both supertranslations and DiffðS2mÞ charges seem to
diverge in d > 4 dimensions. Many researchers eliminated
these divergences by imposing strong falloff conditions and
leaving only the Poincaré group as part of the asymptotic
symmetry group [21–24]. In d ¼ 4, such argument would
not hold. Falloff conditions disallowing supertranslations
automatically exclude all the generic radiative solutions in
d ¼ 4. In any case, we will not consider such strong falloff
conditions in d > 4 either, since we want to preserve the
equivalence relation between asymptotic symmetries and
soft theorems. However, a renormalization seems to be
mandatory in order to solve the divergence problems. We
do not deal with this issue in this paper.
This paper relies on the analysis in [25] and it extends

their results. In [8] an alternative definition of the asymp-
totic group was proposed. However this last analysis seems
to work only in the harmonic gauge while the asymptotic
group in [25] can be derived in both Bondi and harmonic
gauge (see Appendix B in [26]).
The aim of the present report is to show that the

correspondence between the subleading soft theorem and
asymptotic symmetries is preserved in even dimensions
higher than four. In order to do so, we rewrite the soft
theorem as aWard identity. We then argue that such identity
is associated to DiffðS2mÞ by proposing a suitable com-
mutation relation among certain components of the metric
fields. We expect the need for a renormalization in order to
prove such commutation relation. We work in the Bondi
gauge and linearized gravity coupled to massless matter
throughout the paper. Our discussion is restricted to
tree-level.
The outline of the paper is as follows. In Sec. II, we

briefly review asymptotically flat geometries in dimensions
higher than four as they were defined by Strominger et al.
[25]. We then argue in favor of weaker falloff conditions in
order to determine a larger group of asymptotic sym-
metries. This larger group is given by the semi-direct
product of supertranslations and DiffðS2mÞ. In Sec. III,
we rewrite the subleading soft graviton theorem as a Ward
identity in the six-dimensional case. By proposing a

commutation relation, we then argue that the charges we
found in such Ward identity generate DiffðS2mÞ. In Sec. IV,
we generalize our previous results to arbitrary even
dimensions higher than four.

II. ASYMPTOTICALLY FLAT GEOMETRY

In this section we study asymptotically flat spacetimes in
d ¼ 2mþ 2 dimensions. Our attention will be limited to
even dimensions due to known difficulties in defining null
infinity in odd-dimensional spacetimes [27]. We will work
in linearized gravity.

A. Metrics

Weare interested in asymptotically flat spacetimes at both
future and past null infinity I� (see Fig. 1). For concrete-
ness, let us focus on future null infinity. We choose the
coordinate system ðu; r; zaÞ, where u ¼ t − r is the retarded
time, r is the radial coordinate and za ða ¼ 1;…; 2mÞ are the
coordinates on the sphere S2m. We work in the Bondi gauge
imposing the following 2mþ 2 conditions

grr ¼ 0; gra ¼ 0; det gab ¼ r4m det γab ð2:1Þ

where γab is the standard roundmetric on S2m with covariant
derivativeDa. All angular indices ða; b; c…Þ are raised and
lowered with respect to γab. We denote the contraction of
such indices with a dot.
According to the proposal in [25], an asymptotically flat

metric in even dimensions higher than four is given by

FIG. 1. Penrose diagram of Minkowski space. Past and future
null infinities are labeled by I� and their boundaries by I�

�. Past
and future timelike infinities are labeled by i� and spatial infinity
by i0.

1An alternative proposal was given in [20] where both the
leading and subleading soft theorems were linked to super-
translations by expanding the associated charge in powers of 1

r.
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ds2 ¼ Mdu2 − 2dudrþ gabdzadzb − 2Uadzadu ð2:2Þ

where the coefficients of the metric admit an expansion
near Iþ of the form

M ¼ −1þ
X∞
n¼1

MðnÞðu; zÞ
rn

; Ua ¼
X∞
n¼0

UðnÞ
a ðu; zÞ
rn

;

gab ¼ r2γab þ
X∞
n¼−1

CðnÞ
ab ðu; zÞ
rn

: ð2:3Þ

Falloff conditions on Ricci’s tensor are also required

Ruu ¼Oðr−2mÞ; Rur ¼Oðr−2m−1Þ; Rua ¼Oðr−2mÞ
Rrr ¼Oðr−2m−2Þ; Rra ¼Oðr−2m−1Þ; Rab ¼Oðr−2mÞ:

ð2:4Þ

When the theory is coupled to matter sources, we impose
the same falloff conditions on the components of TM

μν as on
Rμν. In the next section we will need to slightly relax these
asymptotic conditions. The asymptotic falloff (2.4) on Ruu
reads

1

2
½D2þnðnþ1−2mÞ�MðnÞ þ∂uDaUðnÞ

a þm∂uMðnþ1Þ ¼ 0;

0≤ n≤ 2m−3 ð2:5Þ

where D2 ¼ DaDa. The asymptotic falloff on Rur reads

−
nðnþ 1 − 2mÞ

2
MðnÞ þ ðn − 1Þ

2
DaUðn−1Þ

a ¼ 0;

0 ≤ n ≤ 2m − 2: ð2:6Þ

The asymptotic falloff on Rra reads

ðnþ 2Þðnþ 1 − 2mÞ
2

UðnÞ
a −

ðnþ 1Þ
2

DbCðn−1Þ
ba ¼ 0;

0 ≤ n ≤ 2m − 2: ð2:7Þ

Since we are working in linearized gravity, the last gauge-

fixing condition in (2.1) implies that all CðnÞ
ab are traceless

γabCðnÞ
ab ¼ 0: ð2:8Þ

So far, we have not mentioned any equations of
motion. The leading uu component of Einsteins equations
reads

1

2
½D2 − 2ðm − 1Þ�Mð2m−2Þ þ ∂uDaUð2m−2Þ

a þm∂uMð2m−1Þ

þ 8πGTMð2mÞ
uu ¼ 0: ð2:9Þ

The angular components of Einstein’s equations determine

the metric coefficients CðnÞ
ab recursively in terms of Cð−1Þ

ab or

Cðm−2Þ
ab [28]

∂uD:D:CðnÞ ¼ Dn;mD:D:Cðn−1Þ;

0 ≤ n ≤ m − 3; m − 1 ≤ n ≤ 2m − 3 ð2:10Þ

with

Dn;m ¼ nð2m − n − 3Þ
2ðnþ 2Þð−2mþ nþ 1Þð−mþ nþ 2Þ
× ðD2 − ðnþ 1Þð2m − n − 2ÞÞ: ð2:11Þ

B. Asymptotic symmetries

We define the asymptotic symmetry group as the group
of all nontrivial diffeomorphisms preserving the asymptotic
falloffs (2.3)–(2.4) and the gauge-fixing conditions (2.1).
Such diffeomorphisms are generated by the vector

ζu ¼ fðzÞ þ u
2m

DaYaðzÞ þ…

ζa ¼ −
1

r
DafðzÞ þ YaðzÞ − u

2mr
DaDbYbðzÞ þ…

ζr ¼ 1

2m
D2fðzÞ − r

2m
DaYaðzÞ

þ u
4m2

D2DaYaðzÞ þ… ð2:12Þ

where YaðzÞ is a conformal Killing vector (CKV) on S2m

and … refers to subleading terms in r. Transformations
with Ya ¼ 0 and an arbitrary function fðzÞ on the sphere
are known as supertranslations.
In previous analysis [21–24], more restrictive falloff

conditions were considered. That led to the conclusion that
supertranslations do not exist in d > 4. This result seems to
be at odds with the correspondence between soft theorems
and asymptotic symmetries, given that the leading soft
graviton theorem holds in any dimension. The falloff
conditions (2.3)–(2.4) proved to be weak enough to allow
for supertranslations in dimensions higher than four.
However, having weaker conditions, we now need to deal
with divergences in computing supertranslations charges.
In [29] additional boundary conditions were proposed in
order to avoid these problems and still allowing for
supertranslations.2 However these boundary conditions
are consistent with the action of supertranslations only
in linearized gravity and a renormalization is instead
needed in the full theory.

2These boundary conditions can be interpreted as higher-
dimensional analogs of the Christodoulou-Klainerman con-
straints [30,31].
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Consider now the case of f ¼ 0 and Y ≠ 0

ζ ¼ u
2m

DaYa∂u þ
�
−

r
2m

DaYa þ u
4m2

D2DaYa

�
∂r

þ
�
Ya −

u
2mr

DaDbYb

�
∂a þ… ð2:13Þ

As we said, Y must be a CKVon S2m in order to preserve
the asymptotic conditions, that is, it obeys the equation

LYγab ¼
D:Y
m

γab: ð2:14Þ

In d ¼ 4 (m ¼ 1), there are infinitely many local solutions
Y to this last equation corresponding to infinitely many
transformations generated by ζ. Such transformations are
called superrotations and they generalize the Lorentz
transformations given by global solutions Y to the last
equation. However the number of independent constraints,
imposed by the CKV equation, grows with the dimensions
of the space. In d ¼ 4 the CKV equations are the Cauchy-
Riemann equations so there are infinite independent local
solutions. For d > 4, the system is over-determined and the
general solution has a finite number of real parameters. For
d > 4, we are then left only with a finite number of
independent solutions which are nothing but the global
Lorentz transformations.
The asymptotic symmetry group originally defined by

Bondi, van der Burg, Metzner and Sachs in d ¼ 4 [12–14]
takes the form

BMSþ ¼ Lorentz ⋉ Supertranslations: ð2:15Þ

Such group can then be extended by considering all local
solutions Y to the CKV equation as suggested by Barnich
and Troessaert [32–34]

ExtendedBMSþ

¼ Superrotations ⋉ Supertranslations: ð2:16Þ

The ExtendedBMSþ group preserves the asymptotic
flatness locally, i.e., almost everywhere except in isolated
points.3 In [4], it was shown that the subleading soft
graviton theorem leads to Ward identities associated to
superrotations. However, it is not yet clear to what extent
the superrotations symmetry implies the soft theorem.
When running the argument backward, we encounter
several obstacles including the need for a prescription
for handling the CKV singularities. Whereas the Ward
identities associated to supertranslations are equivalent to
Weinbergs soft graviton theorem, such equivalence could

not be fully established between superrotations and the
subleading soft theorem.
In order to solve this problem, a different extension of the

original BMS group was proposed by Campiglia and
Laddha [18,19] in d ¼ 4

Gþ ¼ DiffðS2Þ ⋉ Supertranslations: ð2:17Þ

General smooth vector fields on the sphere Y are admitted
but the assumption that Y need to be a CKV is dropped.
Therefore, we will need to relax the asymptotic falloffs
(2.3)–(2.4). Campiglia and Laddha shown that the DiffðS2Þ
Ward identity is exactly equivalent to the subleading soft
theorem in d ¼ 4. They ensure the finiteness of the
DiffðS2Þ charges by imposing boundary conditions. In
[37,38] the divergences are instead eliminated by adding
boundary counterterms to the action.
In dimensions higher than four, since one cannot extend

Lorentz transformations to superrotations, DiffðS2mÞ seem
to be the proper asymptotic symmetries to link to the
subleading soft graviton theorem [26,39]. As we said, in
order to interpret DiffðS2mÞ as asymptotic symmetries, we
need to consider weaker falloff conditions just like in the
four-dimensional case [18,19]. Indeed, by dropping the
CKV condition, with an arbitrary smooth vector Y, we get

Lζgab ¼ Oðr2Þ
Lζguu ¼ Oð1Þ: ð2:18Þ

An asymptotically flat metric should then take the form

ds2 ¼ Mdu2 − 2dudrþ gabdzadzb − 2Uadzadu ð2:19Þ

where the coefficients of the metric admit an expansion
near Iþ of the form

M ¼
X∞
n¼0

MðnÞðu; zÞ
rn

; Ua ¼
X∞
n¼0

UðnÞ
a ðu; zÞ
rn

;

gab ¼ r2qab þ
X∞
n¼−1

CðnÞ
ab ðu; zÞ
rn

: ð2:20Þ

Unlike in the previous section, we do not demand qab to be
the round unit sphere metric and Mð0Þ ¼ −1. However we
still require the falloff conditions (2.4). In particular,
considering this new definition of asymptotically flat
metric, the falloff condition on Ruu implies (2.5) and

∂uMð0Þ ¼ 0: ð2:21Þ

The other equations (2.6)–(2.7), together with the Einstein
equations (2.9)–(2.10), are unmodified. Moreover, theOðrÞ
and Oð1ÞRab conditions now lead to (see Appendix A)

3This violation can be physically interpreted as due to cosmic
strings [35,36].
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∂uqab ¼ 0; ∂2
uC

ð−1Þ
ab ¼ 0: ð2:22Þ

We then compute the DiffðS2mÞ action on the metric

δCð−1Þ
ab ¼ u

2m2
½γabD2D:Y−mðDaDbþDbDaÞD:Y�: ð2:23Þ

If we consider a global Lorentz transformation, the vector Y

is such that δCð−1Þ
ab ¼ 0. The other angular coefficients of

the metric are instead invariant under all DiffðS2mÞ

δCðnÞ
ab ¼ 0; ðn > −1Þ: ð2:24Þ

The action of a global Lorentz transformation is then zero on
all angular components of the metric as one might expect.
There is an analogous construction on past null infinity

I−.We impose equivalent asymptotic falloffs nearI− on the
metric and Ricci’s tensor. Themetric admits an expansion in
powers of 1

r near I− and we denote the nth expansion

coefficients by ðM−ðnÞ; U−ðnÞ
a ; C−ðnÞ

ab Þ. We also denote the
asymptotic symmetry group at I− by G−. Following the
strategy firstly implemented by Strominger [1,40], we
consider the diagonal subgroup G0 ⊂ Gþ × G− given by
the condition

fðzÞjIþ
−
¼ fðzÞjI−

þ
; YðzÞjIþ

−
¼ YðzÞjI−

þ
ð2:25Þ

which antipodally equates past and future fields near spatial
infinity. Strominger showed that this antipodal matching is
always possible for CK (Christodoulou-Klainerman)
spaces [30,31]. As suggested by the reasonings in the next
sections, thanks to the subleading soft graviton theorem, we
argue that not only BMS0 but the entire group G0 is a
symmetry of gravitational scattering in arbitrary even
dimensions.

C. CK spaces in higher dimensions

In this section we show that asymptotically flat space-
times can fulfill the CK constraint in higher dimensions,
while allowing DiffðS2mÞ to be asymptotic symmetries.
This applies to our weaker asymptotic conditions on the
metric components, which are not a source of trouble for
physical quantities at infinity. The metric itself is not
physically observable and the falloff conditions on the
Ricci tensor ensure finiteness of energy flux and other
gravitational observables. Moreover, we will show that a
potentially dangerous component of the metric is nothing
but a pure large diffeomorphism for CK spacetimes.
Christodoulou and Klainerman considered a class of

Cauchy data decaying sufficiently fast at spatial infinity
such that the Cauchy problem leads to a smooth geodesi-
cally complete solution. In [1] the CK conditions play a
significant role in connecting Iþ to I− in d ¼ 4. In [25]
the authors study such connection in d > 4. As in the

four-dimensional case, in order to ensure smoothness at i0,
the authors require higher dimensional analogs of CK
constraints. Here, for the same purpose, we will impose the
same CK constraints of [25].
We consider spaces starting from the vacuum in the far

past and reverting to it in the far future

Mð2m−1ÞjIþ
þ
¼ M−ð2m−1ÞjI−

−
¼ 0;

Cð2m−3Þ
ab jIþ

�
¼ C−ð2m−3Þ

ab jI−
�
¼ 0: ð2:26Þ

We also require that the magnetic component of the Weyl
tensor vanishes near the boundaries of Iþ and I−

CurabjIþ
�
¼ Oðr−2Þ; CurabjI−

�
¼ Oðr−2Þ: ð2:27Þ

Let us now focus on Iþ. TheOðr−1Þ term in this constraint
implies that

lim
u→�∞

ðDaU
ð0Þ
b −DbU

ð0Þ
a Þ ¼ 0: ð2:28Þ

Using Eq. (2.7) we find

lim
u→�∞

ðDaDcCð−1Þ
bc −DbDcCð−1Þ

ac Þ ¼ 0: ð2:29Þ

The most general solution consistent with Bondi gauge is

Cð−1Þ
ab ðu; zÞ ¼ 1

m
γabD2C − ðDaDb þDbDaÞC

þOðu−ϵÞ ð2:30Þ

for any function Cðz; uÞ and ϵ > 0.
Here is where our analysis will differ from [25]: the

asymptotic conditions ∂uC
ð−1Þ
ab ¼ 0 of [25] leads one to

consider only an angle-dependent function CðzÞ that would
not account for DiffðS2mÞ. Instead, our weaker asymptotic

conditions4 ∂2
uC

ð−1Þ
ab ¼ 0 in Eq. (2.22) admit a term linear in

u for C. Indeed, by recalling the second equation of (2.22),

we can rewrite Cð−1Þ
ab as pure asymptotic transformation

Cð−1Þ
ab ðu; zÞ ¼ 1

m
γabD2C − ðDaDb þDbDaÞC ð2:31Þ

with

C ¼ fðzÞ þ u
2m

D:YðzÞ: ð2:32Þ

The first term of Cðu; zÞ is generated by a supertranslation
while the second one is generated by a DiffðS2mÞ. One can
write an analogous equation for C−ð−1Þ

ab on I−.

4These new conditions can be derived from the Rab asymptotic
falloff, and are still compatible with the usual CK constraints.
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Finally, by taking into account that we are in CK spaces,
it is always possible to require the antipodal matching
condition

Cð−1Þ
ab jIþ

−
¼ C−ð−1Þ

ab jI−
þ

ð2:33Þ

which in turn implies (2.25).

III. SIX-DIMENSIONAL GRAVITY

In this section we examine the relationship between
DiffðS2mÞ and the subleading soft graviton theorem in the
six-dimensional case (m ¼ 2).

A. Mode expansions

The fluctuation of the gravitational field in an asymp-
totically flat spacetime are determined by the relation gμν ¼
ημν þ κhμν where κ2 ¼ 32πG and ημν is the flat metric. The
radiative degrees of freedom of the gravitational field have
the mode expansion

hμνðxÞ ¼
X
α

Z
d5q
ð2πÞ5

1

2ω
½ε�αμνaαðq⃗Þeiq·x þ εαμνaαðq⃗Þ†e−iq·x�

ð3:1Þ

where ω ¼ jq⃗j and εαμν is the polarization tensor of the

graviton. The modes aα and a†α obey the relativistic
canonical commutation relations

½aαðp⃗Þ; aβðq⃗Þ†� ¼ 2ωδαβð2πÞ5δ5ðp⃗ − q⃗Þ: ð3:2Þ

In terms of the mode expansion (3.1), the free radiative data
at Iþ takes the form

Cð0Þ
ab ðu; zÞ≡ κ lim

r→∞
∂axμ∂bxνhμνðuþ r; rx̂ðzÞÞ: ð3:3Þ

One can evaluate the limit by a saddle-point approximation
at large r, obtaining

Cð0Þ
ab ðu;zÞ¼−

2π2κ

ð2πÞ5∂ax̂i∂bx̂j

×
X
α

Z
dωω½ε�αij aαðωx̂Þe−iωuþεαijaαðωx̂Þ†eiωu�:

ð3:4Þ

The frequency space expression is obtained by performing
a Fourier transform. The positive and negative frequency
modes are then given by

Cωð0Þ
ab ðzÞ¼−

κω

8π2
∂ax̂iðzÞ∂bx̂jðzÞ

X
α

ε�αij aαðωx̂ðzÞÞ

C−ωð0Þ
ab ðzÞ¼−

κω

8π2
∂ax̂iðzÞ∂bx̂jðzÞ

X
α

εαijaαðωx̂ðzÞÞ† ð3:5Þ

where ω > 0 in both formulas.

B. Subleading soft theorem as Ward identity

We can now introduce the following operator

1

2
lim
ω→0

½∂ωC
ωð0Þ
ab þ ∂−ωC

−ωð0Þ
ab � ¼ i

Z
duCð0Þ

ab u: ð3:6Þ

Without the derivative operators ∂�ω, the left-hand side of
the previous equation would lead to one side of the leading
soft theorem [25]. We claim that adding one more ∂�ω in
the definition of such operator would lead us instead to the
sub-subleading soft theorem. Plugging the frequency
modes formula (3.5) into this last equation, we get

�
out

����
�
i
Z

duCð0Þ
ab u

�
S

����in
�

¼−
κ

16π2
∂ax̂iðzÞ∂bx̂jðzÞ

X
α

ε�αij limω→0
∂ωhoutjωaαðωx̂ÞSjini

¼−
κ

16π2
∂ax̂iðzÞ∂bx̂jðzÞ

X
α

ε�αij limω→0
ð1þω∂ωÞ

× houtjaαðωx̂ÞSjini: ð3:7Þ

In the last line of this equation we can recognize one
side of the subleading soft theorem for an outgoing soft
graviton

lim
ω→0

ð1þ ω∂ωÞhoutjaαðqÞSjini ¼ Sð2Þα houtjSjini ð3:8Þ

where

Sð2Þα ¼−
iκ
2

� Xnþn0

k¼nþ1

pkμε
μν
α qλJkλν
pk ·q

−
Xn
k¼1

pkμε
μν
α qλJkλν
pk ·q

�
: ð3:9Þ

The ð1þ ω∂ωÞ prefactor on the left-hand side projects
out the Weinberg pole accompanying a soft insertion.
This theorem can then be expressed in the following
way

�
out

����
�
i
Z

duCð0Þ
ab u

�
S

����in
�
¼ iκ2

32π2
Fout
ab houtjSjini ð3:10Þ

where
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Fout
ab ≡ ∂ax̂iðzÞ∂bx̂jðzÞ

X
α

ε�αij

� Xnþn0

k¼nþ1

pkμε
μν
α qλJkλν
pk · q

−
Xn
k¼1

pkμε
μν
α qλJkλν
pk · q

�
ð3:11Þ

with qμ ¼ ω½1; x̂iðzÞ�. From equation (3.10), one finds

1

κ2

Z
du

Z
d4z

ffiffiffi
γ

p
uD:YðD2 − 2ÞDaDbhoutjCð0Þ

ab Sjini ¼
1

32π2

Z
d4z

ffiffiffi
γ

p
D:YðD2 − 2ÞDaDbFout

ab houtjSjini ð3:12Þ

where Y is an arbitrary smooth vector of the sphere Sð4Þ.
Analogous results on I− follow from the subleading soft theorem for an incoming soft graviton. Adding together the

results on Iþ and I−, we finally have the Ward identity

houtjQþS − SQ−jini ¼ 0 ð3:13Þ

where the charges are decomposed into a soft and a hard part

Q� ¼ Q�
H þQ�

S : ð3:14Þ

The soft charges are given by

Qþ
S ¼ 1

κ2

Z
du

Z
d4z

ffiffiffi
γ

p
uD:YðD2 − 2ÞDaDbCð0Þ

ab

Q−
S ¼ 1

κ2

Z
du

Z
d4z

ffiffiffi
γ

p
uD:YðD2 − 2ÞDaDbC−ð0Þ

ab : ð3:15Þ

If Y is a CKV, the soft charge is zero as one might expect for Lorentz transformations.5 The hard charges are given by

Qþ
H ¼ −

1

16π2

Z
d4z

ffiffiffi
γ

p
D:YðD2 − 2ÞDaDb

�
∂ax̂iðzÞ∂bx̂jðzÞ

X
α

ε�αij
Xnþn0

k¼nþ1

pkμε
μν
α qλJkλν
pk · q

�

Q−
H ¼ −

1

16π2

Z
d4z

ffiffiffi
γ

p
D:YðD2 − 2ÞDaDb

�
∂ax̂iðzÞ∂bx̂jðzÞ

X
α

ε�αij
Xn
k¼1

pkμε
μν
α qλJkλν
pk · q

�
ð3:16Þ

Let us denote the momentum of the external massless
particles with pμ

k ¼ Ekð1; x̂ðzkÞÞ. In analogy with the
results in the four-dimensional case, after computing the
derivatives we claim that for scalar particles one gets

�
out

����Qþ
H ∝ i

Xnþn0

k¼nþ1

�
YaðzkÞ∂zak

−
Ek

4
DaYaðzkÞ∂Ek

��
out

����
ð3:17Þ

which represent the action of a DiffðS4Þ on each outgoing
particle.6

C. DiffðS4Þ charges
We should now proceed to show that Q ¼ QH þQS

generates DiffðS4Þ. However computing the DiffðS4Þ
charges with the covariant phase space formalism [41–48]
leads us to divergences. In fact, in order to allow for the
existence of supertranslations and DiffðS2mÞ, we consid-
ered a phase space whose symplectic structure is divergent.
This prevents us from computing a well-defined charge.
The same problem would arise even if we only admitted
supertranslations in the asymptotic group [29]. One pos-
sible solution may be to add boundary counterterms to the
action in order to cancel the divergences just like it was
suggested for the case of supertranslations in d > 4 in [29].
Indeed in [37] the authors performed a successful renorm-
alization for the DiffðS2Þ charges in d ¼ 4. By choosing
suitable counterterms, one should be able to derive a finite
symplectic form in d > 4 too. Using such symplectic form,
one could then compute the asymptotic charges.

5This can be proven by integrating by parts and applying
all the derivatives on Y. Since Y is a CKV, one finds
½DbDaðD2 − 2ÞD:Y� ∝ γab. Given that Cð0Þ

ab is traceless, Q�
S is

then zero.
6See Appendix B for a partial proof of this equation in arbitrary

dimensions.
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Here instead we follow a different path. Similarly to [25],
we use a commutation relation in order to prove that Q
generates DiffðS4Þ. We do not prove this commutation
relation but one should be able to do so by using the
renormalized symplectic form we mentioned.
We start by writing the following formula

½Mð3ÞðzÞjIþ
−
; Cðu0; z0Þ� ¼ 4πiG

δ4ðz − z0Þffiffiffi
γ

p : ð3:18Þ

This commutation relation was postulated in [25]—in
connection with the analogous zero-mode bracket in
QED [49]—but in such analysis the authors considered
only an angle-dependent function Cðz0Þ. They used this
formula in order to prove the equivalence between the
leading soft graviton theorem and supertranslations Ward
identity. Here, as we discussed in Sec. II. C, we allow C to
be u-dependent and we assume that the commutation
relation is preserved in this case.
We will now use Eq. (3.18) in order to prove the

equivalence between the subleading soft graviton theorem
and DiffðS4Þ Ward identity. First of all, by taking into
account eq. (2.31), we rewrite the commutation relation
(3.18) in the form

∂u½Mð3Þðu;zÞ;Cð−1Þ
ab ðu0;z0Þ�

¼ 4πiG

�
2DaDb−

1

2
γabD2

�
δ4ðz− z0Þδðu−u0Þffiffiffi

γ
p : ð3:19Þ

The ∂uMð3Þ term in the commutator can then be obtained
from the constraints on the metric applied to the uu-
component of Einstein’s equation at the leading order:

∂uMð3Þ ¼ −4πGTMð4Þ
uu −

1

2
∂uDaUð2Þ

a

−
1

4
½D2 − 2�Mð2Þ: ð3:20Þ

We can ignore the first term on the right-hand side since it
does not contribute to the commutation relation. The
second term on the right-hand side is zero thanks to the
following equations

Uð2Þ
a ¼ −

3

4
DbCð1Þ

ba ; ∂uD:D:Cð1Þ ¼ 0: ð3:21Þ

In order to rewrite the third term, consider the following
equations

Mð2Þ ¼ −
1

2
DaUð1Þ

a ; Uð1Þ
a ¼ −

1

3
DbCð0Þ

ba : ð3:22Þ

Finally, thanks to the commutation relation (3.19), one gets

1

24
½ðD2−2ÞD:D:Cð0Þðu;zÞ;Cð−1Þ

ab ðu0;z0Þ�

¼ 4πiG

�
1

2
γabD2−2DaDb

�
δ4ðz− z0Þδðu−u0Þffiffiffi

γ
p : ð3:23Þ

Given the soft charge (3.15),Qþ indeed generates DiffðS4Þ:
½Qþ; Cð−1Þ

ab � ∝ iδCð−1Þ
ab ð3:24Þ

where δCð−1Þ
ab is given by Eq. (2.23).

IV. GENERALIZATION TO ARBITRARY
EVEN-DIMENSIONAL SPACETIME

We now generalize the results of the previous section to
arbitrary even dimensions d ¼ 2mþ 2 higher than four.
The plane wave expansion is given by

hμνðxÞ ¼
X
α

Z
d2mþ1q
ð2πÞ2mþ1

1

2ω
½ε�αμνðq⃗Þaαðq⃗Þeiq·x

þ εαμνðq⃗Þaαðq⃗Þ†e−iq·x�: ð4:1Þ
The positive and negative frequency modes take the form

Cωðm−2Þ
ab ðzÞ¼ð−iÞmωm−1κ

2ð2πÞm ∂ax̂jðzÞ∂bx̂kðzÞ
X
α

ε�αjk aαðωx̂ðzÞÞ

C−ωðm−2Þ
ab ðzÞ¼ imωm−1κ

2ð2πÞm ∂ax̂jðzÞ∂bx̂kðzÞ
X
α

εαjkaαðωx̂ðzÞÞ†

ð4:2Þ
where ω > 0 in both formulas. We now introduce the
following operator

1

2
lim
ω→0

∂ω½ðiωÞ2−mðCωðm−2Þ
ab þ ð−1Þmþ1C−ωðm−2Þ

ab Þ�

¼ ð−1Þmi
Z

du u Iðm−2ÞðCðm−2Þ
ab Þ ð4:3Þ

which is obtained by using Fourier transform properties.
Iðm−2Þ is the operator that integrates m − 2 times with
respect to u. Plugging the frequency modes formula (4.2)
into this last equation, we get

�
out

����
�
ð−1Þmi

Z
du uIðm−2ÞðCðm−2Þ

ab Þ
�
S

����in
�

¼ −
ð−1Þmκ
4ð2πÞm ∂ax̂iðzÞ∂bx̂jðzÞ

×
X
α

ε�αij limω→0
∂ωhoutjωaαðωx̂ÞSjini

¼ −
ð−1Þmκ
4ð2πÞm ∂ax̂iðzÞ∂bx̂jðzÞ

×
X
α

ε�αij limω→0
ð1þ ω∂ωÞhoutjaαðωx̂ÞSjini: ð4:4Þ
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In the last line of this equation we can recognize one side of
the subleading soft theorem for an outgoing soft graviton

lim
ω→0

ð1þ ω∂ωÞhoutjaαðqÞSjini ¼ Sð2Þα houtjSjini ð4:5Þ

where

Sð2Þα ¼−
iκ
2

� Xnþn0

k¼nþ1

pkμε
μν
α qλJkλν
pk ·q

−
Xn
k¼1

pkμε
μν
α qλJkλν
pk ·q

�
: ð4:6Þ

This theorem can then be expressed in the following way

�
out

����ð−1Þm
Z

du uIðm−2ÞðCðm−2Þ
ab ÞS

����in
�

¼ ð−1Þmκ2
8ð2πÞm Fout

ab houtjSjini ð4:7Þ

where Fout
ab is formally equal to its 6-dimensional counter-

part of eq. (3.11). We can now write

�
out

����ð−1Þ
m

κ2

Z
du

Z
d2mz

ffiffiffi
γ

p
uD:Y

×
Y2m−1

l¼mþ1

ðD2−ðl−1Þð2m− lÞÞIðm−2ÞðDaDbCðm−2Þ
ab ÞS

����in
�

¼ ð−1Þm
8ð2πÞm

Z
d2mz

ffiffiffi
γ

p
D:Y

Y2m−1

l¼mþ1

ðD2−ðl−1Þð2m− lÞÞ

×DaDbFout
ab houtjSjini ð4:8Þ

where Y is an arbitrary smooth vector of the sphere Sð2mÞ.
Analogous results on I− follow from the subleading soft

theorem for an incoming soft graviton. Adding together the
results on Iþ and I−, we finally have the Ward identity

houtjQþS − SQ−jini ¼ 0 ð4:9Þ

where the charges are decomposed into a soft and a hard
part

Q� ¼ Q�
H þQ�

S : ð4:10Þ

The soft charges are given by

Qþ
S ¼ ð−1Þm

κ2

Z
du

Z
d2mz

ffiffiffi
γ

p
uD:Y

×
Y2m−1

l¼mþ1

ðD2 − ðl− 1Þð2m− lÞÞIðm−2ÞðDaDbCðm−2Þ
ab Þ

Q−
S ¼ 1

κ2

Z
du

Z
d2mz

ffiffiffi
γ

p
uD:Y

×
Y2m−1

l¼mþ1

ðD2 − ðl− 1Þð2m− lÞÞIðm−2ÞðDaDbC−ðm−2Þ
ab Þ:

ð4:11Þ

If Y is a CKV, the soft charge is zero as one might expect for
Lorentz transformations. The hard charges are given by

Qþ
H ¼−

ð−1Þm
4ð2πÞm

Z
d2mz

ffiffiffi
γ

p
D:Y

×
Y2m−1

l¼mþ1

ðD2− ðl−1Þð2m− lÞÞDaDb

×

�
∂ax̂iðzÞ∂bx̂jðzÞ

X
α

ε�αij
Xnþn0

k¼nþ1

pkμε
μν
α qλJkλν
pk ·q

�
ð4:12Þ

and

Q−
H ¼−

ð−1Þm
4ð2πÞm

Z
d2mz

ffiffiffi
γ

p
D:Y

×
Y2m−1

l¼mþ1

ðD2− ðl−1Þð2m− lÞÞDaDb

×

�
∂ax̂iðzÞ∂bx̂jðzÞ

X
α

ε�αij
Xn
k¼1

pkμε
μν
α qλJkλν
pk ·q

�
: ð4:13Þ

In analogy with the results in the four-dimensional case,
after computing the derivatives we claim that for scalar
particles one gets

�
out

����Qþ
H ∝ i

Xnþn0

k¼nþ1

�
YaðzkÞ∂zak

−
Ek

2m
DaYaðzkÞ∂Ek

��
out

����
ð4:14Þ

which represent the action of a DiffðS2mÞ on each outgoing
particle.7

We should now proceed to show that Q ¼ QH þQS

generates DiffðS2mÞ. However computing the DiffðS2mÞ
charges with the covariant phase space formalism leads us
to divergences. As we have already said, a possible solution
may be to add boundary counterterms to the action to
cancel the divergences.

7See Appendix B for a partial proof of this equation.
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Similarly to our six-dimensional analysis, we follow a
different path. We propose the commutation relation

½Mð2m−1ÞðzÞjIþ
−
; Cðu0; z0Þ� ¼ 8πiG

m
δ4ðz − z0Þffiffiffi

γ
p : ð4:15Þ

Using this formula and proceeding in a manner similar to
Sec. III. C, one can prove that Q generates DiffðS2mÞ. Note
that this commutation relation is consistent with the four-
dimensional case [2].

V. CONCLUSIONS AND OUTLOOK

In this paper we examined the symmetry group that
preserve asymptotic flatness of even-dimensional space-
times. If one assumes that such asymptotic symmetry group
contains all diffeomorphisms on the sphere [DiffðS2mÞ],
one needs to consider less restrictive falloff conditions than
those otherwise presented in the literature. Such choice of
weaker falloff conditions is motivated by the correspon-
dence between soft theorems and asymptotic symmetries.
Indeed, starting from the subleading soft graviton theorem
in even dimensions higher than four, we derived a Ward
identity. We then argued that such identity is associated to
asymptotic symmetries with respect to DiffðS2mÞ trans-
formations, provided a suitable commutation relation
between metric fields holds.
As a result, DiffðS2mÞ are symmetries of gravitational

scattering. However we have not tackled the divergence

problem in DiffðS2mÞ charges, which need a renormaliza-
tion. This issue needs further investigation. The aim of
this paper is to consolidate the correspondence between
soft theorems and asymptotic symmetries in arbitrary
dimensions. It would be worthwhile to also consider the
odd-dimensional case which we haven’t dealt with due to
problems with the conformal definition of null infinity.
There are still many other open questions. For example it

would be interesting to extend our analysis to the full
nonlinear theory. One could also compute quantum cor-
rections at one loop since our analysis is carried out at tree
level. Lastly, the sub-subleading soft graviton theorem has
been recently linked to asymptotic symmetries in d ¼ 4 by
Campiglia and Laddha [50]. It would be worthwhile to
extend such analysis to arbitrary dimensions.
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APPENDIX A: DERIVATION OF THE EQS. (2.22)

In this section we derive the Eqs. (2.22). They both
follow from the falloff condition Rab ¼ Oðr−2mÞ. Writing
the Ricci tensor component Rab in the Bondi coordinates,
one gets

Rab ¼ −
1

r
ð2r∂r þ 2m − 4Þ∂ugab −

1

r
fðr∂r þ 2m − 2ÞDðaUbÞ þ 2γabD:Ug

þ 1

r2
fðD2 þ r2∂2

r þ ð2m − 4Þr∂r − 4ðm − 1ÞÞgab −DðaDcgbÞcg
− 2γabðr∂r þ 2m − 1ÞM

¼ −2mr∂uqab − 2qab þ 2ð1 −mÞ∂uC
ð−1Þ
ab þ 2ð1 − 2mÞγabMð0Þ þOðr−1Þ: ðA1Þ

The OðrÞ component of Rab must vanish. This leads
immediately to the equation

∂uqab ¼ 0: ðA2Þ

The Oð1Þ component of Rab must vanish as well. By
applying to it the partial derivative ∂u, the term with qab
disappear, thanks to Eq. (A2). Finally, by using Eq. (2.21),
we obtain

∂2
uC

ð−1Þ
ab ¼ 0: ðA3Þ

APPENDIX B: THE HARD CHARGE

Here we partially prove Eq. (4.14) starting from the
following hard charges

Qþ
H ¼−

ð−1Þm
4ð2πÞm

Z
d2mz

ffiffiffi
γ

p
D:Y

Y2m−1

l¼mþ1

ðD2− ðl−1Þð2m− lÞÞ

×DaDbF ab ðB1Þ

where

F ab ¼
�
∂ax̂iðzÞ∂bx̂jðzÞ

X
α

ε�αij
Xnþn0

k¼nþ1

pkμε
μν
α qλJkλν
pk · q

�
ðB2Þ
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with q ¼ ωx̂ðzÞ. Let us consider the completeness relation
for polarization tensors

2
X
α

ε�ijα ðq⃗Þεklα ðq⃗Þ ¼ πikπjl þ πilπjk −
1

2
πijπkl;

πij ¼ δij −
qiqj

q⃗2
: ðB3Þ

We can then write

F ab ∝
Xnþn0

k¼nþ1

�
1

4
ð∂ax̂ · ∂bx̂Þ

�
pk ·

∂
∂pk

�

þ ð∂ax̂ · pkÞð∂bx̂ · pkÞ
ðx̂ · pkÞ

�
x̂ ·

∂
∂pk

�

− ð∂ax̂ · pkÞ
�
∂bx̂ ·

∂
∂pk

��
þ ða ↔ bÞ: ðB4Þ

Recalling the parametrization pk ¼ Ekx̂kðzÞ, we now focus
on the term proportional to ∂Ek

F ab ∝
Xnþn0

k¼nþ1

Ek

�
1

4
ð∂ax̂ · ∂bx̂Þ þ ∂aP∂b logð1 − PÞ

�
∂Ek

þ ð…Þ∂zk ðB5Þ

with

P ¼
X
i

x̂iðzÞx̂ikðzkÞ ðB6Þ

where the sum is on the spatial components of the vectors.
We now need to compute the sequence of covariant
derivates in (B1). One can notice that the first term on
the right-hand side of (B5) can be rewritten using
γab ¼ ∂ax̂ · ∂bx̂. Such term vanishes when we apply any
spherical covariant derivate to F ab. Using the following
equation [25]

ð−1Þm ffiffiffi
γ

p Y2m−1

l¼mþ1

½D2 − ð2m − lÞðl − 1Þ�

×DaDbð∂aP∂b logð1 − PÞÞ

¼ ð2m − 1ÞΓðmÞ2mð2πÞm
�X

k

δ2mðz − zkÞ
�

ðB7Þ

one can then see that the term proportional to ∂Ek
in (4.14)

is correctly reproduced.
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