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Abstract

In this paper we analyze metastability and nucleation in the context of a local version
of the Kawasaki dynamics for the two-dimensional strongly anisotropic Ising lattice gas at
very low temperature. Let Λ = {0, 1, .., L}2 ⊂ Z2 be a finite box. Particles perform simple
exclusion on Λ, but when they occupy neighboring sites they feel a binding energy −U1 < 0
in the horizontal direction and −U2 < 0 in the vertical one. Thus the Kawasaki dynamics
is conservative inside the volume Λ. Along each bond touching the boundary of Λ from
the outside to the inside, particles are created with rate ρ = e−∆β , while along each bond
from the inside to the outside, particles are annihilated with rate 1, where β is the inverse
temperature and ∆ > 0 is an activity parameter. Thus, the boundary of Λ plays the role of
an infinite gas reservoir with density ρ. We consider the parameter regime U1 > 2U2 also
known as the strongly anisotropic regime. We take ∆ ∈ (U1, U1 + U2) and we prove that the
empty (respectively full) configuration is a metastable (respectively stable) configuration.
We consider the asymptotic regime corresponding to finite volume in the limit of large
inverse temperature β. We investigate how the transition from empty to full takes place. In
particular, we estimate in probability, expectation and distribution the asymptotic transition
time from the metastable configuration to the stable configuration. Moreover, we identify the
size of the critical droplets, as well as some of their properties. For the weakly anisotropic
model corresponding to the parameter regime U1 < 2U2, analogous results have already
been obtained. We observe very different behavior in the weakly and strongly anisotropic
regimes. We find that the Wulff shape, i.e., the shape minimizing the energy of a droplet at
fixed volume, is not relevant for the critical configurations.
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1 Introduction

Metastability is a dynamical phenomenon that occurs when a system is close to first order phase
transition, i.e., a crossover that involves a jump in some intrinsic physical parameter such as the
energy density or the magnetization. The phenomenon of metastability occurs when a system is
trapped for a long time in a state (the metastable state) different from the equilibrium state (the
stable state) for specific values of the thermodynamical parameters, and subsequently at some
random time the system undergoes a sudden transition from the metastable to the stable state.
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So we call metastability or metastable behavior the transition from the metastable state to the
equilibrium state. Investigating metastability, researches typically address three main question:

1. What are the asymptotic properties of the first hitting time of the stable states for a
process starting from a metastable state?

2. What is the set of critical configurations that the process visits with high probability before
reaching the set of stable states?

3. What is the tube of typical trajectories that the process follows with high probability
during the crossover from the metastable states to the stable states?

In this paper we study the metastable behavior of the two-dimensional strongly anisotropic
Ising lattice gas that evolves according to Kawasaki dynamics, i.e., a discrete time Markov chain
defined by the Metropolis algorithm with transition probabilities given precisely later in (2.9)
(see in subsections 2.1 and 2.2 for more precise definitions). We consider the local version of the
model, i.e., particles live and evolve in a conservative way in a box Λ ⊂ Z2 and are created and
annihilated at the boundary of the box Λ in a way that reflects an infinite gas reservoir. More
precisely, particles are created with rate ρ = e−∆β and are annhilated with rate 1, where β is the
inverse temperature of the gas and ∆ > 0 is an activity parameter. When two particles occupy
horizontal (resp. vertical) neighbouring sites, each one feels a binding energy −U1 < 0 (resp.
−U2 < 0). Without loss of generality we assume U1 ≥ U2 and we choose ∆ ∈ (U1, U1 + U2), so
that the system is in the metastable regime. For this value of the parameters the totally empty
(resp. full) configuration can be naturally related to metastability (resp. stability). We consider
the asymptotic regime corresponding to finite volume in the limit of large inverse temperature
β.

In this work we study the strong anisotropic case, i.e., the parameters U1, U2 and ∆ are
fixed and such that U1 > 2U2 and ε := U1 + U2 − ∆ > 0 sufficiently small. A special feature
of Kawasaki dynamics is that in the metastable regime (see (2.36)) particles move along the
border of a droplet more rapidly than they arrive from the boundary of the box. More precisely,
single particles attached to one side of a droplet tipycally detach before the arrival of the next
particle (because eU1β � e∆β and eU2β � e∆β), while bars of two or more particles tipycally do
not detach (because e∆β � e(U1+U2)β).

The goal of the paper is to investigate the critical configurations and the tunnelling time
between 0 (empty box) and 1 (full box) for this model, answering questions 1 and 2 above.
In subsection 2.4 we give four main results: Theorem 2.2 states that the empty box is the
metastable state and the full box is the stable state. Theorem 2.3 states that the random
variable Xβ := 1

β log(τ
0
1 ) converges in probability to Γ as β tends to infinity, where Γ > 0 is a

suitable constant that is computed in (2.35) and τ
0
1 is the first hitting time to 1 starting from

the metastable state 0. Moreover, in the same theorem there is also its asymptotic behavior in
L1 and in law in the limit as β → ∞. In particular, after a suitable rescaling, the tunnelling
time from 0 to 1 follows an exponential law. This is typical for models where a success occurs
only after many unsuccessfull attempts. Theorem 2.4 states that some set of configurations P,
which we define precisely in (2.32) (see also Figure 2), has a domino shape with l1 ∼ 2l2 (see
(2.25), (2.26) and (2.27) for rigorous definitions) and it is a gate for the nucleation, a set with
the property that has to be crossed during the transition (see subsection 2.3.1 for the definition
of a gate). Theorem 2.5 states that with probability tending to 1 the configurations contained
in R(2l∗2 − 3, l∗2) or R(2l∗2 − 1, l∗2 − 1) are subcritical, in the sense that they shrink to 0 before
growing to 1, and those containing R(2l∗2 − 2, l∗2) are supercritical, in the sense that they grow
to 1 before shrinking to 0.
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Figure 1: Typical path for strong anisotropy (on the left hand-side) and weak anisotropy (on
the right hand-side).

In the regime with exponentially small transition probabilities, it is natural to call Wulff
shape the one minimizing the energy of a droplet at fixed volume. Indeed at low temperature it
is possible to show that only the energy is relevant, and the entropy is negligible. An interesting
question is then how relevant is the Wulff shape in the nucleation pattern: is the shape of critical
configurations Wulff? As mentioned above, if the evolution is according to Kawasaki dynamics,
it turns out that particles can move along the border of a droplet more rapidly than they can
arrive from the boundary of the container. For this reason particles will be rearranged before
the growth of the droplet. Thus one could be tempted to conjecture that this displacement
along the border of the growing droplet should establish the equilibrium shape at fixed volume,
i.e., the Wulff shape. However, in Section 2.5 we give an heuristic discussion based on a careful
comparison between time scales of contraction, of growth and of different types of movements on
the border of a droplet (see (2.49)), which indicates that the above conjecture is false. Indeed, as
shown in Figure 1 on the left hand-side, the critical droplet is not Wulff (see Theorem 2.4) and the
Wulff shape is a supercritical configuration (see Theorem 2.5 and Remark 2.6). When growing
a nucleus of plus ones the system follows domino shapes up to the critical droplet P and thus in
this case the ratio between the side lengths is approximatively 2. In the Wulff shape the ratio
between the side lengths is of order U1

U2
, so we come to the conclusion that the critical droplets

are not Wulff shape. In Section 2.5, we let l̂1, l∗2 be the horizontal and vertical sides, respectively,
of the critical droplet (l̂1 ∈ {2l∗2 − 2, 2l∗2 − 1}, see (2.33) and (2.34)). In the strongly anisotropic
case, the supercritical growth follows a sequence of rectangles with l2 = l∗2 and l1 = l̂1 + m,
with m = 1, 2, ... up to l1 = L, the side of the container. During this epoch, the nucleation
pattern crosses the Wulff shape with sides (l∗1, l

∗
2) (see (2.43) and Remark 2.6). Finally, after

the formation of a strip l∗2 × L the system starts growing in the vertical direction up to the full
configuration. Similarly, for any anisotropic Glauber dynamics the critical configurations are not

4



Wulff-shaped and the tube of typical paths crosses the Wulff shape only during the supercritical
growth (see [42]). Indeed the tube of typical paths evolves along squared-shaped configurations
in the subcritical part, along horizontal-growing rectangles until they wrap around the torus,
and then stripes growing in vertical direction up to the configurations with all pluses.

On the one hand, if we change the definition of a gate not imposing that the energy of its
configurations is Γ, but requiring only that every optimal path must cross it, heuristically we have
that the Wulff shape has a gate property. On the other hand, we want to underline that Theorem
2.5 can not be extended for the Wulff shape, since it is not true that all the configurations with
rectangle smaller than Wulff shape are subritical (see Remark 2.6). Moreover, Theorem 2.3 can
not be adapted to the Wulff shape because in our paper we fix the values of the parameters U1,
U2 and ∆ such that (2.36) holds. The most interesting results are obtained in the cases when ε
is small, in which we have that the critical configurations are large. In our regime the energy of
the Wulff shape is different from Γ and this holds also in the case in which ∆ → U1 + U2 that
corresponds to ε→ 0.

1.1 Comparison with models subject to Kawasaki dynamics

In this subsection we make a comparison between the model considered in this paper and other
models that also consider Kawasaki dynamics and were already studied in literature.

The bidimensional isotropic case U1 = U2 has already been studied using the pathwise
approach in [40] with results concerning question 1 giving estimates in probability, law and
distribution and, concerning question 2, giving intrinsically the critical configurations without
their geometrical description. In [33] the authors investigated question 3 identifying the tube of
typical trajectories, again using the pathwise approach. For the three-dimensional case, in [35]
there are results concerning questions 1 and 2. It is interesting that, concerning the asymptotic
expectation of the tunnelling time as in (2.38), using the pathwise approach, it is not possible
to distinguish the presence of a certain function f(β) such that log f(β)/β → 0 in the limit as
β → +∞ and E0τ1 = f(β)eΓβ(1 + o(1)), or the presence of a constant factor. To this end, a
more detailed study of the so-called pre-factor f(β) is given in [9] for two and three dimensions,
using the potential theoretic approach. In [9] the authors estimated the constant pre-factor and
found that it does not depend on the parameter β, but on the size of the box and the cardinality
of the set of critical droplets with size lc. These estimates of the pre-factor are possible once
the geometrical description of the critical configurations and of its neighborhood are found. See
also [34], where [1] is applied to derive again results for this model. Furthermore, in the three-
dimensional case similar results are obtained but with less control over the geometry and the
constant. Since in the isotropic models the Wulff-shape concides with the critical shape, it is
not possible to distinguish among them. This motivates together with applications the study of
anisotropic models.

The weak anisotropic case U2 < U1 < 2U2 − ε has already been studied in [50]. We observe
very different behavior with respect to (w.r.t.) strong anisotropy. Indeed for weak anisotropy,
as we can see in Figure 1 on the right hand-side, after the growth along domino shapes with
l1 ∼ 2l2 (see (2.25),(2.26) and (2.27)) during the early stage of nucleation, the nucleation pattern
consists of a growing sequence of a certain class of rectangles, called standard rectangles (see
(2.44) and (2.45) for a rigorous definition). In this regime we have that l∗1 and l∗2 are the critical
sizes (see (2.43) and (2.30) for the definition). In [50] it is proved that the critical droplet
is close to the Wulff shape, whereas during the other stages of nucleation the shape of the
growing droplet is not Wulff, but standard (see [50, Theorems 2,3]). This argument leads to
say that in both strong and weak anisotropy the Wulff shape is not relevant in the nucleation
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pattern as for anisotropic Glauber dynamics (see [42]). Our choice to work with Kawasaki
dynamics rather than Glauber in this very low temperature regime is a first step in showing the
robustness of the argument rooted in the dynamical nature of metastable systems. The locally
conservative dynamics and the movement of particles along the border of the droplet give a
regularization effect. Surprisingly, as mentioned above, this effect does not drive the nucleation
process along Wulff-shaped configurations especially in the assumption of strong anisotropy.
More precisely, for weak anisotropy the critical configuration is Wulff-shaped but the tube of
typical paths is evolving via domino and standard configurations while for strong anisotropy the
critical configurations are not Wulff-shaped and the tube of typical paths is evolving via domino
rectangles in the subcritical part and via horizontal-growing rectangles in the supercritical part.

Results similar to the ones obtained in this paper were given in [37, 38, 39] where two types
of particles are present in Λ. In particular, the authors analyzed the two-dimensional lattice gas
subject to Kawasaki dynamics, where neighboring particles have negative binding energy if and
only if their types are different. The authors obtained results regarding the identification of the
critical droplets and their geometrical properties, i.e., question 2, in [39]. With this knowledge
they studied the transition time from the metastable state to the stable state in [37] in law and
in distribution (question 1), using the potential-theoretic approach. In particular, they were
able to identify the pre-factor.

It turns out that a complete description of the tube of typical trajectories (question 3), as
given in [42] for the anisotropic Ising model evolving under Glauber dynamics, is much more
complicated when we consider Kawasaki dynamics. Using Kawasaki dynamics, the tube of
typical trajectories is analyzed only in [33] for the two-dimensional isotropic case. There are no
known results for three dimensions, either for the anisotropic model or for the two-particle-types
model. We remark that in many previous papers ([3, 18, 26, 35, 42, 43, 49]) the asymptotic
of the tunnelling time and the tube of typical trajectories realizing the transition were treated
simultaneously by exploiting a detailed control of the energy landscape in connection with the
paths allowed by the dynamics.

1.2 State of the art

A mathematically description was first attempted in [45, 41] inspired on Gibbsian equilibrium
Statistical Mechanics. A more faithful approach, known as pathwise approach, was initiated
in 1984 [12] and was developed in [55, 56, 57]. This approach focuses on the dynamics of the
transition from metastable to stable state. Independently, a graphical approach was introduced
in [14] and later used for Ising-like models [15]. With the pathwise approach they obtained
a detailed description of metastable behavior of the system and it made possible to answer
the three questions of metastability. By identifying the most likely path between metastable
states, the time of the transition and the tube of typical trajectories can be determined. A
modern version of the pathwise approach containing the information about time and critical
droplets disentangled w.r.t. the tube of typical trajectories can be found in [46, 20, 21, 53].
This approach developed over the years has been extensively applied to study metastability in
Statistical Mechanics lattice models. In this context, this approach and the one that follows
([7, 46, 57]) have been developed with the aim of finding answers valid with maximal generality
and to reduce as much as possible the number of model dependent inputs necessary to describe
the metastable behavior of any given system.

Another approach is the potential-theoretic approach, initiated in [7]. We refer to [8] for an
extensive discussion and applications to different models. In this approach, the metastability
phenomenon is interpreted as a sequence of visits of the path to different metastable sets. This
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method focuses on a precise analysis of hitting times of these sets with the help of potential
theory. In the potential-theoretic approach the mean transition time is given in terms of the so-
called capacities between two sets. Crucially capacities can be estimated by exploiting powerful
variational principles. This means that the estimates of the average crossover time that can
be derived are much sharper than those obtained via the pathwise approach. The quantitative
success of the potential-theoretic approach is however limited to the case of reversible Markov
processes.

These mathematical approaches, however, are not completely equivalent as they rely on
different definitions of metastable states (see [20, Section 3] for a comparison) and thus involve
different properties of hitting and transition times. The situation is particularly delicate for
evolutions of infinite-volume systems, for irreversible systems, and degenerate systems, i.e.,
systems where the energy landscape has configurations with the same energy (as discussed in
[20, 21, 25]). More recent approaches are developed in [1, 2, 4].

Statistical mechanical models for magnets deal with dynamics that do not conserve the
total number of particles or the total magnetization. They include single spin-flip Glauber
dynamics and many probabilistic cellular automata (PCA), that is parallel dynamics. The
pathwise approach was applied in finite volume at low temperature in [12, 54, 15, 42, 43, 26,
49, 17] for single-spin-flip Glauber dynamics and in [18, 22, 23, 24] for parallel dynamics. The
potential theoretic approach was applied to models at finite volume and at low temperature in
[11, 9, 38, 37, 51, 36]. The more involved infinite volume limit at low temperature or vanishing
magnetic field was studied in [27, 28, 58, 59, 47, 48, 40, 30, 32, 10, 16, 31] for Ising-like models
under single-spin-flip Glauber and Kawasaki dynamics.

1.3 Outline of the paper

The outline of the paper is as follows. In Section 2 we define the model, give some definitions
in order to state our main theorems (see Theorems 2.2, 2.3, 2.4 and 2.5), give a comparison
between strong and weak anisotropy and a heuristic discussion of the dynamics. In Section 3 we
obtain our main model-dependent results regarding the metastable and stable states (Theorem
2.2), tunnelling time (Theorem 2.3) and the gate of the transition (Theorem 2.4). In Section
4 we give the proof of Theorem 3.7, which consists in a careful analysis of the minimal energy
along all the possible communicating configurations from a particular set B to Bc (see (3.29)
for the precise definition). In Section 5 we prove an important result that allows us to deduce
Theorem 2.5. In the Appendix we give additional explicit computations.

2 Model and results

2.1 Definition of the model

Let Λ = {0, .., L}2 ⊂ Z2 be a finite box centered at the origin. The side length L is fixed, but
arbitrary, and later we will require L to be sufficiently large. Let

∂−Λ := {x ∈ Λ: ∃ y /∈ Λ: |y − x| = 1}, (2.1)

be the interior boundary of Λ and let Λ0 := Λ \ ∂−Λ be the interior of Λ. With each x ∈ Λ we
associate an occupation variable η(x), assuming values 0 or 1. A lattice configuration is denoted
by η ∈ X = {0, 1}Λ.
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Each configuration η ∈ X has an energy given by the following Hamiltonian:

H(η) := −U1

∑
(x,y)∈Λ∗0,h

η(x)η(y)− U2

∑
(x,y)∈Λ∗0,v

η(x)η(y) + ∆
∑
x∈Λ

η(x), (2.2)

where Λ∗0,h (resp. Λ∗0,v) is the set of the horizontal (resp. vertical) unoriented bonds joining
nearest-neighbors points in Λ0. Thus the interaction is acting only inside Λ0; the binding energy
associated to a horizontal (resp. vertical) bond is −U1 < 0 (resp. −U2 < 0). We may assume
without loss of generality that U1 ≥ U2. (Note that H − ∆

∑
x∈∂−Λ η(x) can be viewed as

the Hamiltonian, in lattice gas variables, for an Ising system enclosed in Λ0, with 0 boundary
conditions.)

The grand-canonical Gibbs measure associated with H is

µ(η) :=
e−βH(η)

Z
η ∈ X , (2.3)

where

Z :=
∑
η∈X

e−βH(η) (2.4)

is the so-called partition function.

2.2 Local Kawasaki dynamics

Next we define Kawasaki dynamics on Λ with boundary conditions that mimic the effect of an
infinite gas reservoir outside Λ with density ρ = e−∆β. Let b = (x → y) be an oriented bond,
i.e., an ordered pair of nearest neighbour sites, and define

∂∗Λout := {b = (x→ y) : x ∈ ∂−Λ, y 6∈ Λ},
∂∗Λin := {b = (x→ y) : x 6∈ Λ, y ∈ ∂−Λ},
Λ∗,orie := {b = (x→ y) : x, y ∈ Λ},

(2.5)

and put Λ̄∗,orie := ∂∗Λout ∪ ∂∗Λin ∪Λ∗, orie. Two configurations η, η′ ∈ X with η 6= η′ are said to
be communicating states if there exists a bond b ∈ Λ̄∗,orie such that η′ = Tbη, where Tbη is the
configuration obtained from η in any of these ways:

• for b = (x→ y) ∈ Λ∗, orie, Tbη denotes the configuration obtained from η by interchanging
particles along b:

Tbη(z) =


η(z) if z 6= x, y,
η(x) if z = y,
η(y) if z = x.

(2.6)

• For b = (x→ y) ∈ ∂∗Λout we set:

Tbη(z) =

{
η(z) if z 6= x,
0 if z = x.

(2.7)

This describes the annihilation of particles along the border;
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• for b = (x→ y) ∈ ∂∗Λin we set:

Tbη(z) =

{
η(z) if z 6= y,
1 if z = y.

(2.8)

This describes the creation of particles along the border.

The Kawasaki dynamics is the discrete time Markov chain (ηt)t∈N on state space X given by
the following transition probabilities: for η 6= η′:

P(η, η′) :=

{
|Λ̄∗, orie|−1

e−β[H(η′)−H(η)]+ if ∃b ∈ Λ̄∗,orie : η′ = Tbη
0 otherwise

(2.9)

and P(η, η) := 1 −
∑

η′ 6=η P(η, η′), where [a]+ = max{a, 0}. This is a standard Metropolis

dynamics with an open boundary: along each bond touching ∂−Λ from the outside, particles
are created with rate ρ = e−∆β and are annihilated with rate 1, while inside Λ0 particles are
conserved. Note that an exchange of occupation numbers η(x) for any x inside the ring Λ \ Λ0

does not involve any change in energy.

Remark 2.1 The stochastic dynamics defined by (2.9) is reversible w.r.t. Gibbs measure (2.3)
corresponding to H.

2.3 Definitions and notations

We will use italic capital letters for subsets of Λ, script capital letters for subsets of X , and
boldface capital letters for events under the Kawasaki dynamics. We use this convention in
order to keep the various notations apart. We will denote by Pη0 the probability law of the
Markov process (ηt)t≥0 starting at η0 and by Eη0 the corresponding expectation.

In order to formulate our main results in Theorem 2.2, Theorem 2.3, Theorem 2.4 and
Theorem 2.5, we first need some definitions.

2.3.1 Model-independent definitions and notations

1. Paths, boundaries and hitting times.

• A path ω is a sequence ω = ω1, . . . , ωk, with k ∈ N, ωi ∈ X and P (ωi, ωi+1) > 0 for
i = 1, . . . , k − 1. We write ω : η → η′ to denote a path from η to η′, namely with ω1 = η,
ωk = η′. A set A ⊂ X with |A| > 1 is connected if and only if for all η, η′ ∈ A there exists
a path ω : η → η′ such that ωi ∈ A for all i.

• Given a non-empty set A ⊂ X , define the first-hitting time of A as

τA := min{t ≥ 0: ηt ∈ A}. (2.10)

2. Min-max and gates

• The bottom F(A) of a non-empty set A ⊂ X is the set of global minima of the Hamiltonian
H in A:

F(A) := {η ∈ A : H(η) = min
ζ∈A

H(ζ)}. (2.11)
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With an abuse of notation, for a set A whose points have the same energy we denote this
energy by H(A).

• The communication height between a pair η, η′ ∈ X is

Φ(η, η′) := min
ω : η→η′

max
ζ∈ω

H(ζ). (2.12)

• We call stability level of a state ζ ∈ X the energy barrier

Vζ := Φ(ζ, Iζ)−H(ζ), (2.13)

where Iζ is the set of states with energy below H(ζ):

Iζ := {η ∈ X : H(η) < H(ζ)}. (2.14)

We set Vζ :=∞ if Iζ is empty.

• We call set of V -irreducible states the set of all states with stability level larger than V :

XV := {η ∈ X : Vη > V }. (2.15)

• The set of stable states is the set of the global minima of the Hamiltonian:

X s := F(X ). (2.16)

• The set of metastable states is given by

Xm := {η ∈ X : Vη = max
ζ∈X\X s

Vζ}. (2.17)

We denote by Γm the stability level of the states in Xm.

• We denote by (η → η′)opt the set of optimal paths, i.e., the set of all paths from η to η′

realizing the min-max in X , i.e.,

(η → η′)opt := {ω : η → η′ such that max
ξ∈ω

H(ξ) = Φ(η, η′)}. (2.18)

• The set of minimal saddles between η, η′ ∈ X is defined as

S(η, η′) := {ζ ∈ X : ∃ω ∈ (η → η′)opt, ω 3 ζ such that max
ξ∈ω

H(ξ) = H(ζ)}. (2.19)

Given two non-empty sets A,B ⊆ X , put

S(A,B) :=
⋃

η∈A, η′∈B :
Φ(η,η′)=Φ(A,B)

S(η, η′). (2.20)
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• Given a pair η, η′ ∈ X , we say that W ≡ W(η, η′) is a gate for the transition η → η′ if
W(η, η′) ⊆ S(η, η′) and ω ∩W 6= ∅ for all ω ∈ (η → η′)opt.

• We say that W is a minimal gate for the transition η → η′ if it is a gate and for any
W ′ ⊂ W there exists ω′ ∈ (η → η′)opt such that ω′ ∩W ′ = ∅. In words, a minimal gate is
a minimal subset of S(η, η′) by inclusion that is visited by all optimal paths.

2.3.2 Model-dependent definitions and notations

We briefly give some model-dependent definitions and notations in order to state our main
theorems. For more details see subsection 3.1.

• For x ∈ Λ0, let nn(x) := {y ∈ Λ0 : |y − x| = 1} be the set of nearest-neighbor sites of x in
Λ0.

• A free particle in η ∈ X is a site x such that either x ∈ η ∩ ∂−Λ or x ∈ η ∩ Λ0, and∑
y∈nn(x)∩Λ0

η(y) = 0.

We denote by ηfp the union of free particles in ∂−Λ and free particles in Λ0 and by ηcl the
clusterized part of η

ηcl := η ∩ Λ0 \ ηfp. (2.21)

We denote by |ηfp| the number of free particles in η and by |ηcl| the cardinality of the
clusterized part of η.

• Given a configuration η ∈ X , consider the set C(ηcl) ⊂ R2 defined as the union of the 1×1
closed squares centered at the occupied sites of ηcl in Λ0.

• For η ∈ X , let |η| be the number of particles in η, γ(η) the Euclidean boundary of C(ηcl),
γ(η) = ∂C(ηcl); we denote by g1(η) (resp. g2(η)) one half of the horizontal (resp. vertical)
length of γ(η).

• Let p1(η) and p2(η) be the total lengths of horizontal and vertical projections of C(ηcl)
respectively.

• We define g′i(η) := gi(η) − pi(η) ≥ 0; we call monotone a configuration such that gi(η) =
pi(η) for i = 1, 2.

• We write
s(η) := p1(η) + p2(η),
v(η) := p1(η)p2(η)− |ηcl|,
n(η) := |ηfp|.

(2.22)

• We denote byR(l1, l2) the set of configurations whose single contour is a rectangle R(l1, l2),
with l1, l2 ∈ N. For any η, η′ ∈ R(l1, l2) we have immediately:

H(η) = H(η′) = H(R(l1, l2)) = U1l2 + U2l1 − εl1l2, (2.23)

where
ε := U1 + U2 −∆. (2.24)
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• Let l2 ≥ 2. A rectangle R(l1, l2) with l1 = 2l2 is called 0-domino rectangle and in this case
we have [s]3 = [0]3 with s = l1 + l2, where for x ∈ Z, n ∈ N we denote [x]n := x mod n.
Thus we define the set of 0-domino rectangles as R0−dom(s) = R(l1(s), l2(s)) with

l1(s) :=
2s

3
, l2(s) :=

s

3
for [s]3 = [0]3. (2.25)

If l1 = 2l2 − 2, we have [s]3 = [1]3, so we define the set of 1-domino rectangles as
R1−dom(l1(s), l2(s)) with

l1(s) :=
2s− 2

3
, l2(s) :=

s+ 2

3
for [s]3 = [1]3. (2.26)

If l1 = 2l2 − 1, we have [s]3 = [2]3, so we define the set of 2-domino rectangles as
R2−dom(l1(s), l2(s)) with

l1(s) :=
2s− 1

3
, l2(s) :=

s+ 1

3
for [s]3 = [2]3. (2.27)

2.4 Main results

Let

0 := {η ∈ X : η(x) = 0 ∀x ∈ Λ} (2.28)

be the configuration empty. By (2.2) and (2.28) we have that H(0) = 0. Let

1 := {η ∈ X : η(x) = 1 ∀x ∈ Λ0, η(x) = 0 ∀x ∈ Λ\Λ0} (2.29)

be the configuration that is full in Λ0 and empty in Λ\Λ0.

Theorem 2.2 If the side L of the box Λ is sufficiently large, then Γm = V0 = Φ(0, 1) = Γ and
1 = X s and 0 = Xm.

The proof of Theorem 2.2 is analogue to the one in [50, Proposition 15] for a different value
of L (say L > dU1+U2

ε e) once we have given a specific upper bound V ∗ for the stability levels
of the configurations different from 0 and 1 (see Proposition 3.10) and proved Φ(0, 1) = Γ (see
Corollary 3.9).

We define the critical vertical length

l∗2 :=

⌈
U2

U1 + U2 −∆

⌉
=

U2

U1 + U2 −∆
+ δ, (2.30)

where d e denotes the integer part plus 1, and 0 < δ < 1 is fixed. Furthermore we set the critical
value of s and the critical configurations P as

s∗ := 3l∗2 − 1, (2.31)

P := P1 ∪ P2, (2.32)

where

P1 := {η : n(η) = 0, v(η) = `1(s∗)− 1, ηcl is connected, g′1(η) = 0, g′2(η) = 1,
with circumscribed rectangle in R(`1(s∗), `2(s∗))}, (2.33)
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l∗2

2l∗2 − 1

l∗2

2l∗2 − 2

Figure 2: Configurations in P: on the left hand-side is represented a configuration in P1 and on
the right hand-side a configuration in P2

P2 := {η : n(η) = 1, v(η) = `2(s∗ − 1)− 1, ηcl is connected, monotone,
with circumscribed rectangle in R(`1(s∗ − 1), `2(s∗ − 1))}, (2.34)

with li(s), i = 1, 2 defined as in (2.25), (2.26) and (2.27) (recall (2.22)). See Figure 2 for an
example of configurations in P.

From (3.11) below, it follows that H(η) is constant on P. We write

Γ := H(P)−H(0) = H(P) = H(R(2l∗2 − 2, l∗2)) + ε(l∗2 − 1) + ∆ =

= H(R(2l∗2 − 1, l∗2 − 1)) + ∆− U2 + U1. (2.35)

The behavior of the model strongly depends on the different values of the parameters. We will
not consider all the possible regimes and we will not be interested in characterizing the broadest
parameter regime for which our results hold. We will assume

0 < ε� U2 and U1 > 2U2, (2.36)

where � means sufficiently smaller; for instance ε ≤ U2
100 is enough.

The main results about the asymptotics of the tunnelling time is contained in the following:

Theorem 2.3 Let U1, U2,∆ be such that U2/(U1 +U2−∆) is not integer and (2.36) holds. Let
Λ be a box with side L+ 2. For L sufficiently large and for any δ > 0,

lim
β→∞

P0

(
eβ(Γ−δ) ≤ τ1 ≤ eβ(Γ+δ)

)
= 1, (2.37)

lim
β→∞

1

β
logE0τ1 = Γ. (2.38)

Moreover, letting Tβ := inf{n ≥ 1 : P0(τ1 ≤ n) ≥ 1− e−1}, we have

lim
β→∞

P0(τ1 > tTβ) = e−t, (2.39)

and

lim
β→∞

E0(τ1)

Tβ
= 1. (2.40)
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In words, Theorem 2.3 says that

– (2.37): For β →∞ the transition time from 0 to 1 behaves asymptotically, in probability,
as eΓβ+o(β).

– (2.38) and (2.39): The mean value of the transition time from 0 to 1 is asymptotic to eΓβ as
β →∞. Moreover, the rescaled transition time converges to an exponential distribution.

We refer to subsection 3.4 for the proof of Theorem 2.3. The main results about the gate to
stability are contained in the following:

Theorem 2.4 Let U1, U2,∆ be such that U2/(U1 +U2−∆) is not integer and (2.36) holds. Let
Λ be a box with side L+ 2. For L sufficiently large, P is a gate and there exists c > 0 such that,
for sufficiently large β,

P0

(
τP > τ1

)
≤ e−βc. (2.41)

In words, Theorem 2.4 says that the set P is a gate for the nucleation; all paths from the
metastable state 0 to the stable state 1 go through this set with probability close to 1 as β →∞.
Note that in this theorem we do not establish the minimality of the gate P (see (2.32)), which
would involve a much more detailed analysis.

We refer to subsection 3.4 for the proof of Theorem 2.4.

Theorem 2.5 Let U1, U2,∆ be such that U2/(U1 +U2−∆) is not integer and (2.36) holds. Let
Λ be a box with side L + 2 and let R≤(l1,l2) (resp. R≥(l1,l2)) be the set of configurations whose
single contour is a rectangle contained in (resp. containing) a rectangle with sides l1 and l2. For
L sufficiently large,

if η ∈ R≤(2l∗2−3,l∗2) or η ∈ R≤(2l∗2−1,l∗2−1) =⇒ lim
β→∞

Pη(τ0 < τ1) = 1,

if η ∈ R≥(2l∗2−2,l∗2) =⇒ lim
β→∞

Pη(τ1 < τ0) = 1.
(2.42)

In other words, 2l∗2 − 2 and l∗2 are the critical sizes, i.e., subcritical rectangles shrink to 0,
supercritical rectangles grow to 1. We refer to subsection 5.2 for the proof of Theorem 2.5.

Remark 2.6 Theorem 2.5 implies that the Wulff shape is supercritical, indeed its circumscribed
rectangle is R(l∗1, l

∗
2) (see (2.43)), that is in R≥(2l∗2−2,l∗2). For example, consider U1 = 10U2, the

circumscribed rectangle of a Wulff-shaped configuration is R(10l∗2, l
∗
2). We consider a rectangle

strictly smaller η = R(10l∗2 − 1, l∗2) ∈ R≥(2l∗2−2,l∗2), then by Theorem 2.5 it follows that η is
supercritical (has tendency to grow) and not subcritical (has not tendency to shrink).

2.5 Comparison with weak anisotropy and dynamical heuristic discussion

In this subsection we provide a detailed comparison between the strongly and the weakly
anisotropic case. As we have already said, the behavior in the two regimes is very different
and now we elaborate on why. For weak anisotropy we need the following additional definitions.
Let

l∗1 :=

⌈
U1

U1 + U2 −∆

⌉
, l̄ :=

⌈
U1 − U2

U1 + U2 −∆

⌉
. (2.43)
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For any s > l̄ + 2, if s has the same parity as l̄ i.e., [s− l̄]2 = [0]2, then we define the set of
0-standard rectangles as R0−st(s) := R(`1(s), `2(s)) with side lengths

`1(s) :=
s+ l̄

2
`2(s) :=

s− l̄
2

, for [s− l̄]2 = [0]2. (2.44)

If s has the same parity as l̄− 1 i.e., [s− l̄]2 = [1]2, we define the set of 1-standard rectangles to
be R1−st(s) := R(`1(s), `2(s)) with side lengths

`1(s) :=
s+ l̄ − 1

2
, `2(s) :=

s− l̄ + 1

2
for [s− l̄]2 = [1]2. (2.45)

For this value of s we define the set of quasi-standard rectangles as Rq−st(s) := R(`1(s) +
1, `2(s)− 1). Finally, we set

Rst(s) :=

{
R0−st(s) if [s− l̄]2 = [0]2
R1−st(s) if [s− l̄]2 = [1]2.

(2.46)

What happens for weak anisotropy is that, after an initial stage of the nucleation which
consists of a growth along domino shapes (independently on the parameters of the interaction),
the nucleation pattern consists of a growing sequence of standard rectangles up to configurations
that have horizontal length equal to the side of the box (see Figure 1 on the right hand-side). The
critical droplet belongs to this sequence. This is a crucial difference with the strongly anisotropic
case, for which the nucleation pattern follows the domino shape up to the critical droplet and
then increases only adding columns up to the configurations with horizontal length equal to the
side of the box (see Figure 8 in the middle), without involving the standard shape. In both
cases, when the horizontal side is the same as the side of the box, the nucleation pattern grows
in the vertical direction via the mechanisms “change one column in row” and “add column” (see
Figure 8 and 9 on the right hand-side).

In [50] and in the present paper we use the strategies suggested in [46, Section 4.2] points I)
and II). The point II) is the so-called recurrence property and is similar for the weak and strong
anisotropic case (see [50, Section 3.5] and Proposition 3.10 proved in Section 5). Concerning
point I), in both cases it is difficult to find a detailed description of the energy landscape, so
the authors follow a general criterion to find a set B satisfying properties (a) and (b). One of
the ideas that were used to carry out this preliminary analysis in some cases consists of finding
a suitable foliation of the state space X into manifolds according to a certain parameter (for
instance the value of the semiperimeter s for our model). In [50] the authors introduced the
foliation Vs = {η ∈ X : p1(η)+p2(η) = s} and they characterized the main property of standard
rectangles Rst(s): configurations that minimize the energy in Vs for s fixed. For the detailed
result we refer to [50, Proposition 8].

For the strongly anisotropic case we can not use this foliation and this result, because stan-
dard rectangles remain those minimizing the energy in the s-manifolds, but the nucleation
pattern does not involve the standard shape. Indeed the energy needed to change a column into
a row (see (2.49) for the explicit formula) becomes much bigger in the case of strong anisotropy.
To establish properties (a) and (b) see Corollary 3.4, Theorem 3.7 and Corollary 3.9. Thus,
summarizing, the idea behind the definition of the set B in the weak and strong regime is sim-
ilar, even though the strategies used in the proofs are quite different. Indeed without the tool
of foliations and the identification of configurations with minimal energy on them, we need to
carefully subdivide the proof in different cases.
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l∗1

l∗2

l∗1

Figure 3: Configurations in P̃ for weak anisotropy

In [50] the authors defined

P̃ := {η : n(η) = 1, v(η) = `2(l∗1 + l∗2 − 1)− 1, ηcl is connected, monotone,
with circumscribed rectangle in R(`1(l∗1 + l∗2 − 1) + 1, `2(l∗1 + l∗2 − 1))}, (2.47)

and proved that this set is a gate for the transition between 0 and 1 (see Figure 3 for an
example of configurations in P̃ for weak anisotropy).

Note that, except for the length of the vertical and horizontal sides, P̃ coincides with P2.
This feature is due to the definition of the set B. The other set of saddles P1 for the strong
anisotropic case is a peculiar feature of this model, because in this case we have two minimal
saddles at the same height from an energetical point of view.

Roughly speaking, the difference between the two parameter regimes depends on the fact
that in order to go up in energy by a factor U1 for weak anistropy it is sufficient to go up by
2U2, since U1 < 2U2. For strong anisotropy this is not possible, since U1 > 2U2 and we have
not an upper bound of U1 in terms of U2, so that more effort is needed: the key strategy of our
proof is to analyze in a very detailed way all the possible exit moves from the set B, see (3.29).

For the anisotropic case in [50, Sections 2.1,2.2], the static and dynamic heuristics are dis-
cussed as was done in [35, Sections 1.3,1.4]. Here we will summarize the key ideas of the
dynamical heuristic description for the strong anisotropy.

Key transitions
We start with a coarse-grained description: we will restrict ourselves to the determination of
the sequence of rectangles visited by typical trajectories. By the continuity properties of the
dynamics it is reasonable to expect that only transitions between neighboring rectangles have
to be taken into consideration. More precisely, starting from a configuration η ∈ R(l1, l2), with
l1, l2 ≥ 2, the possible successive rectangles in the tube have to belong to one of the following
classes: R(l1 +1, l2), R(l1, l2 +1), R(l1−1, l2), R(l1, l2−1), R(l1−1, l2 +1) and R(l1 +1, l2−1).
So we shall consider the following transitions:

• from R(l1, l2) to R(l1, l2 + 1), corresponding to vertical growth, that will be denominated
add row and symbolically denoted by the arrow ↑ pointing north direction;

• fromR(l1, l2) toR(l1+1, l2), corresponding to horizontal growth, that will be denominated
add column and denoted by the arrow → pointing east;
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Figure 4: The procedure to grow a column

• from R(l1, l2) to R(l1, l2 − 1), corresponding to vertical contraction, that will be denomi-
nated remove row and denoted by the arrow ↓ pointing south;

• from R(l1, l2) to R(l1−1, l2), corresponding to horizontal contraction, that will be denom-
inated remove column and denoted by the arrow ← pointing west;

• from R(l1, l2) to R(l1 − 1, l2 + 1), corresponding to a readjustment of the edges, making
higher and narrower the rectangle by removing a column and simultaneously adding a row.
It will be denominated column to row and denoted by the arrow ↖ pointing northwest;

• from R(l1, l2) to R(l1 +1, l2−1), corresponding to a readjustment opposite to the previous
one. It will be denominated row to column and denoted by the arrow↘ pointing southeast.

The transition from R(l1, l2) to R(l1 − 1, l2 − 1) and R(l1 + 1, l2 + 1) are not considered as
elementary since, as it can be easily seen, a suitable combination of two of the above transitions
takes place with larger probability.

At first sight the optimal interpolation paths realizing the above transitions between con-
tiguous rectangles are the ones depicted in Figures 4, 5 and 6. Let us call Ω(1) the set of paths
as the one depicted in Figure 4. They are the natural candidates to realize, in an optimal way,
the transition →. For the transition ↑ we have an analogous set of paths that we call Ω(2).

Let us call B the time-reversal operator acting on finite paths; we have for ω = ω1, . . . , ωT

Bω = ω′ with ω′i = ωT+1−i i = 1, . . . , T. (2.48)

For the transition ↓ we choose the set of paths Ω(3) obtained by time-reversal from the paths,
analogous to the ones in Ω(1), that realize the transition R(l1 − 1, l2) to R(l1, l2).

Similarly, for the transition ← we use the set of paths Ω(4) obtained by time-reversal from
the paths, analogous to the ones in Ω(2), that realize the transition R(l1, l2 − 1) to R(l1, l2).
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Figure 5: A path in Ω(5)
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Figure 6: A path in Ω̄(5)

The set of paths that we consider as the optimal interpolation for the transition fromR(l1, l2)
to R(l1 − 1, l2 + 1) in the two cases l1 < l2 and l1 ≥ l2 are called Ω(5) and Ω̄(5) respectively.
A path in Ω(5) is represented in figure 5 where each arrow corresponds to a move and the
quantities under the arrows represent the corresponding energy barriers ∆H. Dotted arrows
indicate sequences of moves. The maximal energy along the path is reached in the configuration
(2). A path in Ω̄(5) is represented in figure 6 where to simplify we indicate under the dotted
arrows the sum of the corresponding ∆H. Along this path the maximal energy is reached in
configuration (5). In a similar way we define the optimal interpolation paths Ω(6) and Ω̄(6) for
the transition from R(l1, l2) to R(l1 + 1, l2 − 1). We call canonical the paths in the above sets.

Given (l1, l2), in order to determine the most probable transition between R(l1, l2) and one
of the previous six contiguous rectangles, we will use the criterion of the smallest energy barrier,
defined as the difference between the communication height and H(R(l1, l2)). We call energy
barrier from η to η′ along the path ω = (ω1 = η, . . . , ωn = η′) the difference between the maximal
height reached along this path and H(η). We compute the energy barriers along the canonical
paths and we use them to estimate the true energy barriers. We denote by ∆H(add row) the
energy barrier along the paths in Ω(1); similarly for the other transitions.
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From Figures 4, 5 and 6 via easy computations, we get:

∆H(add row) = 2∆− U2

∆H(add column) = 2∆− U1

∆H(remove row) = ε(l1 − 2) + U1 + U2

∆H(remove column) = ε(l2 − 2) + U1 + U2

∆H(row to column) = ∆ if l1 < l2
∆H(row to column) = U1 + U2 + ε(l1 − l2) if l1 ≥ l2
∆H(column to row) = ∆− U2 + U1 if l1 > l2
∆H(column to row) = ∆− U2 + U1 + ε(l2 − l1 + 1) if l1 ≤ l2

(2.49)

These estimated energy barriers are, of course, larger than or equal to the true ones; the
equality does not hold in general, since the above canonical paths sometimes happen to be non-
optimal. For example a deeper analysis leads to the conclusion that to add a row, instead of
using a path in Ω(1), it is more convenient to compose Ω(2) and Ω(5), resp. Ω̄(5), when l1 < l2,
resp. l1 ≥ l2.

Let us now make a comparison between the estimated energy barriers appearing in equation
(2.49). For l1 ≤ l2, we can easily check that ∆H(row to column) ≤ U1 + U2 = ∆ + ε is the
smallest estimated energy barrier. So in the sequel we will consider only the case l1 > l2. For
l1 > l2, since in the strongly anisotropic case U1 > 2U2 and

2∆− U1 < 2∆− U2, 2∆− U1 < ∆− U2 + U1 and

U1 + U2 + ε(l2 − 2) < U1 + U2 + ε(l1 − 2), (2.50)

by (2.49), we deduce that we have only to compare ∆H(remove column),
∆H(add column) and ∆H(row to column). We get

∆H(remove column) < ∆H(add column) ⇐⇒ l2 < l∗2, (2.51)

∆H(row to column) < ∆H(add column) ⇐⇒ l1 < l2 + l∗2 − 2. (2.52)

∆H(remove column) ≤ ∆H(row to column) ⇐⇒ 2l2 − 2 ≤ l1 (2.53)

Summarizing we have that:
• in the set A′ = {l2 ≤ l∗2 − 1, l1 > 2l2 − 2} the minimal estimated energy barrier is

∆H(remove column);
• in the set B′ = {l1 < l2 + l∗2 − 2, l1 < 2l2 − 2} the minimal estimated energy barrier is

∆H(row to column) ;
• in the set C ′ = {l2 ≥ l∗2, l1 ≥ l2 + l∗2 − 2} the minimal estimated energy barrier is

∆H(add column).
• in the set D′ = {l2 ≤ l∗2 − 1, l1 = 2l2 − 2} we have degeneracy of the minimal estimated

estimated energy barrier: ∆H(remove column) = ∆H(row to column)

Note that B′ = {l2 ≤ l∗2−1, l1 < 2l2−2} ∪ {l2 ≥ l∗2, l1 < l2+l∗2−2}, so that A′∪B′∪C ′∪D′ =
{l1 > l2}.

In Figure 7 we represent R(l1, l2) as points in Z2 of coordinates l1, l2 (representing, respec-
tively, the horizontal and vertical edges). Emerging from any representative point, we draw
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Figure 7: Strong anisotropy: minimal transitions and tube of typical trajectories. We choose to
indicate a few arrows to have a comprehensible picture.

the arrows corresponding to transitions with minimal ∆H between R(l1, l2) and contiguous
rectangles.

Strongly anisotropic case
In the strongly anisotropic case, from Figure 7, it is evident that in the plane (l1, l2) there
is a connected region T ′, which is attractive in the sense that if we follow the oriented paths
given by the sequences of arrows emerging from every points outside T ′ we end up inside T ′.
It consists of three parts T ′1 = {(l1, l2) : l2 < l∗2 and 2l2 − 3 ≤ l1 ≤ 2l2 − 1} ∪ R(2l∗2 − 3, l∗2)
containing domino shape rectangles, T ′2 = {(l1, l2) : l2 = l∗2 and l2 + l∗2 − 2 ≤ l1 < L}, and
T ′3 = {(l1, l2) : l∗2 ≤ l2 and L− 1 ≤ l1 ≤ L}.

Let us now consider the arrows inside the region T ′. From each η ∈ T ′1, with l1 = 2l2−2, as a
consequence of the deneracy ∆H(remove column) = ∆H(row to column), we have two arrows,
one pointing to η′ ∈ R(l1 − 1, l2) and the other pointing to η′′ ∈ R(l1 + 1, l2 − 1). Subsequently,
starting from η′ the minimal estimated ∆H is unique and it corresponds to an arrow pointing
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Figure 8: Minimal transition inside T ′1, T ′2 and T ′3.

to R(l1, l2 − 1); analogously starting from η′′ the minimal ∆H is unique and it corresponds to
an arrow also pointing to R(l1, l2 − 1) (see Figure 8 on the left hand-side).

For every configuration in T ′2, the minimal estimated energy barrier is ∆H(add column),
which implies that the rectangles in T ′2 will grow in the horizontal direction until they become a
complete horizontal strip with length L (see Figure 8 in the middle). In T ′3 the minimal estimated
energy barrier is ∆H(add row), which implies that every horizontal strip with l1 = L will grow
in the vertical direction until it covers the whole box (see Figure 8 on the right hand-side).

It is natural at this point to distinguish two parts in the set T ′: the subcritical part T ′sub
corresponding to T ′1 and the supercritical part T ′sup, corresponding to the configurations in T ′2
and T ′3.

Let us now summarize our heuristic discussion in the strongly anisotropic case. We expect
that every rectangle outside T ′ is attracted by T ′; the configurations in T ′sub are subcritical in
the sense that they tend to shrink along T ′ following domino shapes; configurations in T ′sup are
supercritical in the sense that they tend to grow following domino shapes in T ′2 and a sequences
of rectangles with bases L−1 or L in T ′3. The nucleation pattern in the strongly anisotropic case
contains a sequence of increasing domino shaped rectangles up to R(2l∗2, l

∗
2); then a sequence

of rectangles with l2 = l∗2 and l1 going up to L (the size of the container); finally a sequences
of horizontal strips whose width grows from l∗2 to L. We note that the nucleation pattern in
the strongly anisotropic case is very similar to the one that we would have for non-conservative
Glauber dynamics for any anisotropy.

This heuristic discussion provides a description of the tube of the typical nucleating path.
Suppose first to consider the typical paths going from the maximal subcritical rectangle to 0.
From the discussion on the subcritical part, we have that the sequence of cycles follows the
arrows as in Figure 8. Looking at T ′1 we see that there are no loops there, so we can associate to
each rectangular configuration η in T ′1 the maximal cycle containing η and not containing other
rectangular configurations: by using the arrows of the figure we obtain, in this way, a coarse-
grained cycle path corresponding to the first domino part of the tube. The coarse-grained of
these cycle paths can be resolved by introducing a suitable interpolation between rectangular
configurations corresponding to each arrow in the picture, obtaining, in this way, a family of
true cycle paths T ′sub, describing the tube of typical paths going from the maximal subcritical
rectangle to 0.

A similar discussion can be applied to the study of the tube of typical paths going from the
minimal supercritical rectangle to 1 obtaining in the same way the family of cycles T ′sup.

We expect that the first supercritical rectangle configuration is contained in R(2l∗2, l
∗
2): we
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Figure 9: Minimal transition inside T1, T2 with l2 < l∗2, T2 with l2 ≥ l∗2 and T3.

see in the next that it is R(2l∗2 − 2, l∗2).
The tube of the typical nucleating paths describing the first excursion from 0 to 1, can

be obtained by applying general arguments based on reversibility and by providing a suitable
interpolation between the maximal subcritical rectangle and the minimal supercritical one. More
precisely, to obtain the typical tube from 0 to 1 we apply the time reversal operator B (see 2.48),
to the tube T ′sub and we join it to T ′sup by means of this interpolation. These interpolations
between rectangular configurations can be obtained by using the reference path ω∗ described in
subsection 3.2; ω∗ can be considered as a representative of a typical nucleation path.

Some aspects of the behavior that we have heuristically described are rigorously discussed in
this work; in particular we determine a gate P for the transition between 0 and 1 (see Theorem
2.4), even though we say nothing about its minimality, and we give a sufficient condition to
discriminate subcritical and supercritical domino rectangles (see Theorem 2.5).

Weakly anisotropic case
In the weakly anisotropic case the main difference is that, since U1 < 2U2, ∆H(column to row)
is smaller than in the strong anisotropic case, thus it plays an important role. In the region
above A′ this saddle is the minimal up to the standard shape where ∆H(row to column) =
∆H(column to row). We refer to [50, Section 2.2] for a more detailed discussion of the weak
anisotropic case. The region T consists of three parts: T1 = {(l1, l2) : l2 ≤ l̄ and 2l2 − 3 ≤ l1 ≤
2l2−1} containing domino shape rectangles and T2 = {(l1, l2) : l2 > l̄ and l2 + l̄−1 ≤ l1 ≤ l2 + l̄}
containing standard rectangles (see (2.44) and (2.45)) and T3 = {(l1, l2) : l1 = L and l2 ≥ L− l̄}.

The properties of T1 can be discussed in analogy with T ′1 (see Figure 9 on the left hand-side).
In T2, for each value of the semi-perimeter s, there are pairs of configurations (η, η′) such that

the minimal among the estimated energy barriers starting from η corresponds to the transition
from η to η′ and conversely the minimal estimated energy barrier from η′ corresponds to the
transition from η′ to η. So inside T2 there are pairs of arrows forming two-states loops that
we represent as ↘↖. This suggests that in T2 a more detailed study is necessary, based on the
analysis of suitable cycles containing the above described loops. These cycles represent a sort of
generalized basin of attraction of the standard rectangles contained in the loops: they are the
maximal cycles containing a unique standard rectangle. These cycles contain, among others,
rectangular configurations and in each cycle all the rectangular configurations have the same
semiperimeter s, i.e., belong to the same manifold Vs.

We draw in our picture the arrows between rectangular configurations corresponding to these
most probable exits. It turns out that these arrows are horizontal pointing east if l2 ≥ l∗2 and
pointing west if l2 < l∗2 (see Figure 9 in the middle). In both cases these horizontal arrows point
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to configurations which are again in the set T , so that we can iterate the argument to analyze
all the arrows in T . Thus we associate to the loops↘↖ in the picture cycles containing rectangles
in Vs and transitions given by the horizontal arrows. In T3 we can argue like in T2 (see Fig. 9
on the right hand-side).

It is natural at this point to distinguish two parts in the set T : the subcritical part Tsub
corresponding to T1 plus the part of T2 with horizontal arrows pointing west, i.e., with l2 < l∗2
and the supercritical part Tsup, corresponding to the configurations in T2 with horizontal arrows
pointing east, i.e., with l2 ≥ l∗2 and T3.

Let us now summarize our heuristic discussion in the weakly anisotropic case. We expect
that every rectangle outside T is attracted by T ; the configurations in Tsub tend to shrink along
T following either the standard or the domino shape, depending on l2; configurations in Tsup
tend to grow following standard shapes in T2 and a sequences of rectangles with bases L− 1 or
L in T3.

3 Model-dependent results

3.1 Extensive model-dependent definitions and notations

In this subsection we extend the model-dependent definitions given in Subsection 2.3.2 following
[50], that will be useful for characterizing configurations from a geometrical point of view.

Clusters and projections.
Next we introduce a geometric description of the configurations in terms of contours.

• Given a configuration η ∈ X , consider the set C(ηcl) ⊂ R2 defined as the union of the
1 × 1 closed squares centered at the occupied sites of ηcl in Λ0. The maximal connected
components C1, . . . , Cm (m ∈ N) of C(ηcl) are called clusters of η. There is a one-to-one
correspondence between configurations ηcl ⊂ Λ0 and sets C(ηcl). A configuration η ∈ X is
characterized by a set C(ηcl), depending only on η∩Λ0, plus possibly a set of free particles
in ∂−Λ and in Λ0. We are actually identifying three different objects: η ∈ X , its support
supp(η) ⊂ Λ, and the pair (C(ηcl), ηfp); we write x ∈ η to indicate that η has a particle
at x ∈ Λ.

• For η ∈ X , let |η| be the number of particles in η, γ(η) the Euclidean boundary of C(ηcl),
γ(η) = ∂C(ηcl); we denote by g1(η) (resp. g2(η)) one half of the horizontal (resp. vertical)
length of γ(η), i.e., one half of the number of horizontal (vertical) broken bonds in ηcl.
Then the energy associated with η is given by

H(η) = −(U1 + U2 −∆)|ηcl|+ U1g2(η) + U2g1(η) + ∆|ηfp|. (3.1)

The maximal connected components of ∂C(ηcl) are called contours of η.

• Let p1(η) and p2(η) be the total lengths of horizontal and vertical projections of C(ηcl)
respectively. More precisely let rj,1 = {x ∈ Z2 : (x)1 = j} be the j-th column and
rj,2 = {x ∈ Z2 : (x)2 = j} be the j-th row, where (x)1 or (x)2 denote the first or second
component of x. We say that a line rj,1 (rj,2) is active if rj,1∩C(ηcl) 6= ∅ (rj,2∩C(ηcl) 6= ∅).
Let

π1(η) := {j ∈ Z : rj,1 ∩ C(ηcl) 6= ∅} (3.2)

23



and p1(η) := |π1(η)|. In a similar way we define the vertical projection π2(η) and p2(η).
We also call π1(η) and π2(η) the horizontal and vertical shadows of ηcl, respectively.

Note that g1, g2, π1, π2, p1, p2 are actually depending on η only through ηcl, even though,
for notational convenience, we omit the subscript cl in their functional dependence.

Note that ηcl is not necessarily a connected set and thus both the horizontal and vertical
projections π1(η), π2(η) are not in general connected. We have obviously:

g′i(η) := gi(η)− pi(η) ≥ 0. (3.3)

• A single cluster C is called monotone if gi(C) = pi(C) for i = 1, 2, i.e., g1 and g2 equal
respectively the horizontal and vertical side lengths of the rectangle R(C) circumscribed
to the unique cluster C. More generally, we call monotone a configuration such that
gi(η) = pi(η) for i = 1, 2.

Note that s(η) coincides with the semi-perimeter if η is a configuration with a single
monotone cluster. It is immediate to show that v(η) is a non negative integer and that
it is equal to zero if ηcl has a unique rectangular cluster with semi-perimeter s(η); it
represents the number of vacancies in η. Define:

P1(η) :=
⋃

j∈π1(η)

rj,1 P2(η) :=
⋃

j∈π2(η)

rj,2 (3.4)

the minimal unions of columns and rows, respectively, in Z2 containing ηcl. By definition
we have

P1(η) ∩ P2(η) ⊇ ηcl, (3.5)

where P1(η) ∩ P2(η) is, in general, the union of rectangles such that |P1(η) ∩ P2(η)| =
p1(η)p2(η). The vacancies of η are the sites in P1(η) ∩ P2(η)\ηcl.

• Given a non-empty set A ⊂ X , define its external and internal boundary as, respectively

∂+A := {ζ /∈ A : P (ζ, η) > 0 for some η ∈ A}, (3.6)

∂−A := {ζ ∈ A : P (ζ, η) > 0 for some η /∈ A}. (3.7)

Moreover, let

∂A := {(η̄, η) : η̄ ∈ ∂−A, η ∈ ∂+A with P (η̄, η) > 0}, (3.8)

be the set of moves exiting from A.

We define

Hmin(∂A) := min
(η̄,η)∈∂A

{max {H(η̄), H(η)}} (3.9)

and we denote by (∂A)min the subset of ∂A where this minimum is realized:

(∂A)min := {(η̄, η) ∈ ∂A : max {H(η̄), H(η)} = Hmin(∂A)}. (3.10)
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3.2 Reference path

We recall (2.25), (2.26) and (2.27) for the definitions of domino rectangles.
We will construct a particular set Ω∗ whose elements are reference paths ω∗ : 0 → 1. Each

path will be given by a particular sequence of growing domino rectangles, followed by a sequence
of rectangles growing in the horizontal direction, followed by a sequence of rectangles growing
in the vertical direction. The maximum of the energy along ω∗, {arg maxω∗H}, is reached on
particular configurations given by circumscribed rectangle R(2l∗2 − 1, l∗2 − 1) as in Figure 2 on
the left hand-side.

We will prove in Corollary 3.4 that ω∗ ∈ (0→ 1)opt so that {arg maxω∗H} ∈ S(0, 1).
We want to recall that in this work we get only a partial solution to the problem of deter-

mination of the tube of typical paths, i.e., the set of paths followed by the process with high
probability during the transition from 0 to 1. Note that this set is much larger than Ω∗; in the
construction of the paths ω∗ we have a lot of freedom, so we choose this particular path from 0
to 1 that suggests the structure of the tube of typical paths. The idea behind the construction
of the reference path is the following: we first construct a skeleton path {ω̄s}2Ls=0 given by a
sequence of domino rectangles of semi-perimeter s. We point out that the transition from ω̄s
to ω̄s+1 can not be given in a single step, since ω̄s and ω̄s+1 are rectangles and so this is not a
path in that sense. Thus we have to interpolate each transition of the skeleton path in order to
obtain a path. This is done in two different steps. First we introduce a sequence ω̃s,0, . . . , ω̃s,is
between ω̄s and ω̄s+1, given by ω̄s plus a growing column. There are some cases (for 0-domino
rectangles) in which growing a column is equivalent to the operation of column to row from an
energetic point of view. Since we consider a specific path, we choose one of the two operations
arbitrarily. What we are doing is considering the time-reversal dynamic in the subcritical region
and the usual dynamics in the supercritical region. The last interpolation consists of inserting
between every pair of consecutive configurations in ω̃, for which the cluster is increased by one
particle, a sequence of configurations with one new particle created at the boundary of the box
and brought to the correct site with consecutive moves of this free particle. In this way, from
the sequence of configurations ω̃s,i, we obtain a path ω∗, i.e., such that P(ω∗j , ω

∗
j+1) > 0.

Skeleton : ω̄
Let us construct a sequence of rectangular configurations ω̄ = {ω̄s}, with s = 0, . . . , L, such
that ω̄1 = 0, ω̄2 = {x0}, . . ., ω̄2L = F(X ) ∈ 1, where x0 is a given site in Λ0 and for every s,
ω̄s ⊂ ω̄s+1.

Step a. For any s < 3l∗2 − 2, {ω̄s} is a growing sequence of domino rectangles, depending on
the value of s. If [s]3 = [0]3, we have that ω̄s ∈ R(2l2, l2) is a 0-domino rectangle. If
[s]3 = [1]3 we have that ω̄s ∈ R(2l2 − 2, l2) is a 1-domino rectangle. If [s]3 = [2]3 we have
that ω̄s ∈ R(2l2 − 1, l2) is a 2-domino rectangle.

Step b. For any 3l∗2 − 2 ≤ s ≤ l∗2 + L− 1, {ω̄s} ∈ R(s− l∗2, l∗2).

Step c. For any s ≥ l∗2 + L− 1, if l1 = L− 1 we have ω̄s ∈ R(L− 1, s− L+ 1), and if l1 = L
we have ω̄s ∈ R(L, s− L)

First interpolation : ω̃
Given a choice for ω̄s, we can construct the path ω̃s,i such that ω̃s,0 = ω̄s and insert between
each pair (ω̄s, ω̄s+1) for any s a sequence composed by configurations ω̃s,i for i = 0, 1, . . . , is.

Step a.1. If s < 3l∗2 − 2 and [s]3 = [1]3 add a column as in Figure 4, passing from ω̃s,0 ∈
R(2l2, l2 + 1) to 2-domino rectangle ω̃s,is ∈ R(2l2 + 1, l2 + 1).
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Step a.2. If s < 3l∗2 − 2 and [s]3 = [2]3 add a column as in Figure 4, passing from ω̃s,0 ∈
R(2l2 − 1, l2) to 0-domino rectangle ω̃s,is ∈ R(2l2, l2).

Step a.3. If s < 3l∗2−2 and [s]3 = [0]3 add a column as in Figure 4, passing from ω̃s,0 ∈ R(2l2, l2)
to q-domino rectangle ω̃s,is ∈ R(2l2 + 1, l2). Then use the path described in Figure 6 to
define the path between ω̃s,l2 ∈ R(2l2 + 1, l2) to 1-domino rectangle ω̃s,is ∈ R(2l2, l2 + 1).

Step b.1. If 3l∗2 ≤ s ≤ l∗2 +L− 1 add a column as in Figure 4, passing from ω̃s,0 ∈ R(s− l∗2, l∗2)
to ω̃s,is ∈ R(s− l∗2 + 1, l∗2).

Step c.1. If s ≥ l∗2 + L − 1 and l1 = L − 1, add a column as in Figure 4, passing from
ω̃s,0 ∈ R(L− 1, s− L+ 1) to R(L− 1, s− L+ 1), so we have l1 = L. Then use the path
described in Figure 6 to obtain R(L− 1, s− L+ 2).

Second interpolation : ω∗

For any pair of configurations (ω̃s,i, ω̃s,i+1) such that |ω̃s,i| < |ω̃s,i+1|, by construction of the
path ω̃s,i the particles are created along the external boundary of clusters. Thus there exists
x1, . . . , xji connected chain of nearest-neighbor empty sites of ω̃s,i such that x1 ∈ ∂−Λ and xji
is the site where the additional particle in ω̃s,i+1 is located. Hence we define ω∗s,i,0 = ω̃s,i and
ω∗s,i,ji = ω̃s,i+1 for s = 0, . . . , 2(L+ 2). Otherwise, if |ω̃s,i| = |ω̃s,i+1|, we define ω∗s,i,0 = ω̃s,i and
ω∗s,i+1,0 = ω̃s,i+1.

We recall a useful lemma to compute the energy of different configurations:

Lemma 3.1 [50, Lemma 7] For any configuration η:

H(η) = H(R(p1(η), p2(η))) + εv(η) + U1g
′
2(η) + U2g

′
1(η) + n(η)∆, (3.11)

with ε as in (2.24) and g′i as in (3.3).

Corollary 3.2 For L sufficiently large (say L >
⌊
U1+U2

ε

⌋
) we have H(1) < 0 = H(0).

The main property of the path ω∗ is the following.

Proposition 3.3 If U1 > 2U2 and L is large enough, we have that

{arg maxω∗H} ⊆ ω∗ ∩ P1. (3.12)

Proof. Let us consider the skeleton path {ω̄s}s=0,..,2(L+2) and let ω∗(ω̄s, ω̄s+1) be the part of
ω∗ between ω̄s and ω̄s+1. Letting

g(s) := max
η∈ω∗(ω̄s,ω̄s+1)

H(η), (3.13)

we have
max
η∈ω∗

H(η) = max
s=0,..,2(L+2)

g(s). (3.14)

For the values of s corresponding to steps a.1 (s ≤ 3l∗2 − 2 and [s]3 = [1]3), a.2 (s ≤ 3l∗2 − 2 and
[s]3 = [2]3) and b.1 (s > 3l∗2 − 2), we can verify directly that g(s) = H(ω̄s) + 2∆ − U1, indeed
2∆−U1 is the energy barrier for adding a column. Now let us consider the case s ≤ 3l∗2− 2 and
[s]3 = [0]3, then the path described in step a.3 has a first part going from ω̄s to Rq−dom(s+ 1),
reaching its maximal value of energy in H(ω̄s) + 2∆ − U1. The second part of the path in the
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step a.3 goes from Rq−dom(s + 1) to ω̄s+1 ∈ R1−dom(s+ 1) with the operation column to row,
so it reaches its maximal value of energy in

H(Rq−dom(s+ 1)) + ∆− U2 + U1 =
= H(ω̄s) + 2∆− U1 + ∆− U2 + U1 − (U1 + U2 + ε(l2 − 2)) =

= H(ω̄s)− ε
(
s
3

)
+ ∆ + U1,

(3.15)

where U1 + U2 + ε(l2 − 2) is the energy barrier for removing a column and it consists in the
difference between H(ω̄s) + 2∆−U1 and H(Rq−dom(s+ 1) (see Figure 4). For the last equality
we use the fact that l2(s) = s

3 for a 0-domino rectangle.
Explicit computations show that

max{H(ω̄s) + 2∆− U1, H(ω̄s)− ε
s

3
+ ∆ + U1} = H(ω̄s)− ε

s

3
+ ∆ + U1. (3.16)

Indeed, since U1−2U2 > 0 and we can write s ≤ 3l∗2−3, because [s]3 = [0]3 and thus s 6= 3l∗2−2,
we have

H(ω̄s)− ε s3 + ∆ + U1 ≥ H(ω̄s)− ε
(

3l∗2−3
3

)
+ ∆ + U1 =

= H(ω̄s)− ε
(⌈

U2
ε

⌉)
+ ε+ ∆ + U1 ≥ H(ω̄s)− U2 + ∆ + U1 > H(ω̄s) + 2∆− U1

⇔ ∆ < 2U1 − U2 ⇔ U1 − 2U2 > −ε.

(3.17)

We obtain

g(s) =

{
H(ω̄s) + 2∆− U1 if s ≤ 3l∗2 − 2 and [s]3 6= [0]3, or s > 3l∗2 − 2,
H(ω̄s)− ε s3 + ∆ + U1 if s ≤ 3l∗2 − 2 and [s]3 = [0]3.

(3.18)

We want now to evaluate the maximal value of g(s) for s ≤ 3l∗2 − 2. Let us consider the energy
of domino configurations:

h(0−dom)(n) := H(R0−dom(3n)) = U1n+ 2U2n− 2εn2, n = 0, .., l∗2 − 1,

h(1−dom)(n) := H(R1−dom(3n+ 1)) = U1(n+ 1) + 2U2n
−2εn(n+ 1), n = 0, .., l∗2 − 1,

h(2−dom)(n) := H(R2−dom(3n+ 2)) = U1(n+ 1) + U2(2n+ 1)
−ε(n+ 1)(2n+ 1), n = 0, .., l∗2 − 2.

(3.19)

We observe that h(0−dom)(n) is an increasing function of n, indeed

dh

dn

(0−dom)

(n) = U1 + 2U2 − 4εn > 0 ⇔ n <
U1 + 2U2

4ε
. (3.20)

In this case n ≤ l∗2 − 1 and, if n = l∗2 − 1, we have that

l∗2 − 1 < U1+2U2
4ε ⇔ 2U2−U1

ε < 4(1− δ).

Since U1 < 2U2 and δ < 1, we have proved (3.20). In a similar way we obtain that h(1−dom)(n)
and h(2−dom)(n) are also increasing function of n. This implies that

max
s≤3l∗2−2

g(s) = max{H(ω̄3l∗2−3)−ε(l∗2−1)+∆+U1, H(ω̄3l∗2−2)+2∆−U1, H(ω̄3l∗2−4)+2∆−U1}.

(3.21)
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By a direct comparison we obtain immediately

max
s≤3l∗2−2

g(s) = H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1. (3.22)

Indeed, since ω̄3l∗2−2 ∈ R(2l∗2 − 2, l∗2), ω̄3l∗2−3 ∈ R(2l∗2 − 2, l∗2 − 1) and ω̄3l∗2−4 ∈ R(2l∗2 − 3, l∗2 − 1),
we can write

H(ω̄3l∗2−2) = U1l
∗
2 + 2U2(l∗2 − 1)− 2εl∗2(l∗2 − 1) = U1l

∗
2 + 2U2l

∗
2 − 2U2 − 2ε((l∗2)2 − l∗2),

H(ω̄3l∗2−3) = U1(l∗2−1)+2U2(l∗2−1)−2ε(l∗2−1)2 = U1l
∗
2−U1+2U2l

∗
2−2U2−2ε((l∗2)2−2l∗2+1),

H(ω̄3l∗2−4) = U1(l∗2 − 1) + U2(2l∗2 − 3) − 2ε(l∗2 − 1)(2l∗2 − 3) = U1l
∗
2 − U1 + 2U2l

∗
2 − 3U2 −

ε(2(l∗2)2 − 5l∗2 + 3).

Since U1 > 2U2 and δ < 1, we get H(ω̄3l∗2−2) + 2∆− U1 > H(ω̄3l∗2−4) + 2∆− U1. Indeed

H(ω̄3l∗2−2) + 2∆− U1 < H(ω̄3l∗2−4) + 2∆− U1

⇔ −2U2 + 2εl∗2 < −U1 − 3U2 + 5εl∗2 − 3ε

⇔ l∗2 >
U1+U2

3ε + 1⇔ U2
ε + δ > U1+U2

3ε + 1⇔ U1−2U2
ε < 3(δ − 1).

(3.23)

Since δ > 0, we get H(ω̄3l∗2−3) + ∆ +U1− ε(l∗2 − 1) > H(ω̄3l∗2−2) + 2∆−U1, which concludes the
proof of (3.22). Indeed

H(ω̄3l∗2−3) + ∆ + U1 − ε(l∗2 − 1) > H(ω̄3l∗2−2) + 2∆− U1

⇔ 4εl∗2 − 2ε+ ∆ + U1 − εl∗2 + ε > 2εl∗2 + 2∆

⇔ εl∗2 − ε > ∆− U1 ⇔ ε

(
U2
ε + δ

)
− ε > ∆− U1 ⇔ εδ > 0.

(3.24)

If s > 3l∗2 − 2 we have that g(s) = H(ω̄s) + 2∆− U1: for which value of s do we obtain the
maximum of the function g(s)?

Since ω̄s = R(s−l∗2, l∗2), we have that H(ω̄s) = H(R(s−l∗2, l∗2)) = U1l
∗
2+U2(s−l∗2)−εl∗2(s−l∗2).

By a direct computation we observe that H(ω̄s) is a decreasing function of s, so the maximum
value is reached for the minimum possible value of s, i.e., s0 = 3l∗2 − 1 = s∗. Indeed we have

dH

ds
(ω̄s) = U2 − εl∗2 < 0. (3.25)

Since the energy of the configurations in T ′3 can be made arbitrary small by choosing L large
enough, it remains only to compare the maximum values of g(s) for s ≤ 3l∗2 − 2 and s > 3l∗2 − 2.

maxs=0,..,2(L+2) g(s) = max
{

maxs≤3l∗2−2 g(s),maxs=3l∗2−1,..,2(L+2) g(s)
}

=

= max{H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1, H(ω̄s∗) + 2∆− U1} =

= H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1.

(3.26)

Since l∗2 =
⌈
U2
ε

⌉
, set ω̄s∗ = R(2l∗2 − 1, l∗2) and ω̄3l∗2−3 = R(2l∗2 − 2, l∗2 − 1), by a direct

computation we obtain that H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1 > H(ω̄s∗) + 2∆− U1. Indeed

H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1 > H(ω̄s∗) + 2∆− U1

⇔ 2U1 + 2U2 − 2ε− U2 + εl∗2 < −2U2 + 4εl∗2 − 2ε− εl∗2 + U1 + U2 + U1

⇔ 2U2 < 2εl∗2 ⇔ l∗2 >
U2
ε .

(3.27)

By the definition of ω∗ ∈ Ω∗, it is immediate to show that the configurations where the
maximum value of the energy is reached are the configurations in ω∗ ∩ P1.

�
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Corollary 3.4 We have

Φ(0, 1) ≤ Γ.

Proof. By definition of communication height Φ(0, 1), given a path ω∗ ∈ Ω∗ by Proposition
3.3, (2.28) and the sentence below, we have immediately

Φ(0, 1) ≤ max
i
H(ω∗i ) = H(P1) = Γ, (3.28)

where P1 and Γ are defined in (2.33) and (2.35) respectively. The first inequality follows
because Φ(0, 1) is the minimum over all paths between 0 and 1, and we bound it by taking the
reference path ω∗.

�

3.3 Definition of the set B and exit from B

We give the definition of the set B that is a basin of attraction of 0 and satisfies the strategy
following [46, Section 4.2].

Definition 3.5 We define the set B as follows:

B :=

η :

s(η) ≤ s∗ − 2, or
s(η) ≥ s∗ − 1 and p2(η) ≤ l∗2 − 1, or
s(η) = s∗ − 1, p2(η) ≥ l∗2 and v(η) ≥ pmin(η)− 1, or
s(η) ≥ s∗, p2(η) = l∗2 and v(η) ≥ pmax(η)− 1

 , (3.29)

where s∗ is defined in (2.31), pmin(η) = min {p1(η), p2(η)} and pmax(η) = max {p1(η), p2(η)}.

In [45] there is the construction of the probability measure using the restricted ensemble
µR = µ(·|R) while in [12] and [57, Sections 4.2, 6.3] the authors consider the restricted dynamics
associated to the exit time TX\R for some R that can be thought as basin of attraction of the
metastable state. The set B defined in (3.29) satisfies the hypotheses of this set R used in [5].

Lemma 3.6 For B as in (3.29) we get 0 ∈ B and 1 /∈ B.

Proof. Since s(0) = 0 it immediately follows that 0 ∈ V≤s∗−2 and thus we get 0 ∈ B. Similarly,
since 1 ∈ V≥s∗ and p2(1) > l∗2, we get 1 /∈ B. �

The main result of this subsection is given by the following:

Theorem 3.7 For Hmin(∂B) as in (3.9), (∂B)min as in (3.10), Γ as in (2.35) and P as in
(2.32), we have

Hmin(∂B) = Γ. (3.30)

In addition

(i) if (η̄, η) ∈ (∂B)min, then H(η̄) ≥ H(η) and η̄ ∈ P2;

(ii) if η̄ ∈ P1, there exists at least a path ω̄ ∈ (0→ 1)opt such that ω̄ = (0, ω̄1, .., ω̄j−1, η̄, ω̄j+1, .., 1).
Moreover, we have that ω̄j+1 ∈ B.
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Corollary 3.8 For any path ω∗ ∈ Ω∗ we have

{arg maxω∗H} ∩ (∂B)min 6= ∅.

Proof. Combining Proposition 3.3 and Theorem 3.7, we directly get the conclusion.
�

Corollary 3.9 We have

Φ(0, 1) = Γ.

Proof. Since every path going from 0 to 1 has to leave B, we have by Theorem 3.7 that

Φ(0, 1) := min
ω:0→1

max
ζ∈ω

H(ζ) ≥ Hmin(∂B) = Γ. (3.31)

Combining (3.31) and Corollary 3.4, we get Φ(0, 1) = Γ. �

Note that to prove Corollary 3.9 we have proposed a suitable set B (see (3.29)) and we have
applied the argument developed in [46, Section 4.2] with some small variations. In [46] the set
∂+B (external boundary of B, see (3.6)) was considered, while here we use the set ∂B (see (3.8)),
so in the present case Hmin(∂B) substitutes H(F(∂+B)).

Proposition 3.10 There exists V ∗ < Γ such that XV ∗ ⊆ {0, 1}, i.e., ∀ η 6= 0, 1 there exists
η′ ∈ X and a path ω : η → η′ such that H(η′) < H(η) and Vη ≤ maxξ∈ωH(ξ)−H(η) ≤ V ∗.

In this proposition we prove that that each configuration η /∈ {0, 1} is V ∗-reducible, namely
we can find a configuration η′ ∈ Iη with smaller energy and Φ(η, η′) ≤ H(η) + V ∗. Thus
V ∗ consists in an upper bound for the quantity Vη for any η /∈ {0, 1} and so we can write
V ∗ = max{Vη | η ∈ X \{0, 1}}. In other words, we assert that there are no too deep wells in the
energy landscape, i.e., no deeper than the well with bottom 0. Moreover, we observe that being
a metastable state is equivalent to the absence of too deep energy. For the proof of Proposition
3.10 we refer to subsection 5.1.

3.4 Proof of the main theorems 2.3 and 2.4

The proof of theorems 2.3 and 2.4 consist of an application of theorems [46, Theorem 4.1], [46,
Theorem 4.9], [46, Theorem 4.15] for the asymptotics of the tunnelling time and Theorem [46,
Theorem 5.4] for the gates in the general setup of reversible Markov chains.

Proof of Theorem 2.3
Combining theorems 2.2, [46, Theorem 4.1], [46, Theorem 4.9], [46, Theorem 4.15] and

Corollary 3.9, we get the conclusion.
�

Proof of Theorem 2.4
Given any optimal path ω ∈ (0 → 1)opt, since 0 ∈ B and 1 /∈ B by Lemma 3.6, ω has to

leave the set B and this has to be done with a pair of configurations (η̄, η) ∈ (∂B)min. If this
is not satisfied, by Theorem 3.7 we would have maxiH(ωi) > Γ and, since Φ(0, 1) = Γ, the
path ω would not be optimal, which is a contradiction. By Theorem 3.7 we obtain that ω must
intersect the set P and, thus the set P is a gate for the transition 0 → 1; see subsection 2.3.1
for the definition of a gate. Thus (2.41) is proven using [46, Theorem 5.4].

�
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Figure 10: In order to help the reader we depict part of the configuration of η̄.

4 Proof of the main Theorem 3.7

In this Section we give the proof of the main Theorem 3.7. In particular, in order to analyze
the exiting move from B, we prove preliminary results on single moves.

Definitions and notations. We first give important definitions and notations that will be
useful in the section.

Definition 4.1 We say that (η̄, η) is a move if (η̄, η) ∈ X × X and P (η̄, η) > 0.
We say that a move (η̄, η) is an exiting move from B if η̄ ∈ B, η /∈ B and P(η̄, η) > 0.
We define

∆s := s(η)− s(η̄) (4.1)

the variation of s in the move.

We recall the definition of active line that is in the bullet before (3.2). We say that a line r
(column or row in Z2) becomes active in the move from η̄ to η if it was not active in η̄ (r∩ η̄cl = ∅
see (2.21)) and it is active in η (r ∩ ηcl 6= ∅). Furthermore, we say that a line r becomes inactive
in the move from η̄ to η if it was active in η̄ and it is not active in η. If a line does not become
active nor inactive we say that it does not change its behavior. We will call x1 the site containing
the moving particle, x2 the site containing the particle after the move and x3, x4 and x5 the
nearest neighbor sites of x2 together with x1 (see Figure 10). The sites y1, y2 and y3 are the
nearest neighbors of the particle in x1 and z1, z2 and z3 are the nearest neighbors of the site y3

together with the site x1. Furthermore we set t the site above y1 and s the site under y2.
We will call r1 the line of the move, r2 the line orthogonal to it passing trough site x2, and

r3, r4 and r5 the lines passing through the three nearest neighbor sites of x2, i.e., x3, x4 and
x5 respectively. Furthermore we will call r6 the line orthogonal to r1 passing trough the site x1

and r7 the line orthogonal to r1 passing trough the site y3.

In Figure 10 and consequently in the rest of the paper, we assume that the move is horizontal,
i.e., r1 is an horizontal line. Since the binding energies are not equal in the vertical and horizontal
directions, one could be tempted to consider also the case r1 vertical, but in the latter we can
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conclude with analogue arguments, except in the Proposition 4.10, where we distinguish r1

vertical or horizontal (case (h) and case (v)). We observe that the horizontal case is the worst
case scenario.

We recall a useful lemma.

Lemma 4.2 [50, Lemma 12] Let pmin(η) ≥ 4, we have

(i) |∆s| ≤ 5

(ii) if ∆s = 1 then v(η) ≥ pmin(η)− 3
if ∆s = 2 then n(η̄) ≥ 1 and v(η) ≥ 2pmin(η)− 5
if ∆s = 3 then n(η̄) ≥ 2 and v(η) ≥ 3pmin(η)− 6
if ∆s = 4 then n(η̄) ≥ 3 and v(η) ≥ 4pmin(η)− 7
if ∆s = 5 then n(η̄) ≥ 4 and v(η) ≥ 5pmin(η)− 8

(iii) if ∆s = 1 and v(η) < pmin(η)− 1 then n(η̄) ≥ 2

Remark 4.3 We note that if n(η̄) = 0 the unique line that can become active is r2 and in this
case in η̄ sites x3 and x4 are empty and x5 ∈ η̄cl, where x5 ∈ r1 (see Figure 10), so that η̄ is not
monotone, i.e., g′1(η̄) + g′2(η̄) ≥ 1.

Remark 4.4 We note that if n(η̄) = 0, g′1(η̄) = 1 and g′2(η̄) = 0 then the site x5 must be empty,
otherwise g′2(η̄) ≥ 1. Thus in this case we obtain that no lines can become active.

Now we give an estimate of s(η̄) for each possible value of ∆s ∈ {−5,−4, .., 4, 5}. This will be
useful for the entire section.

Remark 4.5 Let (η̄, η) ∈ ∂B be an exiting move from B (see definition 4.1):

• If ∆s = −5 the exiting move is admissible only in the case s(η̄) ≥ s∗ + 4. Indeed, if
s(η̄) ≤ s∗ + 3, then s(η) = s(η̄)− 5 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = −4 the exiting move is admissible only in the case s(η̄) ≥ s∗ + 3. Indeed, if
s(η̄) ≤ s∗ + 2, then s(η) = s(η̄)− 4 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = −3 the exiting move is admissible only in the case s(η̄) ≥ s∗ + 2. Indeed, if
s(η̄) ≤ s∗ + 1, then s(η) = s(η̄)− 3 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = −2 the exiting move is admissible only in the case s(η̄) ≥ s∗ + 1. Indeed, if
s(η̄) ≤ s∗, then s(η) = s(η̄)− 2 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = −1 the exiting move is admissible only in the case s(η̄) ≥ s∗. Indeed, if s(η̄) ≤
s∗ − 1, then s(η) = s(η̄)− 1 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 0 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 1. Indeed, if
s(η̄) ≤ s∗ − 2, then s(η) = s(η̄) ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 1 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 2. Indeed, if
s(η̄) ≤ s∗ − 3, then s(η) = s(η̄) + 1 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 2 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 3. Indeed, if
s(η̄) ≤ s∗ − 4, then s(η) = s(η̄) + 2 ≤ s∗ − 2, which implies η ∈ B.
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• If ∆s = 3 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 4. Indeed, if
s(η̄) ≤ s∗ − 5, then s(η) = s(η̄) + 3 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 4 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 5. Indeed, if
s(η̄) ≤ s∗ − 6, then s(η) = s(η̄) + 4 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 5 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 6. Indeed, if
s(η̄) ≤ s∗ − 7, then s(η) = s(η̄) + 5 ≤ s∗ − 2, which implies η ∈ B.

We can justify the previous remark looking at the definition of the set B.

4.1 Main propositions

In this subsection we give the proof of the main Theorem 3.7, subdivided in the several following
propositions, where we emphasize the cases in which η is in B, or η is not in B but H(η̄) > Γ,
or the cases in which η is not in B but H(η̄) = Γ and η̄ ∈ P. We recall (2.32), (3.29) and (4.1)
for the definitions of P, B and ∆s respectively.

Proposition 4.6 Let (η̄, η) be a move with η̄ ∈ B. If ∆s ≤ −2, then either η ∈ B or η /∈ B and
H(η̄) > Γ.

We refer to subsection 4.3 for the proof of the Proposition 4.6.

Proposition 4.7 Let (η̄, η) be a move with η̄ ∈ B. If ∆s ≥ −1 and p2(η̄) ≤ l∗2 − 1, then either
η ∈ B or η /∈ B and H(η̄) > Γ.

We refer to subsection 4.4 for the proof of the Proposition 4.7.
The following results consider the case p2(η̄) ≥ l∗2, which we subdivide in different propositions
because of the lengthy proof. Note that in some of these propositions we identify the set P.

Proposition 4.8 Let (η̄, η) be a move with η̄ ∈ B. If ∆s ≥ 3, pmin(η) ≥ 4 and p2(η̄) ≥ l∗2, then
either η ∈ B, or η /∈ B and H(η̄) > Γ.

We refer to subsection 4.5 for the proof of the Proposition 4.8.

Proposition 4.9 Let (η̄, η) be a move with η̄ ∈ B. If ∆s = −1 and p2(η̄) ≥ l∗2, then we have
one of the following:

(i) either η ∈ B;

(ii) or η̄ ∈ P1, H(η̄) = Γ and η ∈ B;

(iii) or η /∈ B and max{H(η̄), H(η)} > Γ, with η̄ /∈ P.

We refer to subsection 4.6 for the proof of the Proposition 4.9.

Proposition 4.10 Let (η̄, η) be a move with η̄ ∈ B. If ∆s = 0 and p2(η̄) ≥ l∗2, then we have
one of the following:

(i) either η ∈ B;

(ii) or η /∈ B and H(η̄) = Γ, with η̄ ∈ P2;
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(iii) or η /∈ B and H(η̄) > Γ, with η̄ /∈ P.

We refer to subsection 4.7 for the proof of the Proposition 4.10.

Proposition 4.11 Let (η̄, η) be a move with η̄ ∈ B. If ∆s = 1 and p2(η̄) ≥ l∗2, then we have
one of the following:

(i) either η ∈ B;

(ii) or η /∈ B and H(η̄) = Γ, with η̄ ∈ P2;

(iii) or η /∈ B and H(η̄) > Γ, with η̄ /∈ P.

We refer to subsection 4.8 for the proof of the Proposition 4.11.

Proposition 4.12 Let (η̄, η) be a move with η̄ ∈ B; if ∆s = 2, pmin(η) ≥ 4 and p2(η̄) ≥ l∗2 then
either η ∈ B or η /∈ B and max{H(η̄), H(η)} > Γ.

We refer to subsection 4.9 for the proof of the Proposition 4.12.

Proof of the main Theorem 3.7.
Let (η̄, η) ∈ ∂B be the exiting move from B and ∆s be its corresponding variation of s. If

pmin(η) ≤ 3, for ε� U2, from explicit computations follows that

H(η) > Γ. (4.2)

From now on we assume that pmin(η) ≥ 4.
Combining Lemma 4.2 and Propositions 4.6, 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 we complete

the proof. In particular, using the proof of Proposition 4.9(ii) below, Remark 4.19 with the
proof and Proposition 3.3, we can get point (i) and (ii).

�

4.2 Useful Lemmas

In this subsection we give some lemmas that will be useful for the proof of the propositions
reported in subsection 4.1. The proof of the lemmas is postponed to subsection 4.10. Recall def.
4.1 for the definition of a move.

Lemma 4.13 Let (η̄, η) ∈ X ×X be a move, then each horizontal (resp. vertical) line becoming
inactive decreases the vertical (resp. horizontal) projection p2(η̄) (resp. p1(η̄)).

Remark 4.14 With a similar argument as in the proof of Lemma 4.13, we note that each
horizontal (resp. vertical) line becoming active increases the vertical (resp. horizontal) projection
p2(η̄) (resp. p1(η̄)).

Lemma 4.15 In a single move the lines r2 and r5 can not become inactive and the lines r6 and
r7 can not become active.

Lemma 4.16 Let (η̄, η) be a move. We have

(i) if the line r1 becomes inactive with the move, then no line can become active;
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(ii) if the line r1 becomes active with the move, then the lines that can become inactive are r3

and r4.

Lemma 4.17 Let (η̄, η) be a move with η̄ ∈ B and ∆s be its corresponding variation of s, with
∆s ≥ −2 and s(η) ≥ s∗ − 1. If p2(η) ≥ l∗2 and either the line r3 (respectively r4) becomes active
in the move or r1 becomes active in the move and x5 is empty, we have

(i) if s(η) = s∗ − 1, then η ∈ B;

(ii) if s(η) ≥ s∗ and p2(η) = l∗2, then η ∈ B.

Lemma 4.18 Let (η̄, η) be a move with η̄ ∈ B and ∆s be its corresponding variation of s, with
∆s ≥ −2. If p2(η̄) ≤ l∗2 − 1, then

(i) if one line among r3 and r4 becomes active and the line r1 does not become active in the
move, then η ∈ B;

(ii) if only two horizontal lines become active in the move and either p2(η̄) ≤ l∗2− 2 or p2(η̄) =
l∗2 − 1 and s(η) = s∗ − 1, then η ∈ B.

4.3 Proof of Proposition 4.6

Proof. By Lemma 4.2(i) we can distinguish four different cases corresponding to ∆s =
−5,−4,−3,−2. We analyze separately each case.

Case ∆s = −5. Let ∆s = −5 and (η̄, η) ∈ ∂B is the exiting move from B, i.e., η̄ ∈ B, η /∈ B
and P(η̄, η) > 0. By Remark 4.5 we may consider only the case s(η̄) ≥ s∗ + 4. Since η̄ ∈ B, by
(3.29) and s(η̄) ≥ s∗ + 4 we have only the following two cases:

(a) p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1;

(b) p2(η̄) ≤ l∗2 − 1.

Since by Lemma 4.15 the lines r2 and r5 cannot become inactive, in order to obtain ∆s = −5
necessarily five lines become inactive and these lines are r1, r3, r4, r6 and r7. Among them,
three are horizontal and two are vertical. By Lemma 4.13, we get{

p1(η) = p1(η̄)− 2,
p2(η) = p2(η̄)− 3.

(4.3)

In both cases (a) and (b) we consider p2(η̄) ≤ l∗2, thus by (4.3) we obtain that p2(η) ≤ l∗2 − 3 ≤
l∗2 − 1. Thus we can conclude that η ∈ B, i.e., in this case it is impossible to leave the set B.

Case ∆s = −4. Let ∆s = −4 and (η̄, η) ∈ ∂B is the exiting move from B. By Remark 4.5 we
can consider only the case s(η̄) ≥ s∗ + 3. Again, since η̄ ∈ B, by (3.29) and s(η̄) ≥ s∗ + 3, we
only have the following two cases:

(a) p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1;

(b) p2(η̄) ≤ l∗2 − 1.

We observe that in order to obtain ∆s = −4 we have the two following possibilities:
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Case I. four lines becoming inactive and no line become active;

Case II. five lines becoming inactive and one line becoming active.

Case I. By Lemma 4.15 we have that at least one horizontal line becomes inactive, so by Lemma
4.13 in both cases (a) and (b) we get p2(η) ≤ p2(η̄)−1 ≤ l∗2−1 and thus it is impossible to leave
B.

Case II. By Lemma 4.15 the lines becoming inactive are r1, r3, r4, r6 and r7, so the line
becoming active is either r2 or r5. If the line that becomes active is r5, then the site x5 must
contain a free particle in η̄. Thus the line r1 can not become inactive, so this case is not
admissible (see Figure 10). If the line becoming active is r2, in at least one site among x3, x4

and x5 there must be a free particle in η̄. If the free particle is in x3 or in x4, then it cannot
happen that both lines r3 and r4 become inactive. Thus we consider the case in which the free
particle is in x5. As in the case in which r5 becomes active, the line r1 can not become inactive.
Thus this case is not admissible.

Case ∆s = −3. Let ∆s = −3 and (η̄, η) ∈ ∂B is the exiting move from B. By Remark 4.5 we
may consider only the case s(η̄) ≥ s∗ + 2. Again, since η̄ ∈ B, by (3.29) and s(η̄) ≥ s∗ + 2, we
only have the following two cases:

(a) p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1;

(b) p2(η̄) ≤ l∗2 − 1.

We note that in order to obtain ∆s = −3 we have the three following possibilities:

Case I. five lines becoming inactive and two lines becoming active;

Case II. four lines becoming inactive and one line becoming active;

Case III. three lines becoming inactive and no line becoming active.

Case I. By Lemma 4.15 the lines that must become inactive are r1, r3, r4, r6 and r7: thus the
two lines becoming active are r2 and r5 (both vertical lines). Thus by Lemma 4.13 in both cases
(a) and (b) we have p2(η) = p2(η̄)− 3 ≤ l∗2 − 3 ≤ l∗2 − 1, so it is impossible to leave B.

Case II. Again by Lemma 4.15 the lines becoming inactive are four among r1, r3, r4, r6 and
r7. Every choice of four of these lines includes at least two horizontal lines, so, even though one
horizontal line becomes active, by Lemma 4.13 we obtain p2(η) ≤ p2(η̄) − 1 ≤ l∗2 − 1 in both
cases (a) and (b). Thus it is impossible to leave B.

Case III. Three lines must become inactive. By Lemma 4.15 we know that at least one hori-
zontal line must become inactive. Since in both cases (a) and (b) p2(η̄) ≤ l∗2, by Lemma 4.13 we
get p2(η) ≤ p2(η̄)− 1 ≤ l∗2 − 1. Thus it is impossible to leave B.

Case ∆s = −2. Let ∆s = −2 and (η̄, η) ∈ ∂B is the exiting move from B. By Remark 4.5 we
can only consider the case s(η̄) ≥ s∗ + 1. Again, since η̄ ∈ B, by (3.29) and s(η̄) ≥ s∗ + 1, we
only have the following two cases:

(a) p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1;

(b) p2(η̄) ≤ l∗2 − 1.
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We note that in order to obtain ∆s = −2 we have the three following possibilities:

Case I. four lines becoming inactive and two lines becoming active;

Case II. three lines becoming inactive and one line becoming active,

Case III. two lines becoming inactive and no line becoming active.

Case I. By Lemma 4.15 the lines becoming inactive are four among r1, r3, r4, r6 and r7.
Every choice of four of these lines includes at least two horizontal lines and thus the two lines
becoming active include at most one horizontal line. Then in both cases (a) and (b) we get
p2(η) ≤ p2(η̄)− 1 ≤ l∗2 − 1. Thus it is impossible to leave B.

Case II. Three lines become inactive and one line becomes active. We distinguish the following
cases:

• If the line r1 becomes inactive, by Lemma 4.16(i) we know that no line can become active,
so this case is not admissible.

• If the line r1 becomes active, by Lemma 4.16(ii) we know that the only lines that can
become inactive are r3 and r4. Since we require three deactivating lines, we deduce that
this case is not admissible.

• If the line r1 does not become active nor inactive, by Lemma 4.15 the lines becoming
inactive are three among r3, r4, r6 and r7 and the line becoming active is one among r2,
r3, r4 and r5.

-) If the line becoming active is r3, the three lines becoming inactive are necessarily r4,
r6 and r7. Since r4 becomes inactive the site x4 is empty and y2 is occupied; since
r3 becomes active in the site x3 there is a free particle in η̄ (see Figure 11). Since
the line r7 becomes active, the site y3 must be occupied. Furthermore, the site s is
empty, otherwise lines r4 and r6 can not become inactive. In this case we have one
horizontal line becoming active and one horizontal becoming active, so we obtain{

p1(η) = p1(η̄)− 2,
p2(η) = p2(η̄).

(4.4)

First, we consider the case (a). If s(η) = s∗ − 1, by Lemma 4.17(i) we conclude that
it is impossible to leave B. If s(η) ≥ s∗, since by (4.4) p2(η) = p2(η̄) = l∗2, by Lemma
4.17(ii) we conclude that it is impossible to leave B.

In the case (b), by (4.4), we get p2(η) = p2(η̄) ≤ l∗2 − 1, thus it is impossible to leave
B.

-) If the line becoming active is r4 we conclude by symmetry with a similar argument.

-) If r3 and r4 do not become active, in both cases (a) and (b) we have p2(η) ≤ p2(η̄)−1 ≤
l∗2 − 1 and thus it is impossible to leave B.

Case III. There are two lines becoming inactive and no line becoming active. By Lemma 4.15
the lines that can become inactive are two among r1, r3, r4, r6 and r7. If at least one horizontal
line becomes inactive, in both cases (a) and (b) we get p2(η) ≤ p2(η̄)−1 ≤ l∗2−1 and thus η ∈ B.
It remains to analyze the case in which the two lines that become inactive are both vertical: r6
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Figure 11: Here we depict part of the configuration in the case II for ∆s = −2.

and r7. Since r7 must become inactive, it is necessary to have site y3 occupied and sites z1, z2

and z3 empty (see Figure 10).
First, we consider the case (a). We note that the sites y1 and t can not be both occupied,

otherwise the line r6 can not become inactive. For the same reason also the sites y2 and s can not
be both occupied. Furthermore, if y1 is occupied then x3 is empty and similarly if y2 is occupied
then x4 is empty. Thus, if either η̄cl is connected, or both η̄cl and ηcl are not connected, we get
v(η) ≥ v(η̄)− 2. Indeed, if the sites y1 and y2 are both empty, the particles in the sites x1 and
y3 compose a cluster in η̄, thus with the move we get v(η) ≥ v(η̄): in particular v(η) ≥ v(η̄)− 2.
If the sites y1 and y2 are both occupied we note that the sites z1 and z2 are the unique vacancies
in η̄ that are not vacancies in η, since the sites t, x3, s and x4 are necessarily empty for what
we have already observed. Thus we get v(η) ≥ v(η̄) − 2. If only one site among y1 and y2 is
occupied, then only one vacancy in η̄ is not a vacancy in η, i.e., either z1 if the site y1 is occupied
or z2 if the site y2 is occupied. Since p2(η) = p2(η̄), we get η ∈ B, indeed

v(η) ≥ v(η̄)− 2 ≥ pmax(η̄)− 3 = p1(η)− 1 = pmax(η)− 1.

If η̄cl is not connected and ηcl is connected, since the moved particle and the particle in y3 are free
in η, we deduce that at least one of the clusters in η̄cl must intersect r1: η̄cl ∩{r1 \{x1, y3}} 6= ∅.
This implies that g′2(η̄) ≥ 1. By (a) and s(η̄) ≥ s∗+ 1, we have that the circumscribed rectangle
of η̄ is R(2l∗2 +k, l∗2) for any k ≥ 0. Since k ≥ 0, 0 < δ < 1 and ε� U2, we get H(η̄) > Γ, indeed

H(η̄) ≥ H(R(2l∗2 + k, l∗2)) + ε(2l∗2 + k − 1) + U1 =
= U1l

∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 + kl∗2) + 2εl∗2 + εk − ε+ U1 > Γ⇔

⇔ ε(1 + k(1− δ)− δ) > 0.
(4.5)

In the case (b), since p2(η) = p2(η̄), we get p2(η) ≤ l∗2 − 1 and thus η ∈ B.
�

4.4 Proof of Proposition 4.7

Proof. By Lemma 4.2(i) there are seven cases corresponding to ∆s = −1, 0, 1, 2, 3, 4, 5. We
analyze separately each case.

Case ∆s = −1. We note that in order to obtain ∆s = −1 we have the four following possibilities:
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Case I. four lines becoming inactive and three lines becoming active;

Case II. three lines becoming inactive and two lines becoming active;

Case III. two lines becoming inactive and one line becoming active;

Case IV. one line becoming inactive and no line becoming active.

Case I. By Lemma 4.15 the lines r2 and r5 can not become inactive, thus the lines that become
inactive are four among r1, r3, r4, r6 and r7. Every choice of four of these lines includes at least
two horizontal lines becoming inactive and then at most one horizontal line becoming active.
Thus by Lemma 4.13 we get p2(η) ≤ p2(η̄)− 1 ≤ l∗2 − 2 ≤ l∗2 − 1, so it is impossible to leave B.

Case II. Again by Lemma 4.15 we know that lines r2 and r5 can not become inactive, thus the
lines that become inactive are three among r1, r3, r4, r6 and r7. We distinguish the following
cases:

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active and thus this
case is not admissible.

• If the line r1 becomes active, by Lemma 4.16(ii) the only lines that can become inactive
are r3 and r4. Since we require three deactivating lines, we deduce that this case is not
admissible.

• If the line r1 does not become active nor inactive, by Lemma 4.15 the lines becoming
inactive must be three among r3, r4, r6 and r7 and the lines becoming active must be two
among r2, r3, r4 and r5. Every choice of three of these deactivating lines includes at least
one horizontal line, so at most one horizontal line is becoming active. For this reason we
get p2(η) ≤ p2(η̄) ≤ l∗2 − 1 and thus it is impossible to leave B.

Case III. There are two lines becoming inactive and one line becoming active. If the activating
line is vertical, by Lemma 4.13 we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1 and thus it is impossible to leave
B, so we can assume for the rest of this case that the activating line is horizontal. If at least one
of the deactivating lines is horizontal we conclude as before. Indeed p2(η) ≤ p2(η̄) ≤ l∗2− 1, so it
is impossible to leave B. Thus we can reduce the proof to the case in which the two deactivating
lines are both vertical and the activating line is horizontal. Since by Lemma 4.15 the lines r2

and r5 can not become inactive, the lines that become inactive are necessarily r6 and r7. Since
r7 becomes inactive, the site y3 must be occupied and the sites z1, z2 and z3 must be empty (see
Figure 12). Thus the particle in x1 is not free in η̄ and the line r1 cannot become active, so the
activating line is either r3 or r4. By Lemma 4.18(i) we deduce that it is impossible to leave B.

Case IV. We have one deactivating line and no activating line. Thus p2(η) ≤ p2(η̄) − 1 ≤
l∗2 − 2 ≤ l∗2 − 1, so it is impossible to leave B.

Case ∆s = 0. We observe that in order to obtain ∆s = 0 we have the four following possibilities:

Case I. three lines becoming inactive and three lines becoming active;

Case II. two lines becoming inactive and two lines becoming active;

Case III. one line becoming inactive and one line becoming active;

Case IV. no line becoming inactive and no line becoming active.
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Figure 12: Here we depict part of the configuration in the case III for ∆s = −1.

Case I. Since by Lemma 4.15 lines r2 and r5 cannot become inactive, the lines becoming inactive
are three among r1, r3, r4, r6 and r7. Again we distinguish the following cases:

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active: this case is
not admissible.

• If the line r1 becomes active, by Lemma 4.16(ii) the only lines that can become inactive
are r3 and r4. Since we require three deactivating lines, we deduce that this case is not
admissible.

• If the line r1 does not become active nor inactive, then the lines becoming inactive are
three among r3, r4, r6 and r7 and the lines becoming active are three among r2, r3, r4 and
r5. Every choice of three of these deactivating lines includes at least one horizontal line,
so at most one horizontal line is becoming active. Thus p2(η) ≤ p2(η̄) ≤ l∗2 − 1, so it is
impossible to leave B.

Case II. We have two deactivating and two activating lines. If the two activating lines are
vertical, then we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1, so in this case it is impossible to leave B. Thus we
can reduce the proof to the case in which at least one of the activating lines is horizontal. Again
we consider the following cases:

• If the line r1 becomes inactive, again from Lemma 4.16(i) we deduce that this case is not
admissible, since no line can become active.

• If the line r1 becomes active, again from Lemma 4.16(ii) we deduce that the two deacti-
vating lines are r3 and r4. Thus we get p2(η) = p2(η̄)− 1 ≤ l∗2 − 1: this implies that it is
impossible to leave B.

• If the line r1 does not become active nor inactive, the deactivating lines are two among
r3, r4, r6, r7 and the activating lines are two among r2, r3, r4 and r5. If at least one
deactivating line is horizontal, we have that at most one activating line is horizontal, thus
we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1: this implies that η ∈ B. Thus we analyze the case in which
the deactivating lines are both vertical: r6 and r7. We focus on the case in which at least
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one activating line is horizontal, i.e., the line r3 and/or r4, otherwise p2(η) = p2(η̄) ≤ l∗2−1
and thus it is impossible to leave B. If only one horizontal line becomes active, by Lemma
4.18(i) we conclude that η ∈ B. In the case in which two horizontal lines become active, if
p2(η̄) ≤ l∗2−2 or p2(η̄) = l∗2−1 and s(η) = s∗−1, then by Lemma 4.18(ii) we conclude that
η ∈ B. By Remark 4.5 we know that s(η̄) = s(η) ≥ s∗ − 1. Hence we are left to consider
the case s(η̄) ≥ s∗. We obtain that the circumscribed rectangle of η̄ is R(2l∗2 +k−1, l∗2−1)
for any k ≥ 1. Recalling that Γ = U1l

∗
2 + 2U2l

∗
2 + U1 − U2 − 2ε(l∗2)2 + 3εl∗2 − 2ε, since

n(η̄) ≥ 2, k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2 − 1)) + 2∆ > Γ⇔ 2U2 > ε(1 + k(δ − 1)). (4.6)

Case III. We have one activating and one deactivating line. If the activating line is vertical
we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1 and we deduce that it is impossible to leave B. Now we assume
that the activating line is horizontal. If also the deactivating line is horizontal, we get p2(η) =
p2(η̄) ≤ l∗2 − 1, thus it is impossible to leave B. We can reduce the proof to the case in which
the activating line is horizontal (r1 or r3 or r4) and the deactivating line is vertical (r6 or r7).
We distinguish the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) no vertical line can become inactive, thus
this case is not admissible.

• If the line r3 (r4 respectively) becomes active, by Lemma 4.18(i) we deduce that η ∈ B,
since by hypotheses p2(η̄) ≤ l∗2 − 1.

Case IV. We have no deactivating and no activating line, thus we get p2(η) = p2(η̄) ≤ l∗2 − 1,
so it is impossible to leave B.

Case ∆s = 1. We note that in order to obtain ∆s = 1 we have the four following possibilities:

Case I. one activating line and no deactivating line;

Case II. two activating lines and one deactivating line;

Case III. three activating lines and two deactivating lines;

Case IV. four activating lines and three deactivating lines.

Case I. We have only to consider the case in which the activating line is horizontal, otherwise
we get p2(η) = p2(η̄) ≤ l∗2 − 1: thus η ∈ B and it is impossible to leave B. If the activating line
is ri, with i ∈ {3, 4}, by Lemma 4.18(i) we deduce that it is impossible to leave B. Otherwise
the horizontal line becoming active is r1. We distinguish the following two cases:

(a) If the site x5 is empty, by Lemma 4.17(i),(ii) we can conclude that it is impossible to leave
B.

(b) If the site x5 is occupied, in order that r1 becomes active the particle in x5 should be free
in η̄. This implies that n(η̄) ≥ 2 (x1 and x5 contain a free particle). Since p2(η̄) = l∗2 − 1,
by Remark 4.5 we deduce that the circumscribed rectangle of η̄ is R(2l∗2 + k − 2, l∗2 − 1)
for any k ≥ 0. Since k ≥ 0, ε� U2 and 0 < δ < 1, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 2, l∗2 − 1)) + 2∆ =
= U1l

∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 − 4l∗2 + kl∗2 − k + 2) + U1 − 2ε > Γ⇔

⇔ 2U2 > ε(2− δ + k(δ − 1)).
(4.7)
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Case II. We have two activating lines and one deactivating line. If no horizontal line becomes
active, we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1, thus η ∈ B. Now we consider the case in which at least
one horizontal line becomes active. In particular, the relevant cases are the followings:

• An horizontal line becomes active and no horizontal line becomes inactive.

-) If r1 is the horizontal line becoming active, by Lemma 4.16(ii) no vertical line can be
deactivated and thus this case is not admissible.

-) If r3 (respectively r4) is the horizontal line becoming active, by Lemma 4.18(i) we
get η ∈ B.

• Two horizontal lines become active, thus n(η̄) ≥ 2. If p2(η̄) ≤ l∗2 − 2 or p2(η̄) = l∗2 − 1 and
s(η̄) = s∗ − 2 that implies s(η) = s∗ − 1, we get η ∈ B. By Remark 4.5 we deduce that
s(η̄) ≥ s∗−2, so we are left to consider the case s(η̄) ≥ s∗−1 that implies s(η) ≥ s∗. Thus
the circumscribed rectangle of η̄ is R(2l∗2 + k− 2, l∗2 − 1) for any k ≥ 1. Since k ≥ 1, δ < 1
and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 2, l∗2 − 1)) + 2∆ =
= U1l

∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 + kl∗2 − k − 4l∗2 + 2) + U1 − 2ε > Γ⇔

⇔ 2U2 > ε(2− δ + k(δ − 1)).
(4.8)

Case III. We have three activating lines and two deactivating lines. The lines becoming active
are three among r1, r2, r3, r4, r5 and the lines becoming inactive are two among r1, r3, r4, r6

and r7. Again we distinguish the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) the two deactivating lines are necessarily
r3 and r4, that are both horizontal. Thus we get p2(η) = p2(η̄) − 1 ≤ l∗2 − 2 ≤ l∗2 − 1, so
we conclude that it is impossible to leave B.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active and thus this
case is not admissible.

• If the line r1 does not become active nor inactive, the lines becoming active are three
among r2, r3, r4, r5 and the lines becoming inactive are two among r3, r4, r6 and r7. If
no horizontal line becomes active, we get p2(η) = p2(η̄) ≤ l∗2 − 1 and thus it is impossible
to leave B, otherwise we consider the following cases:

-) Two horizontal lines become active, i.e., the lines r3 and r4 become active, thus n(η̄) ≥
2 (in the sites x3 and x4 there are free particles). If p2(η̄) ≤ l∗2−2 or p2(η̄) = l∗2−1 and
s(η̄) = s∗−2 that implies s(η) = s∗−1, by Lemma 4.18(ii) we get η ∈ B. By Remark
4.5 we deduce that s(η̄) ≥ s∗−2, so we are left to consider the case s(η̄) ≥ s∗−1 that
implies s(η) ≥ s∗. Thus by (4.8) we get H(η̄) ≥ H(R(2l∗2 + k − 2, l∗2 − 1)) + 2∆ > Γ
for any k ≥ 1.

-) Only one horizontal line becomes active, that is either r3 or r4. By Lemma 4.18(i),
we get η ∈ B.

Case IV. We have four activating lines and three deactivating lines. The lines becoming active
are four among r1, r2, r3, r4, r5 and the lines becoming inactive are three among r1, r3, r4, r6

and r7. Again we distinguish the following cases:
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• If the line r1 becomes active, by Lemma 4.16(ii) at most two lines (r3 and/or r4) can
become inactive, thus this case is not admissible.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line becomes active, thus this case is
not admissible.

• If the line r1 does not become active nor inactive, the lines becoming active are r2, r3, r4,
r5 and lines becoming inactive are only r6 and r7: this means that ∆s = 2, which is in
contradiction with ∆s = 1.

Case ∆s = 2. We observe that in order to obtain ∆s = 2 we have the three following possibili-
ties:

Case I. four activating lines and two deactivating lines;

Case II. three activating lines and one deactivating line;

Case III. two activating lines and no deactivating line.

Case I. By Lemma 4.15 the lines r6, r7 cannot become active and the lines r2, r5 cannot become
inactive. Thus the activating lines are four among r1, r2, r3, r4, r5 and the deactivating lines
are two among r1, r3, r4, r6 and r7. We distinguish the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) the lines r3 and r4 become inactive, that
are both horizontal. Thus we get p2(η) = p2(η̄) − 1 ≤ l∗2 − 2 ≤ l∗2 − 1, so it is impossible
to leave B.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active, thus this case
is not admissible.

• If the line r1 does not become active nor inactive, then the four activating lines are r2,
r3, r4, r5 and the two deactivating lines are r6 and r7. By Remark 4.5 we deduce that
s(η̄) ≥ s∗−3 that implies s(η) ≥ s∗−1. If p2(η̄) ≤ l∗2−2 or p2(η̄) = l∗2−1 and s(η) = s∗−1,
by Lemma 4.18(ii) we deduce that it is impossible to leave B. If s(η) ≥ s∗, that implies
s(η̄) ≥ s∗−2, the circumscribed rectangle of η̄ is R(2l∗2 +k−3, l∗2−1) for any k ≥ 1. Since
k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 1)) + 2∆ =
= U1l

∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 + kl∗2 − k − 5εl∗2 + 3) + U1 − U2 − 2ε > Γ⇔

⇔ 2U2 > ε(3− 2δ + k(δ − 1)).
(4.9)

Case II. We have three activating lines and one deactivating line. Again we distinguish the
following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) we know that either r3 or r4 becomes
inactive, that are both horizontal. If p2(η̄) ≤ l∗2 − 2, we get p2(η) ≤ p2(η̄) + 1 ≤ l∗2 − 1,
thus it is impossible to leave B. In the case p2(η̄) = l∗2 − 1 that implies p2(η) = l∗2 − 1, by
Lemma 4.17(i),(ii) we can conclude that it is impossible to leave B.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active and thus this
case is not admissible.
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• If the line r1 does not become active nor inactive, thus the activating lines are three among
r2, r3, r4, r5 and the deactivating line is one among r3, r4, r6 and r7. Every choice of three
of these activating lines includes at least one horizontal line. Thus the relevant cases are
the followings:

-) If one horizontal line becomes active, i.e., either r3 or r4, by Lemma 4.18(i) we deduce
that it is impossible to leave B.

-) If two horizontal lines become active, we get n(η̄) ≥ 2. By Remark 4.5 we deduce that
s(η̄) ≥ s∗−3 that implies s(η) ≥ s∗−1. If p2(η̄) ≤ l∗2−2 or p2(η̄) = l∗2−1 and s(η) =
s∗ − 1, by Lemma 4.18(ii) we deduce that it is impossible to leave B. If s(η) ≥ s∗,
that implies s(η̄) ≥ s∗−2, by (4.9) we get H(η̄) ≥ H(R(2l∗2 +k−3, l∗2−1)) + 2∆ > Γ
for any k ≥ 1.

Case III. We have two activating lines and no deactivating line. If no horizontal line becomes
active, we get p2(η) = p2(η̄) ≤ l∗2 − 1 and thus it is impossible to leave B. Thus we can reduce
our analysis to the case in which at least one horizontal line becomes active. We distinguish the
following cases:

• If the line r1 becomes active, we distinguish the following cases:

-) If two horizontal lines become active, i.e., the line r1 and one among r3 and r4, by
Remark 4.5, we deduce that s(η̄) ≥ s∗ − 3 that implies s(η) ≥ s∗ − 1. If p2(η̄) ≤
l∗2 − 2 or p2(η̄) = l∗2 − 1 and s(η) = s∗ − 1, by Lemma 4.18(ii) we deduce that it
is impossible to leave B. If s(η) ≥ s∗, that implies s(η̄) ≥ s∗ − 2, by (4.9) we get
H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 1)) + 2∆ > Γ for any k ≥ 1.

-) If only one horizontal line become active, i.e., the line r1, we get p2(η) = p2(η̄) + 1.
If p2(η̄) ≤ l∗2 − 2, we get p2(η) ≤ l∗2 − 1 and thus it is impossible to leave B. Suppose
now that the site x5 is empty. If p2(η̄) = l∗2 − 1 then p2(η) = l∗2, so by Lemma
4.17(i),(ii) we conclude that it is impossible to leave B. Hence we are left to consider
the case x5 occupied. Thus x5 must contain a free particle, otherwise the line r1 is
already active in η̄. If p2(η̄) = l∗2 − 1 then p2(η) = l∗2, so by (4.9) we get H(η̄) ≥
H(R(2l∗2 + k − 3, l∗2 − 1)) + 2∆ > Γ for any k ≥ 1.

• If the line r1 does not become active, the horizontal lines that can become active are r3

and r4. We distinguish the following cases:

-) If only one horizontal line become active, i.e., either r3 or r4, by Lemma 4.18(i) we
get η ∈ B.

-) If two horizontal lines become active, i.e., the lines r3 and r4, by Remark 4.5 we deduce
that s(η̄) ≥ s∗ − 3 that implies s(η) ≥ s∗ − 1. If p2(η̄) ≤ l∗2 − 2 or p2(η̄) = l∗2 − 1 and
s(η) = s∗−1, by Lemma 4.18(ii) we deduce that it is impossible to leave B. If s(η) ≥
s∗, that implies s(η̄) ≥ s∗−2, by (4.9) we get H(η̄) ≥ H(R(2l∗2+k−3, l∗2−1))+2∆ > Γ
for any k ≥ 1.

Case ∆s = 3. We note that in order to obtain ∆s = 3 we have the three following possibilities:

Case I. five activating lines and two deactivating lines;

Case II. four activating lines and one deactivating line;
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Case III. three activating lines and no deactivating line.

Case I. Since by Lemma 4.15 the lines r6 and r7 cannot become active, thus the lines becoming
active are r1, r2, r3, r4, r5 and the lines becoming inactive are r6 and r7. Since r1 becomes
active, by Lemma 4.16(ii) the only lines that can become inactive are r3 and r4, which is in
contradiction with this case.

Case II. We have four activating lines and one deactivating line. Since by Lemma 4.15 the lines
r6 and r7 cannot become active, thus we have that at least one horizontal line must become
active. We distinguish the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) the deactivating line is one among r3

and r4, that are both horizontal. Thus we deduce that p2(η) ≤ p2(η̄) + 1. If only one
horizontal line becomes active we get p2(η) = p2(η̄) ≤ l∗2 − 1 and thus it is impossible to
leave B. If two horizontal lines become active, i.e., r1 and one line among r3 and r4, we
get p2(η) = p2(η̄) + 1. If p2(η̄) ≤ l∗2 − 2, we get p2(η) ≤ l∗2 − 1 and thus it is impossible
to leave B. If p2(η̄) = l∗2 − 1 then p2(η) = l∗2, so by Lemma 4.17(i),(ii) we conclude that
η ∈ B.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active and thus this
case is not admissible.

• If the line r1 does not become active nor inactive, we deduce that one horizontal line
becomes active and one horizontal becomes inactive. Thus p2(η) = p2(η̄) ≤ l∗2 − 1, so it is
impossible to leave B.

Case III. We have three activating lines and no deactivating line. Since by Lemma 4.15 the
lines r6 and r7 can not become active, we have that at least one horizontal line must become
active. We distinguish the following cases:

• If the line r1 becomes active, we distinguish the following cases:

-) If only one horizontal line becomes active, we get p2(η) = p2(η̄) + 1. If p2(η̄) ≤ l∗2− 2,
we get p2(η) ≤ l∗2 − 1, thus it is impossible to leave B. Suppose now that the site x5

is empty. If p2(η̄) = l∗2 − 1 then p2(η) = l∗2, so by Lemma 4.17(i),(ii) we conclude
that it is impossible to leave B. Hence we are left to consider the case x5 occupied.
Thus it contains a free particle in η̄, otherwise the line r1 is already active in η̄. If
p2(η̄) = l∗2 − 1 then p2(η) = l∗2, so by Remark 4.5 we deduce that the circumscribed
rectangle of η̄ is R(2l∗2 + k − 5, l∗2 − 1) for any k ≥ 1. Since n(η̄) ≥ 2, k ≥ 1, δ < 1
and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 5, l∗2 − 1)) + 2∆ =
= U1l

∗
2 + 2U2l

∗
2 + U1 + kU2 − 3U2 − ε(2(l∗2)2 + kl∗2 − k − 7l∗2 + 7) > Γ⇔

⇔ 2U2 > ε(5− 4δ + k(δ − 1)).
(4.10)

-) If two horizontal lines become active, i.e., the line r1 and one among r3 and r4, by
Remark 4.5 we deduce that s(η̄) ≥ s∗− 4 that implies s(η) ≥ s∗− 1. If p2(η̄) ≤ l∗2− 2
or p2(η̄) = l∗2−1 and s(η) = s∗−1, by Lemma 4.18(ii) we deduce that it is impossible
to leave B. If s(η) ≥ s∗, that implies s(η̄) ≥ s∗− 3, we obtain that the circumscribed
rectangle of η̄ is R(2l∗2 + k − 4, l∗2 − 1) for any k ≥ 1. Since n(η̄) ≥ 2, k ≥ 1, δ < 1
and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 4, l∗2 − 1)) + 2∆ > Γ⇔ 2U2 > ε(4− 3δ + k(δ − 1)). (4.11)
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-) If three horizontal lines become active, we get p2(η) = p2(η̄) + 3. If p2(η̄) ≤ l∗2− 4, we
get p2(η) ≤ l∗2 − 1, thus it is impossible to leave B. If p2(η̄) = l∗2 − 3 then p2(η) = l∗2,
so by Lemma 4.17(i),(ii) we conclude that η ∈ B. By Remark 4.5 we know that
s(η̄) ≥ s∗−4. If s(η̄) = s∗−4 then s(η) = s∗−1, thus by Lemma 4.17(i) we conclude
that it is impossible to leave B. If s(η̄) ≥ s∗ − 3, with p2(η̄) = l∗2 − 2 that implies
p2(η) = l∗2 + 1, we get H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 2)) + 3∆ > Γ for any k ≥ 1,
by a direct computation, since n(η̄) ≥ 3. We refer to the Appendix for the explicit
computation.

• If the line r1 does not become active, the horizontal lines that can become active are r3

and r4. Again we distinguish the following cases:

-) If only one horizontal line becomes active, by Lemma 4.18(i), we get η ∈ B.

-) If two horizontal lines become active, i.e., the lines r3 and r4, we get p2(η) = p2(η̄)+2.
By Remark 4.5 we know that s(η̄) ≥ s∗−4, that implies s(η) ≥ s∗−1. If p2(η̄) ≤ l∗2−2
or p2(η̄) = l∗2−1 and s(η) = s∗−1, by Lemma 4.18(ii) we obtain that it is impossible
to leave B. If s(η̄) ≥ s∗ − 3, that implies s(η) ≥ s∗, with p2(η̄) = l∗2 − 1 and then
p2(η) = l∗2 + 1, by (4.11) we get H(η̄) ≥ H(R(2l∗2 + k − 4, l∗2 − 1)) + 2∆ > Γ for any
k ≥ 1, since n(η̄) ≥ 2.

Case ∆s = 4. We observe that in order to obtain ∆s = 4 we have the two following possibilities:

Case I. five activating lines and one deactivating line;

Case II. four activating lines and no deactivating line.

Case I. The five activating lines are r1, r2, r3, r4 and r5, thus we get p2(η) = p2(η̄) + 3 and
n(η̄) ≥ 3. If p2(η̄) ≤ l∗2 − 4, we get p2(η) ≤ l∗2 − 1 and thus η ∈ B. If p2(η̄) = l∗2 − 3 then
p2(η) = l∗2, so by Lemma 4.17(i),(ii) we deduce that it is impossible to leave B. By Remark
4.5 we know that s(η̄) ≥ s∗ − 5. If s(η̄) = s∗ − 5 then s(η) = s∗ − 1, thus by Lemma 4.17(i)
we conclude that it is impossible to leave B. Hence we are left to the case s(η̄) ≥ s∗ − 4, with
p2(η̄) = l∗2 − 1 and p2(η̄) = l∗2 − 2. In both cases, we directly get H(η̄) > Γ for any k ≥ 1. We
refer to the Appendix for the explicit computations.

Case II. We have four activating lines and no deactivating line. We observe that there are at
least two horizontal lines becoming active, so at least one line among r3 and r4 must become
active. If p2(η̄) ≤ l∗2 − 3, we get p2(η) ≤ p2(η̄) + 2 ≤ l∗2 − 1 and thus it is impossible to leave
B. If l∗2 − 2 ≤ p2(η̄) ≤ l∗2 − 1 and p2(η) = l∗2, by Lemma 4.17(i),(ii) we conclude that it is
impossible to leave B. By Remark 4.5 we know that s(η̄) ≥ s∗ − 5. Thus we analyze separately
the case s(η̄) = s∗ − 5 and s(η̄) ≥ s∗ − 4. If s(η̄) = s∗ − 5 then s(η) = s∗ − 1, so by Lemma
4.17(i) we deduce that it is impossible to leave B. If s(η̄) ≥ s∗− 4, we have to analyze the cases
p2(η̄) = l∗2 − 2 and p2(η̄) = l∗2 − 1. Thus we get H(η̄) > Γ with a direct computation. We refer
to the Appendix for the explicit computations.

Case ∆s = 5. We note that the unique way to obtain ∆s = 5 is with five activating lines and
no deactivating line. By Lemma 4.15 the lines becoming active are necessarily r1, r2, r3, r4 and
r5: three are horizontal and two are vertical. Thus we get p2(η) = p2(η̄) + 3. If p2(η̄) ≤ l∗2 − 4,
we get p2(η) ≤ l∗2 − 1, so it is impossible to leave B. If p2(η̄) = l∗2 − 3 then p2(η) = l∗2, so by
Lemma 4.17(i),(ii) we can conclude that it is impossible to leave B. For the remaining cases, by
Remark 4.5 we know that s(η̄) ≥ s∗ − 6, that implies s(η) ≥ s∗ − 1. We analyze separately the
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cases s(η̄) = s∗−6 and s(η̄) ≥ s∗−5. If s(η̄) = s∗−6 then s(η) = s∗−1, thus by Lemma 4.17(i)
we can conclude that η ∈ B. If s(η̄) ≥ s∗ − 5 with a direct computation we get H(η̄) > Γ, since
n(η̄) ≥ 4. We refer to the Appendix for the explicit computations. �

4.5 Proof of Proposition 4.8

Proof. Let (η̄, η) be a move with η̄ ∈ B and ∆s be its corresponding variation of s; by Lemma
4.2(i) we have to consider only the cases corresponding to ∆s = 3, 4, 5.

Case ∆s = 3. Let ∆s = 3; by Remark 4.5(i) we consider only the case s(η̄) ≥ s∗ − 4. For the
convenience of the proof, we distinguish the following cases:

(a) s(η̄) = s∗ − 4;

(b) s∗ − 3 ≤ s(η̄) ≤ s∗ − 1;

(c) s(η̄) ≥ s∗.

First we consider the case (a). If s(η̄) = s∗ − 4, then s(η) = s∗ − 1. If p2(η) ≤ l∗2 − 1, we
directly get η ∈ B. If p2(η) ≥ l∗2, by Lemma 4.2(ii) we obtain

v(η) ≥ 3pmin(η)− 6 ≥ pmin(η)− 1⇔ 2pmin(η) ≥ 5.

Since pmin(η) ≥ 4, by (3.29) we deduce that in the case (a) it is impossible to leave B.
By Lemma 4.2(ii) we have n(η̄) ≥ 2. The circumscribed rectangle of η̄ is R(2l∗2−k−x, l∗2 +k)

for any k ≥ 0, where in the case (b) 2 ≤ x ≤ 4, and in the case (c) x ≤ 1. In the case (b) we
obtain

H(η̄) ≥ H(R(2l∗2 − k − x, l∗2 + k)) + 2∆ > Γ⇔
⇔ εk2 + k[U1 − U2 − εl∗2 + xε] + U1 + 3U2 − xU2 + xεl∗2 − 3εl∗2 > 0.

(4.12)

Since k ≥ 0, x ≥ 2, δ < 1 and ε� U2 we obtain H(η̄) > Γ, indeed

U1 − U2 − εl∗2 + xεU1 − 2U2 − εδ + xε > ε(x− δ) ≥ ε(2− δ) > ε > 0
U1 + 3U2 − xU2 + xεl∗2 − 3εl∗2 = U1 + xεδ − 3εδ ≥ U1 − εδ � U1 − U2 > 0.

(4.13)

In the case (c), since s(η̄) ≥ s∗, by (3.29) we deduce that p2(η̄) = l∗2, so in this case k = 0
and v(η̄) ≥ pmax(η̄)− 1. Since x ≤ 1, 1− δ > 0 and U2 � ε, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − x, l∗2)) + ε(2l∗2 − x− 1) + 2∆ > Γ⇔
⇔ 2U2 + U1 > ε(1 + x(1− δ)). (4.14)

This concludes the proof in the case ∆s = 3.

Case ∆s = 4. Let ∆s = 4; by Remark 4.5 we consider only the case s(η̄) ≥ s∗ − 5. For the
convenience of the proof, we distinguish the following cases:

(a) s(η̄) = s∗ − 5;

(b) s∗ − 4 ≤ s(η̄) ≤ s∗ − 1;

(c) s(η̄) ≥ s∗.

47



First, we consider the case (a). If s(η̄) = s∗ − 5, we get s(η) = s∗ − 1. If p2(η) ≤ l∗2 − 1, we
directly get η ∈ B. If p2(η) ≥ l∗2, by Lemma 4.2(ii) we obtain

v(η) ≥ 4pmin(η)− 7 ≥ pmin(η)− 1⇔ pmin(η) ≥ 2.

Since pmin(η) ≥ 4, by (3.29) we obtain that in the case (a) it is impossible to leave B.
By Lemma 4.2(ii) we have n(η̄) ≥ 3. The circumscribed rectangle of η̄ is R(2l∗2−k−x, l∗2 +k)

for any k ≥ 0, where in the case (b) 2 ≤ x ≤ 5, and in the case (c) x ≤ 1. In the case (b), the
proof is analogue to the one for ∆s = 3, so we get H(η̄) ≥ H(R(2l∗2 − k − x, l∗2 + k)) + 3∆ > Γ
and we refer to the Appendix for the explicit computation.

In the case (c), since s(η̄) ≥ s∗, by (3.29) we deduce that p2(η̄) = l∗2, so in this case k = 0
and v(η̄) ≥ pmax(η̄) − 1. Thus we get H(η̄) ≥ H(R(2l∗2 − x, l∗2)) + ε(2l∗2 − x − 1) + 3∆ > Γ
and we refer to the Appendix for the explicit computation. This concludes the proof in the case
∆s = 4.

Case ∆s = 5. Let ∆s = 5; by Remark 4.5 we consider only the case s(η̄) ≥ s∗ − 6. For the
convenience of the proof, we distinguish the following cases:

(a) s(η̄) = s∗ − 6;

(b) s∗ − 5 ≤ s(η̄) ≤ s∗ − 1;

(c) s(η̄) ≥ s∗.

First we consider case (a). If s(η̄) = s∗ − 6, then s(η) = s∗ − 1. If p2(η) ≤ l∗2 − 1, we get
η ∈ B. If p2(η) ≥ l∗2, by Lemma 4.2(ii) we obtain

v(η) ≥ 5pmin(η)− 8 ≥ pmin(η)− 1⇔ 4pmin(η) ≥ 7.

Since pmin(η) ≥ 4, by (3.29) we deduce that in the case (a) it is impossible to leave B.
By Lemma 4.2(ii) we have n(η̄) ≥ 4. The circumscribed rectangle of η̄ is R(2l∗2−k−x, l∗2 +k)

for any k ≥ 0, where in the case (b) 2 ≤ x ≤ 6, and in the case (c) x ≤ 1. In the case (b), the
proof is analogue to the one for ∆s = 3, so we get H(η̄) ≥ H(R(2l∗2 − k − x, l∗2 + k)) + 4∆ > Γ
and we refer to the Appendix for the explicit computation.

In the case (c), since s(η̄) ≥ s∗, by definition (3.29) we deduce that p2(η̄) = l∗2, so in this case
k = 0, and v(η̄) ≥ pmax(η̄)− 1. Thus we get H(η̄) ≥ H(R(2l∗2−x, l∗2)) + ε(2l∗2−x− 1) + 4∆ > Γ
and we refer to the Appendix for the explicit computation. This concludes the proof in the case
∆s = 5.

�

4.6 Proof of Proposition 4.9

Proof. We will prove that if ∆s = −1 and (η̄, η) ∈ ∂B, then max {H(η̄), H(η)} ≥ Γ. Moreover,
we will identify in which configurations the maximum is equal to Γ to prove Theorem 3.7(i). By
Remark 4.5 we can only consider the case s(η̄) ≥ s∗, i.e., s(η̄) = s∗+ k for any k ≥ 0. By (3.29)
and s(η̄) ≥ s∗, we have {

v(η̄) ≥ pmax(η̄)− 1
p2(η̄) = l∗2.

(4.15)
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(1) −→
∆

(2) −→−U2
(3) −→

+U2
(4) 99K

0, .., 0

(5) −→−U2

(6) −→
+U1

(7) −→−U1

(8) −→
+U2

(9) 99K
0, .., 0,−U2

(10) 99K
+U1

(11) 99K
−U1 + U1

?

(12)

Figure 13: Transition column to row for R(2l∗2 − 1, l∗2 − 1): the configuration (1) has energy
equal to Γ−∆ +U2−U1 and thus the configurations (7), (11) and (12) have energy equal to Γ.
Between the configuration (11) and (12) the protuberance along the horizontal side is attached
to the bar decreasing the energy by U1, afterwards the protuberance on the right column is
detached from the cluster increasing the energy by U1. In (12) we indicate with a dashed arrow
the movement of the free particle until it connects to the cluster that decreases the energy by
U1 + U2.

Thus we obtain that the circumscribed rectangle of η̄ is R(2l∗2 + k − 1, l∗2), indeed p1(η̄) =
s(η̄)− l∗2 = 2l∗2 + k − 1. From (3.11) we have

H(η̄) = H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + U1g
′
2(η̄) + U2g

′
1(η̄) + ∆n(η̄). (4.16)

For pmin(η̄) ≥ 4 we consider the following cases:

Case I. n(η̄) ≥ 1;

Case II. g′1(η̄) + g′2(η̄) ≥ 1 (and n(η̄) = 0);

A. g′2(η̄) = 1;

B. g′1(η̄) = 1;

C. either g′1(η̄) = 1 and g′2(η̄) = 1, or g′2(η̄) ≥ 2;

D. g′1(η̄) ≥ 2 and g′2(η̄) = 0.

Case III. n(η̄) = 0 and g′1(η̄) + g′2(η̄) = 0.

We will prove that in cases I, II-C and II-D we have H(η̄) > Γ; in case II-A we have H(η̄) ≥ Γ
and in cases II-B and III either η ∈ B or η /∈ B and H(η) > Γ.

Case I. Since n(η̄) ≥ 1, by (3.11) and (4.15) we obtain

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 + U2 − ε =

= U1l
∗
2 + 2U2l

∗
2 + kU2 − 2ε(l∗2)2 − kεl∗2 + 3εl∗2 + kε− 3ε+ U1.

(4.17)

49



l∗2

2l∗2 + k − 16

r

Figure 14: Possible representation for η̄ in the case n(η̄) = 0, g′1(η̄) = 1 and g′2(η̄) = 0.

We recall that Γ = U1l
∗
2 + 2U2l

∗
2 + U1 − U2 − 2ε(l∗2)2 + 3εl∗2 − 2ε. Since k ≥ 0, ε � U2 and

δ < 1, we have U2 > ε(1− k(1− δ)), that implies H(η̄) > Γ.

Case II.A Since g′2(η̄) = 1, k ≥ 0 and δ < 1, using (3.11) we obtain

H(η̄) = H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + U1 ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 ≥ Γ⇔

⇔ kε(1− δ) ≥ 0.
(4.18)

Our goal is also to emphasize in which pairs (η̄, η) we have max{H(η̄), H(η)} = Γ. This is the
case if k = 0 and η̄ is a configuration such that g′2(η̄) = 1 and v(η̄) = 2l∗2 + k− 2 = pmax(η̄)− 1,
namely the configurations in P1 (as number (7) and (11) in Figure 13). Note that if η̄ ∈ P1,
then η ∈ B. Indeed with the move (see transition from configuration (7) to (8) in Figure 13),
we get p2(η) = p2(η̄), s(η) = s(η̄) and v(η) = v(η̄). If v(η̄) > pmax(η̄) − 1 or k ≥ 1, we get
H(η̄) > Γ.

Case II.B We have g′1(η̄) = 1. By Remark 4.4 we know that no line can become active. If
p2(η) = p2(η̄) − 1 = l∗2 − 1, we get η ∈ B. Thus we have to consider only the case in which
∆s = −1 is obtained by a vertical line becoming inactive. Since by Lemma 4.15 the lines r2 and
r5 can not become inactive, the deactivating line is one among r6 and r7. We distinguish the
case η̄cl connected or not.

If η̄cl is connected we note that g′1(η̄) = 1 is given by two protuberances at distance strictly
bigger than one on the shorter side, that is the vertical one. Indeed by definition (3.29) in the
case s ≥ s∗, we deduce that p1(η̄) > p2(η̄) (see Figure 14). Clearly, there could be more vacancies
in η̄, but what is relevant to obtain ∆s = −1 is that there must exist a vertical line r such that
r∩ η̄cl is a single site a, such that a becomes free in η, indeed this is the only admissible operation
with ∆s = −1. Since η̄ ∈ B and s(η̄) ≥ s∗, we note that v(η̄) ≥ pmax(η̄)− 1 = 2l∗2 + k− 2. Since
with the move we lose (l∗2 − 1) vacancies, we get

v(η) = v(η̄)− (l∗2 − 1) ≥ l∗2 + k − 1.

If k = 0, we get v(η) ≥ l∗2 − 1 = pmin(η)− 1 and, since s(η) = s∗ − 1, we deduce that η ∈ B.
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Figure 15: Here we depict part of the configuration in the case n(η̄) = 0, g′1(η̄) + g′2(η̄) = 0 and
y1 occupied.

If k ≥ 1, we get

H(η) ≥ H(R(2l∗2 + k − 2, l∗2)) + ε(l∗2 + k − 1) + ∆ =
= U1l

∗
2 + 2U2l

∗
2 − ε(2(l∗2)2 + kl∗2 − 2l∗2) + εl∗2 + U1 − U2 + kU2 + kε− 2ε > Γ⇔

⇔ kε(1− δ) > 0, always since δ < 1.
(4.19)

If η̄cl is not connected, we note that g′1(η̄) = 1 can be obtained with two protuberances at
distance strictly bigger than one on the vertical side (as before) or with two distinct clusters
that intersect the same vertical line. In the first case we can conclude with a similar argument as
before. In the latter case, in order to obtain ∆s = −1 with the move, we have to move a particle
in such a way it becomes free in η and the vertical line r where it lies in η̄ becomes inactive. In
this way we deduce that r ∩ η̄cl consists of a single non-empty site a and such a particle has to
become free in γ. From this we deduce that the particle in a is the moving particle and again
in η we lose (l∗2 − 1) vacancies. Thus the situation for η̄ is the same as before: for k = 0, we get
η ∈ B, and for k ≥ 1, we get H(η) > Γ.

Case II.C By (3.11), the energy increases by a quantity U1 + z > U1, where z = U2 if g′1(η̄) = 1
and g′2(η̄) = 1, or z ≥ 2U1 if g′2(η̄) ≥ 2. Thus with a similar reasoning as in the case II.A, we
get H(η̄) > Γ.

Case II.D We argue in a similar way as in the case II-B.

Case III. We have s(η̄) ≥ s∗, with n(η̄) = 0 and g′1(η̄) + g′2(η̄) = 0. We will prove that if
η /∈ B, then H(η) > Γ. We recall that the circumscribed rectangle of η̄ is R(2l∗2 + k − 1, l∗2), for
any k ≥ 0, and, since η̄ ∈ B, v(η̄) ≥ pmax(η̄)− 1 = 2l∗2 + k − 1. By Remark 4.3 it is impossible
to activate lines and thus ∆s = −1 is obtained by a unique line becoming inactive (see Figure
10). Since by Lemma 4.15 the lines r2 and r5 can not become inactive, we analyze separately
the case in which ri is the line becoming inactive, with i ∈ {1, 3, 4, 6, 7}. If the line becoming
inactive is either r1 or r3 or r4, by Lemma 4.13 we know that p2(η) = p2(η̄) − 1 = l∗2 − 1, thus
η ∈ B. Hence we are left to consider the case in which the line becoming inactive is either r6 or
r7:
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Figure 16: Possible configurations for η̄ (on the left hand-side) and the corresponding for η (on
the right hand-side) in the case that r6 becomes inactive.

• r6 is the line becoming inactive. Since ∆s = −1, the sites x3, x4 and x5 must be empty,
otherwise some of the lines r2, r4, r4 and r5 are active in η, so that they must be active
also in η̄ (see Figure 10). This implies that n(η̄) ≥ 1 or η̄ is not monotone, which is in
contradiction with the assumptions n(η̄) = 0 and g′1(η̄) + g′2(η̄) = 0. We distinguish the
following cases:

-) If the site y1 is occupied in η̄, since r6 ∩ ηcl = ∅, we necessarily have that the site y1

must contain a free particle in η. Thus the sites z1 and t are empty (see Figure 15).
Since η̄ is monotone by assumption, along the line r3 there must be a unique particle
in η̄cl, that is in the site y1. This implies that with the move also the line r3 becomes
inactive, which is in contradiction with ∆s = −1.

-) If the site y2 is occupied, by symmetry we can conclude with a similar argument as
before.

Hence we are left to analyze the case y1 and y2 empty, that implies y3 occupied in order
that r6 becomes inactive. Thus r6 ∩ η̄cl consists in the moving particle, otherwise the
line r6 can not become inactive with the move. What is relevant is that η̄cl has exactly
p2(η̄) − 1 = l∗2 − 1 vacancies along the line r6 (see Figure 16 on the left hand-side). If
there ore other m vacancies in η̄ additional to the ones along the line r6, there must be
m ≥ l∗2 + k − 1. Indeed, in order that η̄ ∈ B, we require v(η̄) ≥ pmax(η̄)− 1, so we get

v(η̄) = m+ l∗2 − 1 ≥ pmax(η̄)− 1 = 2l∗2 + k − 2⇔ m ≥ l∗2 + k − 1.

Since x3, x4 and x5 are empty, the moved particle is free in η, i.e., n(η) ≥ 1 (see Figure
16 on the right hand-side). We distinguish the case k = 0 and k ≥ 1. If k = 0, we obtain
η ∈ B, because v(η) = m ≥ l∗2 − 1 = pmin(η̄)− 1. If k ≥ 1, we obtain

s(η) = l∗2 + 2l∗2 + k − 2 ≥ 3l∗2 − 1 = s∗

p2(η) = l∗2
v(η) = m ≥ l∗2 + k − 1.

(4.20)

Since l∗2 � 1, we have that v(η) < pmax(η) − 1, thus η /∈ B. By (4.20) and (3.11), we get
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Figure 17: Here we depict part of the configuration in the case in which r7 becomes inactive for
∆s = −1.

H(η) > Γ, indeed

H(η) ≥ H(R(2l∗2 + k − 2, l∗2)) + εm+ ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 + kl∗2 − 2l∗2) + εl∗2 + kε+ U1 − U2 − 2ε > Γ⇔

⇔ εk(1− δ) > 0, always since k ≥ 1 and δ < 1.
(4.21)

• r7 is the line becoming inactive. We deduce that the site y3 is occupied and the sites z1, z2

and z3 are empty. Furthermore, since η̄ is monotone and n(η̄) = 0, we obtain that the site
x5 is empty. Similarly, since by assumptions n(η̄) = 0 and g′1(η̄) = g′2(η̄) = 0, we deduce
that the sites x3 and x4 can not be both occupied. Moreover, the sites x3 and x4 can
not be both empty, otherwise the line r1 becomes inactive, which is in contradiction with
∆s = −1 (see Figure 17, in which we assume without loss of generality x3 occupied and
x4 empty). Since η̄ is monotone and n(η̄) = 0, r1 ∩ η̄cl consists in the two sites x1 and y3.
The circumscribed rectangle of η̄ is R(2l∗2 + k − 1, l∗2) for any k ≥ 0, thus by Lemma 4.13
we have that the circumscribed rectangle of η is R(2l∗2 + k − 2, l∗2) for any k ≥ 0. If either
η̄cl is connected or both η̄cl and ηcl are not connected, at most five vacancies in η̄ are not
vacancies in η: the sites z1, z2, a, b and c. Thus we obtain v(η) ≥ v(η̄)− 5 ≥ 2l∗2 + k − 7.
If k = 0 we have s(η̄) = s∗ − 1. Since U2 � ε, we obtain that η ∈ B, indeed

v(η) ≥ 2l∗2 − 7 ≥ pmin(η)− 1 = l∗2 − 1⇔ l∗2 ≥ 6.

If k ≥ 1, we obtain {
n(η) ≥ 1
v(η) ≥ 2l∗2 + k − 7 ≥ 2l∗2 − 6 ≥ l∗2.

(4.22)

By (4.22), we get H(η) ≥ H(R(2l∗2 + k− 2, l∗2)) + ε(2l∗2 − 6) + ∆ ≥ H(R(2l∗2 + k− 2, l∗2)) +
εl∗2 + ∆ > Γ, where the last inequality follows by (4.21).

The case η̄cl not connected and ηcl connected is not admissible. Indeed, if η̄ is not con-
nected, along the line r6 there must be at least other two particles in addiction to the
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moving one, otherwise r6 becomes inactive with the move, which is in contradiction with
∆s = −1. In this way, since the site r1 ∩ r6 is empty in η and the configuration η̄ is
monotone, we deduce that ηcl is non connected.

�

Remark 4.19 Let (η̄, η) be a move with η̄ ∈ B and let ∆s = −1 be its corresponding variation
of s; if H(η̄) = Γ then η̄ ∈ P1 and η ∈ B.

Proof. We can justify this remark with the following argument. In the proof of Proposition
4.9 we have underlined which configurations η̄ ∈ B have energy equal to Γ: now we want to
analyze which of them are the saddles such that η /∈ B. Starting from one of these possible
configurations for η̄, we analyze the moves with minimal cost from an energetical point of view.
What is relevant is that the energy of the configuration must not exceed the value Γ. Thus
we can move the protuberance along the vertical side: this is a zero cost move and does not
allow the exit from B. Another operation that we can make is the connection between the
two protuberances of the configuration (see the transition from (7) to (8) in Figure 13), since
the energy decreases by a quantity U1. These configurations have pmax(η̄) − 1 vacancies and
thus belong to B. Moreover, we could move the particles that lie along the last column by an
upward position (see the transitions from (8) to (10) in Figure 13): all together these operations
have an energy cost equal to zero. More precisely, when we move the first particle the energy
increases by U2, then the subsequent moves do not change the energy until we move the last
particle and it decreases by U2. Let η′ such a configuration (as (10) in Figure 13), so we have
H(η′) = Γ − U1 + U2 + 0 + .. + 0 − U2 = Γ − U1 < Γ, with v(η′) = pmax(η′) − 1 = 2l∗2 − 2.
Thus the configuration η′ belongs to B. The real saddles η̄k, depicted in (12) in Figure 13, that
allow to arrive to a configuration ηk /∈ B, are the ones where the free particle moves along the
dashed arrow, while ηk is the configuration where the free particle is attached to the cluster.
Note that in this last step of the path described ∆s = 0, which contradicts ∆s = −1. We get
n(η̄k) = 1, p1(η̄k) = 2l∗2 − 2, p2(η̄k) = l∗2 and v(η̄k) = l∗2 − 1, thus η̄k ∈ P2 ⊂ B. Furthermore, we
get n(ηk) = 0, p1(ηk) = 2l∗2 − 2, p2(ηk) = l∗2 and v(ηk) = l∗2 − 2, thus ηk /∈ B. �

4.7 Proof of Proposition 4.10

Proof. Let ∆s = 0 and (η̄, η) ∈ ∂B the exiting move from B. By Remark 4.5 we consider only
the case s(η̄) ≥ s∗ − 1. By definition (3.29) and s(η̄) ≥ s∗ − 1, we deduce that only the two
following cases are admissible:

(a) s(η̄) = s∗ − 1 and v(η̄) ≥ pmin(η̄)− 1;

(b) s(η̄) ≥ s∗, p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1.

If p2(η) ≤ l∗2 − 1, in both cases (a) and (b) we get η ∈ B. Hence we are left to consider
p2(η) ≥ l∗2. Let ∆v = v(η) − v(η̄) the variation of the number of vacancies with the move. If
∆v > −1 we have:

(a) v(η) > v(η̄) − 1 ≥ pmin(η̄) − 2 ≥ pmin(η) − 2 that implies v(η) ≥ pmin(η) − 1, thus by
(3.29) we get η ∈ B.
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(b) v(η) > v(η̄) − 1 ≥ pmax(η̄) − 2 ≥ pmax(η) − 2 that implies v(η) ≥ pmax(η) − 1, thus, if
p2(η) = l∗2, by (3.29) we get η ∈ B. Hence we are left to analyze the case p2(η) ≥ l∗2 + 1; by
Remark 4.14 we know that l∗2 + 1 ≤ p2(η) ≤ l∗2 + 3, since at most three horizontal lines can
become active in order that ∆s = 0. For each horizontal line that becomes active we have
a free particle in η̄, thus we get 1 ≤ n(η̄) ≤ 3. We note that the circumscribed rectangle
of η̄ is R(2l∗2 + k − 1, l∗2) for any k ≥ 0. Since k ≥ 0, δ < 1 and U2 � ε, we get H(η̄) > Γ.
Indeed by (3.11) we have

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2)) + ε(2l∗2 + k − 2) + ∆ =
U1l
∗
2 + 2U2l

∗
2 + U1 + kU2 − ε(2(l∗2)2 + kl∗2 − l∗2) + 2ε(l∗2) + kε− 3ε > Γ⇔

⇔ U2 > ε(1 + k(δ − 1)).
(4.23)

Thus we can consider both cases (a) and (b) with the further condition that ∆v ≤ −1. Since
the number of vacancies can decrease only if either p1(η) − p1(η̄) = p2(η̄) − p2(η) 6= 0 or
p1(η)− p1(η̄) = p2(η̄)− p2(η) = 0 but |ηcl| − |η̄cl| > 0 that implies that in both cases (a) and (b)
we have:

(i) either n(η̄) ≥ 1 or

(ii) n(η̄) = 0 and, by Remark 4.3, g′1(η̄) + g′2(η̄) ≥ 1 and r2 becomes active bringing at least
pmin(η)− 1 vacancies in η.

The cases (b-i) and (b-ii) can be treated as in point ∆s = −1. We refer to the Appendix for
explicit computations.

The case (a) is compatible only with case (i), since in the case (a-ii) we have that η ∈ B,
indeed {

v(η) ≥ pmin(η)− 1
s(η) = s(η̄) = s∗ − 1.

(4.24)

Hence we are left to analyze the case (a-i), with p2(η̄) ≥ l∗2. We note that the circumscribed
rectangle of η̄ is R(2l∗2 − k − 2, l∗2 + k) for any k ≥ 0. Since U1 − 2U2 > 0 and δ − k − 3 < −2,
we have that H(η̄) ≥ Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + ∆ =
= U1l

∗
2 + 2U2l

∗
2 + U1 − U2 + k(U1 − U2)− 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − 2ε > Γ

⇔ εk2 + k[U1 − U2 + 3ε− εl∗2] > 0

⇔ U1−2U2
ε > δ − k − 3.

(4.25)

In particular, we obtain H(η̄) = Γ if k = 0, n(η̄) = 1 and v(η̄) = l∗2 − 1, otherwise H(η̄) > Γ.
We note that H(η̄) = Γ for every η̄ ∈ P2 (see definition in (2.34)).

�

4.8 Proof of Proposition 4.11

Proof. Let ∆s = 1; by Remark 4.5 we consider only the case s(η̄) ≥ s∗− 2. We distinguish the
following three cases:

(a) s(η̄) = s∗ − 2;

(b) s(η̄) = s∗ − 1;
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(c) s(η̄) ≥ s∗.

First, we consider the case (a). If s(η̄) = s∗ − 2, then s(η) = s∗ − 1. If p2(η) ≤ l∗2 − 1, by
(3.29) we get η ∈ B. If p2(η) ≥ l∗2 and η /∈ B, we get v(η) < pmin(η) − 1, so by Lemma 4.2(iii)
we have n(η̄) ≥ 2. Furthermore, the circumscribed rectangle of η̄ is R(2l∗2 − k − 3, l∗2 + k) for
any k ≥ 0. Thus by (3.11) we obtain

H(η̄) ≥ H(R(2l∗2 − k − 3, l∗2 + k)) + 2∆ =
= U1l

∗
2 + kU1 + 2U2l

∗
2 − kU2 + 2U1 − U2 − 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − 2ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + U1 > 0.
(4.26)

Since k ≥ 0, ε > 0, U1 > 0 and δ < 1, we get H(η̄) > Γ, using

U1 − U2 − εl∗2 + 3ε = U1 − 2U2 − εδ + 3ε > ε(2− δ) > ε > 0. (4.27)

Hence we are left to consider the cases (b) and (c). Again we consider two possibilities:

(i) either n(η̄) ≥ 1 or

(ii) n(η̄) = 0 and, by Remark 4.3, g′1(η̄) + g′2(η̄) ≥ 1 and r2 becomes active bringing at least
pmin(η)− 1 vacancies in η.

In the case (b-i) we conclude as in the Proposition 4.10 case (a-i) and we refer to the Appendix
for the explicit computation. In particular, we get H(η̄) = Γ if η̄ ∈ P2.

In the cases (c-i) and (c-ii), we get H(η̄) ≥ Γ as in Proposition 4.9 and we refer to the
Appendix for the explicit computations.

We have only to discuss the case (b-ii). In this case the only line that can become active is
r2 and η̄cl is not connected. This also implies that there are no deactivating line with the move.
So we have to consider separately the case in which the move is horizontal or vertical.

Case (h). Suppose first that the move is horizontal, i.e., r1 is an horizontal line. Since the line
that becomes active is only r2, at least one among the sites x3, x4 and x5 must be occupied,
otherwise r2 does not change its behavior. If the site x3 is occupied, since r2 must be inactive
in η̄, it contains in η̄ a free particle, that implies the case (i). Hence the site x3 is empty and by
symmetry also the site x4 is empty: this implies that the site x5 is occupied (see Figure 18 on the
left hand-side). We deduce that g′2(η̄) ≥ 1. All the sites along the line r2 are empty, otherwise
either n(η̄) ≥ 1 or r2 is active in η̄. Since s(η̄) = s∗ − 1 and η̄ ∈ B, we get v(η̄) ≥ pmin(η̄) − 1.
We note that the circumscribed rectangle of η̄ is R(2l∗2 − k − 2, l∗2 + k) for any k ≥ 0.

• If g′2(η̄) ≥ 2, we get

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + 2U1 =
= U1l

∗
2 + k(U1 − U2) + 2U2l

∗
2 + 2U1 − 2U2 − 2ε(l∗2)2 − kεl∗2 + εk2 + 3εk − ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + U1 − U2 + ε > 0.
(4.28)

Analougusly to (4.26), by (4.27) and U1 − U2 + ε > 0, we get H(η̄) > Γ.

• If g′1(η̄) ≥ 1, by (4.27) we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + U1 + U2 =
= U1l

∗
2 + 2U2l

∗
2 + k(U1 − U2) + U1 − U2 − 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + ε > 0.
(4.29)
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Figure 18: Here we depict part of the possible configurations in the case in which the move is
horizontal.

It remains to analyze the case g′2(η̄) = 1 and g′1(η̄) = 0. In this case it is necessary to analyze
in more detail the geometry of the configuration η̄.

- If the moving particle has in η̄ at least one vertical and one horizontal bond that connects
it to other particles (y4 and one among y1 and y2, see Figure 18 on the left hand-side).
Thus ∆H := H(η) −H(η̄) ≥ U2, since in the move at least one vertical bond is lost and
the horizontal bond with y3 is recovered with the one with x5. This implies by (4.29) that
H(η) ≥ H(η̄) + U2 ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + U1 + U2 > Γ.

- If the moving particle has in η̄ two vertical bonds, that implies the sites y1 and y2 occupied
and the site y3 empty (see Figure 18 in the middle). By assumptions g′2(η̄) = 1 and
g′1(η̄) = 0, v(η̄) ≥ p1(η̄) + p2(η̄) − 2 = 3l∗2 − 4, since in the lines r1, r3 we have overall at
least (p1(η̄)− 1) vacancies in η̄. Hence we obtain

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(3l∗2 − 4) + U1 =
U1l
∗
2 + 2U2l

∗
2 + k(U1 − U2) + U1 − 2U2 − 2ε(l∗2)2 − εkl∗2 + εk2 + 5εl∗2 + 2εk − 4ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + 2ε]− U2 + 2εl∗2 − 2ε > 0.
(4.30)

Since ε� U2, we get H(η̄) > Γ. Indeed

−U2 + 2εl∗2 − 2ε = U2 + 2ε(δ − 1) > U2 − 2ε > 0,
U1 − U2 − εl∗2 + 2ε = U1 − 2U2 − εδ + 2ε > ε(1− δ) > 0.

(4.31)

- If the moving particle has in η̄ only one horizontal bond, that implies y3 occupied and the
sites y1 and y2 empty (see Figure 18 on the right hand-side). We observe that r6 ∩ η̄cl
consists in the moving particle, otherwise we obtain an horizontal non monotonicity or
g′2(η̄) ≥ 2, which are in contradiction with g′1(η̄) = 0 or g′2(η̄) = 1 respectively. Thus the
line r6 becomes inactive with the move, against ∆s = 1.

- If the moving particle has in η̄ only a vertical bond, that implies y3 empty and one
site among y1 and y2 occupied (see Figure 19 on the left hand-side). We assume that
such a particle is in the site r6 ∩ r3 without loss of generality, indeed the argument is
analogue if the particle is in the site r6 ∩ r4. We observe that the site s and those under
it along the line r6 are empty, otherwise we obtain a configuration with an horizontal non
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Figure 19: Here we depict on the left hand-side the remaining case for the horizontal line; in the
middle and on the right hand-side we depict part of the configuration if the move is vertical.

monotonicity. The sites next to the left to y3 and next to the right to x3 are empty by the
assumptions g′2(η̄) = 1 and g′1(η̄) = 0. As before, the lines r1 and r3 bring overall at least
p1(η̄) + p2(η̄)− 2 = 3l∗2 − 4 vacancies, so by (4.30) we get H(η̄) > Γ.

The proof is completed in this horizontal case.

Case (v). Suppose now that the move is vertical, i.e., r1 is a vertical line. Since the unique
line that must become active is r2, at least one site among x3, x4 and x5 must be occupied. As
in the case (h), we deduce that x5 is occupied, and x3 and x4 are empty (see Figure 19 in the
middle). We deduce g′1(η̄) ≥ 1.

- If the moving particle has in η̄ at least one vertical and one horizontal bond, that implies
y3 occupied and one site among y1 and y2 occupied (see Figure 19 in the middle). Thus
∆H = H(η)−H(η̄) ≥ U1, since in the move two horizontal bonds are lost (because x3 and
x4 are empty) and the vertical bond is recovered with the one with x5. Thus by (4.29) we
get

H(η) ≥ H(η̄) + U1 ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + U1 + U2 > Γ. (4.32)

- If the moving particle has in η̄ at least two horizontal bonds connecting it to other particles,
then ∆H = H(η) − H(η̄) ≥ −U2 + 2U1, since we lose two horizontal bonds because x3

and x4 are empty, and we recover a vertical bond with the particle in the site x5. Thus by
(4.29) we get

H(η) ≥ H(η̄) + 2U1 − U2 ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + 2U1 > Γ. (4.33)

- If the moving particle has in η̄ only one vertical bond connecting it to other particles, the
site y3 must be occupied and the sites y1 and y2 must be empty. We observe that r6 ∩ η̄cl
consists in the moving particle, indeed either n(η̄) ≥ 1 or η̄ is not monotone, which is
in contradiction with g′2(η̄) = 0. The arguments used are similar to those used for the
corresponding in case (h). In this situation the line r6 becomes inactive, which contradicts
∆s = 1.

- If the moving particle has in η̄ only one horizontal bond, that implies y3 empty and one
site among y1 and y2occupied. Thus ∆H = H(η)−H(η̄) = U1−U2, since we lose a vertical
bond and we recover an horizontal one.
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• If g′1(η̄) = 1, since v(η̄) ≥ p1(η̄) + p2(η̄) − 2 (analogue reasoning used for the corre-
sponding in the case (h)), by (4.30) we get

H(η) = H(η̄) + U1 − U2 ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(3l∗2 − 4) + U1 > Γ. (4.34)

• If g′2(η̄) ≥ 2, by (4.29) we get

H(η) ≥ H(η̄)+U1−U2 ≥ H(R(2l∗2−k−2, l∗2 +k))+ε(l∗2 +k−1)+U1−U2 +2U2 > Γ.
(4.35)

The proof is completed in this vertical case, so it is concluded for the case ∆s = 1.
�

4.9 Proof of Proposition 4.12

Proof. Let ∆s = 2; by Remark 4.5 we consider s(η̄) ≥ s∗ − 3. We distinguish the following
cases:

(a) s(η̄) = s∗ − 3;

(b) s(η̄) = s∗ − 2;

(c) s(η̄) = s∗ − 1;

(d) s(η̄) ≥ s∗.

First, we consider the case (a). If s(η̄) = s∗− 3, then s(η̄) = s∗− 1. If p2(η) ≤ l∗2 − 1, we get
η ∈ B. If p2(η) ≥ l∗2, by Lemma 4.2(ii) we have

v(η) ≥ 2pmin(η)− 5 ≥ pmin(η)− 1⇔ pmin(η) ≥ 4.

Since pmin(η) ≥ 4, in this case it is impossible to leave B.
By Lemma 4.2(ii) we know that n(η̄) ≥ 1. In the case (c) we conclude as in the case (∆

s=0.a-i) and we refer to the Appendix for the explicit computations.
In the case (d), we get H(η̄) > Γ as in the case (∆ s=-1.Case I) and we refer to the Appendix

for the explicit computations.
It remains to analyze the case (b). If s(η̄) = s∗ − 2 and n(η̄) ≥ 2, by (4.27) and k ≥ 0, we

get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 3, l∗2 + k)) + 2∆ > Γ⇔
⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + U1 > 0.

(4.36)

It remains to analyze the case s(η̄) = s∗ − 2 and n(η̄) = 1. If the unique free particle is the
moving particle, we can not have ∆s = 2, indeed the lines r3, r4 and r5 can not be activated
and in order to have ∆s = 2 the lines r1 and r2 must become active. This implies that the sites
x3, x4 and x5 must be empty, but then ∆s = 0, which contradicts ∆s = 2.

If g′1(η̄) + g′2(η̄) ≥ 1, by (4.27) and k ≥ 0, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 3, l∗2 + k)) + U2 + ∆ > Γ⇔
⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + ε > 0.

(4.37)

It remains only to analyze the case s(η̄) = s∗−2, n(η̄) ≥ 1 and g′1(η̄) = g′2(η̄) = 0. We disinguish
two cases:
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Figure 20: Here we depict part of the configuration if ∆s = 2 for the cases 1) and 2).

1) the free particle is in the site xi, with i ∈ {3, 4}, and the lines that become active are r2

and ri. Due to g′1(η̄) = g′2(η̄) = 0, the site x5 is empty and the site {x3, x4}\{xi} is empty.

2) the free particle is in the site x5, the lines that become active are r2 and r5 and the sites
x3 and x4 are empty.

In both cases if the moving particle has in η̄ at least one vertical and one horizontal bond
connecting it to other particles, by (4.37) we get H(η) > Γ. Indeed

∆H ≥ U2 ⇒ H(η) ≥ H(η̄) + U2 ≥ H(R(2l∗2 − k − 3, l∗2 + k)) + ∆ + U2 > Γ.

If the moving particle has in η̄ either two bonds orthogonal to the move, or only one vertical
or only one horizontal bond connecting it to other particles, then it is impossible to leave B,
indeed in this case there exists a line r (r = r1 or r = r6) such that its intersection with η̄cl
is only the moving particle. If r = r6, this line becomes inactive after the move, which is in
contradiction with ∆s = 2. If r = r1, we analyze in detail the possible configuration for η̄ in both
cases 1) and 2). First, we consider the case 1). We assume i = 3 without loss of generality. Thus
in the site x3 there is a free particle in η̄. We have that the site y2 must be occupied, otherwise
n(η̄) ≥ 2. The site x4 must be empty, since the line r2 must become active with the move, so it
must be inactive in η̄. The sites x5, y3 and z3 are empty, since we are in the case r1∩ η̄cl consists
in the moving particle (see Figure 20 on the left hand-side). At least one site among z2 and
s must be occupied, otherwise the line r6 becomes inactive after the move, which contradicts
∆s = 2. Thus in η̄ there is a monotone cluster (eventually a finite non connected union of
monotone clusters) attached to the moving particle: suppose that it has m ≥ 0 vacancies. Since
p2(η) = p2(η̄) + 1 and p2(η̄) ≥ 4, we get η ∈ B. Indeed

v(η) ≥ m+ (p2(η)− 2) + (p1(η)− 1) ≥ 3 + p1(η)− 1 = p1(η) + 2 ≥ p1(η)− 1 = pmax(η)− 1.

In the case 2), we have that in the site x5 there is a free particle. Furtermore, all the sites along
the line r2 are empty, otherwise either we have n(η̄) ≥ 2 or r2 is already active in η̄. The moving
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particle can not be free, so it has at least one vertical bond. Thus at least one site among y1 and
y2 must be occupied: without loss of generality we assume y2 occupied (see Figure 20 on the
right hand-side). Similarly to the case 1), since also in this case r1 ∩ η̄cl consists in the moving
particle, we deduce that the sites y3 and z3 are empty. Furthermore, in η̄ there is a monotone
cluster (or a finite union of clusters) attached to the moving particle: again we suppose that it
has m ≥ 0 vacancies. Since p2(η) = p2(η̄) ≥ 4, we get η ∈ B. Indeed

v(η) ≥ m+ (p1(η)− 2) + (p1(η)− 1) ≥ p1(η) + 1 ≥ p1(η)− 1 = pmax(η)− 1.

�

4.10 Proof of Lemmas

In this subsection we report the proof of Lemmas given in subsection 4.2.

Proof of Lemma 4.13
Let r be a line that becomes inactive with the move. Since r ∩ η̄cl 6= ∅ and r ∩ ηcl = ∅, we note
that only free particles could be present along the line r in η. Recalling (3.2) for the definition
of the projections p1 and p2, we note that they depends only on the clusterized part of the
configuration, thus in η the line r does not contribute to p1(η) and p2(η). This implies that
p2(η) = p2(η̄)− 1 if r is an horizontal line and p1(η) = p1(η̄)− 1 if r is vertical.

�

Proof of Lemma 4.15.
First we analyze the line r2. We argue by contradiction: suppose that r2 becomes inactive
with the move. Thus the moved particle must be free in η: this implies that the sites x3, x4

and x5 must be empty. Since r2 must be active in η̄, at least one particle above the site x3 or
under x4 must be in η̄cl. If |r2 ∩ η̄cl| = 1, we indicate with a the site occupied by such particle
(represented on the left hand-side in Figure 21) and we can suppose without loss of generality
that such particle is above x3. Let a1, a2 and a3 the nearest neighbors of that particle as in
Figure 21. Since r2 must be active in η̄, we have necessarily that at least one among a1, a2 and
a3 must contain a particle. The move does not involve the site a and its nearest neighbors, so
we conclude that it is not possible that the line r2 becomes inactive. If |r2 ∩ η̄cl| ≥ 2, again the
line r2 does not become inactive. Thus we have proved that r2 also remains inactive in η and
thus it can not become inactive.

If we consider line r5, again we argue by contradiction: suppose that r5 becomes inactive
with the move. Thus the site x5 must be empty, otherwise the line r5 can not become inactive.
First, we consider the case |r5 ∩ η̄cl| = 1: suppose without loss of generality that such a particle
is above the site x5 and call it a (see Figure 21 on the right hand-side). Let a1, a2 and a3 be
the nearest neighbors of the particle in a. Since r5 must be active in η̄, we have necessarily that
at least one site among a1, a2 and a3 must be occupied. The move does not involve the particle
in a and its neighbors, so we are able to conclude that the line r5 can not become inactive. If
|r5 ∩ η̄cl| ≥ 2, again the line r5 does not become inactive. Thus we have proved that r5 also
remains inactive in η and thus it can not become inactive.

Now we focus on lines r6 and r7: we have to prove that these lines can not become active.
If we consider line r7, we suppose by contradiction that r7 becomes active with the move. Thus
we have that line r7 must be inactive in η̄, so the site y3 must be empty. With the move of the
particle from x1 to x2 the number of neighboring particles of y3 decreases. Thus r7 can not be
active in η.
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Figure 21: Possible representation of η̄ in the case that r2 (on the left hand-side) and r5 (on the
right hand-side) could become inactive.

In a similar way we suppose by contradiction that the line r6 becomes active: this means
that line r6 is inactive in η̄, so the moving particle is free in η̄. Thus r6 can not become active
after the move. �

Proof of Lemma 4.16.
First, we consider the point (i). If the line r1 becomes inactive we have that the sites x3, x4

and x5 must be empty. Thus the lines r2, r3, r4 and r5 can not become active. Furthermore, by
Lemma 4.15 the lines r6 and r7 can not become active, thus no line can become active.

Now we analyze point (ii). If the line r1 becomes active we have that in the site x1 there is a
free particle in η̄ (y1, y2 and y3 must be empty in η̄). Thus the line r6 can not become inactive.
Furthermore, by Lemma 4.15 the lines r2 and r5 can not become inactive. In order to have r7

inactive in η, the site y3 must be occupied, but this contradicts the fact that in x1 there is a free
particle in η̄. Thus the only lines that can become inactive in this situation are r3 and r4. �

Proof of Lemma 4.17.
First, we suppose that the line becoming active is r3 (respectively r4). We consider now the
case ∆s = −2. By Remark 4.5 we know that s(η̄) ≥ s∗ + 1, with η̄ ∈ B. By (3.29) for the case
s ≥ s∗, we get p2(η̄) = l∗2 and thus p1(η̄) = pmax(η̄). Since l∗2 − 5 ≤ p2(η) ≤ l∗2 + 5, also for
the configuration η we deduce that p1(η) > p2(η). The line r3 (resp. r4) becomes active with
the move bringing p1(η) − 1 vacancies in ηcl, since the unique particle along the line r3 (resp.
r4) in ηcl is in the site x3 (resp. x4), otherwise the line r3 (resp. r4) is already active in η̄. We
analyze separately the cases (i) and (ii). If s(η) = s∗ − 1, since p1(η) ≥ pmin(η) and p2(η) ≥ l∗2,
we deduce that v(η) ≥ pmin(η) − 1: this implies that η ∈ B. If s(η) ≥ s∗, since p2(η) = l∗2 by
assumption and v(η) ≥ p1(η)− 1 = pmax(η)− 1, we get η ∈ B.

Now we analyze the case −1 ≤ ∆s ≤ 5. For each value of ∆s, by Remark 4.5 we know that
s(η) ≥ s∗ − 1. Again the line r3 (resp. r4) becomes active with the move bringing p1(η) − 1
vacancies in η. We analyze separately the cases (i) and (ii). If s(η) = s∗−1, since p1(η) ≥ pmin(η)
and p2(η) ≥ l∗2, we deduce that v(η) ≥ pmin(η)− 1: this implies that η ∈ B. If s(η) ≥ s∗, since
p2(η) = l∗2 and thus p1(η) > p2(η), we deduce that p1(η) = pmax(η), so we get v(η) ≥ pmax(η)−1.
Thus we obtain that η ∈ B.

Now we suppose that the line becoming active is r1 and the site x5 is empty. Since r1 must
become active, we know that in the site x1 there is a free particle in η̄. The line r1 becomes
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active with the move bringing p1(η)− 1 vacancies in η, since the unique particle along the line
r1 in ηcl is in the site x1, otherwise the line r1 is already active in η̄, since the site x5 is empty by
assumption. The proof proceed from now on in the same way as in the case in which r3 (resp.
r4) is the horizontal line becoming active.

�

Proof of Lemma 4.18
First, we consider the case (i). By assumption the line r1 does not become active and by Lemma
4.16(i) we deduce that r1 does not become inactive, otherwise no line can become active. Since
only one line among r3 and r4 becomes active, we get p2(η) = p2(η̄) + 1. If p2(η̄) ≤ l∗2 − 2 then
p2(η) ≤ l∗2 − 1, so we get η ∈ B. If p2(η̄) = l∗2 − 1 then p2(η) = l∗2, thus by Lemma 4.17(i),(ii) we
conclude that η ∈ B.

Now we consider the case (ii). Since only two horizontal lines become active, we get p2(η) =
p2(η̄) + 2. If p2(η̄) ≤ l∗2 − 3, we get p2(η) ≤ l∗2 − 1, thus η ∈ B. If p2(η̄) = l∗2 − 2 then p2(η) = l∗2,
thus by Lemma 4.17(i),(ii) we conclude that η ∈ B. If p2(η̄) = l∗2 − 1 and s(η) = s∗ − 1, by
Lemma 4.17(i) we deduce that η ∈ B.

�

5 Reduction

5.1 Recurrence property

The goal of this subsection is to prove the Proposition 3.10. In order to prove this, we adopt a
strategy explained in [46], the so-called reduction.

As an application of this technique, we apply [46, Theorem 3.1] to V = V ∗. Thus we obtain

β 7−→ sup
η∈X

P
(
τηXV ∗ > eβ(V ∗+ε)

)
is SES, (5.1)

for any ε > 0 and for any β sufficiently large.
Since in this case XV ∗ ⊆ {0, 1}, this result states that the probability that the first hitting time
to the set {0, 1} from any state η ∈ X is arbitrarily large is super-exponentially small.

An analogous result can be derived with V = Γ and so we have that XΓ = Xm = {0}.

For the sequel we need some geometrical definitions. Let η ∈ X given.

Definition 5.1 A site x ∈ Λ is connected trough empty (resp. full) sites to ∂−Λ if there exists
x1, . . . , xn a connected chain of nearest-neighbor empty (resp. full) sites, i.e., x1 ∈ nn(x),
x2 ∈ nn(x1), . . ., xn ∈ nn(xn−1), xn ∈ ∂−Λ and η(x1) = η(x2) = · · · = η(xn) = 0 (η(x1) =
η(x2) = · · · = η(xn) = 1).

Definition 5.2 An external corner of a set A ⊂ Λ is a site x /∈ A such that∑
y∈nn(x):(x,y)∈Λ∗0,h

χA(y) = 1 and
∑

y∈nn(x):(x,y)∈Λ∗0,v

χA(y) = 1,

where χA denotes the characteristic function of the set A.

Definition 5.3 An internal corner of a set A ⊂ Λ is a site x ∈ A such that∑
y∈nn(x):(x,y)∈Λ∗0,h

χA(y) = 1 and
∑

y∈nn(x):(x,y)∈Λ∗0,v

χA(y) = 1.
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Figure 22: (U1 + U2)-reduction of a rectangle with a hole.

Let ηext be the set of sites x ∈ Λ0 such that η(x) = 1 and x is connected trough empty sites
with ∂−Λ.

Proposition 5.4 [50, Proposition 16] Any configuration η ∈ XU1+U2 has no free particles and
it has only rectangular clusters with minimal side larger than one.

Proof of Proposition 3.10
Suppose that η ∈ XU1+U2 and η 6= 0, 1, so from the previous proposition η has only rectan-

gular clusters which are connected through empty sites to ∂−Λ, i.e., ηext = ∂−η.
Suppose now that a rectangular cluster of η has a vertical subcritical side, i.e., l2 ≤ l∗2 − 1, then
it is possible to reduce η with the path described in Figure 4 that removes a column of length l2
with energy barrier ∆H(remove column)= U1 + U2 + ε(l2 − 2) < 2∆− U1 = ∆H(add column)
(this is true if and only if we are in the subcritical side). Otherwise if any rectangle in η has
vertical supercritical sides (l2 ≥ l∗2), it is possible to reduce η with the path described in Figure 4
that adds a column with energy barrier ∆H(add column)= 2∆−U1. Since 2∆−U1 < ∆−U2+U1

in the strongly anisotropic case, the proof is complete defining

V ∗ := max {U1 + U2, U1 + U2 + ε(l2 − 2), 2∆− U1} = 2∆− U1 < Γ.

�

We remark that Propositions 5.4 and 3.10 state the following inequalities:

0 ≤ U1 + U2 ≤ V ∗ < Γ.

Furthermore, note that from (5.1) and Proposition 3.10 we obtain that from any configuration
in X the Kawasaki dynamics hits 0 or 1 with an overwhelming probability in a time much less
than the transition time. An analogous result is obtained in [35] for three-dimensional Kawasaki
dynamics.

5.2 Proof of Theorem 2.5

To prove Theorem 2.5 we need Proposition [53, Theorem 3.2], that represents the main property
of cycles: with large probability every state in a cycle is visited by the process before the exit.

Using this result, to prove Theorem 2.5 it is sufficient to show the following:

1. if η is a rectangular configuration contained in R(2l∗2 − 3, l∗2 − 1), then there exists a cycle
C0 containing η and 0 and not containing 1;
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2. if η is a rectangular configuration containing R(2l∗2 − 2, l∗2), then there exists a cycle C1

containing η and 1 and not containing 0.

We start by showing 1. Let C0 be the maximal connected set containing 0 such that
maxη′∈C0 H(η′) < Γ. By definition C0 is a cycle containing 0. It does not contain 1 since Φ(0, 1) =
Γ. We have only to prove that C0 contains η. This can be easily obtained by constructing a
path ωη,0 going from η to 0 keeping the energy less than Γ. ωη, 0 is obtained by erasing site by
site, each column of η and by showing that all the configurations of this path are in C0.
More precisely, let η = {(x, y) ∈ Z2 : x ∈ (n, n + l1], y ∈ (m,m + l2]} ∈ R(l1, l2) for some
n, m ∈ Z. Let {ω̄η,0i }i=0,..,l1 be a path of rectangular configurations, starting from η and ending
in 0, given by

ω̄
η,0
i = {(x, y) : x ∈ (n, n+ l1 − i], y ∈ (m,m+ l2]}. (5.2)

To complete the construction we can use now the same idea applied in the definition of the
reference path ω∗: between every pair ω̄

η,0
i , ω̄

η,0
i+1 we can insert a sequence ω̃

η,0
i,0 , .., ω̃

η,0
i,l2

such that

ω̃
η,0
i,0 = ω̄

η,0
i and for j > 0, ω̃

η,0
i,j is obtained by ω̄

η,0
i by erasing j sites:

ω̃
η,0
i,j = ω̄

η,0
i \ {(x, y) : x = n+ l1 − i, y ∈ (m+ l2 − j,m+ l2]}. (5.3)

Again, as in the reference path ω∗, the last interpolation consists in inserting between every
pair of consecutive configurations in ω̃η,0 a sequence of configurations with a free particle in a
suitable sequence of sites going from the site previously occupied by the erased particle to ∂Λ.
If l1 ≤ 2l∗2 − 3 and l2 ≤ l∗2, we have H(R(l1, l2)) ≤ H(R(2l∗2 − 3, l∗2)). In our strong anisotropic
case U1 + U2 + ε(l∗2 − 3) < 2∆− U1, so for the path ωη,0 obtained in this way we have

max
i
H(ω

η,0
i ) = max

l∈[1, l1]
H(R(l, l2))+U1+U2+ε(l−l2) ≤ H(R(2l∗2−3, l∗2))+U1+U2+ε(l∗2−3) < Γ.

(5.4)
If l1 ≤ 2l∗2 − 1 and l2 ≤ l∗2 − 1, we have H(R(l1, l2)) ≤ H(R(2l∗2 − 1, l∗2 − 1)). In our strong
anisotropic case U1 +U2 + ε(l∗2 − 3) < ∆−U2 +U1, so for the path ωη,0 obtained in this way we
have

max
i
H(ω

η,0
i ) = max

l∈[1, l1]
H(R(l, l2))+U1+U2+ε(l2−2) ≤ H(R(2l∗2−1, l∗2−1))+U1+U2+ε(l∗2−3) < Γ.

(5.5)
The proof of 2 is similar. Let C1 be the maximal connected set containing 1 such that

maxη′∈C1 H(η′) < Γ. Again C1 is by definition a cycle containing 1 and not containing 0. To
prove that C1 contains η we define now a path ωη,1 going from η to 1 obtained by reaching
rectangular configurations with l2 = l∗2 or l1 ≥ L− 1 and, from there, following the path ω∗. As
before, it is easy to prove that all the configurations of this path have an energy smaller than
Γ, so they are in C1.

Going into details, let η ∈ R(l1, l2). First, we consider 3l∗2 − 2 ≤ s ≤ l∗2 + L − 1. If l2 = l∗2
we can choose ωη,1 as the part of the reference path ω∗ going from η to 1. If l2 < l∗2 then
first move columns to rows, until we obtain l2 = l∗2. From there, follow the reference path ω∗.
If l2 > l∗2 then first add columns until we reach l1 = L − 1. The remaining part of the path
follows ω∗. Now we consider the case s ≥ l∗2 + L − 1. If l1 ≥ L − 1 we can choose ωη,1 as the
part of the reference path ω∗ going from η to 1. If l1 < L − 1 we add columns until we have
l1 = L − 1 and then we follow the reference path ω∗. For the path ωη,1 obtained in this way,
since H(R(l′1, l

′
2)) < H(R(2l∗2 − 1, l∗2 − 1)) for any l′1 ≥ 2l∗2 − 2 and l′2 ≥ l∗2, we obtain

max
i
H(ω

η,1
i ) ≤ max

l′1≥2l∗2−2,l′2≥l∗2
H(R(l′1, l

′
2)) + 2∆− U1 < Γ, (5.6)

so that ω
η,1
i ∈ C1 for any i and the proof of the theorem is complete.
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A Appendix

We give explicit argument to complete the proof of Proposition 4.7, considering the cases that
were left in subsection 4.4, because the proofs are analogue to the ones discussed in that sub-
section.

Additional material for Subsection 4.4

Case ∆s = 3. We report the explicit computations for the case (III). Since ∆s = 3 by Remark
4.5 we know that s(η̄) ≥ s∗ − 4, but we consider only the case s(η̄) ≥ s∗ − 3 (see Lemma 4.7).
If p2(η̄) = l∗2 − 2 the circumscribed rectangle of η̄ is R(2l∗2 + k − 3, l∗2 − 2), for any k ≥ 1, and
if p2(η̄) = l∗2 − 1 it is R(2l∗2 + k − 4, l∗2 − 1), for any k ≥ 1. Since in the case we are analyzing
there are three horizontal lines becoming active, we know that n(η̄) ≥ 3. If p2(η̄) = l∗2 − 2, since
k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 2)) + 3∆ =
U1l
∗
2 + 2U2l

∗
2 + U1 + kU2 − ε(2(l∗2)2 + kl∗2 − 2k − 7l∗2 + 6)− 3ε > Γ⇔

⇔ 5U2 > ε(7− 4δ + k(δ − 2)).
(A.1)

If p2(η̄) = l∗2 − 1, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 4, l∗2 − 1)) + 3∆ =
= U1l

∗
2 + 2U2l

∗
2 + 2U1 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − k − 6l∗2 + 7) > Γ⇔

⇔ U1 + 3U2 > ε(5− 3δ + k(δ − 1)).
(A.2)

Case ∆s = 4. We report the explicit computations for the cases (I) and (II). Since ∆s = 4,
by Remark 4.5 we know that s(η̄) ≥ s∗ − 5, but we consider only the case s(η̄) ≥ s∗ − 4 (see
Lemma 4.7). If p2(η̄) = l∗2 − 2 the circumscribed rectangle of η̄ is R(2l∗2 + k − 4, l∗2 − 2) with
k ≥ 1 and if p2(η̄) = l∗2 − 1 it is R(2l∗2 + k − 5, l∗2 − 1), for any k ≥ 1. Since in the case we are
analyzing there are three horizontal lines becoming active, we know that n(η̄) ≥ 3. For the case
(I), if p2(η̄) = l∗2 − 2, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 4, l∗2 − 2)) + 3∆ =
= U1l

∗
2 + 2U2l

∗
2 + U1 − U2 + kU2 − ε(2(l∗2)2 + kl∗2 − 2k − 8l∗2 + 11) > Γ⇔

⇔ 5U2 > ε(9− 5δ + k(δ − 2)).
(A.3)

If p2(η̄) = l∗2 − 1, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 5, l∗2 − 1)) + 3∆ =
U1l
∗
2 + 2U2l

∗
2 + 2U1 − 2U2 + kU2 − ε(2(l∗2)2 + kl∗2 − k − 7l∗2 + 8) > Γ⇔

⇔ U1 + 3U2 > ε(6− 4δ + k(δ − 1)).
(A.4)

For the case (II), since if l∗2 − 3 ≤ p2(η̄) ≤ l∗2 − 1 the only possibilities that we can have are
p2(η) ≤ l∗2 − 1 or p2(η) = l∗2, the cases that remain to analyze in detail are the followings:

• p2(η̄) = l∗2 − 2 and p2(η) > l∗2;

• p2(η̄) = l∗2 − 1 and p2(η) > l∗2.

For the cases in which p2(η̄) = l∗2 − 2 and p2(η̄) = l∗2 − 1, the computations are exactly the same
reported for the case (I).

Case ∆s = 5. We report the explicit computations. Since ∆s = 5, by Remark 4.5 we know
that s(η̄) ≥ s∗− 6, but we consider only the case s(η̄) ≥ s∗− 5 (see Lemma 4.7). The cases that
remain to analyze in detail are the followings:
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• p2(η̄) = l∗2 − 2;

• p2(η̄) = l∗2 − 1.

If p2(η̄) = l∗2 − 2, the circumscribed rectangle of η̄ is R(2l∗2 + k − 5, l∗2 − 2), for any k ≥ 1,
and if p2(η̄) = l∗2 − 1 it is R(2l∗2 + k − 6, l∗2 − 1), for any k ≥ 1. By Lemma 4.2 we know that
n(η̄) ≥ 4. If p2(η̄) = l∗2 − 2, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 5, l∗2 − 2)) + 4∆ =
U1l
∗
2 + 2U2l

∗
2 + 2U1 − U2 + kU2 − ε(2(l∗2)2 + kl∗2 − 2k − 7l∗2 + 14) > Γ⇔

⇔ U1 + 4U2 > ε(12− 4δ + k(δ − 2)).
(A.5)

If p2(η̄) = l∗2 − 1, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 6, l∗2 − 1)) + 4∆ =
= U1l

∗
2 + 2U2l

∗
2 + 3U1 − 2U2 + kU2 − ε(2(l∗2)2 + kl∗2 − k − 8l∗2 + 10) > Γ⇔

⇔ 2U1 + 4U2 > ε(8− 5δ + k(δ − 1)).
(A.6)

We give explicit argument to complete the proof of Proposition 4.8, considering the cases that
were left in subsection 4.5, because the proofs are analogue to the ones discussed in that sub-
section.

Additional material for Subsection 4.5

Case ∆s=4. We report the explicit computations for the cases (b) and (c). In the case (b) we
obtain

H(η̄) ≥ H(R(2l∗2 − k − x, l∗2 + k)) + 3∆ =
= U1l

∗
2 + 2U2l

∗
2 + k(U1 − U2) + 3U1 + 3U2 − xU2 − 2ε(l∗2)2 − kεl∗2 + εk2 + xεl∗2 + kεx− 3ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + xε] + 2U1 + 4U2 − xU2 − ε+ xεl∗2 − 3εl∗2 > 0.
(A.7)

By (4.13), since k ≥ 0, 0 < δ < 1, x ≥ 1 and ε� U2, we get H(η̄) > Γ. Indeed

2U1 + 4U2 − xU2 − ε+ xεl∗2 − 3εl∗2 = 2U1 + U2 − ε− 3εδ + xεδ � 2U1 − 2εδ > 0. (A.8)

In the case (c), we get H(η̄) > Γ. Indeed

H(R(2l∗2, l
∗
2)) + ε(2l∗2 − x− 1) + 3∆ =

= U1l
∗
2 + 2U2l

∗
2 − ε(2(l∗2)2 − xl∗2) + 2εl∗2 + 3U1 + 3U2 − xU2 − 4ε− xε > Γ⇔

⇔ 3U2 + 2U1 > ε(2 + δ + x(1− δ)), always since x ≤ 1, 1− δ > 0 and ε� U2.
(A.9)

Case ∆s = 5. We report the explicit computations for the cases (b) and (c). In the case (b)
we obtain

H(η̄) ≥ H(R(2l∗2 − k − x, l∗2 + k)) + 4∆ =
= U1l

∗
2 + 2U2l

∗
2 + k(U1 − U2) + 4U1 + 4U2 − xU2 − 2ε(l∗2)2 − kεl∗2 + εk2 + xεl∗2 + kεx− 4ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + xε] + 3U1 + 5U2 − xU2 − 2ε+ xεl∗2 − 3εl∗2 > 0.
(A.10)

By (4.13), since k ≥ 0, 0 < δ < 1, x ≥ 1 and ε� U2., we get H(η̄) > Γ. Indeed

3U1 + 5U2 − xU2 − 2ε+ xεl∗2 − 3εl∗2 = 3U1 + 2U2 − 2ε− 3εδ + xεδ � 3U1 − 2U2 > 0 (A.11)
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In the case (c), since x ≤ 1, 1− δ > 0 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − x, l∗2)) + ε(2l∗2 − x− 1) + 4∆ =
= U1l

∗
2 + 2U2l

∗
2 + 4U1 + 4U2 − xU2 − ε(2(l∗2)2 − xl∗2) + 2εl∗2 − xε− 5ε > Γ⇔

⇔ 3U1 + 4U2 > ε(3 + δ + x(1− δ)).
(A.12)

We give explicit argument to complete the proof of Proposition 4.10, considering the cases
that were left in subsection 4.7, because the proofs are analogue to the ones discussed in that
subsection.

Additional material for Subsection 4.7
Let ∆s = 0. We analyze in detail the cases (b− i) and (b− ii). In the case (b− i) we have

s(η̄) ≥ s∗, ∆v ≤ −1 and n(η̄) ≥ 1. By definition (3.29) for the case s ≥ s∗, we get p2(η̄) = l∗2
and v(η̄) ≥ pmax(η̄) − 1. Thus the circumscribed rectangle of η̄ is R(2l∗2 + k − 1, l∗2), for any
k ≥ 0. Since n(η̄) ≥ 1, from (3.11) we obtain

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 + U2 − ε.

(A.13)

We recall that Γ = U1l
∗
2 + 2U2l

∗
2 + U1 − U2 − 2ε(l∗2)2 + 3εl∗2 − 2ε. Thus we get H(η̄) > Γ if

and only if U2 > ε(1− k(1− δ)), always since ε� U2, k ≥ 0 and δ < 1.
In the case (b− ii) we have s(η̄) ≥ s∗, ∆v ≤ −1 and n(η̄) = 0, so from Remark 4.3 it follows

that g′1(η̄) + g′2(η̄) ≥ 1. We consider the following four cases:

A. g′2(η̄) = 1;

B. g′1(η̄) = 1;

C. either g′1(η̄) = 1 and g′2(η̄) = 1, or g′2(η̄) ≥ 2;

D. g′1(η̄) ≥ 2 and g′2(η̄) = 0.

Case A. Since g′2(η̄) = 1, since k ≥ 0 and δ < 1, we get H(η̄) ≥ Γ. Indeed

H(η̄) = H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + U1 ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 ≥ Γ⇔

⇔ kε(1− δ) ≥ 0.
(A.14)

We note that H(η̄) = Γ if k = 0 and for those configurations η̄ such that g′2(η̄) = 1 and
v(η̄) = 2l∗2 − 1 = pmax(η̄) − 1, i.e., η̄ ∈ P1. Starting from such η̄, we note that in order to
get ∆s = 0 the only admissible transitions are the movement of a single protuberance along
the same side. In this way η ∈ P1 ⊂ B. This contributes to Theorem 3.7(ii). If k ≥ 1 or
v(η̄) > pmax(η̄)− 1, we get H(η̄) > Γ.

Case B. We have g′1(η̄) = 1. By Remark 4.4 we know that no line can become active, so ∆s = 0
is obtained by no line becoming active nor inactive. Referring to Figure 14, if η̄cl is connected
we note that the only admissible operations are moving protuberances or let a particle become
free in η in such a way that ∆s = 0. In both cases we get v(η) ≥ v(η̄). If η̄ ∈ B, we get η ∈ B,
since s(η) = s(η̄) and due to the condition about the number of vacancies. If η̄ /∈ B it is not a
relevant case. If η̄cl is not connected we can argue similarly.

Case C. We have either g′1(η̄) =)1 and g′2(η̄) = 1, or g′2(η̄) ≥ 2. Thus we can conclude in the
same way as in the case II-C for ∆s = −1.
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Case D. We have g′1(η̄) ≥ 2 and g′2(η̄) = 0, thus we can conclude in the same way as in the case
II-B for ∆s = −1.

We give explicit argument to complete the proof of Proposition 4.11, considering the cases
that were left in subsection 4.8, because the proofs are analogue to the ones discussed in that
subsection.

Additional material for Subsection 4.8
Let ∆s = 1. We analyze in detail the cases (b-i), (c-i) and (c-ii). In the case (b-i), the

circumscribed rectangle of η̄ is R(2l∗2 − k − 2, l∗2 + k), for any k ≥ 0. Thus, since U1−2U2
ε > −1

and δ − k − 3 < −2, we get H(η̄) ≥ Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + ∆ =
= U1l

∗
2 + 2U2l

∗
2 + U1 − U2 + k(U1 − U2)− 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − 2ε > Γ

⇔ εk2 + k[U1 − U2 + 3ε− εl∗2] > 0⇔ U1−2U2
ε > δ − k − 3.

(A.15)

In particular, we obtain H(η̄) = Γ if k = 0 and v(η̄) = l∗2 − 1, i.e., η̄ ∈ P2, otherwise H(η̄) > Γ.
For such η̄ ∈ P2, we note that in order to get ∆s = 1, the only admissible operations are to
attach the free particle to the protuberance, or to one of the three other sides. If we attach the
particle on the vertical side, we get v(η̄) + l∗2 − 1 = 2l∗2 − 2, with s(η) = s∗ and p2(η) = l∗2, so
η ∈ B and thus this is not a relevant case. If we attach the free particle on the horizontal side,
we get p2(η) = l∗2 + 1, with s(η) = s∗, and thus η /∈ B. In this case we obtain a configuration in
P2.

For the cases (c-i) and (c-ii) we refer again to the case ∆s = −1. In the case (c-i), since
n(η̄) ≥ 1, from (3.11) we obtain

H(η̄) ≥ H(R(2l∗2 − 1, l∗2)) + εv(η̄) + ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 − U2 − ε(2(l∗2)2 − l∗2) + ε(2l∗2 − 2) + U1 + U2 − ε =

= U1l
∗
2 + 2U2l

∗
2 − 2ε(l∗2)2 + 3εl∗2 − 3ε+ U1.

(A.16)

Thus we get H(η̄) > Γ if and only if −3ε > −U2 − 2ε⇔ ε < U2, always since ε� U2.
For the case (c-ii), again we distinguish the following subcases:

A. g′2(η̄) = 1;

B. g′1(η̄) = 1;

C. either g′1(η̄) = 1 and g′2(η̄) = 1, or g′2(η̄) ≥ 2;

D. g′1(η̄) ≥ 2 and g′2(η̄) = 0.

The reasonings are the same of the case ∆s = 0 shown in this Appendix.

We give explicit argument to complete the proof of Proposition 4.12, considering the cases
that were left in subsection 4.9, because the proofs are analogue to the ones discussed in that
subsection.

Additional material for Subsection 4.9
Let ∆s = 2. We analyze in detail the cases (c) and (d). For the case (c), since U1−2U2

ε > −1
and δ − k − 3 < −2, we get H(η̄) ≥ Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + ∆ =
= U1l

∗
2 + 2U2l

∗
2 + U1 − U2 + k(U1 − U2)− 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − 2ε > Γ

⇔ εk2 + k[U1 − U2 + 3ε− εl∗2] > 0⇔ U1−2U2
ε > δ − k − 3.

(A.17)
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In particular, we obtain H(η̄) = Γ if k = 0 and v(η̄) = l∗2 − 1, i.e., η̄ ∈ P2, otherwise H(η̄) > Γ.
For such η̄ ∈ P2, there is no admissible exiting move from B in order to get ∆s = 2, thus it is
not a relevant case.

In the case (d), since n(η̄) ≥ 1, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 + U2 − ε > Γ

⇔ U2 > ε(1− k(1− δ)), always since ε� U2, k ≥ 0 and δ < 1.
(A.18)
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