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Abstract: Cannabis derivatives are largely used in the general population for recreational and medical
purposes, with the highest prevalence among adolescents, but chronic use and abuse has raised
medical concerns. We investigated the prolonged effects of ∆9-tetrahydrocannabinol (THC) and
cannabidiol (CBD) in organotypic hippocampal slices from P7 rats cultured for 2 weeks. Cell death
in the CA1 subregion of slices was quantified by propidium iodide (PI) fluorescence, pre-synaptic
and post-synaptic marker proteins were analysed by Western blotting and neurodegeneration and
astrocytic alterations by NeuN and GFAP by immunofluorescence and confocal laser microscopy.
The statistical significance of differences was analysed using ANOVA with a post hoc Dunnett w-test
(PI fluorescence intensities and Western blots) or Newman–Keuls (immunohistochemistry data)
for multiple comparisons. A probability value (P) of < 0.05 was considered significant. Prolonged
(72 h) THC or CBD incubation did not induce cell death but caused modifications in the expression
of synaptic proteins and morphological alterations in neurons and astrocytes. In particular, the
expression of PSD95 was reduced following incubation for 72 h with THC and was increased
following incubation with CBD. THC for 72 h caused disorganisation of CA1 stratum pyramidalis
(SP) and complex morphological modifications in a significant number of pyramidal neurons and in
astrocytes. Our results suggest that THC or CBD prolonged exposure induce different effects in the
hippocampus. In particular, 72 h of THC exposure induced neuronal and glia alterations that must
draw our attention to the effects that relatively prolonged use might cause, especially in adolescents.

Keywords: THC; CBD; PSD95; organotypic hippocampal slice; neuron; astrocyte; toxicity; clasmatodendrosis

1. Introduction

Cannabis has been widely used for thousands of years, both for recreational and
medical purposes. Currently, cannabis derivatives are still largely used in the general
population, with the highest prevalence among adolescents [1], but chronic use and abuse
have raised medical concerns [2]. Cannabis can induce craving [3], dependence [4], and
drug-seeking behaviour [5]. Recent developments in molecular and cellular neurobiology
have provided new tools to understand in detail the mechanisms by which cannabinoids
and especially ∆9-tetrahydrocannabinol (THC) produce long-lasting functional changes in
the brain [6].

In humans and animal experimental models, it has been shown that chronic expo-
sure to THC during adolescence produces long-term behavioural alterations that share
similarities with certain symptoms of psychiatric and neurodevelopmental disorders [7,8].
However, little is known about the structural, functional, and molecular mechanisms un-
derlying these deficits [9]. CBD mitigates the long-term behavioural alterations induced
by THC chronic exposure in adolescent female rats as well as long-term changes in CB1
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receptors and microglia activation in the prefrontal cortex (PFC) [10]. In addition, repeated
administration of a CBD/THC combination, reminiscent of “light cannabis” (CBD: THC
in a 33:1 ratio; total THC 0.3%), induces long-term adverse effects on cognition and leads
to anhedonia [10]. Repeated exposure to THC in mice produces a decrease in the number
of visits to Intelli Cage corners, a marker of reduced locomotor activity [11–13]. Clinical
and experimental studies have shown that repetitive THC treatment induces behavioural
tolerance, which coincides with rapid downregulation and desensitisation of cannabinoid
receptor binding sites in several brain areas of the mesocorticolimbic circuitry and cerebel-
lum [14,15]. Chronic THC affects schedule-induced drinking development, confirming that
it can disrupt learning, possibly causing alterations in time estimation. In addition, chronic
THC leads to sensitisation of animals when they are re-exposed to the drug after long peri-
ods without drug exposure [16]. These behavioural effects following prolonged exposure to
THC and CBD, however, are not corroborated by functional electrophysiological synaptic
plasticity experiments performed following prolonged incubation to cannabinoids.

The production of new synapses or reorganisation of existing synapses, including
modifications in proteins that are dynamically regulated at pre- and post-synaptic sites are
necessary for complex brain functions [17,18]. THC exposure during adolescence induces
changes in glutamate synapse and glial cells [1]. In rats treated with THC for 10 days,
Rubino and colleagues [19] observed impaired spatial memory and decreased expression
of the post-synaptic marker PSD95 and of astrocytic GFAP in the hippocampus. Chronic
exposure to CP55,940 (a synthetic cannabinoid agonist) alters both the morphology of
pyramidal neurons and the expression of PSD95 protein in the prefrontal cortex (PFC)
and induces plasticity changes in the hippocampus–PFC network of adult rats [9]. The
modifications driven by THC on the hippocampus result in secondary effects on learning
and attenuate the increased transcription of neuroplasticity markers observed during the
training of control animals [20]. Suarez and colleagues [21] showed that pre- and perinatal
THC exposure causes long-lasting changes in GFAP expression. The aforementioned
treatment precisely interferes with astrocytic maturation by disrupting normal cytoskeletal
formation, as indicated by the lower GFAP expression and its irregular arrangement in the
cytoplasm observed at all ages studied [22].

In this study, we treated organotypic hippocampal slices for 24 or 72 h with either
THC or CBD to understand the possible toxic effects of prolonged cannabinoids exposure
and evaluate possible alterations in neuroplasticity. For this reason, we analysed the
levels of both pre-synaptic and post-synaptic marker proteins (synaptophysin and PSD95,
respectively) by Western blotting, and we investigated neurodegeneration and astrocytic
alterations by immunohistochemistry for NeuN and GFAP, respectively.

2. Materials and Methods
2.1. Animals

Wistar rat pups of 7 days of age of both sexes were used (Charles River, MI, Italy).
Rats, housed at 23 ± 1 ◦C under a 12 h light–dark cycle with lights on at 07:00, were fed a
standard laboratory diet with ad libitum access to water. The experimental protocols were
approved by the Animal Care Committee of the Department of Health Sciences, University
of Florence (17E9C.N.GSO/2021).

The ethical policy of the University of Florence on the use of laboratory animals is in
accordance with the Directive 2010/63/EU and with the Italian DL 26/2014 “protection of
animals used for scientific purposes”. Accordingly, we fulfilled the principle of 3Rs. The
experimental procedures were conducted in accordance with the ARRIVE guidelines and
were authorised by the Italian Ministry of Health.

2.2. Materials

Cannabidiol (CBD) was purchased from Tocris Cookson (Bristol, UK). The medium
for tissue cultures was purchased from Gibco-BRL (San Giuliano Milanese, MI, Italy), insert
and ∆9-tetrahydrocannabinol (THC) were purchased from Sigma (St. Louis, MO, USA).
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2.3. Preparation of Rat Organotypic Hippocampal Slice Cultures

Organotypic hippocampal slice cultures were prepared as previously reported [23].
Briefly, hippocampi of Wistar rat pups were removed from the brains, and transverse slices
(420 µm) were prepared by a McIlwain tissue chopper. After microscope selection, the
slices were transferred onto inserts (Millicell-CM PICM03050; Millipore, Milan, Italy; four
slices per insert), which were placed in six-well tissue culture plates containing 1.2 mL
medium per well. The normal medium consists of 50% Eagle’s minimal essential medium,
25% heat-inactivated horse serum, 25% Hanks’ balanced salt solution, 5 mg/mL glucose,
2 mM L-glutamine, and 3.75 mg/mL amphotericin B. Slices were maintained at 37 ◦C in
an incubator in atmosphere of humidified air and 5% CO2 for 2 weeks. The slices were
exposed for 24 h or 72 h to 1 µM of THC and 10 µM of CBD; the medium was changed
every day (Figure 1A).

The slices were incubated with propidium iodide (5 µg/mL) for cell death evaluation
by using an inverted fluorescence microscope. Images were analysed using morphometric
analysis software (ImageJ; NIH, Bethesda, MD, USA) by measuring the optical density of
PI fluorescence (the glutamate fluorescence was reported as 100%). THC was dissolved
in methanol, CBD was dissolved in dimethyl sulfoxide (DMSO), and both were stored
at −20 ◦C. For the experiments, they were diluted in cell culture medium. The maximal
final solvent concentration for the drugs was 0.1% (v/v) DMSO or 0.3% (v/v) methanol.
Slices exposed to equimolar concentrations of DMSO or methanol alone did not show any
significant effects (data not shown).

2.4. Western Blot Analysis

Western blotting was conducted as previously reported [24]. Each sample consists
of four slices that were dissolved in 1% SDS. The total protein levels were quantified by
BCA (bicinchoninic acid) protein assay. Lysates (20 µg/lane of protein) were resolved
by electrophoresis on a 4–20% SDS-polyacrylamide gel (Bio-Rad Laboratories, Hercules,
CA, USA) and transferred onto nitrocellulose membranes. After blocking 1 h with TBS-T
containing 5% non-fat dry milk, the blots were incubated overnight at 4 ◦C with monoclonal-
mouse antibody against PSD95 (from Cell Signaling Technology, Beverly, MA, USA) and
monoclonal-mouse antibody against Synaptophysin (Sigma-Merk, Darmstadt, Germany),
both diluted 1:1000 in TBS-T containing 5% bovine serum albumin. β-actin was used
as a loading control (monoclonal antibody purchased from Sigma, St Louis, MO, USA).
Immunodetection was performed with HRP-conjugated secondary antibodies (1:2000 anti-
mouse, anti-rabbit, or anti-goat IgG from donkey, Amersham Biosciences, Amersham, UK)
in TBS-T containing 5% non-fat dry milk. After extensive washings, the reactive bands were
detected using chemiluminescence (ECLplus; Euroclone, Padova, Italy). The quantitative
analysis was obtained with Quantity One analysis software (Bio-Rad, Hercules, CA, USA).
Results are presented as the mean ± standard error of the mean (SEM) of different gels and
expressed as AU, which depicts the ratio between levels of target protein expression and
β-actin normalised to basal levels.

2.5. Fluorescence Immunohistochemistry and Quantitative Analysis

After the 24 h or 72 h incubation with either THC or CBD, the organotypic slices were
fixed overnight in cold paraformaldehyde dissolved in PBS buffer (4%). The following day,
slices were incubated for at least 48 h in cold solution of sucrose in PBS (18%). Immunofluo-
rescence staining was performed with the free-floating protocol according to Landucci et al.
and Gerace et al. [25,26].

First day: slices were blocked with blocking buffer (BB containing 10% normal goat
serum) for 1 h, and were incubated O/N at 4 ◦C with a mouse anti-NeuN to immunostain
neurons dissolved in BB (1:400; product code #MAB377, Millipore, Billerica, MA, USA).

Second day: slices were incubated for 2 h at the RT in the dark with AlexaFluor
555 donkey anti-mouse IgG (1:400 in BB; product code #A31570, Thermo Fisher Scientific,
Waltham, MA, USA). Astrocytes were visualised using a mouse anti-GFAP antibody conju-
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gated with the fluorochrome AlexaFluor 488 for 2 h at room temperature in the dark (1:500
in BB; product code #MAB3402X, Millipore). The slices were mounted onto gelatin-coated
slides using Vectashield mounting medium with DAPI (product code #H-1200, Vectashield,
Burlingame, CA, USA).

A LEICA TCS SP5 confocal laser scanning microscope (Leica Microsystems CMS
GmbH, Mannheim, Germany) equipped with 20X or 63X objective (z step of 1.2 µm or
0.5 µm) was used to acquire confocal scans keeping all parameters constant. Image analyses
were conducted on z-stacks projections on the CA1 area, the region of interest, using Image
J (National Institute of Health, http://rsb.info.nih.gov/ij) (accessed on 30 November 2021).

Quantitative analyses on neurons and astrocytes were brought about in CA1 stra-
tum pyramidalis (SP) or stratum radiatum (SR) on confocal microscopy z-projection of
10 consecutive z scans (20X objective, z step 1, 2 µm, total thickness 12 µm). Quantification
of CA1 thickness, and of high-density nucleus (HDN) neurons, large HDN neurons, and
low-density nucleus (LDN) neurons was performed in accordance with Landucci et al. [25].
GFAP immunofluorescence in CA1 SP or SR was detected from the number of positive
pixels above a threshold level in each confocal microscopy z-projections using Image J
with the threshold tool [26]. Astrocytes branches length was measured in CA1 SP or SR in
accordance with Cerbai et al. [27].

2.6. Statistical Analysis

Data are presented as means ± SEM of n experiments. The statistical significance of dif-
ferences between PI fluorescence intensities and Western blot was analysed using one-way
ANOVA with a post hoc Dunnett w-test for multiple comparisons. Immunohistochemistry
data were statistically analysed by one-way ANOVA followed by the Newman–Keuls
multiple comparison test. All statistical calculations were performed using GRAPH-PAD
PRISM v. 8 for Windows (GraphPad Software, San Diego, CA, USA). A probability value
(p) of < 0.05 was considered significant.

3. Results
3.1. Acute and Prolonged Administration of ∆9-Tetrahydrocannabinol and Cannabidiol Do Not
Produce Death in Mature Organotypic Hippocampal Slices

After 10–14 days in culture, the organotypic hippocampal slices reached maturation
and were used for anatomical, molecular, and electrophysiological studies [28]. In this
study, we analysed the effects of cannabinoids; in particular, the slices were treated with
THC and CBD and the Cornu Ammonis areas CA1 region was evaluated for damage
using PI fluorescence (Figure 1B). Quantitative analysis of hippocampal slices exposed
for 24 h (Figure 1C) or 72 h (Figure 1D) to 1 µM THC or 10 µM CBD showed that these
drugs did not induce injury in the CA1 region in this model compared with the exposure
to maximal injury represented by 10 mM glutamate (24 h), which was used as a positive
control (Figure 1B bottom left) [25,29].

http://rsb.info.nih.gov/ij
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Bottom left: slice exposed to 10 mM glutamate, displaying intense PI labelling in all sub-regions. 
Hippocampal slices incubated with 1 µM THC 24 h (top centre), 10 µM CBD 24 h (bottom centre). 
Slices incubated with 1 µM THC 72 h (top right), 10 µM CBD 72 h (bottom right). (C,D) Quantitative 
analysis at 24 h (C) and 72 h (D) incubation with cannabinoids. Bars represent the mean ± SEM of at 
least four experiments. *** p < 0.001 vs. control (CRL) (ANOVA + Dunnett’s test). 

Figure 1. Effects of THC or CBD incubation in organotypic hippocampal slices. (A) Experimental
protocols. (B) Top left: hippocampal slices under normal conditions (background PI fluorescence).
Bottom left: slice exposed to 10 mM glutamate, displaying intense PI labelling in all sub-regions.
Hippocampal slices incubated with 1 µM THC 24 h (top centre), 10 µM CBD 24 h (bottom centre).
Slices incubated with 1 µM THC 72 h (top right), 10 µM CBD 72 h (bottom right). (C,D) Quantitative
analysis at 24 h (C) and 72 h (D) incubation with cannabinoids. Bars represent the mean ± SEM of at
least four experiments. *** p < 0.001 vs. control (CRL) (ANOVA + Dunnett’s test).



Toxics 2022, 10, 48 6 of 15

3.2. Effect of THC and CBD on Synaptophysin and PSD95 Levels

Since in our slices we had previously observed functional alterations even in the
absence of morphological damage [28], we examined the expression of a pre-synaptic and
a post-synaptic protein following prolonged incubation with either cannabinoid.

We performed Western blotting analysis in homogenates of organotypic hippocampal
slices exposed to THC (1 µM) or CBD (10 µM) for 72 h using antibodies directed against
specific pre- and post-synaptic proteins (Figure 2). We found that THC or CBD did not
significantly alter the levels of synaptophisin (Figure 2A) compared with the control slices.
On the contrary, THC significantly decreased, while CBD increased PSD95 protein levels in
the hippocampal homogenates (Figure 2B). These data are an indication that cannabinoids
modify post-synaptic but not pre-synaptic proteins.
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Figure 2. Effects of prolonged incubation with THC or CBD on synaptophysin and PSD95 expres-
sion in organotypic hippocampal slices. (A,B) Illustrative blots using antibodies directed against
synaptophysin (Top (A)) and PSD95 (Top (B)) and β-actin ((A) and (B) centre). Quantitative analysis
of WB bands shows no significant changes in synaptophysin levels in all experimental conditions
(Bottom (A)). Incubation with 1 µM THC for 72 h caused a significant decrease in PSD95 levels, while
10 µM CBD for 72 h induced significant increase in PSD95 levels (Bottom (B)). Bars represent the
mean ± SEM of at least four experiments. * p < 0.05, ** p < 0.01 vs. CRL (ANOVA + Dunnett’s w-Test).

3.3. Prolonged THC or CBD Exposure Effects on Neuronal Viability

In order to ascertain whether the synaptic protein alterations translate into morpho-
logical modifications, we assessed the effects of either cannabinoid administration on
pyramidal neurons in CA1 hippocampus of organotypic slices treated for 24 h or 72 h with
1 µM THC or 10 µM CBD. Neurons were immunostained with anti-NeuN antibodies and
were visualised with confocal microscopy.

No significant qualitative or quantitative alterations in neurons were observed in slices
treated for 24 h with THC or CBD (data not shown). Nevertheless, the qualitative analysis
of the immunostaining of NeuN-positive neurons (Figure 3A,(C1)) shows that treatment
with THC for 72 h caused disorganisation of the CA1 stratum pyramidalis (SP) and complex
morphological modifications in a large number of pyramidal neurons. As evidenced in
panel (B1), enlargement of the dotted area in B, many neurons distributed within the
thickness of the CA1 region had a pyknotic nucleus (HDN neurons, white arrowheads in
(B1)). In addition, numerous neurons had enlarged and vacuolised cytoplasm and high-
density nuclei (large HDN neurons, open arrows in (B1)) both in the SP and SR (not shown
in the images). Less consistently, other neurons were karyorrhectic, lacking their nuclear
staining (low-density nucleus (LDN), not shown in the images). Thus, immunostaining for
NeuN demonstrated that CA1 pyramidal neurons incubated for 72 h with THC showed
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signs of morphological alterations, compared with neurons in control slices. The effect
of CBD on neuronal viability at the concentration and time of exposure used was less
consistent in comparison to that of THC.

All the qualitative data were confirmed by quantitative analyses performed measuring
the thickness of CA1 SP and the density of HDN, large HDN, and LDN neurons in SP
and SR of control slices and of slices exposed for 72 h to THC or CBD (Figure 3D). We
found that treatment with THC caused thorough disorganisation of CA1 SP. Pyramidal
neurons were less densely packed throughout the thickness of CA1 SP, which increased
significantly by about 44% in THC-treated slices (one-way ANOVA; * p < 0.05 vs. controls,
Newman–Keuls post hoc test). CBD exposure did not increase significantly the CA1 SP
layout (thickness +12%, n.s.).
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 Figure 3. Prolonged THC or CBD exposure effects on neuronal viability. (A–C) Confocal microscopy
images of NeuN immunostaining of neurons in CA1 SP and SR of a CRL (A), THC (B), and CBD slice
(C) acquired with a 20X objective. A–C scale bar: 75 µm. (A1–C1) Enlargements of dotted areas of the
corresponding slice in (A–C). (A1): The image shows healthy neurons in CA1 SP. (B1): The image
highlights the profound alteration of neurons caused by subchronic THC exposure. Arrowheads and
open arrows point to HDN neurons and large HDN neurons, respectively. (C1): The image shows
that CBD treatment did not alter neurons of CA1 SP, which show a healthy morphology. A1–C1
scale bar: 30 µm. (D–H) Quantitative analyses of morphological alterations in CA1. (D) Thickness of
CA1. Statistical analysis: one-way ANOVA p < 0.01; * p < 0.05 vs. CRL, Newman–Keuls post hoc test.
(E) Density of HDN neurons in SP. Statistical analysis: one-way ANOVA p < 0.05; * p < 0.05 vs. CRL,
Newman–Keuls post hoc test. (F) Density of LDN neurons. Statistical analysis: one-way ANOVA, not
significant. (G) Density of large HDN neurons in SP. Statistical analysis: one-way ANOVA p < 0.01;
** p < 0.01 vs. CRL, Newman–Keuls post hoc test. (H) Density of large HDN neurons in SR. Statistical
analysis: one-way ANOVA p < 0.0001; *** p < 0.001 vs. CRL, Newman–Keuls post hoc test). Bars
represent the mean ± SEM of 6–8 experiments.
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Furthermore, THC exposure caused neuronal alterations, as shown by appearance
of pyknotic (HDN) neurons in CA1 SP and of large HDN neurons in both SP and SR.
Quantitative analysis demonstrated that treatment with THC for 72 h at the dose of 1 µM
significantly increased the proportion of HDN neurons in SP (+212% vs. controls, * p < 0.05
THC vs. CRL, one-way ANOVA and Neuman–Keuls post hoc test, Figure 3E) and large
HDN neurons in SP (+195% vs. controls, ** p < 0.01 THC vs. CRL, Figure 3G) and in SR
(+167% vs. controls, *** p < 0.001 THC vs. CRL, Figure 3H). The effect of THC on the
occurrence of LDN neurons was not significant (+36%, n.s., Figure 3F). Furthermore, in
CA1 SP of THC-treated slices, the percentage of HDN/total neurons increased by 211%,
and the percentage of large HDN/total neurons increased by 148% in SP and by 127% in SR,
in comparison to control slices (all * p < 0.05, THC vs. CRL, not shown in the Figure). CBD
treatment had no significant effect on neuronal morphological modifications in CA1 SP
and SR. Indeed, the density of HDN, large HDN, and LDN neurons was not significantly
different from controls in both SP and SR (Figure 3E–H). In conclusion, 72 h administration
of THC, but not of CBD, caused significant tissue disorganisation and morphological
alterations in CA1 pyramidal neurons.

3.4. Effects of THC or CBD Exposure on Astrocytes Viability

No significant qualitative or quantitative alterations in astrocytes were observed
in slices treated for 24 h with either cannabinoid (data not shown). The effect of 72
h exposure to THC or CBD was also evaluated on astrocytes viability in CA1 SP and
SR of organotypic slices. Figure 4A–C show the merged confocal images of astrocytes
(green) and neurons (red), and panels (A1–C1) show the enlargements of astrocytes in the
corresponding dotted areas in A–C. Qualitative analyses indicate that 72 h THC exposure
modified astrocytes morphology in CA1. Indeed, after prolonged treatment with THC,
the branches of astrocytes in CA1 SP, compared with those of astrocytes in control and
CBD-treated slices, appeared twisted and swirling, highly fragmented, and had lost their
most distal processes (Figure 4(B1)), a modification named clasmatodendrosis by Cajal [30].
Furthermore, in THC-treated slices, the immunostaining of GFAP in astrocytes was less
intense, as shown by the quantitative data reported in the graph of Figure 4D,E. Quantitative
analyses demonstrated that 72 h exposure to THC significantly decreased GFAP expression
both in CA1 SP (−34% vs. controls, ** p < 0.01 THC vs. CRL, one-way ANOVA and
Neuman–Keuls post hoc test) and SR (−36% vs. controls, * p < 0.05 THC vs. CRL). The
effect of CBD was statistically significant only in SP (−29% vs. controls, * p < 0.05 CBD vs.
CRL), but not in SR (n.s.).
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in CA1 SP of a CRL (A), THC (B), and CBD slice (C) acquired with a 63X objective. Scale bar: 20 µm.
(A1–C1) Enlargements of the corresponding dotted areas in (A–C) showing astrocytes in a CRL
(A1), THC (B1), and CBD slice (C1). Scale bar: 15 µm. (A1): The enlargement shows astrocytes
with a healthy morphology in CA1 SP. (B1): The enlargement shows the profound morphological
alterations of astrocytes caused by the subchronic THC exposure. (C1): The image shows that after
CBD treatment, morphological alterations of astrocytes are less evident. (D) Quantitative analysis
of GFAP expression in CA1 SP. Statistical analysis: one-way ANOVA p < 0.01; * p < 0.05 vs. CRL;
** p < 0.01 vs. CRL, Newman–Keuls post hoc test. (E) Quantitative analysis of GFAP expression in
CA1 SR. Statistical analysis: one-way ANOVA p < 0.05; * p < 0.05 vs. CRL, Newman–Keuls post hoc
test. (F) Quantitative analysis of astrocytes branches length in CA1 SP. Statistical analysis: one-way
ANOVA p < 0.0001; *** p < 0.001 vs. CRL; ** p <0.01 vs. CRL; ### p < 0.001 vs. THC, Newman–
Keuls post hoc test. (G) Quantitative analysis of astrocytes branches length in CA1 SR. Statistical
analysis: one-way ANOVA p < 0.0001; *** p < 0.05 vs. CRL; * p < 0.05 vs. CRL, ## p < 0.01 vs. THC,
Newman–Keuls post hoc test. Bars represent the mean ± SEM of 6–8 experiments.

Quantitative analysis demonstrated that in THC-treated slices, the principal branches
of astrocytes were significantly shorter in the SP (−48% vs. control; *** p < 0.001 THC vs.
CRL, one-way ANOVA and Newman–Keuls multiple comparison test, Figure 4F) and in
the SR (−45% vs. control; *** p < 0.001 THC vs. CRL, Figure 4G) compared with control
slices. In slices treated for 72 h with CBD, the effect was less evident. Indeed, in the SP
of CBD-treated slices, principal branches of astrocytes were 19% shorter than in control
slices (** p < 0.01 CBD vs. CRL, and ### p < 0.001 CBD vs. THC, Figure 4F), and in the SR
they were 21% shorter than in control slices (* p < 0.05 CBD vs. CRL, and ## p< 0.01 CBD
vs. THC).

Lastly, panel (B1) clearly shows that prolonged THC exposure modified spatial tissue
distribution of astrocytes, possibly mirroring the tissue disorganisation described above.

4. Discussion

The main finding of this study is that a prolonged incubation (72 h) with THC and
CBD did not produce significant cell death in organotypic hippocampal slices but induced
alteration in the expression of synaptic proteins and morphological alterations in neurons
and astrocytes. In particular, the expression of PSD95 was reduced following incubation
for 72 h with THC, while it increased following prolonged incubation with CBD. In cor-
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roboration of this finding, THC but not CBD caused disorganisation of the CA1 stratum
pyramidalis (SP) and complex morphological modifications in a large number of pyramidal
neurons and in astrocytes.

To explore the mechanisms underlying THC-induced neurobehavioral alteration ob-
served in many previous studies, we exposed rat organotypic hippocampal slices to 1 µM
THC or 10 µM CBD for 24 h or 72 h. At the end of these two time points, the slices were
incubated with PI to detect cell death [23]. Our data of cellular death are in accordance
with a study by Kreutz and colleagues [31], in which they exposed hippocampal slices
cultured to 0.03 to 15 µM THC for 3 days and observed that THC-treated unlesioned slices
contained almost no PI-positive degenerating neurons. In this study, we observed that
exposure for 72 h with THC or CBD did not induce neuronal death observed by PI. Never-
theless, we found that 72 h administration of THC, but not of CBD, significantly increased
neuronal morphological alterations, as demonstrated by the significantly higher proportion
of pyknotic (HDN and large HDN) neurons. When we analysed the effects of cannabinoids
incubation on the expression levels of pre- and post-synaptic proteins in hippocampal
slices, we observed that exposure to 24 h of treatment did not induce alteration, whereas
72 h of incubation with THC caused a significant reduction in the expression of PSD95
while CBD evoked a significant increase. These data are in accordance with those observed
by Rubino and colleagues [19], who showed that in rats treated for 10 days with THC, the
post-synaptic marker PSD95 decreases and spatial memory is impaired. Chronic exposure
to CP55,940, a synthetic cannabinoid agonist, alters both the morphology of pyramidal
neurons and expression of PSD95 protein in the prefrontal cortex (PFC) and induces plas-
ticity changes in the hippocampus–PFC network of adult rats [9]. Increased expression
of synaptophysin and PSD95 in the medial prefrontal cortex (mPFC) and elevated BDNF
levels in both mPFC and hippocampus after a single injection of cannabidiol are observed
in Swiss mice and in Flinders Sensitive and Flinders Resistant Line (FSL/FRL) rats, which
translates into acute antidepressant effects [32]. The increase in PSD95 is proposed as one of
the possible mechanisms of action for CBD anti-stress effects [33]. When zebrafish embryos
are exposed to ∆9-THC or CBD for 5 hours during gastrulation, embryos exhibit reduced
heart rate, axial malformations, and shorter trunks [34]. Cannabinoid treatment alters
synaptic activity at neuromuscular junctions (NMJs) [34].

Neurodegenerative diseases are usually studied from a neuronocentric point of view,
but it is becoming evident that modifications of astrocytes and other glia cells are involved
in neurodegeneration and CNS disorders. The importance of the role of astrocytes in
neurodegeneration, whether damaging or protective, is still unknown. Nevertheless, it has
been postulated that diverse mechanisms, as a change in the release or uptake of gliotrans-
mitters such as glutamate, clasmatodendrosis, and astrocytes death, indirectly contribute to
neuronal loss [35–39]. Therefore, a part of our study was aimed at understanding whether
morphology and viability of astrocytes are modified by 72 h exposure to THC or CBD
early after the end of drug exposure and may be reflected in neuronal modifications. It
has been shown in the hippocampus that neuronal-released endocannabinoids activate
astrocytic CB1 receptors, leading to an increase in intracellular Ca2+ release from internal
stores [40,41] and, consequently, the release of gliotransmitters, such as glutamate, ATP
and D-serine [42–44]. It has also been demonstrated in spinal cord astrocytes stimulated
by cannabinoids through CB1 receptors activation that intracellular Ca2+ and release of
2-AG increase [45]. In our experiments, we found that both THC and CBD exposure
for 72 h caused significant modifications of astrocytes morphology, possibly reflecting
functional alterations, as evidenced by the decrease in GFAP expression and morpho-
logical alterations of astrocytes branches. In both CA1 SP and SR of THC-treated slices,
astrocytes showed marked signs of clasmatodendrosis, an irreversible astrocytic degenera-
tion characterised by the dissolution of their branches [30]. Clasmatodendrosis has been
linked to autophagy [46,47], suggesting that it may represent an additional mechanism
of astrocytic death. Furthermore, branches of clasmatodendrotic astrocytes are shorter
and lose their more distal processes and endfeet, causing less coverage of brain vessels.



Toxics 2022, 10, 48 11 of 15

Therefore, clasmatodendrotic astrocytes may lose their trophic and supportive functions to
neurons. In addition, in the healthy brain, astrocytes regulate the formation, maturation,
and plasticity of synapses [48–51], controlling the development and maintenance of neural
circuits [52–54]. Astrocytes, mediating the functionality of synapses [55], are involved
indirectly in memory mechanisms [48,49,56].

It is known that astrocytes control the formation, maturation, and plasticity of synapses
by secreting many proteins that regulate synaptic formation, such as thrombospondins,
hevin, and solid-phase attachment of red cells (SPARC) [50,51]. In addition, as pointed out
above, healthy astrocytes envelope synapses with their processes and are indispensable
for neurotransmitter homeostasis, the release of gliotransmitters, and the maintenance and
maturation of synapses [57,58]. In addition, astrocytes control the levels of GABA and glu-
tamate at the synapses, thus mediating the functions of the so-called tripartite synapse [55].
It is therefore plausible that astrocytes clasmatodendrosis caused by continuous exposure
to THC, which leads to spatial disorientation of astrocytes, and disruption of astrocytic
syncytium, may decrease maintenance of healthy synapses and synaptic connectivity and
can play a role in decreasing neuronal homeostasis [49,59], partly explaining the data
obtained in our experiments. The involvement of astrocytes in THC-dependent memory
deficits has been recently demonstrated [60]. THC exposure in genetically predisposed ado-
lescences seems to cause synergistical activation of NF-kB–COX-2 signalling in astrocytes,
increased secretion of glutamate, decreased parvalbumin-positive pre-synaptic boutons
around pyramidal neurons of the CA3 area of the hippocampus, and memory deficits.

Nevertheless, in CBD-treated slices astrocytes morphology was not significantly differ-
ent to that of control astrocytes, and the length of their branches was intermediate between
control and THC-treated slices. No modifications typical of clasmatodendrosis were ev-
ident. These data demonstrated that 72 h treatment of slices with THC was a sufficient
time to evoke strong degeneration of astrocytes, while incubation with CBD for the same
time had a milder effect. CBD has been shown to play a therapeutic role in inhibiting reac-
tive astrogliosis in various in vivo models of brain disorders. For instance, CBD reduces
GFAP overexpression in astrocytes in the pilocarpine-induced epileptic model through
the activation of the PI3K signalling pathway [61]. CBD also suppresses the expression
of astrogliosis-marker proteins via PPAR activation and NF-kB inhibition in an amyloid
mouse model of AD [62]. Nevertheless, it will be of interest to study the effect of CBD
administration at longer time points.

A recent hypothesis postulates that in physiopathological conditions, astrocytes exist
as a continuum of heterogeneous, mixed populations [63–67], depending not only on the
type of insult but also on the brain region and the time after the insult. The alterations in
astrocytes morphofunctional states may cause modifications of brain homeostasis by im-
pairment of extracellular glutamate buffering, reducing the supply of nutrients to neurons,
thus contributing to the increased damage to neurons [68], as occurred in our model after
subchronic THC exposure. Longer exposures to cannabinoids may cause further damage
to astrocytes, suppressing their functionality and increasing neuronal vulnerability. All
these effects at length may possibly be at the basis of neuronal degeneration [38,69].

The pharmacological targets of THC and CBD are known to be diverse [70–72]. In
particular, THC is known to interact as an agonist on CB1 and CB2 receptors, whereas
CBD interacts with multiple targets, including an agonist-like effect on the peroxisome
proliferator-activated receptor γ (PPARγ), transient potential receptors V (TRPV1, TRPV2),
and indirectly on CB1 and CB2 receptors, by inhibiting the enzyme fatty acid amide
hydrolase that degrades anandamide, with an increase in anandamide concentration. In
addition, CBD exerts an effect as an orthosteric agonist on 5-HT1A receptor. Hence, these
different mechanisms of action of THC and CBD may explain the differences in their
effects that we have observed in this study. As for the effects in organotypic hippocampal
slices, we have recently shown that in our model, THC appears to act mainly on CB1
receptors, whereas the effects of CBD were blocked by TRPV2, 5-HT1A, and PPARγ
receptor antagonists, but not by antagonists of CB1 receptors [25].
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5. Conclusions

In conclusion, our results show that prolonged exposure to THC or CBD induced
different and sometimes opposite effects in the hippocampus. In particular, THC reduced
while CBD increased PSD95 levels. Furthermore, THC but not CBD caused disorganisation
of the hippocampus layout and brought about complex morphological modifications in a
large number of pyramidal neurons and astrocytes. Therefore, the appropriate medicinal
use of THC with chronic treatment should be considered with more attention, particularly
in adolescents.
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