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Abstract: Gold and silver N-heterocyclic carbenes (NHCs) are emerging for therapeutic
applications. Multiple techniques are here used to unveil the mechanistic details of the binding
to different biosubstrates of bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) silver chloride
[Ag(EIA)2]Cl and bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) gold chloride [Au(EIA)2]Cl.
As the biosubstrates, we tested natural double-stranded DNA, synthetic RNA polynucleotides
(single-poly(A), double-poly(A)poly(U) and triple-stranded poly(A)2poly(U)), DNA G-quadruplex
structures (G4s), and bovine serum albumin (BSA) protein. Absorbance and fluorescence titrations,
mass spectrometry together with melting and viscometry tests show significant differences in the
binding features between silver and gold compounds. [Au(EIA)2]Cl covalently binds BSA. It is here
evidenced that the selectivity is high: low affinity and external binding for all polynucleotides and
G4s are found. Conversely, in the case of [Ag(EIA)2]Cl, the binding to BSA is weak and relies on
electrostatic interactions. [Ag(EIA)2]Cl strongly/selectively interacts only with double strands by a
mechanism where intercalation plays the major role, but groove binding is also operative. The absence
of an interaction with triplexes indicates the major role played by the geometrical constraints to drive
the binding mode.

Keywords: silver carbene; gold carbene; target selectivity; nucleic acids; quadruplexes; mode of action;
protein metalation

1. Introduction

Beyond their wide use in catalysis, metal N-heterocyclic carbenes (NHC) are now being extensively
investigated for therapeutic applications such as anticancer, antibacterial, antiviral and antiparasitic
treatments [1,2]. NHC can coordinate most of the transition metals and confer increased stability
in aqueous solution [3]. Moreover, an impressive number of different structures with customized
electronic [4] and targeting properties [5] can be prepared with limited synthetic efforts by varying the
substituents on the NHC ring. Therefore, it is not surprising that platinum, palladium, ruthenium,
rhodium, iridium, copper, silver, and gold NHCs have been tested for their biological properties [1,2,6–8].
In this regard, driven by the discovery of the antitumor activity of gold antiarthritic drugs [9], research on
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gold carbenes mainly focuses on the anticancer properties [10,11]. On the other hand, silver complexes
can count on a long history as antimicrobials [12]. Aiming at a more controlled release of silver
ions, researchers are trying to prepare silver NHCs boosting the efficacy of silver anti-infective
properties [13,14]. Nonetheless, in recent years, the antiproliferative activity of silver carbenes against
tumour cells has also been evidenced [15–17]. Overall, mechanistic insights concerning gold and silver
NHCs have pointed out that the antiproliferative activity against cancer cells is often related to the
inhibition of selenol- and thiol-containing enzymes together with antimitochondrial effects [15,16,18–20].
However, suitable wingtip substituents can enable increased affinity for DNA: gold and silver NHCs
engaging genomic targets are emerging [21]. A benzimidazole-ylidene dicarbenic compound was able
to cause DNA fragmentation in glioblastoma cells [22]. These systems may show a multimodal activity:
naphtalimide functionalized gold NHCs could both intercalate into the double helix of DNA and exhibit
nanomolar TrxR inhibition [23]. A class of cyclometalated gold(III) NHCs was found to be a potent DNA
intercalator [24]. Pairwise, for this series of complexes, DNA cleavage and inhibition of Topo-I mediated
DNA relaxation were evidenced. In the quest for treatments with limited side effects, the selectivity
of complexes towards specific nucleic acid sequences and structures is of utmost importance. In this
concern, a panel of gold compounds bearing two caffeine-derived carbene ligands displayed selective
binding towards G-quadruplexes over double-stranded DNA [25,26]. Detailed mechanistic studies on
the binding modes of these metal complexes to DNA are relatively rare [27,28]. Additionally, it has to
be noted that the nucleic acid target cited until now is DNA only: to the best of our knowledge, the
binding to RNA polynucleotides is not documented. Binding to serum proteins including albumin is
another factor of paramount importance [29–32]. It has been widely documented that the free and
solvent-exposed cysteine residue (i.e., Cys-34) represents the preferential binding site for gold-based
coordination compounds [30,33–35]. This feature has often been interpreted as a negative factor limiting
drug uptake, bioavailability and also responsible for the severe side-effects often associated with the
chemotherapy treatments [29,36,37]. However, it has been recently demonstrated that a gold NHC
albumin conjugate retains its cytotoxicity and can be employed to deliver the drug into cancer cells [38].
Within this frame, we investigated the interaction of anthracenyl functionalized NHCs with natural
double-stranded DNA, telomeric G-quadruplex, synthetic RNA and bovine serum albumin (BSA);
this latter was selected as a model protein because of its similarity with the human serum albumin
(HSA) and for its easy availability and low cost [39]. Anthracenyl functionalized imidazolylidene
complexes of silver and gold were first reported by Rigobello et al. [18] who pointed out a promising
antiproliferative activity against cancer cells accompanied by potent inhibition of TrxR. Although
fluorescence microscopy showed the accumulation of the complexes in the nucleus, the interaction with
DNA was not investigated. Later on, a work by some of us compared the DNA binding features of two
anthracenyl benzimidazolylidene monocarbenes of gold and silver [40]. The obtained data revealed
that the silver carbene was the most effective double helix DNA stabilizer suggesting an intercalative
binding mode for the silver compound, whereas interaction with the groove was hypothesized for
the gold carbene. Additional research on bis(1-(9-anthracenylmethyl)-3-ethylimidazol-2-ylidene)
silver chloride evidenced a nanomolar TrxR inhibition and an unconventional mode of binding towards
the C-terminal TrxR synthetic dodecapeptide endowed of the reactive -Cys-Sec- motif. It has been
highlighted that the covalent binding of the -Cys-Sec- amino acid residue with the NHC ligand occurred
after silver release [41].

On this basis, having in mind the relevance of describing interactions at a molecular level for
drug optimization, the present research aims at shedding light on the binding features towards
different biosubstrates (i.e., calf thymus DNA and RNA polynucleotides, G-quadruplexes, BSA) of the
studied Au(I)/Ag(I) bis-anthracenyl carbenes bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene)
silver chloride [Ag(EIA)2]Cl and bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) gold chloride
[Au(EIA)2]Cl, schematically depicted in Figure 1. Multi-technique experiments were performed to
obtain mechanistic information and highlight a possible selectivity towards a specific biomolecule.
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A comparison between the different reactivity of the gold and silver carbenes enables us to trace back
the observed mechanistic differences to the nature of the metal center.
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Figure 1. Molecular structure of the M(I)(bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene)
chloride compounds studied: [Ag(EIA)2]Cl and [Au(EIA)2]Cl.

2. Results and Discussion

The synthesis of [Ag(EIA)2]Cl compound has already been reported [41]. The [Au(EIA)2]Cl
compound was synthesized from [Ag(EIA)2]Cl using a trans-metalation process described in the
experimental section. Note that the compounds are not planar: the exact geometry of [Ag(EIA)2]Cl was
solved by X-ray analysis yielding a C-Ag bond length of 2.093 (4) Å and a C-Ag-C’ angle of 167.7◦ [41]
(CSD code: PIQBEZ).

2.1. Interaction with Natural Double-Stranded DNA

2.1.1. Absorbance and Fluorescence Titrations

To verify the possible interaction between the metal complexes and natural double-stranded DNA
(calf thymus DNA, CT-DNA), we performed spectrophotometric titrations by recording the absorption
spectra of the two compounds in the presence of increasing amounts of CT-DNA. The polynucleotide
is added into the spectrophotometric cuvette containing a known concentration of the tested metal
complex (Figure 2). Titrations were carried out at four different temperatures ranging from 15 to 48 ◦C.
Both systems undergo some hypochromic effect but with very different features between silver and
gold compounds. For the silver carbene, the spectrum shows a dramatic hypochromic effect, the dye
profile significantly changes and undergoes a bathochromic shift of 7 nm; also, an isosbestic point
appears at 393 nm (Figure 2A). These results suggest a significant alteration of the electronic levels
and may represent the first signal of an intercalative interaction of the silver carbene. Conversely,
for the gold complex, the hypochromic effect is much milder and no significant changes nor shift
of the absorbance profile is observed (Figure 2B). Therefore, the limited changes in the spectral
profile of the gold complex suggest a different type of interaction with double-stranded DNA such
as external/groove binding [42] (see also viscometric tests below). Literature data also confirm that,
while hypochromic and bathochromic shifts in anthracene vibronic bands indicate the occurrence
ofDNA intercalation, hypochromicity in the absence of red shifting is a characteristic of anthracene
minor groove interactions [43,44].
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Figure 2. Absorption spectra in the presence of increasing amounts of CT-DNA of (A) [Ag(EIA)2]+ 7.96 
× 10−6 M alone (full line) and DNA from 0 M to 5.89 × 10−4 M (dotted line), (B) [Au(EIA)2]+ 4.34 × 10−5 
M alone (full line) and DNA, from 0 M to 3.55 × 10−4 M (dotted line). Fluorescence spectra in the 
presence of increasing amounts of CT-DNA of (C) [Ag(EIA)2]+ 7.86 × 10−8 M alone (full line) and DNA 
from 0 M to 7.13 × 10−5 M (dotted line), λex = 368 nm, (D) [Au(EIA)2]+ 7.71 × 10−6 M alone (full line and 
DNA from 0 M to 8.16 × 10−4 M (dotted line), λex = 375 nm. NaCl 0.1 M, NaCac 2.5 mM, pH = 7.0, T = 
25.0 °C. 
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Figure 2. Absorption spectra in the presence of increasing amounts of CT-DNA of (A) [Ag(EIA)2]+

7.96 × 10−6 M alone (full line) and DNA from 0 M to 5.89 × 10−4 M (dotted line), (B) [Au(EIA)2]+

4.34 × 10−5 M alone (full line) and DNA, from 0 M to 3.55 × 10−4 M (dotted line). Fluorescence spectra
in the presence of increasing amounts of CT-DNA of (C) [Ag(EIA)2]+ 7.86 × 10−8 M alone (full line)
and DNA from 0 M to 7.13 × 10−5 M (dotted line), λex = 368 nm, (D) [Au(EIA)2]+ 7.71 × 10−6 M alone
(full line and DNA from 0 M to 8.16 × 10−4 M (dotted line), λex = 375 nm. NaCl 0.1 M, NaCac 2.5 mM,
pH = 7.0, T = 25.0 ◦C.

If the binding process is described by the simplified apparent reaction below (Equation (1)),
whose binding constant is K, the titration curves can be analysed by using Equation (2)

P + D � PD (1)

∆A
CD

=
∆ε K [P]
1 + K [P]

(2)

where ∆A = A − (εDCD), CD (the total analytical concentration of the dye) = [D] + [PD]; CP (the total
analytical concentration of the polynucleotide) = [P] + [PD], ∆ε = εPD − εD is the difference in the
molar absorption coefficient of the DNA/dye complex and of the dye alone. Note that Equation (2)
is only another way to express the well-known Hildebrand-Benesi equation [45].

As a first approximation [P] ≈ CP and the first estimate of K is obtained. With this first value of

K, [P] = CP − [PD] is calculated, being [PD] =
B−
√

B2
−4CPCD
2 and B = CP + CD + 1/K. This iterative

method, at convergence, allowed the calculation of the binding constants for the [Ag(EIA)2]+/CT-DNA
system (Table 1, Figure 3, Supplementary Materials Figure S1A). For the gold carbene (Figure S1B),
no convergence occurs and K→+∞, suggesting a quantitative reaction. Note that Scatchard analysis [46]
of the data related to the [Ag(EIA)2]+/CT-DNA system (Figure S2) yields a site size close to one (1.1 ± 0.1).
It follows that the simplified equilibrium described by Equation (1), although approximate, represents a
valid model for the system studied.



Molecules 2020, 25, 5446 5 of 17

Table 1. Equilibrium constant (K) at different temperatures and thermodynamic parameters obtained
from spectrophotometric and spectrofluorimetric titrations for the [Ag(EIA)2]+/CT-DNA system;
NaCl 0.1 M, NaCac 2.5 mM, pH = 7.0.

T (◦C) KABS (103 M−1) KFLUO (103 M−1)

15.0 10 ± 1 27 ± 2
25.0 7.4 ± 0.2 20 ± 3
35.0 5.1 ± 0.3 10 ± 2
48.0 3.7 ± 0.4 5.4 ± 0.3

∆H (kJ/mol) −23.5 ± 0.3 −37.9 ± 0.9
∆S (J/molK) −5 ± 3 −46 ± 3
−T∆S (kJ/mol) 2 ± 1 14 ± 1
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Also, in the case of fluorescence titrations, again a very different spectral behaviour is observed
for the two metal complexes (Figure 2C,D). Concerning the silver carbene, increasing amounts of
DNA cause a decrease in the emission. Fluorescence data for [Ag(EIA)2]+ could be analysed using
Equation (2), by substituting ∆A and ∆ε with ∆F = F − (φDCD) and ∆φ = φPD − φD (Figure S3A).
The overall results are shown in Table 1 and plotted in Figure 3. Interestingly, the numerical values
obtained by absorbance or fluorescence measurements do not agree with each other and give two
different well-defined trends. Linear fitting allowed the calculation of the thermodynamic features for
the [Ag(EIA)2]+/CT-DNA adduct (Table 1): these values both suggest an enthalpy-driven interaction,
in line with intercalation [47]. At variance, the spectral variations for the gold compound exhibit a
double trend: an initial quenching effect is followed by an increase of the emission with a slight red
shift (Figure S3B). The first branch strongly depends on the experimental conditions: it strengthens at
higher temperatures (Figure S3C) and fades out at higher salt content (Figure S3D). These features
suggest a complex interaction between the gold compound and CT-DNA under dye excess conditions,
likely related to some cooperative polynucleotide-induced aggregation effect. Indeed, the effect is
observed upon addition of DNA, so it is supposed to be DNA-driven. There are many cases in the
literature where the small molecule has a structure, which favours some dye-dye interaction, but the
dye is too diluted to aggregate when alone in solution. However, as the first addition of DNA is
done in the titration (i.e., under dye excess conditions), the negatively charged DNA will constitute
a local aggregation point for the positively charged dye. The dye will locate itself in the vicinity of
the helix (we do not know exactly if externally i.e., only with some contact with phosphates, or lying
in the grooves) as a consequence of electrostatic attraction. Thus, the local concentration of the dye
on the helix surface becomes much higher than the average value in the bulk. So, there, on the helix
surface and DNA-driven, aggregation can occur [48,49]. This strongly seems the case here as we see
DNA-driven effects which very strongly depend on the ionic strength (high importance of electrostatics
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as in aggregation processes). Any intercalation contribution is ruled out based on viscosity results
(see below). Under these circumstances, the robust study of the second branch, which is likely that
connected to the (weak) main binding, was not possible.

To better understand the fact that the numerical values of Kabs and Kfluo for the
[Ag(EIA)2]+/CT-DNA system do not match, we carried out some titrations in the presence of increasing
amounts of ethanol. EtOH has a much lower dielectric constant than water and is known to alter the
hydration of polynucleotides [50]. Different hydration of the polynucleotide can guide the system
towards a specific binding mode. In particular, changes in hydration levels can affect interactions in
the DNA groove to higher extents [51]. Interestingly, absorbance experiments enlighten a decrease of
the equilibrium constant value by increasing EtOH%; conversely, K does not change in the fluorescent
titrations (red points in Figure 3). Therefore, the K values obtained by the different techniques for the
[Ag(EIA)2]+/CT-DNA system are apparent binding constants that contain the contributions of both
groove binding and intercalation. The numerical value is the result of the two contributions, which are
differently weighted due to experimental conditions as reactants concentrations or temperature.
Different reactant concentrations for absorbance or fluorescence measurements account for the different
numerical values obtained at the same temperature by the two techniques. The lowest are concentrations,
dye-dye interactions stabilizing groove binding fade out, and intercalation is favoured. The higher the
temperature, intercalation (which is a much more exothermic process than groove binding) fades out
and groove binding dominates. Temperature dependence is different for Kabs and Kfluo as they
contain a different balance of intercalation and groove binding, which will each depend differently
on temperature. It is likely that, at a sufficiently high temperature, Kabs � Kfluo, as the intercalation
contribution tends to zero and both numbers will reflect groove binding. Note that the fluorescence
parameters obtained here for the silver bis-anthracene are close to what was obtained for the silver
mono-anthracenyl compound already studied by some of us (K 25 ◦C = 1.5× 104 M−1, ∆H = −40 kJ/mol,
∆S = −54 kJ/molK, −T∆S = +16 kJ/mol) [40].

2.1.2. Thermal Denaturation Experiments

The effect upon metal complexes binding on the thermal denaturation profile of CT-DNA was
studied by recording absorbance data at increasing temperatures for DNA alone, and for mixtures
with a 1:1 metal complex/DNA ratio (Figure 4A).
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× 10−7 M) and in the presence of [Ag(EIA)2]+ or [Au(EIA)2]+ added, CG4/CAg = 1.4, CG4/CAu = 0.5, KCl 50 
mM, NaCac 2.5 mM, pH = 6.5. 

Low ionic strength conditions were used to lower DNA melting temperature: Tm ≈ 80 °C in NaCl 
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Figure 4. (A) Melting plot of DNA alone (CDNA = 2.00 × 10−5 M) and DNA with [Ag(EIA)2]+ or
[Au(EIA)2]+, CDNA/CAg = CDNA/CAu = 1, NaCac 2.5 mM, pH = 7.0. (B) Melting plot of G4 only
(CG4 = 4.72 × 10−7 M) and in the presence of [Ag(EIA)2]+ or [Au(EIA)2]+ added, CG4/CAg = 1.4,
CG4/CAu = 0.5, KCl 50 mM, NaCac 2.5 mM, pH = 6.5.

Low ionic strength conditions were used to lower DNA melting temperature: Tm ≈ 80 ◦C in
NaCl 0.1 M + NaCac 2.5 mM whereas Tm = 61 ◦C in NaCac 2.5 mM. This latter condition enables
us to observe strong stabilisation effects. Indeed, the investigated carbenes induce a strong DNA
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stabilisation: ∆Tm = 20 ◦C for the [Au(EIA)2]+/CT-DNA system, but even much higher for the silver
complex where the curve does not reach a plateau even at 95 ◦C.

2.1.3. Viscosity

Equation (3) was used to calculate the relative viscosity.

η

η◦
=

(t− tsolv)

(tDNA − tsolv)
(3)

Here, tsolv is the run-off time in seconds for the buffer; tDNA is the run-off time in seconds for
CT-DNA solution in the buffer (CDNA = 2.10 × 10−5 M expressed in base pairs); t is run-off time in
seconds for DNA solutions in the presence of an increasing amount of [Ag(EIA)2]+ or [Au(EIA)2]+.
Following the correlation between viscosity and polymer length [52], we plotted the cubic root of the
viscosity vs the concentration ratio rb = CAg/CDNA or CAu/CDNA to obtain the graph in Figure 5.
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CDNA = 2.10 × 10−5 M, NaCl 0.1 M, 2.5 mM NaCac, pH = 7.0, T = 25.0 ◦C.

Measurements show that for the silver complex there is a significant increase in viscosity as
the [complex]/[DNA] ratio increases, in line with a strong intercalative interaction that modifies the
elongation of the DNA strand. Concerning the gold complex, a lower viscosity increase is present.
This indicates that the interaction between the gold complex and CT-DNA changes the elongation of
the filament to a much lower extent than the silver one. Note that, under experimental conditions
close to those used in the present viscometric experiments, the relative viscosity reaches values in
the 1.6–2.0 range for Ethidium/DNA mixtures (DNA in base pairs) with ratios rb = 1.0 to 2.3 [53–55].
This confirms that the values obtained for the [Ag(EIA)2]+ complex are in line with those of a
known intercalator.

On the whole, as for CT-DNA binding, it might be concluded that the behaviour of the metal
complexes results from a complex interplay between external/groove binding of auto-aggregates species
and intercalation. In particular, for the [Au(EIA)2]+/CT-DNA system external/groove binding occurs,
with some contribution of a polynucleotide-driven cooperative dye-dye interaction in the presence of
dye excess. The binding features are anyway due to non-covalent binding modes, as mass spectrometry
experiments done on a mixture of [Au(EIA)2]+ and DNA oligomers did not evidence the formation of
any adduct (not shown). For the [Ag(EIA)2]+/CT-DNA system the binding mode is still non-covalent but
different from the gold compound: for silver intercalation plays a major role (fluorescence data would
refer quite only to this binding mode) with some contribution of groove binding (absorbance data
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are a mixture of the two binding modes). Note that this latter picture is demonstrated not only
by the dependence of equilibrium on the EtOH content but also, by inspecting Table 1, we might
see that the enthalpy-driven process observed with fluorescence, gradually fades when moving to
absorbance towards an entropy-favoured mode. The anthracenyl monocarbenes previously studied
by some of us [40] showed comparable binding features towards CT-DNA: the monocationic silver
complex intercalates into DNA double helix, while for the neutral gold complex, a groove binding
is supposed. Here, the presence of two anthracene intercalating moieties produces a similar but
more complex mechanism of action. The dye-dye interactions in solution seem to be disfavoured
(see the well-defined peaks/transitions in Figure 2A,B), whereas aggregation on the polymer surface is
enhanced (descending/biphasic Figure 2C,D).

2.2. Interaction with Synthetic RNAs

The synthetic polynucleotides poly(A), poly(A)poly(U) and poly(A)2poly(U) helices were
employed as representative models for single-, double- and triple-stranded RNAs. In absorbance
titrations, the silver complex did not produce any change in the poly(A) or poly(A)2poly(U)
spectrum (Figure S4). On the other hand, the titration with the poly(A)poly(U) shows the appearance
of definite isosbestic points and a slight absorbance decrease (Figure S5). For the gold complex,
the addition of each of the RNAs causes a decrease of the absorbance, similar to that observed in the
titrations with CT-DNA (Figure S6). Again, the constant value cannot be calculated because the iterative
method does not go to convergence, suggesting a quantitative reaction. It is therefore evidenced that
the gold complex unselectively binds outside both DNA and RNAs polymers. Conversely, the silver
species is selective towards double helices only (drive for intercalation), with much lower affinity than
that for CT-DNA (Kpoly(A)poly(U) = (1.5 ± 3) × 103 M−1 at NaCl 0.1 M, NaCac 2.5 mM, pH = 7.0, 25.0 ◦C).

2.3. Interaction with DNA G-Quadruplexes (G4s)

As for absorbance titrations, the addition of a DNA telomeric G4 to a solution of [Ag(EIA)2]+

produced very slight spectral variations indicating a weak interaction with this complex (Figure S7A).
Again, for the gold complex, the absorbance behaviour is the same as the one found for the systems
already described above (Figure S7C). Thermal denaturation experiments (at λ = 290 nm, Figure 4B)
yielded Tm(G4) = 60 ◦C, Tm([Ag(EIA)2]+/G4) = 60 ◦C, Tm([Au(EIA)2]+/G4) = 57 ◦C. Therefore,
no significant stabilization of the quadruplex is observed; the interaction of the gold carbene even
caused a slight destabilization of the G-quadruplex structure. It seems, therefore, that the gold complex
again shows unselective outer binding. The silver dicarbene is not prone both to undergo some
sitting-atop interaction with the G4 and to intercalate between tetrads. Under these circumstances,
it loses its affinity for the biosubstrate.

2.4. Interaction with Bovine Serum Albumin (BSA) Protein

2.4.1. Fluorescence Titrations

Fluorescence experiments were performed at different temperatures (15–50 ◦C range) by recording
the emission spectrum of BSA at increasing amounts of the metal complex (Figure 6). BSA intrinsic
fluorescence is excited as λex = 280 nm with maximum emission centered at around 350 nm. However,
both metal complexes do emit light when excited at 280 nm with an emission band that starts from
about 380 nm. To limit any possible interference, the binding isotherms are analysed at λem = 330 nm.

To verify that the emission decrease was due to adduct formation and not to collisional quenching
only, the data were treated with the modified Stern Volmer equation (Equation (4)) [56], which provides
the Stern–Volmer constant KSV and fa, the fraction BSA fluorophores accessible to the quencher (Q).

F◦

∆F
=

1
faKSV[Q]

+
1
fa

(4)



Molecules 2020, 25, 5446 9 of 17

Here, F◦ is the BSA fluorescence in the absence of a metal complex, ∆F = FBSA − (φBSACBSA),
[Q] is the analytical concentration of the (free) quencher (the metal complex, which is in excess so
that free may be approximated with the total). Fluorescence was corrected for inner-filter effects as
Fcorr = Fobs × antilog(Aλex + Aλem)/2 where Aλex and Aλem represent the absorbances at the excitation
(280 nm) and emission (330 nm) wavelengths. Table S1 collects the results. For both complexes,
the high values of KSV and the absence of KSV increase with temperature indicate adduct formation.
The equilibrium constants were obtained using Equation (5), which is based on a 1:1 model.

CBSA

∆F
=

1
K∆ϕ

1
[Q]

+
1

∆ϕ
(5)

Here, CBSA is the total analytical concentration of the protein. The numerical evaluation holds for
the [Ag(EIA)2]+/BSA system only (for gold again no convergence) and the relevant data are shown in
Figure 7. Within the error, there is no definite trend. This means that ∆H is close to zero while ∆S is
positive. These values denote that the interaction occurred is of mere electrostatic nature [57–59].
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Figure 6. (A) Fluorescence spectra of BSA 3.14 × 10−7 M alone (full line) and (A) in the presence of 
increasing amounts of [Ag(EIA)2]+, from 0 M to 2.37 × 10−6 M; (B) in the presence of increasing amounts 
of [Au(EIA)2]+, from 0 M to 3.10 × 10−6 M (dotted line). λex = 280 nm, NaCl 0.1 M, NaCac 2.5 mM, pH = 
7.0, T = 27 °C. 

Figure 6. (A) Fluorescence spectra of BSA 3.14 × 10−7 M alone (full line) and (A) in the presence of
increasing amounts of [Ag(EIA)2]+, from 0 M to 2.37 × 10−6 M; (B) in the presence of increasing amounts
of [Au(EIA)2]+, from 0 M to 3.10 × 10−6 M (dotted line). λex = 280 nm, NaCl 0.1 M, NaCac 2.5 mM,
pH = 7.0, T = 27 ◦C.

Molecules 2020, 25, x FOR PEER REVIEW 9 of 17 

 

To verify that the emission decrease was due to adduct formation and not to collisional 
quenching only, the data were treated with the modified Stern Volmer equation (Equation (4)) [56], 
which provides the Stern–Volmer constant KSV and fa, the fraction BSA fluorophores accessible to the 
quencher (Q). F°ΔF = 1faKSV[Q] + 1fa  (4)

Here, F° is the BSA fluorescence in the absence of a metal complex, ΔF = FBSA − (ϕBSACBSA), [Q] is 
the analytical concentration of the (free) quencher (the metal complex, which is in excess so that free 
may be approximated with the total). Fluorescence was corrected for inner-filter effects as Fcorr = Fobs 
× antilog(Aλex + Aλem)/2 where Aλex and Aλem represent the absorbances at the excitation (280 nm) and 
emission (330 nm) wavelengths. Table S1 collects the results. For both complexes, the high values of 
KSV and the absence of KSV increase with temperature indicate adduct formation. The equilibrium 
constants were obtained using Equation (5), which is based on a 1:1 model. CBSAΔF = 1KΔφ 1[Q] + 1Δφ  (5)

Here, CBSA is the total analytical concentration of the protein. The numerical evaluation holds for 
the [Ag(EIA)2]+/BSA system only (for gold again no convergence) and the relevant data are shown in 
Figure 7. Within the error, there is no definite trend. This means that ΔH is close to zero while ΔS is 
positive. These values denote that the interaction occurred is of mere electrostatic nature [57–59]. 

3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45
13.0

13.5

14.0

14.5

15.0

15.5

16.0
 

ln
K

1/T (10-3 K-1)  
Figure 7. Spectrofluorimetric Van’t Hoff plot for the [Ag(EIA)2]+/BSA system; NaCl 0.1 M, NaCac 2.5 
mM, pH = 7.0. 

Equation (6), related to the Scatchard equation, may also be applied to the titration data collected 
for the [Ag(EIA)2]+/BSA and [Au(EIA)2]+/BSA systems (CM is the total analytical concentration of the 
metal compound): CBSA(CMΔφ-ΔF)ΔF = 1nK' + (CMΔφ-ΔF)Δφ 1n  (6)

If the evaluation of K’ is here made impossible by intercepts too close to zero, this analysis yields 
a binding stoichiometry (n) of 1.0 ± 0.1 for both systems (Figure S8). This confirms the suitability of 
Equation (5) to calculate the equilibrium constants. 

2.4.2. Synchronous Fluorescence Spectra 

Synchronous fluorescence spectroscopy is used to study the interaction between metal 
complexes and BSA; in fact, synchronous fluorescence spectra at Δλ = 60 nm focus on BSA tryptophan 
residues (Trp) only, whereas Δλ = 15 nm on tyrosine residues (Tyr) only [60]. The shift in the position 
of the maximum emission would correspond to changes in polarity around the chromophore 
molecule. For both complexes and in both cases (Figures S9 and S10), there are no changes in the 
maximum emission wavelength. According to the literature, the lack of spectral shifts indicates the 

Figure 7. Spectrofluorimetric Van’t Hoff plot for the [Ag(EIA)2]+/BSA system; NaCl 0.1 M,
NaCac 2.5 mM, pH = 7.0.



Molecules 2020, 25, 5446 10 of 17

Equation (6), related to the Scatchard equation, may also be applied to the titration data collected
for the [Ag(EIA)2]+/BSA and [Au(EIA)2]+/BSA systems (CM is the total analytical concentration of the
metal compound):

CBSA(C M ∆ϕ− ∆F)
∆F

=
1

nK′
+

(C M ∆ϕ− ∆F)
∆ϕ

1
n

(6)

If the evaluation of K’ is here made impossible by intercepts too close to zero, this analysis yields
a binding stoichiometry (n) of 1.0 ± 0.1 for both systems (Figure S8). This confirms the suitability of
Equation (5) to calculate the equilibrium constants.

2.4.2. Synchronous Fluorescence Spectra

Synchronous fluorescence spectroscopy is used to study the interaction between metal complexes
and BSA; in fact, synchronous fluorescence spectra at ∆λ = 60 nm focus on BSA tryptophan residues
(Trp) only, whereas ∆λ = 15 nm on tyrosine residues (Tyr) only [60]. The shift in the position of the
maximum emission would correspond to changes in polarity around the chromophore molecule.
For both complexes and in both cases (Figures S9 and S10), there are no changes in the maximum
emission wavelength. According to the literature, the lack of spectral shifts indicates the absence of
direct short-range interaction with Trp or Tyr residues. On the other hand, the significant decrease in
the intensity of the Trp emission (quite absent for Tyr and particularly significant in the case of gold)
may be due to a long-range interaction. BSA contains two tryptophan residues: Trp-134, located on
the surface of domain IA, and Trp-212, embedded within the hydrophobic pocket of domain IIB.
The Cys-34 residue is located quite close to Trp-134.

2.4.3. Mass Spectrometry

High-resolution ESI-MS experiments were performed first by recording the mass spectrum of
BSA alone. In this spectrum, shown in Figure 8A, the main peak at 66,428 Da belongs to the BSA.
Moreover, some other small peaks are also present at 66,461, 66,549, and 66,597 Da corresponding to a
few post-translational modifications of the protein [30]. Then, ESI mass spectra were acquired for BSA
after 0, 24 and 48 h of incubation at 37 ◦C with the silver complex in 1:1, 1.5:1 and 3:1 Ag/BSA ratios.
For the MS analysis with the gold complex, the spectra were acquired on the protein solution incubated
in the same conditions with the gold compound in 1:1, 1.5:1, and 3:1 Au/BSA ratios. None of the spectra
of the Ag compound/BSA system shows the formation of an adduct (not shown). This agrees with the
weak electrostatic binding evidenced by fluorometric titrations. On the other hand, samples containing
the gold complex showed the presence of a new peak at around 66,911 Da, attributable to an adduct
between BSA and the gold complex that has lost one of the two NHC moieties (Figure 8). The covalent
binding is reasonably supposed to take place on the Cys-34 residue as already described in the literature
for other gold complexes [30,34,35]. This result also agrees with that established by fluorescence
titrations, where high values of equilibrium constants, characteristic of covalent bonds formation,
were found. Note that the rate of Au(I)/cysteine adduct formation is known to be fast [61,62] and that
signal stabilisation was carefully checked during the titrations. The intensity of the peak increases with
the amount of complex in solution, but no time evolution of the spectra was observed. Also, binding to
Cys-34 may have some effect on Trp-134 emission, in agreement with synchronous spectra results.

On the whole, as for BSA binding, it might be concluded that the silver complex interacts
with the protein but with a reversible weak process based on electrostatics. Oppositely, as for gold,
both synchronous spectra and ESI-MS experiments concur in evidencing the presence of a stronger
ligand exchange reaction with the formation of a covalent protein adduct.
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Figure 8. Deconvoluted ESI mass spectra of BSA 5.50 × 10−7 M (A) and [Au(EIA)2]+/BSA (B) in a
protein:metal ratio = 1:1.5 in 1 × 10−4 M ammonium acetate solution at pH 6.8 and recorded
after 48 h of incubation at 37 ◦C. BSA* = sulfinilation on Cys-34; BSA** = cysteinylation on Cys34;
BSA*** = glycosylated form of BSA.

3. Materials and Methods

3.1. Materials

The silver dicarbene [Ag(EIA)2]Cl was prepared according to the procedure reported in [41].
Subsequently, for the synthesis of [Au(EIA)2]Cl, 22.2 mg of [Ag(EIA)2]Cl were suspended in 3 mL of
dichloromethane together with 10 mg of chloro(dimethyl sulfide)gold(I). The mixture was stirred at
room temperature for 2 h, then the formed AgCl was removed through filtration. The final product
was precipitated through the addition of hexane and recovered by filtration (13.2 mg). Yield 52%.
Elemental analysis of C, H, and N for C40H36N4AuCl: calculated C: 59.67%, H: 4.51%, N: 6.96%;
experimental: C: 58.98%, H: 4.40%, N: 7.19%. HR-ESI-MS for C40H36N4Au: measured m/z = 769.25852;
theoretical m/z = 769.26001; mass error = −1.9 ppm (Figure S11). 1H-NMR (400.13 MHz, MeOD)
δ: 8.59 (s, 2H, Ant H10), 8.18 (d, 4H, Ant H1, J = 8.1 Hz), 8.07 (d, 4H, Ant H4, J = 8.2 Hz),
7.53–7.45 (m, 8H, Ant H2,3), 7.31 (s, 2H, Im H4′), 7.23 (s, 2H, Im H5′), 5.91 (s, 4H, AntCH2Im),
3.58 (b, 4H, ImCH2CH3), 1.13 (b, 6H, ImCH2CH3).

Calf thymus DNA (CT-DNA in the text), natural double-stranded B-DNA, was purchased
from Sigma-Aldrich. Its solutions were prepared by dissolving the solid in ultrapure water under
mild mixing conditions for 24 h. The solution was sonicated to obtain about 500 base-pair long
polynucleotides (gel agarose test). The concentration in the prepared stock solution was approximately
2.5 mM (expressed in base pairs) in ultra-pure water. Before its use, the exact concentration value
(CDNA, in base pairs) was measured considering ε260 = 13,200 cm−1M−1 [63]. Poly(A) and poly(U)
were purchased from Sigma-Aldrich as model polynucleotides for RNA structures. The two stock
solutions were prepared by dissolving a known quantity of the solid polynucleotide in the buffer NaCl
0.1 M, NaCac 2.5 mM, pH = 7.0. The concentrations of single strands were spectrophotometrically



Molecules 2020, 25, 5446 12 of 17

evaluated (ε = 10110 cm−1M−1 at 257 nm [64]) and ε = 8900 cm−1M−1 at 260 nm [64] respectively for
a concentration in phosphate groups, CA and CU. The concentration of the stock solutions was
8.4 mM for poly(A) and 14 mM for poly(U). To form synthetic RNA double helix, poly(A) and poly(U)
were mixed 1:1 in buffer (NaCl 0.1 M, NaCac 2.5 mM, pH = 7.0) and let equilibrate overnight in
the dark at room temperature to get the double-stranded poly(A)poly(U) (CAU = 2.0 mM in base
pairs) [65]. Similarly, poly(A)poly(U) and poly(U) were mixed 1:1 in the same buffer and left overnight
at room temperature to obtain the RNA triple helix (CA2U = 4.0 × 10−4 M in base triplets) [66].
A telomeric G-quadruplex structure was prepared by dissolving a 23-residue human telomer (Tel-23:
5′-TAG GGT TAG GGT TAG GGT TAG GG-3′, Sigma-Aldrich, St. Louis, MO, USA) in 50 mM KCl,
2.5 mM NaCac, pH = 6.5. The solution was slowly heated up to 90–95 ◦C, maintained for 10–15 min and
then slowly cooled down in the water bath and left overnight; a 1 mM stock solution (CG4, in strands)
was obtained [67]. The BSA solution was prepared by weighing lyophilized BSA purchased from
Sigma-Aldrich (PM ≈ 66 kDa), and by dissolving it in NaCac 2.5 mM with NaCl 0.1 M at pH = 7.0.
The effective concentration was determined spectrophotometrically considering the absorption at
278 nm (ε = 45,000 cm−1M−1 [68]). The stock solution was CBSA = 8.0 × 10−5 M.

3.2. Methods

The pH measurements were performed with a “Ω Metrohm 713 pH Meter” (Filderstadt, Germany).
All the buffers at pH 7.0 were prepared by dissolving the suitable amount of salt (NaCl, KCl and sodium
cacodylate NaCac) in ultra-pure water. In case of need, the pH was corrected with micro additions
of concentrated HCl or NaOH. Ultra-pure water was obtained through an “AriumPro SARTORIUS”
apparatus (Göttingen, Germany). The stock solutions of the metal complexes were prepared in
DMSO at concentrations of about 2.0 mM and then diluted in a suitable buffer to obtain the
solutions for the analysis. In the working solutions, the dilution was such that the quantity of
DMSO could be considered negligible (maximum 1–2% and well below 1% in the fluorescence and
mass experiments). A UV-2450 SHIMADZU double-beam UV-vis spectrophotometer (Kyoto, Japan)
was used for absorbance, while fluorescence was recorded with a LS55 Perkin-Elmer spectrofluorometer
(Waltham, MA, USA). Both instruments have jacketed cell holders providing temperature control
within 0.1 ◦C. All spectra were recorded using quartz cuvettes of 1000 µL or 500 µL volume and an
optical path of 1 cm. For the titrations, increasing quantities of the titrating solution were added to
the sample thanks to a glass micro-syringe Hamilton (Reno, NV, USA) equipped with a Mitutoyo
micro-screw (1 whole turn = 8.2 µL). Absorbance and fluorescence titrations were carried out by
adding increasing amounts of the nucleotide solution to a solution of the metal complex in the buffer
(NaCl 0.1 M, NaCac 2.5 mM, pH = 7.0). All the spectra shown are corrected for dilution factors.
Fluorescence experiments conditions were carefully chosen (high dilution, wavelengths) and checked
so to ensure direct proportionality between reading and concentration. Absorption titrations at
different ethanol concentrations were carried out by adding the suitable volume percentage of EtOH
in the buffer. The thermal denaturation curves of samples containing the investigated complex
and polynucleotide in equimolar amounts were measured using absorbance changes (260 nm for
CT-DNA and 290 nm for G-quadruplex) at increasing temperatures ranging from ~25 ◦C to ~95 ◦C.
The percentage of absorbance change (%A change = 100 × (A(T) − A◦)/(A∞ − A◦)), where A(T) is the
absorbance read at each temperature T (◦C), A◦ the absorbance corresponding to the initial plateau
and A∞ the absorbance for the final plateau, was plotted against temperature. In this way, a sigmoidal
curve could be obtained. The melting temperature was derived as the maximum of the first derivative
of the sigmoidal curve. All the experiments were performed under low ionic strength conditions
(buffer NaCl 0 M, NaCac 2.5 mM, pH = 7.0). The viscosimetric analyses were performed with a
semi-micro “Cannon-Ubbelohde” capillary viscometer (State College, PA, USA): solutions containing
increasing dye/DNA molar ratios were prepared in NaCac 2.5 mM with NaCl 0.1 M at pH = 7.0.
During the experiments, the temperature was kept constant at 25.0 ◦C employing a thermostatic water
bath. For the fluorescence titrations of BSA with the two metal complexes, an increasing amount of the
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metal complex solution was added to a solution of BSA 3.14 × 10−7 M in NaCac 2.5 mM with NaCl
0.1 M at pH = 7.0 and λexc = 280 nm.

For mass spectrometry, we used an AB SCIEX Triple TOF 5600+ high-resolution mass spectrometer
(Sciex, Framingham, MA, USA), equipped with a DuoSpray® interface operating with an ESI
probe. Respective ESI mass spectra were acquired through direct infusion at 7 µL min−1 flow
rate. The samples were prepared in LC-MS grade solvents, following a well-established protocol
previously developed [29,30,35,69]. To promote the ionization in positive mode, 0.1% v/v of formic
acid was added just before infusion. The BSA solutions were prepared in 10 mM ammonium acetate
solution (pH 6.8) and finally diluted in LC-MS grade H2O obtaining a final BSA concentration of about
5 × 10−7 M. BSA/metal complexes mixtures were prepared following the same procedure. The ESI
source parameters were optimized and were as follows: positive polarity, ion spray voltage floating
5500 V, temperature 25 ◦C, ion source gas 1 (GS1) 45 L min−1; ion source gas 2 (GS2) 0; curtain gas
(CUR) 12 L min−1, declustering potential (DP) 150 V, collision energy (CE) 10 V, acquisition range
1000–2600 m/z. For acquisition, Analyst TF software 1.7.1 (Sciex, Framingham, MA, USA) was used
and deconvoluted spectra were obtained by using the Bio Tool Kit micro-application v.2.2 embedded
in PeakViewTM software v.2.2 (Sciex).

4. Conclusions

Herein, we have investigated the interaction of a new silver(I) bis-NHC anthracenyl complex and
its gold(I) analogue with a series of biosubstrates.

[Ag(EIA)2]Cl exhibited a strong affinity and selectivity for the double helix structure of
polynucleotides, with a greater affinity for CT-DNA compared to RNA. Oppositely, no interaction towards
single or triple RNA helices nor with DNA G-quadruplexes was observed. Spectroscopic titrations,
viscometry and thermal denaturation experiments indicate that the silver carbene can intercalate
between the base pairs of the double helix, but an interaction with the groove also may take place
depending on the experimental conditions. As for the BSA protein mass spectra and titrations with
BSA suggest low affinity: the complex interacts with this model protein through a non-covalent bond
according to a weak electrostatically-driven process (hydrophobicity does not seem to play a significant
role even if [Ag(EIA)2]+ is bearing two hydrophobic anthracenes).

At variance, the behaviour of the gold compound is the opposite. [Au(EIA)2]+ unselectively
interacts with all DNA and RNA biosubstrates. An external interaction with a strong electrostatic
contribution occurs between the polynucleotide phosphates and the positively charged metal complex.
It is expected that this type of interaction does not produce changes in the biochemical properties of the
nucleic acids. Despite the presence of the two anthracenyl residues (which may drive intercalation),
this is not observed for [Au(EIA)2]+, neither are some covalent adducts with polynucleotides. As for
proteins, the picture changes. Fluorescence titrations and mass spectrometry demonstrated the
formation of a covalent adduct with BSA after one NHC ligand is lost. Given previous works [70,71],
it is legitimate to assume that Cys-34 is involved in the binding.

These results describe the very different reactivity features for the two complexes and enlighten the
crucial role played by the metal centre to selectively drive the reactivity towards a precise biosubstrate.

Supplementary Materials: The following are available online. Binding isotherms for [Ag(EIA)2]Cl/CT-DNA
and [Au(EIA)2]Cl /CT-DNA (absorbance titrations and fluorescence titrations); example of Scatchard plot
for Ag(EIA)2Cl/CT-DNA (absorbance titrations); absorption spectra and relevant binding isotherms for
the [Ag(EIA)2]Cl/poly(A), [Ag(EIA)2]Cl/poly(A)poly(U), [Ag(EIA)2]Cl/poly(A)2poly(U), [Au(EIA)2]Cl/poly(A),
[Au(EIA)2]Cl/poly(A)poly(U) and [Au(EIA)2]Cl/poly(A)2poly(U) systems; absorption spectra and relevant
binding isotherms for [Ag(EIA)2]Cl/G4 and [Au(EIA)2]Cl/G4 systems; example of application of Equation (6)
on [Ag(EIA)2]Cl/BSA and [Au(EIA)2]Cl/BSA systems; synchronous fluorescence spectra on [Ag(EIA)2]Cl/BSA and
[Au(EIA)2]Cl/BSA systems at ∆λ = 60 nm and ∆λ = 15 nm; high-resolution ESI mass spectrum of [Au(EIA)2]+.
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