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Abstract

Road scene understanding, with a particular focus on road safety, is crucial
in applications aiming at preventing car crashes and severe injuries on the road.
In this thesis, we propose to study the data of crash and near-crash events, col-
lectively called safety-critical driving events. Such data include a footage of the
event, acquired from a camera mounted inside the vehicle, and the data from a
GPS/IMU module, i.e., speed, acceleration and angular velocity.

We introduce a novel problem, that we call unsafe maneuver classification, that
aims at classifying safety-critical driving events based on the maneuver that
leads to the unsafe situation. The set of dangerous maneuvers is not known
a priori, as the scenarios ultimately resulting in a dangerous situation for the
driver are extremely diverse, thus we first propose a taxonomy that groups the
maneuvers in macro-classes. We grounded the classes definition on a Natural-
istic Driving Study (NDS) and, thus, they are representative of the real distri-
bution of unsafe events.

To address unsafe maneuver classification, we first propose a two-stream
neural architecture based on Convolutional Neural Networks (CNNs). Such ar-
chitecture is formed of three blocks: a video processing backbone, a sensor pro-
cessingmodule and a two-streammodule, that performs sensor fusion between
the first two and addresses the classification task. We propose a fine-tuning
strategy for the video processing backbone that achieves the state-of-the-art on
the problem.

Then, we propose to integrate the output of an object detector in the clas-
sification task, to provide the network explicit knowledge of the entities in the
scene. We design a specific architecture that leverages a tracking algorithm to
extract information of a single real-world object over time, and then uses atten-
tion to ground the prediction on a single (or a few) objects, i.e., the dangerous or
in danger ones, leveraging a solution that we called Spatio-Temporal Attention
Selector (STAS).

Finally, we propose to address video captioning of safety-critical events,
with the goal of providing a description of the dangerous situation in a human-
understandable form. We use an encoder-decoder architecture, where the en-
coder is the same architecture used for the unsafe maneuver classification task.
As decoder, we test multiple architectures that are recommended in the video
captioning literature and find an attention-based hierarchical decoder, i.e., hav-
ing two nested asynchronous recurrent networks, respectively responsible for
the next paragraph and the next word generation, to be the one yielding the best
results.
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Chapter 1

Introduction

Car crashes are one of the major problems of the modern era. According to a re-
port of the World Health Organization†, in 2016 the number of road traffic death
reached 1.35 million worldwide, becoming the 8th leading cause of death among
people of all the age groups and the leading cause of death for people aged 5-29
years. To cope with this phenomenon, the various administrations have adopted
a tight legislation to enforce best practices while driving, as well as accounting for
safety aspects when designing, planning and maintaining roads. On the vehicle
side, instead, the usage of in-vehicle electronic safety features, such as Electronic
Stability Control (ESC) and Advanced Emergency Braking Systems (AEBS), has
shown to actively contribute to reduce road traffic deaths and to mitigate the sever-
ity of injuries. Moreover, in case a severe accident occurs, the timely activation of
post-crash care for the injured can save lives and mitigate the consequences of the
crash.

In this scenario, research aimed at getting a better understanding of the road
scene with regard to safety and, for instance, in the detection or anticipation of
crashes and near-crashes (collectively called safety-critical events) is thus extremely
important, as it might further contribute to mitigate the problem. We can roughly
divide the works in this field into two categories: online algorithms, as forward
collision warning systems and ADAS (Advanced Driver Assistance Systems), to be
executed inside the vehicle and that aim at directly act in case of a critical situation,
and offline (or after-the-fact) algorithms, used to get some form of understanding
of the event. Such knowledge can be used for post-crash service automatic activa-
tion, but also to selectively record the dangerous events and use them in order to
coach the driver and improve their driving skills, or to provide evidence in case of
a traffic-related crash.

† https://www.who.int/publications/i/item/9789241565684
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4 Introduction

Figure 1.1: Connected vehicles context: a dashcam and a VTU are installed inside
the vehicle. Once an harsh event is detected, the system records a footage of a few
seconds before and after the event as well as the sensor data.

Such algorithms may use different sources of data, including sensors installed
inside the vehicle, e.g., an accelerometer or a gyroscope, collectively called Inertial
Motion Unit (IMU), a Global Positioning System (GPS) device, or data from the di-
agnostic port of the vehicle, accessing information as revolution per minute (RPM),
pedal position and steering wheel position. In recent years, car manufacturers and
private car-owners have begun to install dashboard cameras (dashcams) to acquire
footage of the road scene in front of the driver and/or of the situation inside the
cabin. The availability of such videos unlocked the possibility to study new safety-
related algorithms, that have an awareness of the road scene around the vehicles and
of the situation inside the cabin, e.g., forward collision warning and drowsy driver
detection. In parallel, the capability to process and analyze image and sensor data
made a huge leap forward, experiencing a true revolution in the past 10 years, with
the advent ofDeepLearning. Such algorithms obtained outstanding results and out-
performed the previous approaches inmost of the problems of themachine learning
literature, including classification, regression and generation problems, and on var-
ious types of data, such as images, audio, video and other sensors. Deep Learning
algorithms, though, require amassive amount of data and a fair amount of computa-
tional resources to be trained: this became possible only with the recent technologi-
cal advancements in the storage and transmission of the data and on thewidespread
diffusion of hardware capable to parallelize the mathematical operations.

1.1 Goals of this thesis
In this thesis, we aim to tackle the analysis of safety-critical events, seeking for a
better understanding of the events in the road scene, that could lead to applications
used to increment the overall level of safety. However, our first challenge is to de-
fine the notion of unsafety and, by extension, of safety-critical events in order to
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detect and analyze them. In fact, in contrast with online algorithms that could be
executed on the vehicle if equipped with the proper computation hardware, for the
after-the-fact methods to stream to a processing server and to analyze every portion
of driving in order to seek for dangerous situations is generally both unfeasible, as
it would require a massive amount of resources, and useless, as the vast majority
of the processed driving segments would be of safe driving. Thus, it is a common
practice in the research literature and in the industry to detect safety-critical events
via kinematic triggers, as reported in Figure 1.1. A system is installed inside a ve-
hicle, comprehensive of a forward-facing camera mounted on the dashboard of the
vehicle and a Vehicle Tracking Unit (VTU), composed of a GPS and an IMU mod-
ule, to have access to the speed, acceleration and angular velocity of the vehicle.
The GPS/IMUmodule acts both as a recording device and as a trigger. Once a peak
in acceleration is detected, e.g., a spike of a given magnitude for a given amount
of seconds, a so-called harsh event is triggered and the relative data gets recorded.
However, this method produces a fair amount of false positive and false negative
events. For instance, an animal running across the vehicle with no attempt of brake
by the driver, that is missed by a small margin would not trigger an event. On the
other hand, a harsh acceleration in a parking lot, far away from all the other vehicles
would trigger an event. Thus, despite this method being good to acquire potential
dangerous events, further processing is required.

A trend in the literature is to consider the observable consequences of the harsh
driving event, for instance Taccari et al. (2018) considered a classification task, dis-
tinguishing between crashes, near-misses and safe events. Instead, as highlighted by
Dozza and Gonzalez (2012), the dangerousness of a driving event depends on the
full chain of events that lead to the crash or the near-crash and is intrinsically related
to change related to the environmental condition of the road scene and the percep-
tion of the danger of the driver. For this reason, in this thesis, we aim at studying
the safety-critical events by considering the maneuver that leads to the dangerous
situation, by tackling a novel task that we called unsafe maneuver classification.

Furthermore, to try to get a better understanding of the reasons leading to a
dangerous situation, we follow a recent trend and focus on explainability, i.e., to not
just provide a good classification score but also to provide the motivations behind
a given output. We address this aspect in a two-fold way. First, we study an archi-
tecture that leverages the output of an object detection algorithm on the video to
perform the classification focussing solely on the relevant objects in the scene, i.e.,
the dangerous ones or the ones in danger. Second, we address the video captioning
task, which provides a description of the sequence of actions ultimately leading to
the safety-critical situation.
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1.2 Contributions and Organization
This thesis is structured as follows.

• In Chapter 2 we present the unsafe maneuver classification task. Such task is a
multi-class classification problem that considers as input the video, acquired
from a dashcam, centered around the safety-critical event and the data from
the GPS/IMU sensor and as output a label representing the maneuver that
leads to the dangerous situation. We consider maneuvers performed by both
the ego-vehicle and other vehicles, together with other unsafe situations. We
grounded the definition of our classes on a dataset from a Naturalistic Driv-
ing Study (SHRP2 NDS, described in Hankey et al. (2016a)), a collection of
safety-critical events acquired by installing an acquisition system like the one
described above on a large number of vehicles over multiple years. Thus, our
labels consider the real distribution of the unsafe events on the road. We re-
leased the annotations we used to the scientific community for reproducibility
of the results and to push forward the research in this direction.

• In Chapter 3 we introduce a novel end-to-end architecture based on convolu-
tions that tackles the unsafe maneuver classification task by performing sen-
sors fusion between the video and the sensor stream. Also, we studied and
tackled several practical problems when handling such data, such as asyn-
chronicity between the video stream and the sensors stream, missing data due
to GPS occlusions, and sensors drift.

• In Chapter 4 we expand the architecture presented in Chapter 3 in two ways.
First, we include the output of an object detector. The motivations behind this
choice are to boost the overall classification performance by leveraging pre-
trained knowledge (i.e., the objects in the scene) that could be hard to get on a
relatively small sample base, but also to be able to bound the final prediction
to a given object into a given set of frames. To do this, we introduce a module
that we called Spatio-Temporal Attention Selector (STAS), that combines the
attention mechanism with a tracking algorithm to extract and select features
relative to a real-word object (e.g., a vehicle) over time and select the most
relevant one, i.e., the dangerous one or the one in danger, doing a step toward
explainability. Second, we used 2D depthwise separable convolutions over
the sensors stream, extracting features that maintain the semantic meaning of
the individual sensor, confirming that their effectiveness, already proven in
the image and audio literature, extends to our application domain. We show
how the proposed novelties contribute to a new state-of-the-art in the unsafe
maneuver classification task.
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• In Chapter 5 we address video captioning of safety-critical events. We anno-
tate and release to the scientific community the SHRP-X dataset, a collection
of 3000 multi-sentence annotations describing each individual and relevant
action, i.e., maneuver, in the video that ultimately leads to the crash or the
near-crash. We propose an encoder-decoder architecture, using as encoder
the architecture of Chapter 4, pre-trained on the unsafe maneuver classifica-
tion task. As decoder, we tested various architectures that proved effective in
the video-captioning literature. Furthermore, we show how the usage of task-
specific attributes could give a boost to the overall classification performance.

• In Chapter 6 we present the conclusions we draw from this thesis and present
future lines of research.

Please note that, while most of my work was on the safety-critical analysis, that
is reported in this thesis, during my Ph.D. I have been involved in other research
topics, most of which resulted in scientific papers. A list of such papers can be found
in Appendix A.





Chapter 2

Unsafe maneuver classification †

In this Chapter, we present the novel unsafe maneuver classification task, that
aims at classifying the safety-critical driving events on the action that leads to
the dangerous situations starting from a video acquired from a dashcam and the
GPS/IMU sensors. Such maneuver could be performed by the subject vehicle
or by other vehicles in the scene, and just one or more vehicles could be involved.
The definition of the unsafe maneuver classification classes are grounded on a
Naturalistic Driving Study (NDS) and, thus, are representative of the real dis-
tribution of the dangerous events.

Dashcam data and, optionally, the sensors data from the GPS/IMUmodule have
been used to tackle various problems in applications like insurance, fleet manage-
ment and self-driving vehicles, mainly to detect and classify (Taccari et al. (2018);
Yao et al. (2019); Zhu et al. (2019)) or to anticipate (Chan et al. (2016), Suzuki et al.
(2018)) car crashes and to address driving maneuver detections (Peng et al. (2018);
Zekany et al. (2019); Deo et al. (2018)).

Crash detection aims at detecting the dangerous event based on the presence of
a collision (crash) between the subject vehicle and another entity on the road scene.
Such entity could be another vehicle, but also an object or a part of the road itself,
like a road bump or a shoulder. Here, the classification task address only the final
result of the dangerous situation, and the causes that lead to the dangerous situation
or the notion of unsafety is not addressed. In fact, approaches that do not consider

† Part of the content of this chapter was published in:
• M. Simoncini, D. Coimbra de Andrade, S. Salti, L. Taccari, F. Schoen, F. Sambo, “Two-stream

neural architecture for unsafe maneuvers classification from dashcam videos and GPS/IMU
sensors”, 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC),
pages:1–6, 2020.
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10 Unsafe maneuver classification

the video at all but just the sensor data have proven to be effective, as in Kubin et al.
(2021). In the crash anticipation, instead, the concept of unsafety has to be taken into
account, but is done in a generalway, aiming at predicting a car crash and doesn’t ex-
plicitly take into consideration the causes, i.e., the model trained on this task would
detect the presence of a dangerous situation but it will be hard to understand why.
In the maneuver detection field, instead, the aim is to detect and classify the ma-
neuvers performed either by the subject vehicle or by other vehicles (with respect
to the subject vehicle), e.g., change of lanes, turns at intersection, accelerations and
decelerations. In this case, only the subject maneuvers or the other drivers’ maneu-
vers are taken into consideration but not both and, again, the unsafety of the scene
is never taken into account.

We propose, instead, to address what we called the unsafe maneuver classifi-
cation problem, with the goal of classifying safety-critical driving events based on
the maneuver that leads to the dangerous situation. In the task, we consider both
crashes and near-crashes, and the key to perform a correct classification is to identify
the action, among the set of maneuvers in a driving scene, that ultimately lead to
the dangerous situation. Moreover, we consider maneuvers performed both by the
subject (subject vehicle SV maneuvers, sometimes also referred to as ego-vehicle ma-
neuvers) and by other vehicles (non-subject vehicle NSVmaneuvers). Furthermore, we
consider both maneuvers involving multiple vehicles (e.g., improper lane change,
turning) and single-vehicle maneuvers (e.g., loss of vehicle control, vehicle over the
edge of the road). To the best of our knowledge, no work has addressed unsafe
maneuver classification in such a general way.

2.1 Unsafe maneuvers taxonomy
One of the first requirements is to define a taxonomy for safety-critical events based
on themaneuver that led to the dangerous situation and, thus, to answer to the ques-
tion which are the maneuver that could lead to a dangerous situation?. This first simple
step is challenging on its own, as the variety of maneuvers leading to a dangerous
situation in a road environment is extremely broad, e.g., short distance to another
object, colliding trajectories, violation of the right of way or other road laws (Yao
et al. (2019)). Most of the existing works based their results on manually gener-
ated crowd-sourced datasets (e.g., acquired from YouTube videos, as in Chan et al.
(2016); Yao et al. (2019); Zhu et al. (2019)). However, this approach is not ideal,
as not all the possible maneuvers are equally likely to be depicted in videos up-
loaded online: for instance, a driver may decide not to upload videos where he is at
fault. Moreover, the definition of safety-relevant events, and by extension of unsafe
maneuvers leading to them, is not unambiguous and is both related to the envi-
ronmental condition of the road scene and the perception of danger of the driver,
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Table 2.1: The proposed unsafe maneuvers taxonomy. In the first column, the ma-
neuver identifier; in the second one, the maneuver description; in the third one, the
total number of maneuvers of that type in the dataset.

Class Description Total
SL Subject lane change. The subject performs an improper

lane change, potentially from an adjacent lane, an ac-
celeration or deceleration lane or from a parallel park-
ing spot, drawing dangerously close to another vehicle
in another lane, being it in front of the vehicle, behind
the vehicle and/orwith potential sideswipe threat. Al-
ternatively, the subject invaded the lane of a car coming
in the opposite direction.

283

ST Subject turn. The subject performs an improper turn,
potentially at an intersection, from a driveway or from
a perpendicular parking spot, invading the lane or
space of another vehicle proceeding in the same or op-
posite direction of the vehicle.

271

NSL Non-subject lane change. As SL but with another vehicle
being the one performing the unsafe maneuver.

1507

NST Non-subject turn. As ST but with another vehicle being
the one performing the unsafe maneuver.

954

SB Subject brakes. The subject vehicle brakes to avoid the
collision with another vehicle in the same lane and go-
ing in the same direction, potentially performing an
evasive maneuver.

3115

SOE Subject over edge. The subject vehicle runs over the edge
of the road or collides with road boundaries.

1069

SLC Subject lost control. The subject vehicle looses control
due to road condition, excessive speed or other causes.

196

SO Subject other maneuver. Other unsafe maneuvers per-
formed by the subject vehicle.

167

NSO Non-subject other maneuver. As SO but with another ve-
hicle being the one performing the unsafe maneuver.

183

O Other. Collision or near-collision with animals, pedes-
trians, pedal-cyclists or other objects.

742
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as highlighted in Dozza and Gonzalez (2012). To counteract this problem, multi-
ple reviewers should be used and clear definitions to label events should be agreed
upon. Finally, in contrast with previous work focusing only on ego-vehicle maneu-
vers (Peng et al. (2018); Zekany et al. (2019)) or other vehiclesmaneuvers (Deo et al.
(2018); Breuer et al. (2019)), our aim is to define a broad categorization that consid-
ers all possible reasons leading to safety-critical events, i.e., ego-vehicle maneuvers,
other vehicle maneuvers but also poor road condition, the presence of objects in the
roadway, animals, etc.

Therefore, to create a taxonomy that is representative of the real distribution of
safety-critical events while addressing the above concerns, we propose to base it on
a large Naturalistic Driving Study (NDS), in particular the SHRP2 dataset (Hankey
et al. (2016b)). The SHRP2 NDS dataset is a collection of more that 8800 safety-
critical events, gathered by more than 3300 drivers between 2010 and 2013. These
events have been manually annotated with event-, driver- and environment-related
variables, for a total of 75 labels Hankey et al. (2016b). Multiple round of reviews
were performed to validate the annotations, and careful and unambiguous defini-
tions of all the labels attached to maneuvers and events are provided: this greatly
reduces the inherent ambiguity of the derived taxonomy.

In particular, each safety-critical event in the dataset has been labeled with the
start and the end of the event and the so-called precipitating event, i.e., "The state of
environment or action that began the event sequence under analysis", answering the ques-
tion "but for this action, would the crash or near-crash have occurred?", for a total of 64
different annotations. By using these annotations as our starting point, we define
a set of classes, aggregating similar SHRP2 annotations and manually relabelling
the ones not falling perfectly into a category. The resulting classes among with an
in-depth description for each of them are reported Table 2.1.

It is worthmentioning, as highlighted in Yao et al. (2019), that the distribution of
the safety-critical events has a long tail, thus it is intrinsically an umbalanced prob-
lem. For instance, as reported in Table 2.1, SB is the most common maneuver by far.
In contrast, some of the precipitating events have too few examples to constitute a
statistically significant sample size. To copewith this problem,we created the classes
SO and NSO containing the remaining unsafe maneuvers performed respectively by
the subject vehicle and by other vehicles.

The result is a ten-class classification problem. It is interesting to observe that
some of the classes are relative to the same maneuver but differ on the entity per-
forming it, like SL and NSL, ST and NST, SO and NSO. It is important to remember,
though, that the point-of-view is always that of the subject vehicle. Thus, although
the couples of maneuvers are the same if observed from a bird-eye view perspec-
tive, they are totally different samples in the dataset. For instance, in the NST samples
the subject driver is often going straight or performing another unrelated maneuver
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(e.g., a lane change) when another vehicle turns across his path, for instance from
an intersection. In this case, the background and the vehicle going in the same di-
rection are moving in a steady way toward the image plane and basically, the only
things that do not follow that flow are the vehicle coming in the opposite direction
the vehicle performing the unsafe turn. Moreover, the GPS/IMU data does not hold
generally any relevant information but the subject breaking and an eventual evasive
maneuver. In the ST samples, instead, the whole background is moving as the vehi-
cle starts the turn. The other vehicle, i.e., the one in danger, might be visible at the
very last moment or might fall only partially in the video, being, for instance, on the
subject vehicle side. Here, instead, the GPS/IMU data plays a key role: the turn is
clearly detectable via the gyroscope that is followed often by a brake or an evasive
maneuver.

Finally, let us highlight how all themaneuvers can fall into threemacro-category:
maneuvers performedby the subject that affect other vehicles, maneuvers performed
by other vehicles that affect the subject vehicle, maneuvers performed by the subject
on its own. Thus, the proposed taxonomy could be used as a proxy to assess the
fault of the of the unsafe situation.

We released the labels obtained from the SHRP dataset according to our taxon-
omy to the scientific community to push forward the research on this topic∗.

∗https://github.com/mattsim/shrp2-unsafe-maneuver

https://github.com/mattsim/shrp2-unsafe-maneuver




Chapter 3

Two-stream neural architecture for
unsafe maneuvers classification †

In this chapter, the unsafe maneuver classification task is addressed introducing
a novel end-to-end architecture based on convolutional neural networks (CNNs).
The architecture combines the data from the GPS/IMU module inside the ve-
hicle and the video recorded from the dashcam performing sensor fusion. We
discuss the challenges relative to handling such heterogeneous types of sensors.
We also introduce a simple but effective methodology to increase the benefit of
fine-tuning the backbone network. Moreover, we perform an exhaustive liter-
ature review, showing how the task differs from traditional video classification
tasks and presenting the related works of the relevant transportation literature.

The unsafe maneuver classification task, introduced in Chapter 2, addresses the
classification of safety-critical events (crashes and near-crashes) based on the ma-
neuver that leads to the dangerous situation, starting from the video acquired from
a dashcam and the GPS/IMU data. While this task could be addressed using just
the video as an input, as is has been explored in closely-related fields of research,
we believe that the usage of GPS/IMU data would have a great impact in the classi-
fication of the unsafe maneuvers performed by the subject. On the other hand, the

† Part of the content of this chapter was published in:
• M. Simoncini, D. Coimbra de Andrade, S. Salti, L. Taccari, F. Schoen, F. Sambo, “Two-stream

neural architecture for unsafe maneuvers classification from dashcam videos and GPS/IMU
sensors”, 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC),
pages:1–6, 2020.

• M. Simoncini, D. Coimbra de Andrade, L. Taccari, S. Salti, L. Kubin, F. Schoen, F. Sambo, “Un-
safemaneuver classification fromdashcamvideo andGPS/IMU sensors using Spatio-Temporal
Attention Selector”, IEEE Transactions on Intelligent Transportation Systems, 2022.

15



16 Two-stream neural architecture for unsafe maneuvers classification

video stream is crucial for the detection of the maneuver performed by the other
vehicles and relative to other entities on the road.

Thus, we propose to address the aforementioned problem with a novel end-to-
end deep learning approach and a new two-stream architecture that has two roles.
First, it aligns the two heterogeneous inputs and performs sensor fusions; in fact,
generally, the sensors and the video has different sampling rate and the two sam-
pling clocks are misaligned. Second, it automatically extracts features from the two
streams to perform the classifications. The video stream is processed using a 2D
Convolutional Neural Network (CNN) applied to each frame. We test both the
usage of a pre-trained backbone from the literature and we propose a fine-tuning
methodology on the unsafe maneuver classification labels. The sensor stream is
instead processed using a 1D CNN, that is then merged to the video stream via
concatenation and is finally fed to another 1D CNN that extracts features on the
combination of the two sensors and performs the final classification.

3.1 Related works
To the best of our knowledge, the problem proposed in this chapter has not been
addressed before. The most closely related works in the literature are in the field
of Accident detection / anticipation and Driving maneuver detection. Moreover, in this
Section, we provide a review of the methods in the video classification literature,
trying to highlightwhich directionswe believe to be best suited to address the unsafe
maneuver classification task.

Video classification

The first attempts to perform video classification extended the results obtained on
the image classification tasks. Karpathy et al. (2014) applied a 2D CNN over each
frameof the video independently to address activity recognition. They experimented
with different aggregation over time strategies, including single-frame processing,
early fusion, which concatenatesmultiple frames at the pixel level, late fusion, which
concatenates the backbone outputs of multiple frames, and slow fusion, a combi-
nation of the latter two that works on multiple frames and progressively merges
the activations through the network layers. From their results, the slow fusion ap-
proach is outperforming the single-frame one by a small margin, showing that in
this task the temporal information is less crucial. Yue-Hei Ng et al. (2015) extended
this approach by first using two CNNs for feature extraction: the first one working
on the appearance RGB stream and the second one on the optical flow computed
on the video. Again, they tried different aggregation strategies, introducing also
simple max-pooling over time, time-domain convolution over the resulting frames
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and the usage of an LSTM over the resulting feature vectors for each frame to ex-
plicitly model the temporal evolution in the video. In their experiments, the LSTM
approach was outperforming the remaining approaches, closely followed by simple
pooling. Feichtenhofer et al. (2017) extended further the two-stram approach by
adding residual connection between the appearance CNN and the flow CNN.

In parallel, a set of works in the literature used 3D CNNs to tackle video classi-
fication, as they are a more natural fit. Tran et al. (2015) proposed a CNN based on
3D convolutions, composed of a set of 3× 3× 3 convolutional operations with an
incremental number of filters and pooling operations, that they named C3D. Their
network, though, requires a lot of data to be trained. Thus, they randomly select a
16-frames snippet from their dataset to enlarge the actual number of samples avail-
able. Then, they use their network as feature extractor to actually perform the clas-
sification, e.g., using an SVM classifier. Carreira and Zisserman (2017) proposed to
overcome this issue by re-using the weight learned on the image classification tasks,
by inflating the 2D convolutions into 3D. They applied this idea to Inception V1, ob-
taining a 3D CNN that they called I3D. Among their findings, however, they show
that if a larger amount of data is available, e.g., , for pertaining, the overall results
improve.

Suchnetworks, while obtaining state-of-the-art results, are computational demand-
ing. Compared to image classification, they often have a number of parameters 2-3
times larger and they require to process tensors that can easily be an order of magni-
tude larger than the image classification counterpart. Moreover, not every frame is
relevant: often the content between two consecutive frames changes slightly in two
consecutive frames for most of the frame pairs of the video, while it can change a lot
for the salient part of the video. Thus, this extra processing, is in part, wasted.

To overcome this limitation, some recent work in the literature tried to reduce the
memory footprint and the number of parameters. Two notable works are R(2+1)D,
introduced in Tran et al. (2018, 2019), that proposes to split the 3D convolutions
into a 2D convolution shared over time followed by a point-wise 1D convolution
over time, reducing the number of parameters and the complexity of the operation
needed, and SlowFast, introduced in Feichtenhofer et al. (2019), that proposes to
introduce two pathways a slow one and a fast one: the fast one process the video at
a high framerate by using convolutions with a small filter size, while the slow one
process the video at low framerate but with convolutions with a higher number of
filters.

Nevertheless, as we hypothesize the full dynamic of the safety-critical event to
be crucial, we need to process the full video and not just a small snippet. Also, in
contrast with other domains, acquiring more relevant samples for this task is chal-
lenging, as described in Chapter 2, and, thus, the number of samples in the dataset
is limited. For these reasons, and following a trend in the accident detection and
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anticipation literature, in this thesis we considered 2D CNNs as feature extractors
for each frame and aggregate the temporal dimension after.

Accident detection and anticipation

In the context of accident anticipation, Chan et al. (2016) proposed a system for
anticipating traffic accidents from dashcam videos. They used an object detection
algorithm to extract the objects in the scene and used a pre-trained VGG neural net-
work (Simonyan and Zisserman (2014)) on Places-365 (Zhou et al. (2017)) to ex-
tract the appearance features on the detections. Then, they introduced a Dynamic
Spatial Attention (DSA) system in combination with a Long short-term memory
(LSTM, Hochreiter and Schmidhuber (1997)) network and a custom loss to predict
the car crash as early as possible. They evaluated their performance on the novel
DAD dataset that, however, is formed mostly of accidents not involving the ego-
vehicle. Suzuki et al. (2018) improved the previous architecture by using a Quasi-
Recurrent Neural Network (QRNN, Bradbury et al. (2016)) and an adaptive custom
loss. They also evaluated their performance on the broader NIDB dataset, which is
composed mostly of ego-vehicle accidents. Moreover, they propose a fine-tuning
strategy for the appearance feature extractor, with an auxiliary task on the type of
subject involved in the scene (e.g., crash with a vehicle, pedestrian or a safe driving
scene).

In the context of accident detection, Yao et al. (2019) addressed the problem in
an unsupervised way, by training a network to predict the position of objects in the
scene in the next frame and by detecting anomalies with respect to the actual posi-
tion. Taccari et al. (2018) designed a system based on object detection and Random
Forest to classify safety-critical events into crashes, near-crashes and safe events.

All the aforementioned approaches heavily rely on object detection to perform
the classification or the prediction and do not generalize to events involving only the
subject vehicle (e.g., loss of control), where no other vehicle is visible. Nevertheless,
these approaches involving object detection as additional input and how they could
be extended to tackle the unsafe maneuver classification problem will be discussed
in depth Chapter 4.

Recently, some works have investigated the driving attention (i.e., the driver eye
fixation) prediction task Palazzi et al. (2018) in the context of safety-critical events,
under the hypothesis that such information can provide useful insights for accident
detection and prediction (Xia et al. (2018); Fang et al. (2019a,b)). Zhu et al. (2019)
leveraged this idea to detect safety-critical events in driving videos, addressing it as
an anomaly detection problem. They used the eye fixation salience map to extract
anomaly candidates from the full clips and used an architecture based on isolation
forests to extract the spatio-temporal safety-critical regions. They also proposed a
mechanism based on image segmentation to compute a narrative (e.g., car hit motor-
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bike or car hit ego-vehicle). While this approach has shown potential, it cannot readily
be applied at scale as the one we propose, due to the limited availability and adop-
tion of solutions to capture driver attention (Xia et al. (2018); Fang et al. (2019b)).

Driver maneuver detection

In the context of ego-vehicle maneuver detection, Peng et al. (2018) considered both
video andGPS/IMU as inputs. Video frameswere fed to a pre-trainedVGGnetwork
on Places-365, while handcrafted features were extracted from the GPS/IMU data.
The two streams were then fed to an LSTMmodel. The authors proposed to process
only frames sampled on a uniform spatial basis (i.e., a frame per meter) instead of a
temporal one, which they proved to be beneficial for ego-maneuver detection. Their
approach doesn’t extend to general maneuver detection, though, since maneuvers
performed by other vehicles while the subject is not moving are ignored. Zekany
et al. (2019) proposed a method to classify subject maneuvers from videos, using a
pre-trained model (DeepV2D) to extract depth from video and the camera motion
information (and, thus, the trajectory performed by the subject). Then, they lever-
aged Dynamic Time Warping (DTW, Müller (2007)) distances between trajectories
to perform the classification. However, in our case, we’re not interested in detect-
ing the subject maneuver alone, but rather in classifying the maneuver with respect
to its context. In the context of other vehicle maneuvers detection, Deo et al. Deo
et al. (2018) designed a framework based on the detection of road scene objects and
applied tracking and motion detection.

3.2 Two-stream architecture based on convolutions
The two-stream architecture proposed in this Chapter leverages both the appear-
ance (i.e., the RGB images) and the GPS/IMU information. It is formed by three
main modules: a video features extractor, a sensors feature extractor and a classifier
combining the two streams. A schematic representation can be found in Figure 3.1.

Video features extractor
The video information is processed using a pretrained ResNet-50 (He et al. (2016))
on the Places-365 dataset (Zhou et al. (2017)), from here on also referred as back-
bone. ResNet is a widely used architecture based on residual connections that has
shown superior performances on the Imagenet image classification challenge. Al-
though it has been outperformed in recent years by efficient networks (Tan and Le
(2019)) and transformer-based architecture (Zhai et al. (2021)) on the ImageNet
challenge, it remains a widely used choice as feature extractor in many computer
vision applications.
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Figure 3.1: Two-stream architecture for unsafemaneuver classification. Inwhite, the
video feature extractor, composed by a ResNet-50 backbone pre-trained on Places-
365 and a bottleneck layer, applied to each frame of the video, in orange, the sensors
feature extractor, a 1D convolutional neural network, and in green the two-stream
classifier, again a 1D convolutional neural network.

Places-365 is a dataset that addresses the classification of various types of scenes,
with the goal of producing high-level features to be used for visual understanding
tasks. It has 365 labels, ranging from indoor scenes, e.g., basement, bathroom, toy
shop, to outdoor scenes, e.g., mountain path, desert, soccer field. Among the out-
door classes, there are some that are suited for road scenes, like cross-walk, park-
ing garage, driveway and various road types, and are, thus, a reasonable choice
to perform feature extraction from road images. Moreover, similar networks pre-
trained on Places-365 have shown good results on tasks closely related to our prob-
lem (Suzuki et al. (2018); Peng et al. (2018)).

Formally, each videoV is a sequence of frames {Vt0 , Vt1 , . . . , VtT}with {t0, t1, . . . , tT}
the video frames timestamps, Vti the 3-channel RGB frame at time ti of size W × H.
Such sequential formulation is converted to a tensor representation in order to be
fed to the neural architecture, thus, each video is represented as a tensor of size
T × 3× H ×W. The backbone is applied to each frame and, as a result, the out-
put is a tensor of size T ×Vout, which is then reshaped (via transposition) to a size
of Vout × T, with Vout the number of channels of the last convolutional filter of the
network. In the case of ResNet-50, Vout = 2048.

GPS/IMU features extractor

We consider seven type of GPS/IMU measurements: speed, three-axis accelerations
and three-axis angular velocity, since they are themost common and broadly available.
Such signals have, in general, different sampling frequencies. Moreover, in a general
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Figure 3.2: Detailed overview of the sensors module (top row) and the two-stream
module (bottom row), as an expansion of what presented in Figure 3.1. In the ex-
ample θ = 3, f s = 16, Ns = 3, f = 64, N = 3 and B = 64 with an input of size
T = 135.

setting, the sensors providing them might not be aligned between each other and
with the video frame timestamp.

To copewith these problems, we resample the signals before processing them, so
that they have the same number of samples, and this number is a multiple θ of the
number of video timestamps. We do not immediately downsample the sensors to
the same framerate of the videos, as thatmight lead to retain asmuch information as
possible from the original signals for processing. Yet, resampling them at a multiple
rate of the video framerate makes it easier to temporally align the extracted features
with the video features after having processed the sensor streams. Therefore, this
module aim is twofold: to extract some high-level representation of the data, simi-
lar to what is done for the video stream and to temporally align the video and the
sensors information.

Formally, each signal s is a sequence of θT samples {st̂0
, st̂1

, . . . , st̂θT
} with t̂θi =

ti ∀i ∈ {1, . . . , T} and with st̂i
∈ R7. Similarly to what we propose for the video

stream, we represent each signal as a tensor of size 7× θT and we feed this tensor to
a 1D convolutional neural network formed by several stacked 1D convolution filters.
The network applies Ns convolutional operations. First, a convolution with kernel
size θ and with f s filters is applied, followed by Ns− 1 1D convolutions with kernel
size 1 and with twice the filters of the previous layer. Each convolution is followed
by a 1D batch normalization and a ReLU activation function. Finally, a max-pooling
layer of size θ is applied, which temporally aligns the video and the sensors streams
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as required.
The intuition behind the usage of the point-wise operations is that we want the

network to extract local features. Ideally, each frame should be alignedwith a feature
vector representative of the sensor data between the previous one and the following
one and, thus, retain its temporal semantic meaning. The fusion between different
frames and sensor data over time will be performed lately in the stage. A schematic
representation of the described module can be found in Figure 3.2. The output is a
tensor of size sout × T with sout = f s · 2Ns−1.

Two-stream classifier

This module first combines the outputs of the video and sensors feature extractors,
i.e., two tensors of size Vout × T and sout × T respectively, by concatenation on the
temporal dimension. However, simple concatenation may not be the best strategy
to combine features as typically Vout � sout. Further processing them so that Vout

and sout have comparable size may help in correctly leveraging the GPS/IMU infor-
mation at the classifier stage.

Indeed, we observed experimentally that applying a bottleneck layer to the video
features improves the overall performance. This layer is formed by a fully-connected
layer of size B, followed by a 1D batch normalization and a ReLU activation function.
Thus, the resulting concatenation is a tensor of size (B + sout)× T.

Such tensor is then fed to a 1D convolutional network, formed by N stacked 1D
filters. Each operation is formed by a 1D convolution with kernel size 3, a 1D batch
normalization and a max-pooling of size 2 and stride 2. The number of filters ap-
plied in each layer is doubled with respect to the previous one, with the first con-
volution having f filters, while the temporal span of the data is halved. In this way,
the network is forced to learn higher-level representations of the underlying data.

The output of the aforementioned filters is a tensor of size ( f · 2N−1)× T′, where
T′ is the temporal span after all the max-pooling layers, which is fed to a 1D Global
Max Pooling layer. In our tests, such layer performed better than the commonly used
Global Average Pooling layer. One possible reason is that the unsafe maneuver will
occur only in a few, or even a single, temporal sample among the processed T′ and,
thus, the network performs better if it bases its classification only on it, without
taking into account features related to safe driving. Finally, a fully-connected layer
of size 10, as the number of unsafe maneuvers considered, is applied, with a softmax
activation function to perform the classification.

A schematic representation of the described module can be found in Figure 3.2.
It is worth noticing that the proposed architecture can be used on data streams with
arbitrary resolutions and number of frames, since it is formed mainly by convolu-
tions and spatial or temporal pooling layers. The only fully connected layers are the
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final classifier and the bottleneck, which however do not require a fixed input size
as they act after global pooling operations.

It is important to highlight that the architecture was designed to be agnostic to
the moment in time in which the safety-critical event occurs. In particular, as antici-
pated in Chapter 1 and Chapter 2, the data relative to a safety-critical driving event
are acquired by recording a fixed number of seconds around a detected peak in
acceleration (kinematic trigger). Thus, generally, such data are biased, as the event
always occur in a given temporal segment. The only use of convolutional operations
along the temporal dimension, combinedwith the usage of a pooling, and, thus, po-
sition agnostic, operation prevents the network from being affected by such bias and
allows the generalization beyond the events used during the model training.

3.3 Experimental results
All the experiments are conducted on the SHRP2 NDS dataset leveraging the un-
safe maneuver annotations, described in Chapter 2. In addition, we consider and
annotate the frame in which the event begins and end. The latter two annotations
are made with the following rule: it is marked as eventStart the frame in which the
first maneuver that starts the sequence of events leading to the dangerous situation
occurs; it is marked as eventEndt the frame in which the last evasive maneuver or
action occur, that concludes the sequence of events that are part of the dangerous
situation.

The dataset is composed of videos at 15 fps with resolution 480 × 356, while
the GPS-related sensors have a sampling frequency of 1 Hz and the IMU of 10 Hz.
The videos have variable length, going from a minimum of 150 to a maximum of
692 frames, however the vast majority are 30 seconds videos of 450 frames. To uni-
formize the dataset, we cap all the videos to 450 frames length by removing the
initial frames and we align the GPS/IMU information and the event start and end to
the crops. Then, as the dataset was acquired in a naturalistic environment, presents
samples with missing or miscalibrated data. To cope with the first one, we discard
every video with missing speed or accelerometer data, while considering a constant
zero signal in case of missing gyro data. This choice is motivated by the fact that the
first two are a small minority, while the third one is a phenomenon occurring way
more frequently, in roughly 30% of the samples. Finally, we remove the corrupted or
occluded videos, ending upwith a dataset of 8497 events, that we stratified split into
train, validation and test with a 80/10/10% proportion. The splits, discard flag and
event start and end data are released along with the unsafe maneuver annotations,
for reproducibility purposes.

Since the backbone model has been trained on images with shape 224 × 224,
we adjusted our input frames accordingly, maintaining the aspect ratio and having
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the smaller side of 224 pixels. However, to be able to perform data augmentation,
we resized every video to 346 × 256 and picked a random 314 × 224 crop during
training. At inference time, we only considered the central crop.

As for the GPS/IMU data, as mentioned above, the accelerometer and the gy-
roscope occasionally present miscalibration artifacts. To cope with them, we first
re-scale such data to have zero mean in each example. Then, we use a robust scaling
strategy, scaling the 25th and 75th percentiles of each sensor in the range [−0.5, 0.5].
This approach has empirically shown better results than the more common [0, 1]
scaling. Intuitively, these sensors presents relatively small variations in terms of
magnitude during regular driving, and severe peaks in correspondence of a hard
braking or a crash. Thus, by scaling the peaks, the content of the regular driving
might get lost. In contrast, the normalization strategy we used retains the dynamic
of the full driving segment while normalizing the data. Furthermore, Gaussian But-
terworth Noise was applied, only during training, as data augmentation.

All tests are conducted minimizing the cross-entropy loss with class weight, to
cope with class unbalance, and with Adam optimizer (Kingma and Ba (2014)) with
an initial learning rate lr = 10−3, reduced to lr = 10−4 after 30 epochs and to lr =

10−5 after 40 epochs. Moreover, we use a weight decay wd = 5 · 10−3. The training
process takes 20 minutes on a V100 GPU by pre-computing and storing locally the
backbone outputs.

Finally, as evaluation metric we use the mean average precision (mAP), which
is equivalent to computing the mean area under the precision-recall curve for each
class and, thus, takes into accounts both precision and recall and is robust to class
unbalance. We set up two sets of tests. First, we evaluate the architecture on small
video footage around the event, showing how the performance of themodel changes
with the different architecture parameters and the relative benefits of the various
choices made in its definition. Second, we test our architecture on the full videos,
that contain a good portion of safe driving before the safety-critical event, showing
the capability of the proposed architecture to focus on the safety-critical part of the
clip. The two setups are schematically reported in Figure 3.3

Experiments: small clip around the event
The first set of experiments are conducted on a small clip containing only the safety-
critical event, in order to prove the capability to distinguish different types of unsafe
maneuvers of the proposed architecture. To do this, we consider the 2/3 of the
[eventStart, eventEnd] segment as event reference point, and the clip that goes from
σstart frames before to σend frames after such point. We empirically found that σstart =

90 (6 seconds) and σend = 45 (3 seconds) let us exclude most of the footage of
safe driving, while retaining the entire relevant maneuver. The motivation behind
the choice of the reference point is relative to the observation that the maneuvers
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Figure 3.3: The two experimental setups we considered. On the top, the small clip
around the event setup, that considers 135 frames around the dangerous event. On
the bottom, the full clip setup, that considers the full 450 frames of the video, zero-
padding the shorter samples or removing the initial frames of the longest ones.

preceding (and leading to) the dangerous event have generally a wider time span
than the evasive and following ones.

Table 3.1: Hyperparameters search space

Variable Parameters
θ {1, 3}

Ns {1, 2, 3}
f s {16, 32, 64}
B {32, 64, 128}
N {3, 4, 5, 6}
f {32, 64, 128, 256}

The proposed architecture, as described in Section 3.2, has many hyperparam-
eters to be tuned. Specifically, θ, Ns, f s, N, f and B. Intuitively, we expect joint
dependencies between the parameters in their effect on the network performance.
For instance, according to the best practice of gently increasing the number of fil-
ters while decreasing the dimension of the data, a larger B might require a larger
f . Fine-tuning the parameters one by one might thus lead to a suboptimal solution.
On the other hand, testing out all possible combinations is a demanding job in terms
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of resources (time and computational power) required. For this reason, we decided
to use a Random Search (Bergstra and Bengio (2012)) strategy on the parameters
space, optimizing the validation mAP. Parameters and the range use during Ran-
dom Search are reported in Table 3.1. We run a total of 60 experiments and found
the best results with the following setting: θ = 3, f s = 32, Ns = 2, B = 32, f = 32
and N = 4, with a mAP on the validation set of 0.653 and a mAP on the test set of
0.635.

Table 3.2: Confusion matrix for the best configuration on small clip around event
settings.

Predicted maneuvers total recall
SL ST NSL NST SB SOE SLC SO NSO O

Tr
ue

m
an

eu
ve

rs

SL 12 1 8 0 4 1 1 0 2 1 30 .40
ST 1 15 0 4 0 2 0 2 0 1 25 .60
NSL 11 2 84 22 20 0 0 1 3 6 149 .56
NST 2 8 6 52 5 2 1 6 1 14 97 .54
SB 11 1 30 7 239 3 2 3 10 5 311 .77
SOE 2 2 0 3 0 86 6 1 0 7 107 .80
SLC 0 1 0 1 0 3 12 0 2 0 19 .63
SO 0 1 0 1 0 2 0 13 0 0 17 .76
NSO 0 0 1 1 2 1 0 1 13 0 19 .68
O 5 12 5 4 1 0 2 3 1 41 74 .55

precision .27 .35 .63 .55 .88 .86 .50 .43 .41 .55 848 -

The confusion matrix on the test set is reported in Table 3.2. Thanks to the pres-
ence of the class weight in the training loss function, all the classes, including the
minority ones, have overall reasonable precision, recall and AP, with two notable
exceptions. The SL class tends to be confused with NSL and SB. We believe that the
first case is due to a natural ambiguity of the two classes, e.g., in a narrow road,
maybe without a lane separation line, it is sometimes hard to say whether the sub-
ject invaded the other lane or the opposite, while the second one is mostly due to
the classifier focusing on the wrong vehicle to detect the safety-critical event. The
ST class tends to be confused with NST and 0. The first case is composed by events
in which both vehicles are turning, into the same or opposite direction and, thus,
could be disambiguated only considering the road laws. In the second one, instead,
the network seems not to take into consideration the pedestrian or pedal-cyclist in
the scene. This phenomenon might be influenced by adverse lighting conditions.

To prove the effectiveness of the proposed approach, we compared the model
described above, which include the video stream and the sensors one and that is
referred as VS, with several variants:
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• VS+L: A baseline classifier, working on the same features, but deploying a 2-
Stacked LSTM layer, as proposed in related works Chan et al. (2016); Peng
et al. (2018).

• VS-B: The proposed architecture, without the the bottleneck layer.

• V: The proposed architecture, without the GPS/IMU stream.

• S: The proposed architecture, without the video stream.

Results are reported in Table 3.3. Clearly, processing the two streams is key to
achieve high performance, showing that the two sources of information complement
each other in the solution to our problem. In this sense, while the video stream
generally performs worse than the sensor one, it is better at detecting maneuvers
involving other vehicles (e.g., NST, 0) while the opposite is true for the ego-vehicle
ones (e.g., SL, ST, SOE, SLC). Furthermore, the introduction of the bottleneck layer is
beneficial for the classification, validating our hypothesis that to align the dimen-
sion of the different inputs before performing the sensor fusion is beneficial and
prevents an input to prevaricate on the other one. Finally, even when deploying
both feature streams, there is a large gap in mAP between the proposed classifier
based on convolutions and pooling layers and the LSTM layers typically used in the
state-of-the-art.

Table 3.3: Results of the proposed approach and baselines

model average precision (AP) mAP
SL ST NSL NST SB SOE SLC SO NSO O

VS .28 .54 .61 .60 .91 .92 .60 .68 .62 .59 .635
VS-B .20 .48 .66 .61 .93 .91 .55 .57 .70 .66 .627
VS+L .17 .46 .57 .47 .89 .90 .64 .67 .31 .62 .569
S .35 .55 .57 .30 .80 .94 .59 .65 .59 .23 .556
V .10 .27 .51 .42 .84 .59 .51 .31 .07 .51 .414

Experiments: full video
As a second set of experiments, we applied the same architecture to the full 450
frames (30 seconds) videos, to prove the ability of the model to focus on the safety-
critical event among several other safemaneuvers. Both streams of the videos shorter
than such dimension were zero-padded. We retained the optimal architecture pa-
rameters from the previous experiments and the same train/validation/test split, but
the architecture was retrained from scratch. As a result, we obtained a validation
mAP of 0.648 and a test mAP of 0.634. The confusion matrix obtained on the test set
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Table 3.4: Confusion matrix with full video as samples

Predicted maneuvers total recall
SL ST NSL NST SB SOE SLC SO NSO O

Tr
ue

m
an

eu
ve

rs

SL 9 0 9 2 7 2 0 0 0 1 30 .30
ST 1 12 0 6 0 2 0 1 0 3 25 .48
NSL 8 1 95 23 17 1 0 0 0 4 149 .64
NST 0 7 9 64 3 1 1 3 2 7 97 .66
SB 14 2 25 15 241 3 0 1 4 6 311 .77
SOE 0 1 0 3 0 91 4 1 0 7 107 .85
SLC 0 0 1 0 1 3 13 0 1 0 19 .68
SO 0 1 0 3 0 2 0 9 1 1 17 .53
NSO 2 0 2 2 1 2 0 0 10 0 19 .53
O 3 8 6 6 2 3 3 2 2 39 74 .53

precision .24 .38 .65 .52 .89 .83 .62 .53 .50 .57 848 -

is reported in Table 3.4 Such results are comparable with the ones obtained with the
clip around the event setup, showing the capability of the proposed architecture to
focus on the relevant safety-critical part of the video, an important trait in a practical
deployment of our solution.

3.4 Backbone fine-tuning
While using a pre-trained backbone on Places-365 as feature extractor showed good
results in our experiments and in similar tasks in the relevant literature (Peng et al.
(2018); Chan et al. (2016)), to fine-tune the backbone would almost certainly im-
prove the performance. However, when working with videos, it is hard to fine-tune
the backbone directly on the task, especially if the videos are long or have a high fps,
as it generally requires larger datasets andmore GPUmemory than available. Thus,
many works propose to fine-tune their backbone on auxiliary tasks that are close to
the original one.

Suzuki et al. (2018) propose to use a per-frame classification task on four classes,
indicating whether in the frame there is an imminent collision with a pedestrian, a
cyclist, a vehicle or none of the above (a frame from the safe driving). Kim et al.
(2018) propose to train a small convolutional network that predicts the vehicle steer-
ing and acceleration. We propose to fine-tune the backbone on the same unsafe ma-
neuver classification task, but by considering solely a smaller version of the video
as input, with a lower frame-rate and duration.

We considered video segments of 32 frames at 5 fps, i.e., 6.4 seconds, randomly
choosing such segments during the training phase under the constraint that at least
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Figure 3.4: The architecture used to fine-tune the backbone. Below, a set of examples
used for fine-tuning, satisfying (V) or not satisfying (X) the constraint. In blue, the
selected segment, in red, the safety-critical event, in black the full video.

75% of the safety-critical event should be contained in the segment or that all the
frames should be safety-critical event frames. This approach was possible only by
knowing the beginning and the end of the safety-critical event in each video. Also,
the choice of lowering the frame-rate was made to consider a wider temporal foot-
print that should contain the full evolution of the event, as by considering 32 frames
at 15 fps, i.e., 2.1 seconds, only a portion of the event might have been fed into the
network, for instance, the beginning of the event or the evasive maneuvers, making
the classification task difficult or impossible. During the validation and test phase,
we are considering all segments satisfying the above conditions for each segment,
with a minimum overlap of 50%.

The architecture used to fine-tune the backbone is reported in Figure 3.4. We first
fed the video to the backbone and applied a 2D global average pooling layer. After
these operations, the output tensor has shape F×C, with F = 32 numbers of frames
and C backbone output channels. In our specific case, we considered ResNet-50,
having C = 2048. Then, in line with the residual structure of the backbone, we con-
sidered N = 4 1D adaptations of the Bottleneck layers proposed in He et al. (2016)
of size C, each of which applies a point-wise 1D convolution with C/4 = 512 filters,
a 1D convolution of size 3 and C/4 = 512 filters and point-wise 1D convolution
with C = 2048 filters, warping everything with a residual connection between the
input of the three convolutions and the output. In addition to this, we would want
to reduce gradually the temporal dimension. Thus, the first point-wise operation of
each block has a stride s = 2 and each residual connection is equipped with an ad-
ditional point-wise operation, to adjust the number of channels accordingly. Finally,
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Table 3.5: Confusion matrix on the unsafe maneuver auxiliary task for backbone
fine-tuning, with an overall mAP of 0.424

Predicted maneuvers total recall
SL ST NSL NST SB SOE SLC SO NSO O

Tr
ue

m
an

eu
ve

rs

SL 11 0 42 0 19 1 4 5 11 5 98 .11
ST 4 30 3 8 0 11 3 14 2 3 78 .38
NSL 24 4 390 12 34 7 3 1 17 18 510 .76
NST 13 26 80 71 26 22 8 12 5 47 310 .23
SB 49 4 96 3 607 3 2 4 133 15 916 .66
SOE 9 43 14 14 6 105 42 23 6 60 322 .33
SLC 0 3 1 5 5 4 26 6 2 2 54 .48
SO 0 11 2 5 0 0 1 28 2 1 50 .56
NSO 1 0 7 4 14 2 3 4 14 4 53 .26
O 7 17 16 13 11 17 6 14 5 139 245 .57

precision .09 .22 .60 .53 .84 .61 .27 .25 .07 .47 2636 -

a 1D global max-pooling layer is applied over the reduced temporal dimension and
the resulting vector is used for classification. The weights of the backbone are ini-
tialized with the Places-365 weights, while the residual bottlenecks are trained from
scratch.

We train the network minimizing the cross-entropy loss with class weight and
Adam optimizer, with a fixed learning rate of lr = 10−4. In addition to randomly
selecting the temporal segment, as described above, we are using Random Crop,
i.e., we randomly select a 314× 224 crop of the video, and Color Jittering, i.e., ran-
domly changing the video brightness, contrast and saturation. Moreover, as the first
layers of the networks learns to detect general-purpose low-level descriptors (e.g.,
the presences of edges and color patches) while the one in-depth aggregates such
descriptor into high-level ones (e.g., the presence of a car) and given the relatively
small size of the samples available for fine-tuning, we choose to not train (i.e., keep
frozen) the first 22 layers of the backbone.

The results of the training on the auxiliary task are reported in Table 3.5. We
obtained a mAP of 0.424. Although the number of samples is different, as we are
considering multiple segments for each video as described above, the results are
comparable and, for some classes, outperforming the one obtained by the video
only backbone in Table 3.3 in terms of precision and recall, while being obtained on
segments with a significantly shorter time span and frame-rate. Plugging the fine-
tuned backbone into the two-stream architecture proposed in Section 3.2, we obtain
a mAP of 0.690 of, with a boost of roughly 0.06 points in the small clip setup. In
Table 3.6 we report the resulting confusion matrix..
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Table 3.6: Confusion matrix of the two-stream architecture with fine-tuned back-
bone, with an overall mAP of 0.690

Predicted maneuvers total recall
SL ST NSL NST SB SOE SLC SO NSO O

Tr
ue

m
an

eu
ve

rs

SL 15 1 9 1 2 2 0 0 0 0 30 .50
ST 0 16 0 5 1 2 0 0 0 1 25 .64
NSL 6 0 122 10 2 1 1 0 0 7 149 .82
NST 1 3 7 59 7 1 0 5 2 12 97 .61
SB 15 4 19 7 255 1 0 0 7 3 311 .82
SOE 0 2 1 1 0 87 6 1 2 7 107 .81
SLC 0 1 0 1 2 1 12 1 0 1 19 .63
SO 0 0 0 2 0 2 0 12 1 0 17 .71
NSO 0 0 1 1 2 0 0 2 12 1 19 .63
O 0 8 5 4 3 3 1 1 2 47 74 .64

precision .41 .46 .74 .65 .93 .87 .60 .55 .46 .59 848 -

3.5 Conclusions
In this Chapter, we have introduced the novel unsafemaneuver categorization prob-
lem and have shown how a novel neural architecture, processing both videos cap-
tured by a dashcam as well as GPS/IMU sensor data, can be used to tackle it. After
a broad calibration phase, exhaustive tests have shown the capability of the pro-
posed architecture to distinguish the various unsafemaneuver types and also to cor-
rectly identify the time interval in which an unsafe event occurred within a record-
ing mostly composed of normal behavior. Also, we proposed a fine-tuning strategy
for the backbone CNN based on a simplified version of the task, that has shown a
significant boost in the overall performance.





Chapter 4

Unsafe maneuver classification using
Spatio-Temporal Attention Selector †

We propose a novel deep learning architecture to classify unsafe driving maneu-
vers from dashcam and GPS/IMU data. Such architecture processes the output
of an object detection algorithm in combination with raw video frames and GP-
S/IMU data. At the core of the architecture there is a novel Spatio-Temporal
Attention Selector (STAS) module, which (1) extracts features describing the
evolution of each object in the scene over time and (2) leverages multi-head dot
product attention to select the relevant ones, i.e., the dangerous ones or the ones
in danger, to perform classification. Our method is shown to achieve higher per-
formance than other approaches in the literature applying attention over single
frames.

In this Chapter, we propose an alternative approach to the one presented in
Chapter 3 to tackle the unsafe maneuver classification problem by proposing two
major improvements: first, we integrate the output of an object detection algorithm
in the pipeline, to provide the network with explicit information about the entities
on the road and let it learn high-level representations of the interactions between
them. Second, we leverage attention Bahdanau et al. (2014); Vaswani et al. (2017)
to let the network focus on the relevant objects in the scene, i.e., the one involved in
the unsafe maneuver, and on the relevant temporal segments.

† Part of the content of this chapter was published in:
• M. Simoncini, D. Coimbra de Andrade, L. Taccari, S. Salti, L. Kubin, F. Schoen, F. Sambo, “Un-

safemaneuver classification fromdashcamvideo andGPS/IMU sensors using Spatio-Temporal
Attention Selector”, IEEE Transactions on Intelligent Transportation Systems, 2022.
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- OR -

Figure 4.1: An overview of the proposed architecture. In red, the appearance fea-
tures extracted from the object detector output, in yellow the features relative to the
boxes positions, in green the GPS/IMU features, in white the per-object feature ex-
tracted. Such features are either pooled with a max pooling layer or fed to the STAS
module, composed of a max pooling layer as query vector andmulti-head attention.

While the usage of attention is motivated by the extremely good results it has
obtained in various fields of the scientific literature (de Andrade et al. (2018); Chan
et al. (2016); Bahdanau et al. (2014); Vaswani et al. (2017); Suzuki et al. (2018); Xu
et al. (2015); Anderson et al. (2018a); Herdade et al. (2019a); Cultrera et al. (2020);
Woo et al. (2018); Hu et al. (2018)), it also has an interesting by-product: atten-
tion forces the network to focus on a particular portion of the input and to have the
resulting output that mainly depends on that portion. Thus, it provides an explana-
tion on the reason behind a given prediction by learning features with an associated
semantic meaning, as reported in Gunning (2017), and that allow the network to
intrinsically explain itself (Gilpin et al. (2018)). This aspect in particular is known
in the scientific literature as eXplainable Artificial Intelligent (XAI) (Abdul et al.
(2018); Gunning (2017); Gilpin et al. (2018)) and it is of crucial importance when
the output of the model is presented to or evaluated by a human (in the so-called
human-agent systems), where a motivation behind the prediction might be neces-
sary to convince of the correctness of the prediction or to understand the reasons
behind a misclassification (Rosenfeld and Richardson (2019)).

In the road-safety domain, and, specifically, to address the accident anticipation
problem, previous works in the literature attempted to integrate attention with the
output of an object detection algorithm, using Dynamic Spatial Attention (DSA),
in particular Chan et al. (2016) and Suzuki et al. (2018). Such module applies at-
tention to all the detected objects of a single frame, in order to have the network
focus on the most relevant object at a given moment in time, and then uses a recur-
rent module to extract the temporal dependencies between the learned features. In
contrast, our aim is to use attention to select the most relevant object and the most
relevant temporal segment to correctly classify the maneuver, by explicitly extract-
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ing features describing the evolution of each object in a given set of frames and then
selecting the most relevant one to perform the prediction. We refer to this approach
as Spatio-Temporal Attention Selector (STAS).

Moreover, and as an alternative to the use of the attention mechanism, we pro-
pose to leverage a max-pooling layer to extract relevant information from the object
features. While such layer is more opaque than attention, i.e., it is harder to un-
derstand the reasons behind a prediction, it showed slightly superior performance
compared to the attention-based ones in our experiments, suggesting thatmodel ex-
plainability comeswith a cost. An overview of the proposed architecture is reported
in Figure 4.1.

4.1 Related works
In this section we discuss the most relevant papers in the literature, focusing on
closely related tasks using object detection and the usage of the attention mecha-
nism in the computer vision literature.

Attention mechanism
The attention mechanismwas first introduced in Bahdanau et al. (2014) in the Neu-
ral Machine Translation (NMT) literature, with the aim of giving the decoder the
ability to dynamically focus on parts of the input sentence that are relevant to predict
a target word, instead of being forced to encode the source sentence into a fixed-
length vector. This is achieved by projecting each word in an embedding space and
computing a similarity measure between words, represented as a fully-connected
operation. Vaswani et al. (2017) generalized the mechanism proposed in Bahdanau
et al. (2014) (also referred to as soft attention) by computing the similarity measure
using the dot product operation, introducingwhat is referred as dot-product attention,
and by computing a set of embedding and attention operations in parallel instead
of a single one, that get then merged together into a single final output, that goes
under the name of multi-head dot product attention.

Later on, the idea of letting the network focus on a specific part of the data was
applied in other fields of research, e.g., computer vision,mainly in twoways. Xu et al.
(2015) proposed to use the attentionmechanism in an encoder-decoder architecture
for video captioning, having the network focus on features extracted from a specific
part of the image. Otherworks generalized the approach by considering the features
from the output of an object detectorAnderson et al. (2018a);Herdade et al. (2019a).
Xu et al. (2015) proposed to use the attention mechanism in an encoder-decoder ar-
chitecture for video captioning, having the network focus on features extracted from
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a specific part of the image. Other works generalized the approach by considering
the features from the output of an object detector Anderson et al. (2018a); Herdade
et al. (2019a).

More recently, the attention mechanism has been used to increase network rep-
resentation capability of over singe-sequence data, to focus on important features
and suppressing unnecessary ones as well as learn features that relates different
positions of the sequence. This approach generally goes under the name of self-
attention, and was firstly introduced in Vaswani et al. (2017). Woo et al. (2018) ap-
plied self-attention to images, introducing the Convolutional Block Attention Mod-
ule (CBAM). Such block is a composition of modules, a channel attention module
and a spatial attention one. Starting from a 2D feature tensor, the first module uses
a combination of max-pooling and average-pooling operations over the spatial di-
mension, to get a descriptor that is applied back to the input tensor via element wise
multiplication; the second one performs a similar operation over the channel dimen-
sion. Similarly, Hu et al. (2018) proposed the Squeeze-and-Excitation (SE) block,
that computes a pooling operation over the spatial dimension (squeeze), applies a
channel-wise feed-forward operation to learn inter-channel dependencies and uses
the output to scale the input tensor (excitation). Finally, attentionweights have been
also used to achieve model explainability Xu et al. (2015); Kim et al. (2018). As the
attention output is a weighted sum of the input (values)

Accident anticipation

The usage of attention for accident anticipation from dashcam videos was first pro-
posed in Chan et al. (2016). They used an object detection algorithm to extract the
objects in the scene and computed the features of a pre-trained convolutional neu-
ral network on Places-365 Zhou et al. (2017) on their locations. Then, they intro-
duced the DSA system in combination with an LSTM and a custom loss to predict
the car crash as early as possible. The DSA system proposes to apply soft attention
to features extracted from the object in the scene on each frame, in order to build
dynamically at each frame a feature vector representative of the relevant objects.
Performance was evaluated on the novel DAD dataset that, however, is mostly com-
posed of accidents not involving the ego-vehicle. Suzuki et al. (2018) improved the
previous architecture by using Quasi-Recurrent Neural Network (QRNN) and an
adaptive custom loss. Also, they used a fine-tuned backbone onper-frame risk factor
classification and background classification task. They evaluated their performance
on the broader NIDB dataset, which is mostly composed of ego-vehicle accidents.
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4.2 Object-aware feature extraction for unsafe
maneuver classification

In order to address the unsafe maneuver classification task, we propose an architec-
ture that leverages the video information and the GPS/IMU data. We first use an
object detector to extract the position and types of all the objects from each frame and
extract appearance and positional features for each object. Then, the object features
are enriched with features extracted from the GPS/IMU data. We propose a novel
feature extraction method that leverages depth-wise separable convolutions (Chol-
let (2017); Howard et al. (2017)) to preserve each sensor semantic meaning. Then,
use a tracking algorithm based on the detection class, confidence and positions to
link the same real object in different frames. Finally, we apply a set of convolutional
operations to each object, in order to extract high-level descriptors for each of them
and to reduce the temporal dimensionality of the data.

Object detection and feature pooling
We use a Faster-RCNN (Ren et al. (2015)) with ResNet-101 (He et al. (2016)) back-
bone as object detector on each frame, and extracted object positions, classes and de-
tection confidence. Faster-RCNN is a popular object detector that has shown good
results in terms of mAP while retaining an acceptable inference time.

At this point, we would like to associate an appearance feature vector to each
object. One could consider the output of the detector backbone or consider other
backbones, that could be pre-trained on other tasks, as in Chan et al. (2016); Peng
et al. (2018) and as shown in Chapter 3, or fine-tuned on an auxiliary task, as in
Suzuki et al. (2018) and in Chapter 3. In this second case, it is common to extract the
crop of the image for each object and run it through the backbone (Chan et al. (2016);
Suzuki et al. (2018)). This might result, however, in prohibitive inference times.
For instance, to compute the features of a single frame with ten objects detected,
one would need to compute ten backbone forward passes. During training, it is
possible to speed up the process by storing locally the backbone outputs. However,
when there are a lot of detections for each frame, this might also results in high
storage costs. In contrast,inspired by Cultrera et al. (2020) and as widely shown
effective in the Computer Vision community, we are using a RoI pooling layer, firstly
introduced in Girshick (2015), that allow us to compute the object features with a
single backbone forward pass both during training and inference.

The RoI pooling layer starts from the full frame feature, i.e., a tensor of size
C×H×W obtained by applying the backbone on a given frame, and a list of regions
of interest (in our case the detected objects), i.e., a set of tuples (x, y, w, h) indicating
respectively the top left corner coordinates and the boxwidth and height. It converts
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Figure 4.2: Schematic representation of the GPS/IMUmodule leveraging depthwise
separable convolution applied to each sensor. Different colors represent different
sensors.

the features inside any region of interest into another feature map with a fixed spa-
tial extent of ph× pw. This is done by first identifying the RoI region on the full frame
feature map, dividing such region into a ph× pw grid of sub-regions of approximate
sizes of h/ph × w/pw and then max-pooling the values independently on each fea-
ture and on each cell. We consider ph = pw = 7. The whole operation requires a
single backbone evaluation and, thus, is efficient in terms of inference time and does
not require feature storage. Furthermore, it allows the usage of image augmentation
techniques.

GPS/IMU module
The data coming from the GPS/IMU sensors is used as input to the GPS/IMUmod-
ule, as shown in Figure 4.1. Such data are pre-processed as described in Chapter 3.
We first resample the signals via interpolation, so that they have the same number
of samples, and this number is a multiple θ = 3 of the number of video timestamps.
Then, we apply a set of convolutional operations and, finally, we use a max pooling
operation of size θ, to align the sensors and the video stream.

Instead of using 1D convolutions over the temporal dimension, though, in this
Sectionwe propose to apply the same convolutional operation to process each signal
independently, with the idea to learn filters to be applied to a generic signal and to
extract features describing its temporal evolution, preserving the individual signal
semanticmeaning. To accomplish this, we use 2Ddepthwise separable convolutions
(Chollet (2017); Howard et al. (2017)).

Regular 2D convolutions attempts to learn filters in a 3D space, having a 2D spa-
tial extension over the input, namely width an height, and a channel dimension.
Thus, a single convolution is responsible to both learn correlations across channels
and spatial correlation. Depthwise convolutions propose to split this two aspect by
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performing two convolutional operations: fist, a convolution over the spatial dimen-
sion performed independently on each channel, in order to learn spatial correlation;
then, a pointwise, i.e., 1× 1, operation that mixes the learnt spatial dependencies
over different channels. In this way, depthwise separable convolutions greatly re-
duce the computational and model size due to the factorization of the operations,
that leads to a regularization effect.

In order to apply this idea to sensors data, we follow what has been proposed
in the audio processing literature (de Andrade et al. (2018); Zhang et al. (2017)).
Starting from an input tensor of shape θT × s, with T number of frames and s total
number of sensor signals, we fist add an extra dimension, changing the shape of
the input tensor to 1× θT × s, with the first dimension representing the number of
channels. Then, we apply a 2D convolutionwith kernel size k = 3× 1 andwith f s =

16 output channels (i.e., filters). The output tensor, using padding over the temporal
dimension to maintain the same spatial extent, has shape f s × θT × s. Then, we
apply a second 2D convolutionwith kernel size k = 1× 1 andwith 1 output channel,
that get then removed to go back to a tensor of shape θT× s. While one could stack
multiple of these operations, to learn richer information as in Chollet (2017) and
Howard et al. (2017), we choose to use a single pair of convolutions, so that each
element of the output sensor retains the temporal receptive field, i.e., is computed
only on the sensor information around the single frame. A schema of the GPS/IMU
module is reported in Figure 4.2.

Object preprocessing
Let us consider the set of objects detected in frame t ∈ {1 . . . T}

ot = {ot,1, . . . , ot,Nt} with ot,i = (at,i, pt,i) (4.1)

with Nt the total number of objects detected in frame t and with at,i and pt,i are
respectively the appearance features and position of the i-th object detected in frame
t. Without loss of generality, let us assume ot,i to be relative to the same real object
(e.g., the same vehicle) for each frame t, with (at,i, pt,i) vectors of zeros if the i-th
object is not present or not detected in the frame t. Also, instead of considering the
maximum number of detections Nt for each frame t, we can think of having a fixed
number of detection Nobjs for each frame, considering as zeros the extra objects for
each videos and discarding the exceeding ones.

As a heuristic to decide which objects to keep among the detected ones, we pro-
pose to consider the top Nobjs objects according to detection total volume, i.e., sum
of the detected area for each object ot,i for each frame t, and we kept the Nobjs objects
with the largest volumes. This simple rule turned out effective in our experiments,
as the relevant objects are close to the subject vehicle for a large number of frames



40 Unsafe maneuver classification using Spatio-Temporal Attention Selector

and, thus, are among the objects with the largest volume. On the other hand, the
background objects are generally small, e.g., a vehicle far ahead in an adjacent lane,
or appear for few frames.

In this setup, we can express the set of detected objects as a matrix O, as

O =

o0,0 · · · o0,Nobjs... . . . ...
oT,0 · · · oT,Nobjs

 (4.2)

of size T × Nobjs, with each element of the matrix ot,i = (at,i, pt,i). In order to build
the matrix O, it is necessary to link the same real-world object in two consecutive
frames, ot,i and ot+1,i. To this end, we propose to use a tracking algorithm on the
detected objects.

We utilize a greedy tracking algorithm that uses only object positions, detections
confidence and class information, that have shown to be effective in Taccari et al.
(2018). In particular, starting from frame t = 0, we assign a unique tracking id to
each object ot,i with confidence ct,i ≥ 0.6. Then, iteratively for each following frame
t:

• we compute the matching between the detections in frame t− 1 and the ones
in frame t and assign to each matched object the same id;

• we assign a new unique id to each unmatched objects in frame t with confi-
dence ct,i ≥ 0.6;

• we discard all the remaining detections in frame t.

The matching is again a greedy algorithm that first generates a set of candidate de-
tection pairs of the same class and with Intersection Over Union (IOU) greater than
a threshold θIOU = 0.2; then iterates over such set assigning amatching for the pairs
with the highest IOU values, removing the matched detections from the candidate
set and iterating, so that each object in frame t− 1 could be a match for at most one
object in frame t (maximum bipartite matching).

Object feature extraction
Starting from matrix O and in order to perform the classification, we build a matrix
X of shape T × Nobjs, where each element xt,i is the concatenation of three feature
vectors

xt,i =
[

xa
t,i | x

p
t,i | x

g
t,i

]
. (4.3)

The feature vector xa
t,i is relative to the appearance of the object and is obtained feed-

ing the output of the RoI pooling layer of the i-th object and of frame t to a bottlenck
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(a) The DSA module as proposed in Chan et al. (2016). The feature vector xt,i are extracted
from each frame (in red) and the attention mechanism is used to produce the attention map
ϕ(xi; α) and the attention weights αt,i. Then, the map is fed to a RNN.

(b) The STAS module proposed in this thesis. The feature vector xt,i are extracted for each
object and for each frame (in red). Then, multiple feature vectors of the same object are
aggregated, into a feature vector yt̃,i representing the evolution of the object (in orange,
in the example two objects were considered). Finally, the attention map ϕ(Y; α) and the
attention weights αt̃,i are computed on each object and on each temporal segment.

Figure 4.3: Comparision between the DSA module and the STAS module. The fig-
ures are displaying single-head attention.



42 Unsafe maneuver classification using Spatio-Temporal Attention Selector

layer, i.e., a linear layer followed by a 1D batch normalization layer and a ReLU ac-
tivation, in order to reduce the dimensionality of the data and make it comparable
with the other stream, as it was proven beneficial in Chapter 3. The feature vector
xp

t,i is relative to the position and class of the detection. It contains:

• the coordinates of the top left corner of the box, normalized in [0, 1];

• the normalized width and height of the box;

• the confidence of the detection;

• a one-hot encoded vector indicating the class of the object.

Finally, xg
t,i is the output of the GPS/IMU module for frame t, as described above,

replicated for each object. In addition, we add a flag indicating whether the box
i has been detected in frame t or not. In the latter case, xa

t,i, xp
t,i and xg

t,i are zeros.
Finally, we add an extra, always present dummy object to the object matrix, with
the GPS/IMU information xg

t,i only. Such object will cope with the fact that a video
might not have objects other than the subject vehicle equipped with the dashcam,
and will forward GPS/IMU information to the final classifier.

In order to extract features that link together the objects in two consecutive frames
xt,i and xt+1,i, someworks in the literature propose to use a DSAmodule (Chan et al.
(2016); Suzuki et al. (2018)). Such module uses the attention mechanism to select
the relevant object at each time step that are then feed to a recurrent layer (e.g., an
LSTM), as showed in Figure 4.3a.

Formally, let xt = {xt,0, . . . , xt,Nobjs} be the set of all the detected objects in frame
t. Then, for each frame t, it can be computed a dynamic weighted-sum of the objects
in that frame as

ϕ(xt; α) =

Nobjs

∑
i=1

αt,ixt,i (4.4)

with ∑
Nobjs
i=1 αt,i = 1 andwhere αt,i is computed each frame starting from the previous

hidden representation of the recurrent layer ht−1 as

αt,i =
exp(et,i)

∑
Nobjs
j=1 exp(et,j)

(4.5)

where
et,i = w>σ (Weht−1 + Uext,i + be) (4.6)

is a feed-forward layer to be trained that produces some form of relevance (or sim-
ilarity) between ht−1 and xt,i.

In the above module, a connection between the features of the same object xt,i
and xt+1,i occurs only if the attention weights αt,i and αt+1,i on the same object are
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high andmight get diluted by the presence of the other objects in the weighted sum.
Even if this is the case, such relation is exploited in the very last stages of the network,
i.e., in the recurrent connection and, thus, it might be difficult to leverage.

In contrast, we believe that extracting object connections in the early stages of
the architecture is crucial, as it allows the network to extract features that consider
the evolution over time of a single object, e.g., an object getting bigger and bigger
or an object moving from left to right. For this reason, after building the matrix X
and the feature vectors xt,i, we can extract features yt̃,i related to the evolution of the
objects in the scene over time. This is done by applying the same set of convolutional
operations to each object. In order to accomplish this in an efficient way, as reported
in Table 4.1, we used 2D convolutional operations of size 3 × 1, thus insisting on
three frames and on a single object. We stacked four convolutions with a growing
number of filters f = 64, 128, 256, 512, always followed by 2D batch normalization,
ReLU activation and 2Dmax-pooling operations of size 2× 1, in order to reduce the
temporal dimension while increasing the number of filters. The result is a matrix Y
of shape T̃ × Nobjs where each element yt̃,i represents the evolution of an object i in
a temporal segment t̃, with t̃ ∈ 1, . . . , T̃ indices of the reduced temporal dimension.

It is worth noticing, however, that the DSA module, compared to the proposed
approach, does not require explicit associations, i.e., tracking, between objects ot,i
and ot+1,i, as it considers all the objects of a single frame in isolation and the output
of the attention layer is independent from the ordering of the inputs. Furthermore,
it is not necessary to cap the maximum number of object, as the attention weights
could be computed on a different number of object detected at each frame.

Object selection module

We would like to select the most relevant feature vectors yt̃,i, to perform the classi-
fication. To this end, we propose to use a multi-head attention layer, introduced in
Vaswani et al. (2017). Such layer, starting from three set of vectors, namely keys,
queries and values, performs a weighted sum of the values, where the weight as-
signed to each value is computed by a similarity function between the query and
the corresponding key.

The multi-head attention generalize the soft-attention mechanism presented in
the previous section. First, it proposes to use a linear projection followed by a dot-
product operation instead of a feed-forward operation to be learn to achieve similar-
ity between key and query vectors. Second, it proposes to learn multiple attention
operation in parallel (called heads) that gets aggregated in the output via concatena-
tion. Formally, let Q ∈ RNq×dmodel , K ∈ RNk×dmodel and V ∈ RNk×dmodel be respectively
the query, key and value matrices, with Nk total number of key and value vectors,
Nq number of query vectors considered, dmodel size of the vectors forming the key,
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Table 4.1: Summarization of object feature extraction module. The tensor dimen-
sions in the output size column are respectively features, objects and frames, with
|xa

t,i| = 128, |xg
t,i| = 7, |xp

t,i| = 20, T = 135 and with Nobjs = 25.

Layer Output Size Structure
Input (xt,i) 155× 26× 135 −
Conv2d 64× 26× 135 1× 3, 64, pad 0× 1
BatchNorm2d 64× 26× 135 −
MaxPool2d 64× 26× 67 1× 2
Conv2d 128× 26× 67 1× 3, 128, pad 0× 1
BatchNorm2d 128× 26× 67 −
MaxPool2d 128× 26× 33 1× 2
Conv2d 256× 26× 33 1× 3, 256, pad 0× 1
BatchNorm2d 256× 26× 33 −
MaxPool2d 256× 26× 16 1× 2
Conv2d 512× 26× 16 1× 3, 512, pad 0× 1
BatchNorm2d 512× 26× 16 −
MaxPool2d (yt,i) 512× 26× 8 1× 2

MultiHeadAttention 512 heads = 8, dropout = 0.1
Fully-connected 10 −

query and value matrices. Then, the multi-head dot-product attention is defined as

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (4.7)
where headi = Attention(QWQ

i , KWK
i , VWV

i ) (4.8)

with h number of heads, WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and

WO
i ∈ Rhdv×dmodel linear projections, and where

Attention(Q, K, V) = so f tmax

(
QK>√

dk

)
V. (4.9)

For each head h, thus, the attention layer first projects the input vectors a reduced
embedding space of size dk, then computes a set of attention weights {αh

t̃,i}, i.e., a
similarity measure based on dot product between each key and the query, and use
them to perform a weighted combination over the values.

We propose to consider the set of vectors {yt̃,i} as keys and values and the 2D
global max-pooling of such vectors as query. The rationale behind this choice is
that, ideally, the network will generate features that have higher activations in cor-
respondence to relevant objects. Then, by pooling along the channel axis we would
obtain a vector that is representative of the relevant object activations: this has been
shown to be effective in highlighting informative regions inWoo et al. (2018) and to
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be good for the classification task in Chapter 3. By using such vector as a query, we
are training the network so that the attention weights are higher in correspondence
to the object features that are the most similar to the pooled vector, thus, where the
object activations are higher and to the relevant objects. Formally, we define the key
K, query Q and value V matrices as

Q =
[

MaxPool(y0,0, . . . , yT̃,Nobjs
)
]

K =

 y0,0

. . .
yT̃,Nobjs

 V =

 y0,0

. . .
yT̃,Nobjs

 (4.10)

With dmodel = |yt,i|, Nq = 1, Nk = T̃ · Nobjs, and with the projection size dk = 64 and
the number of heads h = 8.

The usage of the max pooling as query vector has been exploited in other field
and application such asWoo et al. (2018); Hu et al. (2018); de Andrade et al. (2018),
but never to perform the selection of relevant objects as we propose, thus, we are
naming this layer Spatio-Temporal Attention Selector (STAS).

Finally, feature vector in output of the STAS module is fed to a fully-connected
layer of size of the number of unsafe maneuver classes to perform the classifica-
tion. As an alternative, we propose to use such max-pooled vector directly for the
classification, as shown effective in Chapter 3. Note that, by doing so, the features
used for the classification are pooled from any feature vector of Y instead of being
forced, by the attention layer, to belong mostly to a single feature vector. Relaxing
such constraint might improve performance at the expense of explainability.

4.3 Experimental results
We run all the experiments in the clip around the event setup presented in Seciton 3.3.
All the experiments were conducted using Adam optimizer Kingma and Ba (2014),
minimizing standard Cross Entropy Loss with class weights and with weight decay
of 10−4. We used an initial learning rate of 10−3, decreased by a factor of 0.5 after
50, 70, 90 and 110 epochs. This applies to all the experiments, but the one with the
LSTM, which has a longer convergence time, where we decreased the learning rate
after 100, 150, 200 and 250 epochs. We also clipped the norm of the gradients to 1.0
to prevent exploding gradients.

In this Section, we first present the comparison between the state-of-the-art and
the proposed approaches with the best setup and parameters, which choices will be
then discussed in the following ablation study. As in Chapter 3, we used the mean
average precision (mAP) for evaluation, that is equivalent to computing the mean



46 Unsafe maneuver classification using Spatio-Temporal Attention Selector

area under the precision-recall curve for each class. This metric accounts for both
precision and recall and is robust to class imbalance.

Comparison with state-of-the-art
We consider two variants of the proposed approach.

• Ours + STAS is the proposed architecture with the extracted features yt̃,i fed
to the STAS module, described in Section 4.2.

• Ours +MaxPool is the same as above, but with the extracted features yt̃,i fed to
a global max pooling layer.

We compare the proposed approaches with

• Two-Stream, i.e., the two-stream architecture as proposed in Chapter 3, using
both the features extracted from the full frame and the GPS/IMU data.

• DSA + LSTM, i.e., the porting to the unsafe maneuver classification problems
of DSA-based architectures proposed for accident anticipation (Chan et al.
(2016); Suzuki et al. (2018)). In particular, the structure of the network is
the same proposed in Section 4.2 up to the extraction of the object features
xt,i. Then, we compute the attention map on each object feature per frame and
fed the result to a LSTM. In contrast with their approach, we use the multi-
head dot product attention instead of soft attention. This is both for a fair
comparison with our proposed approach and as it has shown superior results
compared to soft attention in Vaswani et al. (2017) on the Neural Machine
Translation task. Furthermore, we used xt,i as object features instead of the
one proposed in the original papers, which were describing similar aspects
but in a slightly different way, e.g., using IDT to describe object motion, in or-
der to be able to assess the impact of the different attention modules under
similar conditions. Finally, we used standard cross entropy loss instead of the
accident anticipation losses proposed in the papers.

The comparison with the state-of-the-art is reported in Table 4.2, along with the
inference time and per-class average precision (AP). In the top row, we report sev-
eral results not considering the appearance features, i.e., having xt,i =

[
xp

t,i | x
g
t,i

]
:

while this is a valuable set-up to test as processing the video is computationally ex-
pensive, it can also be also be a lightweight component to add to a pipeline already
performing object detection.

First, we can observe how the proposed approaches outperform the baselines
we evaluate and, in particular, the DSA-based approaches from Chan et al. (2016);
Suzuki et al. (2018). It is worth highlighting, however, that the sensor only version
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of the Two Stream architecture is not using the object positional features. In the bot-
tom row of Table 4.2, instead, we report the results considering also the appearance
features. Again, we can observe that the proposed approaches outperforms the Two
Stream baseline, either considering the original backbone pre-trained on Places-365
or the fine-tuned version proposed in Section 3.4.

Ablation study

The majority of the experiments were made without using the appearance features
and are reported in Table 4.3. First, we can see how the usage of the depthwise sepa-
rable convolutions (DW),withoutmixing sensor information in the early stages, sig-
nificantly improves performance over the standard 1D convolutions (C1D): mAP is
0.576 when using C1D (first row) and it raises to 0.633 (+0.057) by switching to DW
(third row). This might suggest that mixing up sensors in the early stages would
promote high informative sensors (e.g., the flow-direction accelerometer) and pe-
nalize low-informative ones, that could, however, be crucial in distinguishing some
corner cases. Second, we evaluated the effect of the possible values of Nobjs on the
final prediction metric. We found the optimal value to be Nobjs = 25, however, the
usage of a higher number of objects is not significantly detrimental. As reference,
we reported also the results with Nobj = 0, i.e., considering only the dummy object,
to observe the effect of adding the objects information. It is worth to highlight that
the setup with Nobjs = 25 is outperforming Nobjs = 100 which is outperforming
Nobjs = 250: it shows how the heuristic we used to limit the number of object is not
discarding the relevant ones. Third, we observe how the usage of the max-pooling
layer instead of the STASmodule, i.e., not forcing the network to pick a single object,
is slightly beneficial for the performance, at the expense of the explainability. It is
worth to highlight, however, that the two results are not too distant from each other,
as the difference in terms of mAP is small (0.013). Finally, we tested the perfor-
mance of the model when removing the GPS/IMU features completely, i.e., consid-
ering xt,i = xp

t,i, as such data might not be available in some vision-only application
scenarios. We observed a severe drop of roughly 0.18 of in the overall mAP, show-
ing the importance of such type of data, if available, to tackle the unsafe maneuver
classification and confirming the results of Section 3.3.

The experiments in Table 4.4 show that, also when considering the appearance
features, the architecture with max-pooling layer outperforms the STAS module by
a relatively small margin in terms of mAP (0.012), again at the expense of explain-
ability. Furthermore, we can see that the usage of the backbone fine-tuning pro-
posed in Section 3.4 provides a significant improvement inmAPalso in the proposed
methodology, showing the effectiveness of the method. Moreover, again, the exper-
iments without the GPS/IMU data, i.e., having xt,i =

[
xp

t,i | x
a
t,i

]
show that such type
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of data are crucial to solve this task, as by removing them the performance drops
of more than 0.2 inmAP. Finally, we can observe how each experiment outperforms
the appearance-less counterpart of Table 4.3, clearly showing the effectiveness of this
type of features.

In Table 4.2, we report the per-class AP. Although there is no clear winner, again
in the setupwithout the appearance features the proposed approaches are in general
outperforming the baselines in the various classes and the approaches with the ap-
pearance are outperforming their counterparts. SB and SOE are the classes with the
highest AP, probably because such maneuvers are fairly well distinguishable from
the rest and are the majority classes in the dataset. On the other hand, most of the
models show a relatively low AP on the minority classes (i.e., SL, ST, SO and NSO).

Table 4.2 also reports the inference times of the various models. We can observe
how the inference time of the proposed methods is close to the Two Stream baseline
one, thanks to the ROI pooling layer that allows the computation of the objects’ ap-
pearance features in a single forward pass. It is worth to highlight, however, that the
reported times does not include the object detection algorithm inference time. We
used Faster-RCNNwith ResNet-101 with an inference time of 72ms per image, thus
requiring 9.7s for a full 135 frames video, as we prioritized accuracy over speed in
the detection generation process. Nevertheless, requiring object detection as a pre-
requisite does not add any extra overhead if the proposed architecture is deployed in
an application already performing object detection. Finally, please note how the ob-
ject detection algorithm used at inference time could be, in principle, different, e.g.,
faster, from the training one, although we did no experimentation in this regard.

4.4 Results visualization
In this Section, we provide qualitative results on the object being selected by the
proposedmethod, since labels on the relevant object in each scenewere not available
in our dataset.

We consider the Ours + STAS model with appearance features and fine-tuned
backbone, with the goal of visualizing the object being selected for the classifica-
tion. This can be accomplished by just looking at the attention weights αt,i, since
the output is a weighted combination of the object features. The results are the
heatmaps in Figures 4.4, 4.5, 4.6, 4.7, which have been independently normalized
into [0, 1] for visualization purposes. Note that each heatmap has the objects on the
vertical axis and the reduced temporal dimension on the horizontal axis and, thus,
has shape Nobjs × T̃. Also, the top row is always relative to the dummy object that,
for visualization reasons, has been reported also in the top left corner of each frame.

Figure 4.4 shows a Subject Turn (ST) event inwhich the subject enters an intersec-
tion and starts to perform a turning maneuver ignoring the incoming vehicle in the
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Figure 4.4: Subject turn (ST) event

Figure 4.5: Non-subject turn (NST) event

opposite direction, being forced to interrupt the maneuver to not hit the other vehi-
cle. Themodel ismostly looking at only the incoming vehicle features to perform the
prediction in the moment in which the subject is forced to interrupt the maneuver,
correctly identifying the relevant object, i.e., the one in danger, at the right moment.

Figure 4.5 shows a Non-subject Turn (NST) event in which the subject is travel-
ling on a single lane road approaching an intersection, when another vehicle enters
and go through such intersection ignoring the subject, that is forced to hard brake.
Again, the model is looking mostly at the right object, i.e., the car cutting into the
subject vehicle path, at the relevant moment.

The above example considered scenarios in which it is present a relevant object,
either dangerous or in danger. Some of the maneuver, though, are relative just to
the ego-vehicle. For instance, Figure 4.6 shows a Subject Over Edge (SOE) event in
which the subject is going over the edge of the road. There is no object in the scene,
but a detection of the subject vehicle hood detected as vehicle by the object detection
algorithm. In this particular scenario, the sensors features are used to perform the
prediction, extracted mainly from the dummy object. In contrast, Figure 4.7 shows
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Figure 4.6: Subject over edge (SOE) event with no objects

Figure 4.7: Subject over edge (SOE) event with not relevant objects

a Subject Over Edge (SOE) event with multiple detected vehicles, which are not rele-
vant to perform the classification. The network is assigning an equal weight to most
of them, that gets normalized close to 1 in the visualization of the heatmap. We be-
lieve that this outcome is due to the fact that the feature vector of each object xt,i is
composed also by the sensors features xg

t,i, which are crucial for the prediction of this
kind of event. Thus, likely, the resulting yt̃,i features will be mostly a combination
of the sensor feature and be pretty much the same for all the object, i.e., they will
be independent from the object appearance and position. As a result, the attention
mechanism, which is based on a similarity measure, will find all the features to have
an equal contribution.

One can extend this concept to a context where the same object is detected mul-
tiple times. Then, the appearance and position feature, and thus the resulting yt̃,i
would likely look similar and the STASmodulewould assign similarweights to each
detection, again detecting multiple relevant objects. We found this to be a limitation
of the proposed approach, which can however probably easily overcome by assign-
ing low relevance to all the objects in the scenes when the largest attention weights
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are spread all over the matrix, i.e.,when there is no single clear peak in the weights.

4.5 Conclusions
We presented an architecture that combines object appearance and position, the
video stream and the sensors stream to tackle the unsafe maneuver classification
problem. We discussed two variants of this architecture: the first one uses the max-
pooled vector of the extracted object features directly for the classification, while the
second one leverage the newly introduced STASmodule to also identify the relevant
object in the video, offering network explainability as an interesting by product. We
observe that while the first architecture is better in terms of mAP on the unsafe ma-
neuver classification task, the gap between the two is small, suggesting that explain-
ability comes with a cost on overall performance, but that such cost can be accept-
able, if explainability is desired. Furthermore, we presented several methodological
and practical novelties over the relevant works in the literature: first, the usage of
depthwise convolutions to process sensors data, in order to maintain the semantic
of each sensor in deeper stages of the network; second, the usage of an RoI pooling
layer to extract object appearance features in an efficient way both during training
and inference; third, we introduced the concept of extracting features describing
the evolution of a single object over time, by using a tracking algorithm, and using
such features for classification; fourth, we presented a new backbone fine-tuning
strategy tailored to the unsafe maneuver classification task that could however po-
tentially be extended to other similar domains. Our experiments showed that the
proposed approach outperforms the state-of-the-art on the unsafe maneuvers classi-
fication task and empirically showed the superiority of the STAS module compared
to other attention-basedmethods in the literature on this particular task. Finally, we
presented qualitative results on the capability of the network to select the relevant
object, highlighting its advantages and limitations.





Chapter 5

Video captioning of safety-critical
events from dashcam data †

In this Chapter, we address the problem of generating captions of safety-critical
events on the road, considering as input the video acquired from a dashcam and
the GPS/IMU data. We propose an encoder-decoder architecture, where the en-
coder is the architecture presented in Chapter 4, pre-trained on the unsafe ma-
neuver classification task. The encoder leverages the output of an object detection
network to compute features on the evolution of the objects in the scene over time,
at the same time performing sensor fusion with the GPS and IMU data. We test
different decoder models inspired by the video captioning literature, specifically a
hierarchical decoder compared to a standard one and the usage of attention com-
pared to simple pooling. We tested our methods on the novel SHRP-X dataset,
consisting of the SHRP2 naturalistic driving dataset, re-annotated by us for the
present task and released to the scientific community as additional contribution.

Video captioning, the task of automatically generating natural language descrip-
tions of videos, has recently drawn the attention of the scientific literature, as it lies
at the intersection between computer vision and language processing (Chen et al.
(2019)) and, thus, inherits the challenges of the two fields of research. Practical
applications include leveraging descriptions for video retrieval and indexing, and
helping people with visual impairments. In parallel, scientific papers and appli-

†Part of the content of this chapter has been submitted in:
• M. Simoncini, N. Bellaccini, D. Coimbra de Andrade, L. Kubin, S. Salti, L. Taccari, L. Sarti, F.

Schoen, F. Sambo, “Video captioning of safety-critical events from dashcam data”, IEEE Trans-
actions on Intelligent Transportation Systems, 2022.

55



56 Video captioning of safety-critical events from dashcam data

cations concerning road safety and safety-critical events analysis are of significant
importance, as highlighted in Chapter 1.

In this Chapter, we propose to join these two fields, addressing the novel prob-
lem of video captioning of safety-critical events. This combination opens to other
automotive-specific applications, like automatic emergency call leveraging text-to-
speech and, in the autonomous driving field, to provide human-understandable
feedback to the driver on the motivations behind a given action, as in Kim et al.
(2018).

To our knowledge, no other work in the literature tried to address the captioning
of safety-critical driving events and no dataset on the topic is available. For this rea-
son, as part of our contributions, we decided to annotate a subset of the videos of
the SHRP2 NDS dataset (Hankey et al. (2016b)) with human-understandable de-
scriptions of the events in the videos. We collected such annotations into the SHRP-
eXplained (SHRP-X) dataset. Many captioning datasets and papers focus on a sin-
gle sentence to describe the image or video at hand, as in Venugopalan et al. (2014);
Pan et al. (2016); Venugopalan et al. (2015); Yao et al. (2015). In our case, the events
we aim to describe are complex and are often based on a cause-effect chain. Thus,
multi-sentence descriptions seems a natural fit to avoid trivial annotations and give
the necessary level of detail, as shown in Figure 5.1, and we annotated the dataset
with a multi-sentence paragraph for each example, as in Yu et al. (2016).

Figure 5.1: An example of the input video and detected objects with the correspond-
ing annotations. In green, the object detected as traffic light, in yellow the objects
detected as vehicles. Each sentence of the annotation describe a single action in the
video that ultimately lead to the dangerous situation.

We tackle the problem with an encoder-decoder architecture, as it is common
in the video captioning literature. Following a recent trend, we ground the feature
extraction on the output of an object detector (Zhou et al. (2019); Anderson et al.
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(2018b); Herdade et al. (2019b); Lei et al. (2019); Lu et al. (2018)), as it allow to
generate captions that are more adherent to the salient part of the image and not
bounded to a equally-spaced grid (Anderson et al. (2018b)). Also, we incorporate
in the encoder the features extracted from the GPS/IMU module, as such sensors
data have shown to be crucial in safety-critical events classification tasks, as shown
in Chapter 3 and Chapter 4. To meet both needs, we use as an encoder the STAS
architecture proposed in Chapter 4.

The encoder, thus, first extract features relative to the appearance and position
of the objects in each frame, then combines the features of the same real object (e.g.,
a vehicle) over several frames by using a tracking algorithm. The output is a tensor
of shape number of objects × number of frames × number of features. The features for
each object and for each frame gets enhanced by appending an aligned feature vec-
tor extracted from the GPS/IMU input, performing sensors fusion. Finally, a set of
further-processed features are extracted using convolutional operations over solely
the temporal dimension, thus, preserving the objects identities, which represents
the evolution of an object in a given time span (e.g., the vehicle performing a turn).
We use a pre-trained encoder on the unsafe maneuver classification task.

As for the decoder, we tests multiple configurations that were shown to be effec-
tive in the literature, and, in particular, the usage of dot-product attention over the
object features or a simple pooling and the usage of a hierarchical decoder compared
to a single-loop one.

Finally, as it has been shown to be effective in Yao et al. (2017); Pan et al. (2017),
we propose to boost the overall caption quality with extra semantical information
on the safety-critical event and, in particular, with the presence or absence of a crash
and the unsafe maneuver type leading to the dangerous situation.

5.1 Related works
To the best of our knowledge this is the first work attempting to perform video cap-
tioning of safety-critical events. In this Section, we provide a review of the literature
on video captioning and highlight the aspects that could be applied to the problem
we aim to address.

5.2 Video Captioning
Most of the state-of-the-art results on video captioning are inspired by the image
captioning literature and obtained with an encoder-decoder architecture, where the
encoder extracts a feature vector representation of the input video, also referred to
as context vector, and the decoder produces the output sentence starting from such a
representation. Generally, the encoder is based on convolutions while the decoder
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is a recurrent network. Venugopalan et al. (2014) was one of the first works going
in this direction: the authors applied a 2D convolutional network, pre-trained on
an image classification task, to each frame on the video, then average-pooled the
output into a single feature vector, which was eventually fed into the decoder. Such
architecture is extended in Pan et al. (2016), where the authors used both a 2D and a
3D CNN to compute the context vector, and in Venugopalan et al. (2015), where the
authors included the optical flow stream by using a pre-trained CNN on an activity
recognition task. Yao et al. (2015) propose to generate the context vector dynami-
cally at each step of the decoding process, leveraging soft-attention.

These approaches encode the video into an arbitrary temporal or spatio-temporal
uniformgrid, fromwhich the context vector is extracted. However, the entities in the
scene are not forced to follow a grid-like structure: for instance, a vehicle lying on
the grid boundary would be treated differently from one fully contained in a grid
cell. To overcome such limitation, recent works in the image captioning literature
propose, instead, to ground the generated captions on objects and salient regions of
the inputs, by considering the output of an object detector as input, as in Anderson
et al. (2018b); Herdade et al. (2019b); Lei et al. (2019), or by incorporating the de-
tection process in an end-to-end manner, as proposed in Lu et al. (2018); Zhou et al.
(2019).

While the initial attempts mainly focused on simple and short sentences, some
researchers addressed also the generation of entire paragraphs, for which a simple
decoder might not be enough. In this regard, Yu et al. (2016) propose to use two
nested recurrent modules, namely a paragraph generator and a sentence generator,
that they named hierarchical decoder. The sentence generator is built upon a recur-
rent module for language modeling and on the attention mechanism to parse the
input video. The paragraph generator is another recurrent module that produces
the initial state of the sentence generator for the next sentence starting from a com-
pressed version of the previously produced sentence. Wang et al. (2020) extended
this approach to dense video captioning, introduced in Krishna et al. (2017), where
the goal is jointly to produce the caption and temporally localize the event in the
video. They also introduced a Cross Modal Gating (CMG) module to weight the
contribution of the input and of the previously produced words.

Yao et al. (2017) propose to boost image captioning by adding attributes to the
context vector, i.e., high-level semantic information obtained in a Multi Instance
Learning setup. Pan et al. (2017) extend this idea to video captioning, by extracting
attributes both relative to the image, i.e., objects and scenes, and to the video, i.e.,
actions and attributes with a temporal dynamic.
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5.3 The SHRP-X dataset
The SHRP2 NDS dataset (Hankey et al. (2016b)) is a collection of more than 8800
safety-critical events, gathered by more than 3300 drivers between 2010 and 2013.
To address the captioning task, we consider the video acquired from the dashcam
installed inside the vehicle and the sensor data from the GPS/IMU sensors.

We annotated such events with a set of temporally ordered sentences. Such sen-
tences has a subject-predicate structure, were the subject is generally the subject
vehicle (SV), other vehicles in the scenes (indicated with V2, V3, V4) or other actors
(pedestrian, bicycles, animal, objects). The predicate, instead, is composed by a sin-
gle verb (i.e., action) at present simple tense, followed by its dependents. Generally,
the set includes:

• one or more sentences describing the environment, e.g., the presence of an
intersection or a stop sign, the presence and position of other relevant vehicles
or actors in the scenes;

• a set of sentences describing the events or the maneuvers computed by the
various subjects, e.g., change of lanes, going through an intersection, traffic
light change, loss of control of a vehicle;

• a set of sentences describing the event itself or the reactions that the actors
involved had with respect to it, e.g., braking, steering in the adjacent lane;

• and finally a set of sentences describing what happened after the event, e.g.,
the actors continuing driving or remaining stopped.

Table 5.1 shows the total number of annotation, sentences and distinct words.
As the number of verbs and noun describing the event on the roadway is limited,
the total number of distinct words is fairly small, 576. On the other hand, due to the
complexity of safety-critical events, a fair amount of sentences is required in order to
have a complete description. We used 17,647 sentences for 2,982 annotations, with
an average of roughly 6 sentences per annotation.

To give a glimpse of the content of the dataset, we are reporting the results of
a clustering over the sentences composing the annotations. As we are interested
in highlighting what happens in a given sentence, we first replaced the instance-
specific part of a sentencewith placeholder, e.g., replacing the actors (SV, V2, V3, V4)
with SBJ, the direction (left, right) with DIRECTION. Then, we run an Agglomerative
Clustering algorithm (Pedregosa et al. (2011)), considering as distance d the inverse
of the METEOR (Banerjee and Lavie (2005)) score. As the METEOR score is not
symmetric, we considered the average of the score between the first and the second
sentence and between the second and the first to achieve symmetry. Thus, given
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Table 5.1: SHRP-X dataset statistics

SHRP-X dataset
Total number of annotations 2,982

- Train 2,361
- Validation 310
- Test 311

Total number of sentences 17,647
Total number of words 113,160

- Total number of distinct words 576

Table 5.2: SHRP-X sentence clustering results

Sentence centroid Cluster size
SBJ brakes. 776
SBJ brakes hard to avoid a rear-end collision with SBJ 427
SBJ brakes to avoid a collision with SBJ. 417
SBJ steers DIRECTION to avoid a collision with SBJ. 321
SBJ is the leading vehicle. 300
SBJ approaches an uncontrolled intersection. 291
SBJ continues on. 278
SBJ begins to change lanes to the DIRECTION. 271
SBJ approaches a signalized intersection. 244
SBJ change lanes to the DIRECTION. 241
SBJ turns DIRECTION. 240
SBJ steers DIRECTION. 235
SBJ is ahead in the adjacent DIRECTION lane. 230
SBJ accelerates. 202

two sentences a and b, the distance we considered is the following

d(a, b) = −1
2
(METEOR(a, b) +METEOR(b, a)) (5.1)

.
We tested different thresholds on the number of clusters to select and found 1500

to give the best silhouette score. In Table 5.2, we are reporting the centroids of the
clusters and the cluster sizes. The most frequent sentences are those describing the
event itself, in the form like SBJ brakes or SBJ brakes to avoid a collision with SBJ. Within
themost common sentences there are also the ones describing the environment, e.g.,
SBJ is the leading vehicle or SBJ approaches an intersection, and the ones that describe
a driving action, like SBJ turns DIRECTION and SBJ change lanes to the DIRECTION.
Note that such descriptions could be relative to a dangerous maneuver or to a not-
dangerous one, depending on the context. For instance, in the annotation [...] V2
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change lanes to the right. SV has to brake to avoid a collision. [...] the lane change sentence
is relative to an unsafe maneuver and is likely to be the cause of the safety-critical
event; in the annotation [...] V2 change lanes to the right. SV change lanes to the right
behind V2. [...] the same sentence is used in a safe situation.
The annotations are available at https://github.com/mattsim/SHRP2-X ∗.

5.4 Encoder-decoder model for safety-critical events
captioning

To address the captioning problem, we propose an encoder-decoder architecture,
which was shown to be very effective in the vast majority of the works in the video
captioning literature, as reported in Chen et al. (2019). The encoder compresses
the input into a single vector representation that is then fed to the decoder, which is
usually a recurrent neural network trained to predict the nextword from the encoder
output and its internal state. Figure 5.2 reports a schematization of the proposed
model.

Encoder structure
For the encoder, we used the architecture proposed in Section 4.2. Such architec-
ture takes as input the raw video, the output of an object detection algorithm for
each input frame, and the raw sensors data (GPS/IMU), to produce features rela-
tive to the evolution of each object in the scene over several consecutive frames. This
choice ismotivated by several reasons. First, features extracted from object detection
outputs, in contrast with using a fixed grid, allow the decoder to model its output
explicitly on the entities in the scene, and it is shown to be effective in the literature
(Zhou et al. (2019); Anderson et al. (2018b); Herdade et al. (2019b); Lei et al. (2019);
Lu et al. (2018)). Second, in contrast with other works that extracts object feature
vector for each frame and incorporates the temporal information in the final layers
Zhou et al. (2019); Lei et al. (2019), such architecture leverages a tracking algorithm
to extract feature of the same real object (e.g., a car) over time. This early feature
aggregation over time strategy has shown to be effective in comparison with a late
one on the unsafe maneuver classification task in Chapter 4. Third, it addresses sen-
sor fusion of two heterogeneous inputs, video and sensor data, in an effective way.
Finally, we believe that the feature extraction layers pre-trained on a safety-critical
event classification task would be efficient for a closely-related captioning task.

∗The annotations will be available once the paper we submitted is accepted, currently under review.
Thus, they might not yet be available at the specified URL.

https://github.com/mattsim/SHRP2-X
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(a) The proposed encoder, described in detail in Chapter 4, pre-trained on the unsafe ma-
neuver classification task.

(b) The proposed decoders. On the left, the two strategies to generate the y vector, either
simple pooling or by using attention. On the right, the recurrent model used to generate the
captions, either single-loop or hierarchical.

Figure 5.2: A schematization of the proposed architecture.

The feature extraction of the encoder is performed exactly as reported in Sec-
tion 4.2 up to the generation of the feature matrix Y. Thus, a matrix of shape is
T′ × Nobjs × c′, with T′ newly reduced temporal dimension, c′ feature dimension
and Nobjs maximum number of objects considered, where each element yt,i repre-
sent the evolution of the object i over the temporal segment t.

Decoder structure
The role of the decoder is to translate the representation produced by the encoder
into a human readable text. Generally, at the core of the decoder is a RNN trained
to predict the next word given the output of the encoder and the previous internal
state of the network. For paragraph captioning, though, hierarchical RNNs, i.e., a
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decoder composed by two asynchronousRNNs, namely a sentenceRNNand aword
RNN, have proven effective in Yu et al. (2016); Wang et al. (2020). The sentence
RNN stores the information of the produced sentences and is triggered at the start
of every sentence, producing thewordRNN initial state. ThewordRNN, in contrast,
is trained to produce the next word, as it would do in a single-loop decoder.

Moreover, the output of the encoder is a feature tensor including all the objects
over different segments, that has to be reduced to a single vector to be handled by the
decoder. Common strategies adopted consist either in the use of a simple pooling
layer, as in Venugopalan et al. (2014); Pan et al. (2016); Venugopalan et al. (2015),
or in the use of attention to dynamically generate the vector, as in Yao et al. (2015);
Yu et al. (2016); Krishna et al. (2017); Wang et al. (2020). While attention is in gen-
eral outperforming the simple pooling solution in various works in the literature, it
requires a good amount of data to be properly trained.

However, as the captioning task we are addressing is slightly different, e.g., the
sentences are well structured and the dictionary size is fairly small, we are not doing
any prior assumption and testing all four possible combinations, as schematized in
Figure 5.2b.

Before explaining the proposed decoders in depth, let us introduce some nota-
tion. All the decoders are based on Long Short Term Memory (LSTM) cells. In
the following Sections, as proposed in Anderson et al. (2018b), we will refer to the
LSTM operation with the following notation

ht = LSTM (xt, ht−1) (5.2)

where xt and ht are respectively the LSTM input and output vector at time t. We
omit the variables associated to the memory cells for notational convenience. Let us
define the ground truth captions for each annotation W as

W = {W0, W1, . . . , WNp} (5.3)
Wi = {wi

0, wi
1, . . . , wi

Ni
s
} (5.4)

with Wi the i-th sentence of annotation W and with wi
j the j-th word of sentence

Wi. Let Np denote the number of sentences in the annotation W and Ni
s the number

of words in the i-th sentence of the annotation W. Finally, we introduce W as the
concatenations of all the words wi

j for each sentence Wi of the annotation W

W = {W0 |W1 | . . . |WNp} =
= {w0, w1, . . . , wN}.

(5.5)

with N = ∑i Ni
s.
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Single-loop with pooling

The single-loopwith pooling decoder is similar to the one proposed in Venugopalan
et al. (2014). Starting from thematrix Y, we apply a 2Dmax-pooling operation to re-
duce both the temporal and the object dimension, compressing the information into
a single context vector. The choice of the max-pooling operation, in contrast with
Venugopalan et al. (2014), that was using an average-pooling one, is motivated by
the results of Chapter 4, where the max-pooling is shown to be effective at tackling
the unsafe maneuver task.

Specifically, starting from the matrix Y we apply a max-pooling operation over
the first two dimensions. Then, we apply a fully-connected layer of size de followed
by a ReLU activation and obtain a feature vector y. We found the usage of this
compression to be useful in our experiment. Then, iteratively, for each word wj in
the ground truth sentenceW, we first perform aworld embedding on theword wj of
size dw, we concatenate such embedding to the context vector y and feed the results
to the word LSTM, a single LSTM layer of size dd

hj = LSTMw (y | embedding(wj), hj−1
)

. (5.6)

We finally feed hj to a linear layer for the size of the vocabulary and train to predict
the following wj+1 word with a standard cross entropy loss.

Single-loop with attention

This setup is similar to the one proposed in Yao et al. (2015), where the authors
propose to leverage dot-product attention (Vaswani et al. (2017)) to dynamically
build the context vector y. This decoder architecture is identical to the single-loop
with pooling one with the exception of what follows.

Starting from the tensor Y and the previous hidden state of the decoder LSTM
hj−1 we compute the context vector y as the weighted sum

y = Wo

(
∑
t,i

αt,iv (yt,i)

)
(5.7)

where
αt,i = so f tmax

(
k (yt,i)

> q
(
hj−1

)) (5.8)

k(x) = Wk x, q(x) = Wq x, v(x) = Wv x (5.9)
with ∑i,t αt,i = 1, and with Wk, Wq, Wv, Wo linear projections of size da relative re-
spectively to the key, query, value and output vectors.
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Hierarchical with pooling

The hierarchical decoder is composed of two nested and asynchronous LSTM oper-
ations, the first one triggered at the beginning of each sentence of the annotation, the
second one for each word, as in the single-loop decoders. The role of the sentence
LSTM is to overlook the whole generation process by easily keeping track of which
sentence has been predicted and to postpone the generation of the next sentence to
the word LSTM, by generating its initial internal state hw

0 .
Formally, starting from the matrix Y, the context vector y is generated as for the

single-loop with pooling decoder. Then, for each sentence Wi of W, such vector is
fed to the sentence LSTM

hs
t = LSTMs (y, hs

t−1
) (5.10)

and, for each word wi
j of the sentence Wi, we perform the same operation of Equa-

tion 5.6, with hw
0 = hs

t .

Hierarchical with attention

The hierarchical decoder with attention decoder is similar to the one with pooling,
but computes the context vector y for the word LSTM using dot-product attention,
as described in the single-loop with attention decoder. As for the context vector of
the sentence LSTM, we maintained the max-pooling operation over the Y tensor, as
in the pooling decoders, as, intuitively, we want such part of the decoder to have a
look over the whole event, i.e., all the object at all timestamp, and not, potentially, to
focus only on a portion of that, as well as try to keep the architecture simple.

Attributes for Safety-critical event captioning
Providing extra-attributes relative to the caption domain, if available, improves the
overall result Yao et al. (2017); Pan et al. (2017). Such works used a set of attributes
automatically learned from the annotations, in a Multiple Instance Learning (MIL)
configuration. In particular, they consider the set of relevant words of size Da in
the annotation, for instance discarding articles and conjunctions, and the set of at-
tributes {a0, . . . , aDa} where each attribute aj is positive for a give image I if the
j-th relevant word is present in the image ground truth, negative otherwise. In this
way, for instance, all the images acquired at night, that will likely have night in their
ground truth caption, will have the night attribute as positive, while the daylights
one will have it as negative.

While this approach has shown to be effective, we argue that in our context at-
tributes with a deeper semantical meaning could be more effective. For instance, let
us consider the attribute for turn. The presence of such attribute in a video would
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indicate that a vehicle in the scene is turning, but does not indicate if it is the subject
vehicle, another vehicle involved in the unsafe situation or a vehicle totally unre-
lated with the safety critical event. For this reason, we are boosting our captioning
models with information that we know to be relevant in the specific domain.

In particular, we propose to use the knowledge of the safety-critical event being
captioned to be a crash or near-crash event, and with the type of unsafe maneuver
that is at the core of the event. We believe this to be beneficial in two ways: first, the
model would learn to adjust the a priori probability of the words according to this
information. For instance, the knowledge that a particular safety-critical event is a
crashwould increase the probability ofwords like collides and hitswhile lowering the
one of avoid and resume; second, it should help to prevent severe errors, for instance,
predicting a caption describing a near-crash for a video with a severe crash.

In practice, following the results of Yao et al. (2017), we are appending to the
context vector of the word LSTM and of the sentence LSTM, when present, a flag
indicating whether the safety-critical event is a crash or not, and a one-hot encoded
vector of the unsafe maneuver in the event, among the 10 classes proposed in Chap-
ter 2. We experimented both the usage of the ground truth of these attributes, to
show their effectiveness, and the usage of the predictions from pre-trained models.
In particular, we considered the probability scores of the best MaxPool model from
Chapter 4 for the unsafe maneuver detection and themodel fromKubin et al. (2021)
as crash detector.

5.5 Experimental results
In this Section, we present our experimental results using the dataset introduced in
Section 5.3, providing a broad ablation on the results we obtained. Also, we discuss
in depth the experimental setup and the implementation choices under which such
results are obtained.

Implementation details

All the experimentswhere conducted using the annotations of the newly introduced
SHRP2-X dataset. For the encoder, we used the pre-trained weights from Chapter 4
on the unsafe maneuvers classification task and, thus, we are using the same data
pre-processing of the video stream and sensor data, and the same way of extracting
the detected objects. To limit the input size, we consider only the top Nobjs = 25
objects with maximum volume, as shown effective in Section 4.3. Moreover, we per-
formed experiments with two setups, specifically with and without the appearance
features, i.e., having xt,i =

[
xg

t,i | x
s
t,i

]
. This second setup has shown to be valu-
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able in terms of train and inference time while retaining good performance on the
classification task.

In all the experiments, we are training the decoder with Adam optimizer with
standardmomentumparameters, starting froma learning rate of 5e− 5 and aweight
decay of 1e − 4, and reducing the learning rate by a factor of 0.8 after 8 epochs of
non-improvement on the validation loss. We used a batch size of bs = 32 for the
single-loop decoders, while we used bs = 1 for the hierarchical decoders, following
Wang et al. (2020), to cope with the asynchronous triggers of the sentence RNN
that would occur, with a bs > 1, at different moment for different samples in the
batch. As for the size of the dimension of the various components of the decoder,
we performed multiple tests in the single loop with pooling setup and found the en-
coder bottleneck dimension de = 64, the LSTM dimension dd = 128, the embedding
dimension dw = 128 and the attention dimension da = 32 to be the setup that yields
the best results. Finally, to reduce the gap between the training and the inference,
we are using Scheduled Sampling, presented in Bengio et al. (2015). Specifically, to
train using the ground truth annotations and using the model own predictions at
test time leads to a drop in performance due to the domain shift. The Scheduled
Sampling strategy proposes to feed in the model own prediction during training
with a probability p. Such probability is zero in the early epochs and then gradually
increase up to a maximum probability p. We are using p = 0.25 in our experiments,
starting the process with p = 0.05 after 50 epochs and increasing such values of 0.05
every 5 epochs for the single-loop setups, while starting with p = 0.05 after 25 epochs
and increasing such values of 0.05 every 3 epochs for the hierarchical setups, as we
observed a faster convergence rate.

For the quantitative evaluation of the results, we are using common metrics
used in image/video captioning tasks: BLEU (Papineni et al. (2002)), ROUGE (Lin
(2004)) and METEOR (Banerjee and Lavie (2005)). We are not reporting results
using other popular metrics as they require multiple annotations per sample, while
we have just a single one available.

Ablation study
All the results are reported in Table 5.3. We are using RNN-pool, RNN-attention,
HRNN-pool and HRNN-attention to indicate respectively single-loop with pooling,
single-loop with attention, hierarchical with pooling and hierarchical with atten-
tion decoders. In the first row, we are reporting the results of the single-loop with
pooling architecture trained with and without the proposed attributes. We can ob-
serve an increase of roughly 0.03 points in both BLEU-4 and METEOR by adding
the ground truth attributes of the crash and unsafe maneuvers (C∗ and M∗ respec-
tively in the Table). An increase could be observed also by adding the attributes
singularly: by adding the unsafe maneuver ground truth, we observe a boost of 0.03
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in both BLEU-4 and METEOR, while by adding the crash ground truth, we observe
a boost of 0.003 in BLEU-4 and 0.009 on the METEOR score. The gap in the contri-
bution of the two attributes has to be weighted on their occurrence in the data, in
fact, the crashes are just a small portion of the totality of the events. If we provide,
instead, the prediction of two classifiers trained to detect crashes and unsafe ma-
neuvers types (C and M respectively in the Table), we observe a similar behaviour
but with a smaller increase, as by adding both attributes, we have a boost of 0.005
in BLEU-4 and 0.012 in METEOR. Moreover, by comparing the last entry of the first
rowand the first entry of the second row,we can observe the impact of the Scheduled
Sampling strategy. When activating the Scheduled Sampling, we observed a drop
in the training and validation loss, due to the uncertainty introduced by the model
own predictions, that translates, however, in a boost of the performance on the test
set of 0.005 in BLEU-4 and 0.006 in METEOR. Although, for simplicity, we reported
this results only on the RNN-pool setup, we empirically observed a similar effect on
all the proposed decoders. In the second row, the results of the different proposed
decoders are reported. The setup with the best performance is RNN-pool, that held
the best results in terms of BLEU and ROGUE. It is worth to highlight, however, that
the results of the HRNN-attention model are extremely close, e.g., the difference in
BLEU-4 score is just 0.0001, and this model yield the best results in METEOR score.
In the third row, we highlighted the contribution of the sensor features to the final
caption, and run an experiment with just the geometric features. We can observe
a substantial drop of 0.015 in BLEU-4 and 0.005 in METEOR, suggesting that such
features are useful to the generation process, likely for the events in which the ego-
vehicle hits some other entities (e.g., objects, road bumps) or for the loss of control
events. In the fourth row, instead, we can observe the effect of adding the appear-
ance features. First, we can observe howHRNN-attention is yielding the best results
overall. However, the gap with the appearance-less counterpart is not massive, it is
just 0.002 in terms of BLEU-4 and 0.0015 inMETEOR. This results somehow suggests
that the appearance of the objects are not crucial to the task, and that the positions
and dynamic of the objects in the scene in conjunction with the features from the
GPS/IMU sensors are sufficient for the generation of this type of captions. Also, it is
interesting how the attention-basedmodel are outperforming the pooling one in this
setup. We believe that, since the features generated with the appearance are more
complex, attention can actually play a role and improve the results over a simple,
yet effective, feature pooling.

Results visualization

In this Section, we report some of the obtained captions along with the original
ground truth, for a qualitative evaluation of the results. The images have been
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Method Caption

Ground truth V2 is ahead in the right adjacent lane. V2 begins to change lanes to the left. SV has to brakes hard
to avoid a collision with V2. Both vehicle continue traveling in now shared lane.

RNN-pool V2 is ahead in the adjacent right lane. V2 begins to change lanes to the left into SV’s lane. SV
brakes hard to avoid a rear-end collision with V2. V2 steers right back into its original lane. SV
continues on.

RNN-attention V2 is ahead in the adjacent right lane. V2 begins to change lanes to the left into SV’s lane. SV
brakes hard to avoid a rear-end collision with V2. V2 continues on.

HRNN-pool V2 is ahead in the adjacent right lane. V2 change lanes to the left into SV’s lane. SV brakes hard
to avoid a rear-end collision with V2. V2 completes the lane change. SV continues on.

HRNN-attention V2 is ahead in the adjacent right lane. V2 begins to change lanes to the left into SV’s lane. SV
brakes hard to avoid a rear-end collision with V2. Both vehicles continue on.

Figure 5.3: Visualization of the results for an event with an unsafe lane change.

Method Caption

Ground truth V2 is in the left adjacent lane. V2 begins to change lanes right ahead of SV. SV must brake. SV
steers right to avoid sideswiping V2. V2 steers left back into its original lane. SV continues on.

RNN-pool V2 is ahead in the adjacent left lane. V2 begins to change lanes to the left into SV’s lane. SV brakes
hard to avoid a collision with V2. V2 steers right back into its original lane. SV continues on.

RNN-attention V2 is ahead in the adjacent left lane. V2 begins to change lanes to the left into SV’s lane. SV brakes
to avoid a collision with v2. V2 steers right back into its original lane. SV continues on.

HRNN-pool V2 is ahead in the adjacent right lane. V2 begins to change lanes to the left into SV’s lane. SV
brakes hard to avoid a collision with V2. V2 steers right back into its original lane. Both vehicles
continue on.

HRNN-attention V2 is ahead in the adjacent right lane. V2 begins to change lanes to the left into SV’s lane. SV
brakes to avoid a collision with V2. V2 steers right back into its original lane. Both vehicles
continue on.

Figure 5.4: Visualization of the results for an event with an unsafe lane change.
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Method Caption

Ground truth SV is stopped at an intersection. SV begins to make a left turn. V2 approaches the intersection
from the right. V2 turns left across SV’s path. SV brakes hard to avoid hitting V2. SV completes
the left turn. SV continues down the roadway.

RNN-pool SV is at an intersection controlled by a stop sign. SV begins to turn left. V2 approaches the
intersection from the right. V2 begins to turn left across SV’s path. SV brakes hard to avoid a
collision with V2. V2 brakes. V2 steers left. SV continues on.

RNN-attention SV is at an intersection. SV begins to turn left. V2 approaches the intersection from the right. SV
brakes hard to avoid a collision with V2. V2 brakes. V2 steers left.

HRNN-pool SV is approaching an intersection controlled by a stop sign. SV begins to turn left. V2 approaches
the intersection from the right. V2 begins to turn left. SV brakes hard to avoid a collision with
V2. V2 brakes. SV completes the turn. SV continues on.

HRNN-attention SV is at an intersection controlled by a stop sign. SV is stopped. V2 approaches the intersection
from the right. SV begins to turn left. SV brakes to avoid a collision with V2. V2 brakes. SV
completes the turn.

Figure 5.5: Visualization of the results for an event with an unsafe turn.

anonymized. In all the Figures, we are highlighting in yellow the errors that we
believe to be mild, while in red the errors that we believe to be severe.

In Figure 5.3 we are reporting the captions of a non-subject lane change event.
All the proposed decoders are correctly generating the caption, first describing the
vehicle on the right, then identifying the lane change event and recognizing the need
of the subject vehicle to brake. All the decoders correctly learned the language used
in the training set, generating sentences coherent with the output domain.

In Figure 5.4, instead, we are reporting a similar event in which the generation
fails. While, again, the output is coherent with the domain, the position of the vehi-
cle, the direction of the lane change and the direction of the evasive maneuver are
swapped, i.e., theword left and right are confused. We observed this behaviour quite
often (roughly, 30-40% of the narratives) and it is one of the major source of errors
performed by the model.

Figure 5.5 shows the generated captions of a turn event performed by the sub-
ject. The subject vehicle is invading the intersection, risking a collision with another
vehicle turning. While the core description of the event of all the four decoders are
correct, some of them hallucinate things that are not in the scene, specifically, the
presence of a stop sign or the action of the subject vehicle to continue on the road-
way. This is likely due to the presence in the training set of such sentence in similar
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Method Caption

Ground truth SV is approaching a signaled intersection. SVprepares to turn left. V2 approaches the intersection
from the opposite direction. V2 goes straight at the intersection. SV begins to turn left. SV has
to brake hard. SV steers to the right to avoid a collision with V2. V2 brakes. V2 steers right. V2
continues driving. SV completes the turn.

RNN-pool SV approaches an intersection. SV is stopped. SV begins to turn left. V2 approaches the intersec-
tion from the right. V2 begins to turn left across SV’s path. SV brakes hard to avoid a collision
with V2. V2 brakes. SV continues straight. SV continues on.

RNN-attention SV is approaching a signalized intersection. SV is stopped. SV begins to turn left. V2 approaches
the intersection from the right. SV brakes hard to avoid a collision with V2. V2 brakes. SV con-
tinues on.

HRNN-pool SV approaches a signalized intersection. SV is stopped. V2 is the the oncoming lane. SV begins
to turn left. SV brakes hard to avoid a collision with V2. V2 completes the turn. SV continues on.

HRNN-attention SV approaches a signalized intersection. SV is stopped at the intersection. SV begins to turn left.
V2 is the intersection from the right. SV brakes hard to avoid a collision with V2.

Figure 5.6: Visualization of the results for an event with an unsafe turn.

Method Caption

Ground truth SV approaches an intersection controlled by a stop sign. SV loses control of the vehicle. SV begins
to slides forward. SV brakes. SV regains control of the vehicle. SV stops.

RNN-pool SV approaches an intersection. SV begins to turn left. SV loses control of the vehicle. SV begins
to slide to the right. SV steers right. SV steers right. SV continues on.

RNN-attention SV approaches a signalized intersection. SV begins to turn left. SV loses control of the vehicle.
SV begins to slide to the right. SV hits the curb. SV continues on.

HRNN-pool SV approaches a signalized intersection. SV begins to turn left. SV loses control of the vehicle.
SV begins to slide to the left. SV hits the curb with the right.

HRNN-attention SV approaches a signalized intersection. SV begins to turn left. SV loses control of the vehicle.
SV begins to slide forward. SV hits the curb. SV hits an object.

Figure 5.7: Visualization of the results for an event with a loss of control.
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condition of such sentences, e.g., at night, that induces the decoders to produce such
sentences.

In Figure 5.6, we observe a vehicle going straight at an intersection an provoking
a near-collision. Due to the structure of the road, the vehicle goes from the central
part of the image to the left, and induce the decoder, with the exception of HRNN-
pool, to think that the vehicle is approaching from the right, instead of the oncoming
lane. Finally, in Figure 5.7, we report the results of a loss of control event. All the
decoder types are correctly generating a sentence in which the driver loses control
of the vehicle, however, they mistake the sliding direction of the vehicle, with the
exception of HRNN-attention.

To summarize, in all the presented samples, the generated captions of all the pro-
posed decoders are similar, and all the decoders makes similar mistakes. However,
as highlighted by the experimental results, on average some decoders make fewer
mistakes than others.

5.6 Conclusions
We tackled the novel problem of safety-critical event captioning, starting from the
data acquired from a dashcam installed inside the vehicle and sensors data from a
GPS/IMU module. To do so, we fist generated, and released to the scientific com-
munity, the SHRP2-X dataset, a collection or roughly 3000 annotations of the SHRP
dataset videos. We proposed to tackle the problem by using an encoder-decoder
architecture. We used an encoder pre-trained on the unsafe maneuver classifica-
tion task, that incorporates the output of an object detector on each frame of the
video and a tracking algorithm, to extract features on the evolution of the objects
of the scene over time, as well as performing the fusion of the sensor features. We
tested four decoders from the video captioning literature, using a hierarchical or
single-loop architecture and using attention or a simple pooling operation over the
features from the encoder. Furthermore, we proposed the usage of attributes from
the safety-critical domain, specifically, the presence or absence of a crash and the un-
safe maneuver type, to boost the captioning performance. Our experiments showed
that the usage of such attributes can give a significant boost in the overall gener-
ated captions. Moreover, we showed that the sensors data, if available, significantly
improves the results of the models that performs learning on tasks involving safety-
critical event data, confirming the findings of Chapter 3 and Chapter 4. In contrast,
the appearance feature seems less important for the captioning generation: we be-
lieve they provide the same information of features on the detected object in the
scene and their position and motion. Finally, of the four proposed architecture,
we showed that the hierarchical decoder with attention outperforms the remain-
ing three, confirming the findings of Yu et al. (2016); Wang et al. (2020), but with
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by a significantly smaller margin.



Chapter 6

Conclusions and future work

The goal of this thesis was to tackle the analysis of safety-critical driving events
recorded from a dashcam mounted inside a vehicle. This was done by introducing
novel deep architectures tailored to address the classification and the detection of
unsafety in the driving scene and to provide human-understandable explanations.
In this Chapter, we summarize the key findings of this thesis and we propose future
research directions.

6.1 Conclusions
In this thesis, we studied a novel approach for the analysis of safety-critical events,
with the goal of pushing forward the research on road scene understanding and ul-
timately of increasing road safety. To this end, in Chapter 2 we introduced the novel
unsafe maneuver classification task. In contrast with other tasks in the literature,
focussing just on the result of the unsafe situation, as crash detection, or not taking
into consideration the unsafety at all, as maneuver classification, this problem aims
at classifying both crashes and near-crashes based on the maneuver that lead to the
dangerous situation.

In Chapter 3 we introduced a novel two-stream architecture to tackle the unsafe
maneuver classification problem, starting from the dashcam and GPS/IMU sensors
data. The proposed architecture both addressed the alignment between the two
heterogeneous streams, with different sampling rates and sampling timestamps, as
well as addressing the classification task. Our experiments showed the importance
of using both streams, if available, to tackle the task, as by removing either of the two
the performance drops significantly. Also, they highlighted how this architecture
was capable of identifying the temporal interval in which the unsafe event occurred,
correctly predicting the unsafe maneuver class even if a long portion of safe driving
was included in the samples. Finally, we proposed a backbone fine-tuning strategy
tailored to the unsafe maneuver classification task, using the same labels on short
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snippets of 32 frames at a lower frame rate, that greatly contributed to improve the
overall results.

In Chapter 4 we extended the two-stream architecture in three ways. First, we
included the output of an object detector to provide the network with explicit in-
formation on the entities on the road. Second, we proposed an alternative way of
extracting sensor features, leveraging depth-wise separable convolutions. Third, we
designed the new STAS module, that extracts features representing the evolution
of a single real-world object over a given time span by using a tracking algorithm,
and then uses a multi-head dot-product attention module to select only the rele-
vant objects in the scene. Moreover, we empirically showed that by looking at the
attention weights on each object, we can tell which one among the objects in the
scene was addressed by the network as relevant, achieving a form of explainability.
As an alternative and in contrast, we proposed a simple pooling operation over the
extracted object features. This opaque version of the network showed superior re-
sults, suggesting that explainability comes with a cost. All the proposed novelties,
combined, contributed to a new state-of-the-art on the unsafemaneuver classification
task. Finally, our experiment showed how removing the features extracted from the
sensors or the video streams results in a drop on the overall performance. While
the first finding confirms the results on the importance of this type of feature for
this task, the second one opens to new applicative scenarios in which the proposed
architecture is a lightweight component plugged in a pipeline that already involves
object detection.

InChapter 5we further explored explainability by addressing captioning of safety-
critical driving events. We used an encoder-decoder architecture, with as encoder
the same STAS architecture pre-trained on the unsafe maneuver classification task.
As decoder, we tested multiple decoders from the literature. Our experiments high-
lighted how an hierarchical decoder leveraging dot-product attention showed su-
perior results compared to the other approaches. The experimental phase also con-
firmed the importance of the GPS/IMU data to the generation of the caption while
showed the appearance feature to be less crucial, suggesting the notion of the ob-
jects in the scene and the sensor data relative to the subject vehicle could be sufficient
to tackle this type of captioning problem. Furthermore, we showed that providing
the network with semantic attributes, specifically the unsafe maneuver type and
the presence or absence of a crash, improves the overall result. Finally, as part of
our contribution, we labelled and released to the scientific community the SHRP2-X
dataset, a collection of multi-sentence captions on top of the SHRP2 NDS dataset.
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6.2 Future works
Unsafe maneuver classification is far from being a solved problem. As future line
of research, we plan to keep tackling such task by first trying to move to a bigger
dataset, as we have the feeling that it would be hard to significantly improve the
results on the minority classes without a larger sample size, that might help the
network to cover the rare scenarios. To this end, we plan to use the Verizon Con-
nect video base, a collection of more than 65 millions videos acquired across the
US between 2018 and 2021, comprehensive of crashes, near-crashes, harsh-driving
and safe events. Moreover, we plan to incorporate other information from the scene
and, in particular, we believe that the information on the lanes and their separating
line could help disambiguate corner case situations. Finally, we plan to extend the
proposed architecture to other related tasks, that would allow for a growing under-
standing of what is happening on the road scene. In particular, the finding of this
thesis could be used to address unsafe maneuver detection, i.e., the task to not just clas-
sify but also localize in time and space the maneuver leading to the dangerous situ-
ation, and generalize that tomaneuver detection, i.e., detecting all themaneuver in the
scene, but distinguishing the safe from the unsafe ones. To this end, it is necessary to
design an architecture that exploits the relations between the detected vehicles and,
possibly, the detected lanes in the scene, for instance using a Transformer-based ar-
chitecture, as we believe such information is missing and could be useful to have a
better understanding of the road scene.

We think that these improvements would benefit also explainability in the cap-
tioning task, as the maneuver performed by others and not strictly connected to the
dangerous situation are part of the description. Moreover, we can try to reduce the
gap between the two problems, addressing the actor identification and the caption-
ing prediction in one shot, as done in the dense captioning and grounded captioning
literature. To this end, though, the annotations of more data or the usage of a bigger
dataset might be required.

Finally, we plan to verify the hypothesis that this type of models could be used to
detect dangerous situations. To this end, we could think of equipping the vehicles
with a dedicated hardware capable to run inference on a deep learning model and
use them along with or in replacement of the kinematics triggers to detect a broader
andmore precise set of unsafe situation on the road, again used to coach the drivers
and hopefully ultimately leading to a reduction of deaths and injuries on the roads.
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