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Abstract: Since the development of the first autonomous underwater vehicles, the demanded tasks
for subsea operations have become more and more challenging as, for instance, intervention, main-
tenance and repair of seabed installations, in addition to surveys. As a result, the development of
autonomous underwater reconfigurable vehicles (AURVs) with the capability of interacting with
the surrounding environment and autonomously changing the configuration, according to the task
at hand, can represent a real breakthrough in underwater system technologies. Driven by these
considerations, an innovative AURV has been designed by the Department of Industrial Engineering
of the University of Florence (named as UNIFI DIEF AURV), capable of efficiently reconfiguring
its shape according to the task at hand. In particular, the UNIFI DIEF AURV has been provided
with two extreme configurations: a slender (“survey”) configuration for long navigation tasks, and a
stocky (“hovering”) configuration designed for challenging goals as intervention operations. In order
to observe the several dynamic features for the two different configurations, a novel formulation
for the dynamic maneuverability analysis (DMA) of an AURV, adapting Yoshikawa’s well-known
manipulability theory for robotic arms, is proposed in this work. More specifically, we introduce a
novel analysis which relates the vehicle body-fixed accelerations with the rotational speed of each
thruster, taking into account also the AURV dynamic model for each configuration and the propulsion
system.

Keywords: underwater autonomous reconfigurable vehicles; dynamic maneuverability analysis;
underwater robotics

1. Introduction

The off-shore oil and gas industry has a growing demand for new and innovative solu-
tions for inspection, maintenance and repair of seabed installations. Currently, these tasks
are usually carried out in hostile environments using remotely operated vehicles (ROVs)
deployed from a large surface vessel; however, ROV operations require high expenses due
to the daily ship cost and the large number of crew members which such operations need.
As a result, in order to reduce the inspection cost and deal with the several logistic con-
straints, the interest in autonomous underwater vehicles (AUVs) has rapidly increased in
the last few years. Indeed, AUVs are currently exploited for long-distance monitoring and
inspection, as they are provided with an ever-increasing precision navigation system [1,2].
Moreover, the development of vehicles that can incorporate both the AUV inspection and
ROV intervention functionalities is one of the most challenging tasks of the underwater
industry as well as the scientific community [3]. A recent example is Hydrone-R, the un-
derwater intervention drone (UID) from Saipem S.p.A., which is a technology that allows
accurate inspections on submarine systems, certifies operation, and detects and prevent
any malfunctions [4]. With the regard of other innovative AUVs, the basic idea concerns
vehicle with many configurations and the ability to autonomously switch between them
depending on the main task to accomplish. For instance, the autonomous underwater
reconfigurable vehicles (AURV) can select the most appropriate configuration so as to dive
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with the optimal fluid dynamic efficiency and achieve the minimum power consumption
for long distance navigation; furthermore, the robot may be provided with a larger number
of degrees of freedom for complex manipulation operations or to perform autonomous
docking in a subsea station. As a matter of fact, AURVs do arise as a promising tool for
incorporating several reconfigurable modules and accomplishing both the autonomous
navigation/inspection and intervention tasks.

As far as the AURV state of the art is concerned, one of the most innovative vehicles is
made by EELUME [5,6], an underwater snake robot (USR), developed by Subsea Interven-
tion for underwater inspection and manipulation. This vehicle is basically a self-propelled
robotic arm that can move over long distances and carry out maintenance and repair
tasks in spaces not usually accessible by conventional underwater vehicles. In greater
detail, it is a modular, flexible robot capable of swimming like a snake, or being propelled
by conventional thrusters. Additionally, the vehicle can be assembled with an arbitrary
number of elements linked each other with a flexible joint. Another example of AURV
has been presented by Houston Mechatronics in 2018; specifically, Houston Mechatronics
is a subsea service company with deep expertise in robotics and intelligent automation,
founded by former NASA roboticists responsible for designing and developing some of
the most advanced robots in the world. The conceptual vehicle, named Aquanaut [7], is a
robot with two different configurations: in AUV mode, it can cover long distances while
accomplishing tasks like seabed mapping, and inspection of large area; in ROV mode,
the hull can open its structure, exposing two robotic arms for manipulation operations.
In particular, in the closed version, the vehicle appears as a classical UUV with a slender
shape; in this configuration, it can move itself with only three motors for long distance,
controlling only three degrees of freedoms. In the open version, the upper part of the
hull moves away from the main body, exposing other four motors, in order to obtain a
vectored configuration of the motors, and two robotics arms. Driven by these considera-
tions, an innovative AURV [8,9], capable of efficiently reconfiguring its shape, according
to the demanded task, spanning from a “survey”, slender configuration to a “hovering”,
stocky configuration have been designed by the Department of Industrial Engineering of
the University of Florence (UNIFI DIEF). After the design stage has been partially fulfilled,
the need for investigating the dynamic characteristics of the two different extreme configu-
rations has arisen. In fact, a novel formulation for the dynamic maneuverability analysis
(DMA) of an AURV, adapting Yoshikawa’s well-known manipulability theory for robotic
arms [10,11], is proposed in this paper. If the manipulability concept was first introduced
as a measure of the ability of robotic arms in positioning and orienting end effectors, in the
same way, the maneuverability can be defined as the capability of a mobile robot to move
over several degrees of freedom. With regard to the application of the maneuverability
concept in subsea robotics, several works [12,13] discussed the optimization of thruster
configurations for omnidirectional underwater vehicles. In particular, the relationship
between the longitudinal forces of the thrusters and the body-fixed generalized forces has
been studied. In the context of our work, we are not only introducing a novel analysis
that relates the vehicle body-fixed accelerations with the rotational speed of each thruster,
but we apply this methodology to several AURV configurations. Furthermore, we provide
an accurate description of the AURV dynamic model and the propulsion system for each
vehicle configuration.

The paper structure reflects the procedural workflow. In Section 2, we summarize the
research activity design guidelines alongside a review of the major exploited theoretical
concepts. In Section 3, we briefly illustrate the kinematic and dynamic behavior of each
configuration of the AURV with the assumptions made in this work. In Section 4, we pro-
vide the study of the propulsion system selected for the vehicle. Additionally, in Section 5,
we describe the new dynamic maneuverability formulation, starting from the theoretical
basics, to the application of this theory to an underwater vehicle. In Section 6, we outline
the metrics and indices used for a quantitative evaluation of the AURV maneuverability. Fi-
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nally, the simulation results of the DMA applied to the UNIFI DIEF AURV can be observed
in Section 7. A conclusive discussion is provided in Section 8.

2. The UNIFI DIEF AURV

As highlighted in Section 1, AURVs can be the key to push the boundaries of the
underwater robotics technologies by merging the robot capabilities of performing both the
surveys and inspection/intervention tasks by maintaining high-standard effectiveness and
efficiency. As a consequence, we have designed an innovative AURV (Figure 1) capable of
efficiently reconfiguring its shape, spanning from a “survey”, slender configuration to a
“hovering”, stocky configuration [9]. This innovative solution allows switching between
a stocky and symmetrical shape, with an isotropic behavior useful to face unexpected
external disturbances (e.g., marine currents and water flow induced by waves is the vehicle
is at low depth), and a slender one, with an elongated body to minimize the hydrodynamic
drag (i.e., reducing the power consumption) in the longitudinal direction.

Figure 1. The UNIFI DIEF AURV in the hovering and survey configurations.

Nevertheless, the major benefit is not limited to a hydrodynamic shape variation; the
vehicle is furtherly supplied with the key ability to change its geometrical structure and,
then, its motors configuration. By analyzing the propulsion layouts, the UNIFI DIEF AURV
configuration is an eight thruster arrangement with four of them fixed on the horizontal
plane and four thrusters on the vertical direction in the body-fixed frame. In particular,
the hovering configuration has a perfect vectored layout in the horizontal plane, with the
ability of a fully 3D motion, while in the survey configuration the horizontal thrusters
result aligned, thus maximizing the thrust in the longitudinal direction of motion. Finally,
the aforementioned “shape changing ability” is guaranteed by two distinct types of joint
(Figure 2): two actuated and four free joints.

Figure 2. The several joints system and thrust configuration of the UNIFI DIEF AURV in the hovering
(open) and survey (closed) configurations.

A more comprehensive overview of the technical features concerning the UNIFI DIEF
AURV was illustrated in a previous work of the authors [8]. An exhaustive discussion of
the vehicle mechanical layout was reported there.
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3. Kinematic and Dynamic Modeling for AURVs

The kinematic and dynamic description of the UNIFI DIEF AURV is briefly discussed
in this Section; for the sake of completeness, the two different and extreme vehicle configu-
rations have been studied in a decoupled manner, without the development of a multibody
model [14,15] (whose development is, nonetheless, planned as a strategic solution for fu-
ture research activities). In light of these considerations, the kinematic models, commonly
exploited for AUVs by the scientific community [16,17], have been employed for both the
hovering and survey configurations. To be more specific, in the following, we assume that
once one of the two extreme configurations, described by the joint coordinate vector q,
has been reached, it does not change dynamically and the reconfigurable vehicle can be
considered as a unique rigid body.

Within the context of this work, the following notation is employed: a generic vector
p ∈ R3 expressed in a particular

{
O0x0y0z0} frame is denoted with 0 p, whereas, if it is

convenient to define vectors without an explicit reference to a specific coordinate frame
(coordinate free vector), it will be simply indicated with p. A generic rotation matrix
R ∈ SO(3) is indicated with two indices Rj

i , where the notation represents the unit vectors
of the frame i with respect to frame j. Following the Society of Naval Architects and Marine
Engineers (SNAME) notation [16], the state of an underwater vehicle (considered as a
rigid body) is represented by using two reference frames. A local Earth-fixed reference
frame (hypothesized as inertial) with axes pointing north, east, and down (NED frame){

ON xNyNzN}, and a right-handed body reference frame
{

Obxbybzb
}

whose origin is the
center of mass of the vehicle (see Figure 3) with its x-axis pointing in the forward motion
direction, its z-axis pointing down, and its y-axis completing a right-handed reference
frame. The pose of a vehicle is therefore represented with

η =
[

Nη1 η2

]>
, (1)

where Nη1 is the position of Ob with respect to the NED frame, and η2 is the orientation
the body-fixed frame w.r.t. the NED frame, where roll (φ), pitch (θ), and yaw (ψ) (RPY)
angles are employed to describe the orientation. Additionally, AUV linear and angular
velocities along the axis of the body-fixed reference (surge, sway, and heave motion) can be
denoted as

ν =b ν =
[

bν1
bν2

]>
. (2)

The differential kinematic model is shown in Equation (3), and further information
can be found in [17].

η̇ = J(η)ν( N η̇1
η̇2

)
=

[
RN

b (η2) 03×3
03×3 TN

b (η2)

]( bν1
bν2

)
,

(3)

where RN
b is the rotation matrix between the body and the NED frame, and TN

b (η2) is the
matrix mapping the angular velocity bν2 onto the derivatives of the orientation angles.

With regard to the complete inverse dynamic model of the AURV, the well-known equa-
tion describing the balance of the forces acting on the center of mass of the vehicle [16,17]
has been extended to take into account several configurations of the robot by introducing
the joint vector q:

M(q)ν̇ + C(ν, q)ν + D(ν, q)ν + g(η, q) = τ(u, ν, q) , (4)

where M(q) describes the mass matrix, C(ν, q) outlines the centrifugal and Coriolis ma-
trix, D(ν, q) reports the damping matrix, g(η, q) are the effects of gravity and buoyancy,
τ(u, ν, q) indicates the forces and torques provided by the rotational speeds u ∈ Rm of m
thrusters, η and ν as defined in Equation (3). As already mentioned, a preliminary model
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has been developed for the two configurations of the UNIFI DIEF AURV, by assuming each
of them as an AUV with a different shape.

Figure 3. The Society of Naval Architects and Marine Engineer (SNAME) notation. NED and
body-fixed frames.

Turning to the quantities on the left-hand side of Equation (4), it can be observed that
there are the sum of multiple contributions due to the motion of the vehicle and to its
interaction with the surrounding fluid; hereafter, these terms are comprehensively analyzed
while listing the assumptions considered in the proposed research activity. In greater detail,
the matrix M(q) comprised of the sum of two terms: M = MRB + MA, where MRB takes
into account the physical properties of the vehicle, while MA is usually denoted with the
term added mass matrix, and describes the fact that due to the higher density (with respect
to air) of the fluid where the vehicle moves in, larger accelerations are required to move
not only the vehicle, but also the surrounding fluid itself. Under the assumption that the
added mass matrix can be neglected, being the body-fixed frame centered in the center of
gravity of the vehicle, the matrix and inertia matrix can be represented as

M(q) = MRB(q) =
[

mI3×3 03×3
03×3 IOb(q)

]
, (5)

where m is the mass of the vehicle, I3×3 is the identity 3× 3 matrix, and IOb is the inertia
tensor expressed in the body-fixed frame. A further simplification is obtained by assuming
that the body-fixed reference axes coincide with the principal axes of inertia. This implies
that IOb becomes diagonal, and Equation (5) simplifies as

M(q) =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix(q) 0 0
0 0 0 0 Iy(q) 0
0 0 0 0 0 Iz(q)

 (6)

where Ii is the moment of inertia about the ith axes of the body-fixed frame.
Within the same hypothesis, the centrifugal and Coriolis matrix C(ν, q) can be simpli-

fied as

C(ν, q) = CRB(ν, q) =
[

03×3 −mS(ν1)
−mS(ν1) −S

(
IOb(q) · ν2

) ] , (7)

where S(·) is the operator that builds a 3-by-3 skew-symmetric matrix from a vector ā ∈ R3

such as

S(ā) =

 0 −āz āy
āz 0 −āx
−āy āx 0

 . (8)
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Furthermore, the matrix D(ν, q) models the dissipative effects due to the motion
within the fluid; the main damping contributions are given by the nonlinear skin friction
due to turbulent boundary layers, and by the viscous damping force due to vortex shedding.
Damping effects are highly nonlinear and coupled; for underwater vehicles, to a first
approximation, coupling effects and terms higher than the second order (with respect
to body-fixed velocity) can be neglected, which in turn equals to assume a diagonal
structure for D(ν). Finally, since quadratic terms dominate over linear terms, D(ν, q) can
be approximated with

D(ν, q) = −diag6×6
{
· · ·Xi(q)|ν1,i| · · ·Xj(q)|ν2,j| · · ·

}
, i = j = x, y, z , (9)

where diagn×n(·) is the operator which builds a n-by-n diagonal matrix from a vector
ā ∈ Rn such as

diagn×n ā =

 ā1 0 0

0
. . . 0

0 0 ān

 . (10)

For the sake of completeness, the angular damping coefficients have been neglected
in this work (i.e., Xj(q)|ν2,j| = 03×1), while the first three terms in Equation (9) can be
calculated as described in [1] with

Di(ν1,i, q) = Xi(q)|ν1,i| =
1
2

ρA f ,i(q)CD,i(q)|ν1,i| , i = x, y, z , (11)

where ρ represents the water density, A f ,i is the projection of the area of the hull of the
vehicle on a plane perpendicular to the i-axis of the body-fixed frame, and CD,i is the drag
coefficient, which quantifies the fluid resistance against the vehicle motion.

Additionally, the vector g(η, q) of generalized forces due to the gravity b f G and
buoyancy forces b f B in the body-fixed frame is represented by

g(η, q) = −
[ b f G(η2, q) +b f B(η2, q)

brG ×b f G(η2, q) +b rB ×b f B(η2, q)

]
, (12)

where brG and brB represent the positions of the center of gravity and the center of buoyancy
with respect to the body-fixed frame.

In the case of vehicles whose center of mass and center of buoyancy are constant w.r.t.
the joint configuration q, the expression of the gravity vector and the buoyancy vector are
simply:

b f G(η2, q) =b f G(η2) = Rb
N

 0
0

m
∥∥g I
∥∥
 ,

b f B(η2, q) =b f B(η2) = −Rb
N

 0
0

ρ∇
∥∥g I
∥∥
 ,

(13)

where g I is the gravity acceleration vector expressed in the NED frame, ∇ is the volume
of the vehicle submerged body, and ρ is the water density. In the context of this work,
the center of gravity and buoyancy have been assumed as coincident with the center of
mass (i.e., with the origin of the body-fixed frame), any torque due to gravity/buoyancy
force will be applied to the vehicle and Equation (12) is approximated as

g(η, q) = g(η) = −
[ b f G(η2) +

b f B(η2)
03×1

]
. (14)

Furthermore, the study of marine vehicles cannot neglect the effects of specific distur-
bances such as ocean current [17]. Simplified modeling of the current effect can be obtained
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by assuming the current irrotational and constant in the Earth-fixed frame; thus, its effect
on the vehicle can be modeled as a constant disturbance in the Earth-fixed frame that is
further projected onto the vehicle-fixed frame. Indeed the ocean current, expressed in the
NED frame, Nνc can be represented as,

Nνc =



νc,x
νc,y
νc,z
0
0
0

 , N ν̇c = 06×1 . (15)

The current effects can be added to the dynamics of a rigid body moving in a fluid by
simply considering the relative velocity in the body-fixed frame νr =b νr = ν− Rb

N
Nνc

in the derivation of the Coriolis and centripetal terms and the damping terms. Finally,
the Equation (4) can be simplified in a more compact form, as follows:

M(q)ν̇ + Γ(νr, q, η) = τ(u, ν, q)

Γ(νr, q, η) = C(νr, q)νr + D(νr, q)νr + g(η) ,
(16)

where Γ(νr, q, η) represent the sum of the nonlinear generalized forces applied to the
reconfigurable vehicle, depending on the configuration q, the NED pose η and the body-
fixed velocity νr with respect to the marine currents.

4. Thruster Configuration and Propulsion System

A linear relation [18] holds between forces and moments acting on the vehicle τ ∈ R6

and the motor thrusts t(ν, u) ∈ Rm as shown in Equation (17).

τ(ν, u, q) = B(q)t(ν, u) , (17)

where u ∈ Rm is the vector that collects the rotational speed of each motor and m is
the number of motors, B is the thrust allocation matrix (TAM), which depends upon the
thruster poses with respect to the vehicle center of gravity, as defined in Equation (18),
and Equation (19).

B(q) =
[

B1(q)
B2(q)

]
, (18)

with

B1(q) =
[
· · ·b ni(q) · · ·

]
B2(q) =

[
· · ·b ri(q)×b ni(q) · · ·

]
,

(19)

where bni represents, in the body frame, the unit vector of the axis of the ith thruster and
bri its center with respect to the body-fixed frame. As suggested in [13], a more intuitive
representation of the ith column of Equation (19), in different AURV configurations, can be
observed in spherical coordinates. In particular, the axial unit vector of the ith thruster has
been modeled as

bni(q) =

 sin(θi(q)) cos(ϕi(q))
sin(θi(q)) sin(ϕi(q))

cos(θi(q))

 , (20)

where θi is the inclination and ϕi the azimuth angle of the longitudinal axis of the ith
thruster in the q configuration of the AURV.
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Concerning the propulsion system, the four-quadrant motor characteristic is approxi-
mated, according to [2], with the purpose of modeling the relationship between the thrust
value ti and the rotational speed ui of the thruster:

ti(ν, ui) = d(ui,V)
[
sgn(ui)

(
ku2

i − f (pp, Va,i
)]

, (21)

where k is a coefficient that relates motor thrust and propeller speed at bollard conditions
(usually divided in the forward and backward bollard coefficients, depending on the
propeller motion), f (pp, Va,i) is a function depending on the ith motor advance speed Va,i
and the propeller pitch pp (a construction parameter), and d(ui,V) is the term including in
the model the dead-zone boundary values at the voltage supply level V . In the context of
this work, a preliminary assumption has been made by neglecting the dead-zone boundary
values and the term depending upon the motor advance speed. Additionally, we define a
physical maximum value umax

i as the rotational speed of each thruster, and Equation (21)
can be simplified as follows:

ti(ûi) = sgn(ûi)k(umax
i ûi)

2 (22)

ui = umax
i ûi , (23)

where ûi ∈ [−1, 1] represents the signed ratio of the thruster speed with respect to its
maximum value. Finally, inserting the previously defined thrust vector

t(u) = [sgn(û1)k(umax
1 û1)

2 · · · sgn(ûm)k(umax
m ûm)

2]T (24)

in Equation (16) leads to the complete AURV dynamic model

M(q)ν̇ + Γ(νr, q, η) = T(q)sgn(û)û2 , (25)

where T(q) = kUmaxB(q) is the linear map between the generalized forces τ and the
"power-normalized" vector û2 defined by exploiting the operator (·)i, which transforms every
element of a vector ā ∈ Rn such as

āi =
[

āi
1 āi

2 . . . āi
n
]T , (26)

and where Umax ∈ Rm×m is the diagonal matrix defined as

Umax =


(umax

1 )2 0 . . . 0

0 (umax
2 )2 0

...
... 0

. . . 0
0 . . . 0 (umax

m )2

 , (27)

which takes into account in Equation (25) the power-normalized values of maximum
rotational speed, and sgn(û) ∈ Rm×m is the diagonal matrix expressed as

sgn(û) =


sgn(û1) 0 . . . 0

0 sgn(û2) 0
...

... 0
. . . 0

0 . . . 0 sgn(ûm))

 . (28)

5. Dynamic Maneuverability Analysis

The concept of dynamic maneuverability measurement for AURVs can be defined
by adapting Yoshikawa’s approach for robotic arms [10]. While the theory of dynamic
manipulability measurement of robotics arms is proposed as an index of their ability in
manipulating the end effector, the dynamic maneuverability of an underwater vehicle
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takes into account a quantitative study of the AURV ability to move along its degrees of
freedom in the several configurations, by considering the vehicle system dynamics. More
in detail, the Equation (25) can be reformulated as follows:

ν̇ + ν̇Γ(νr, q, η) = J(q)û2 (29)

J(q) = M−1(q)T(q)sgn(û) (30)

ν̇Γ(νr, q, η) = M−1Γ(νr, q, η) (31)

where J(q) ∈ R6×m is the linear map between the power-normalized rotational speed vector
û2 and the vehicle body-fixed acceleration, including the contribution ν̇Γ(νr, q, η) from the
nonlinear terms Γ(νr, q, η) in Equation (25).

According to Yoshikawa’s theory [10], the concept of maneuverability can be obtained
by observing how the Jacobian matrix J(q) is deformed by the unit sphere S(·) ∈ Rm of
the power-normalized rotational speeds, such as

S(û) = {û : ‖û‖ = 1}. (32)

It is worth noticing how the operator (·)2, defined in Equation (26), transforms the
unit sphere S(·) in a biquadratic surface Q(û) = {û : ‖û2‖ = 1}.

In Figure 4, the particular case of two-dimensional biquadratic surface Q(û) can be
observed; from a practical point of view, this situation corresponds to afford the problem
of estimating the maximum values of the AURV body accelerations ν̇ given the quasi-
maximum value of the thruster rotational speeds. For the sake of completeness, the term
“quasimaximum” is used in this work to outline the fact the system inputs will never reach
their maximum value at the same time, as shown in Figure 4.

Figure 4. The two−dimensional biquadratic surface Q(û).

Turning to a geometric interpretation of Q(û), the set of all propeller rotational speeds,
at the input to the dynamic system defined in Equation (31), can be formulated as(

û2
)T

û2 = 1 (33)

where û2 is defined as
û2 = J(q)†(ν̇ + ν̇Γ(νr, q, η)) (34)
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which leads to

(ν̇ + ν̇Γ(νr, q, η))T((J(q)†)T J(q)†)(ν̇ + ν̇Γ(νr, q, η)) = 1 (35)

where the operator (·)† refers to the Moore–Penrose pseudoinverse. The Equation (35)
represents the dynamic maneuverability ellipsoid (DME) of the dynamic system described
in Equation (31), defined as the set of the possible body-fixed accelerations ν̇ given the bi-
quadratic surface Q(û) as input, and the acceleration ν̇Γ(νr, q, η) provided by the nonlinear
forces. As a matter of fact, the nonlinear accelerations ν̇Γ(νr, q, η) result in a translation
of the DME center, while it can be observed how the deformation (i.e., the length of the
semiaxis) of the DME is related to the Jacobian J(q) = M−1(q)T(q)sgn(û). In light of these
considerations, the volume of the DME only depends on the chosen propulsion system,
on the physical properties of the AURV, and on the thruster configuration on the actual
configuration. A more exhaustive explanation can be provided by considering the singular
value decomposition (SVD) of J(q) [19],

J = UΣVT = U
[

diagr×r(σ1, . . . , σr) 0(r)×(m−r)
0(6−r)×r 0(6−r)×(m−r)

]
VT (36)

J+ = VΣ+UT = V
[

diagr×r(1/σ1, . . . , 1/σr) 0(r)×(6−r)
0(n−r)×r 0(m−r)×(6−r)

]
UT (37)

where Σ ∈ R6×m contains the r nonzero singular values σi of J(q) in decreasing order,
U ∈ R6×6 is an orthogonal matrix whose columns are the left singular vectors of J(q) that
form an orthonormal base of the output space, and V ∈ Rm×m is an orthogonal matrix
whose columns are the right singular vectors of J(q) that form an orthonormal base of the
input space. Furthermore, considering that

Σ+ ∈ Rm×6 : Σ+ =

[
diagr×r(1/σ1, . . . , 1/σr) 0(r)×(6−r)

0(n−r)×r 0(m−r)×(6−r)

]
(38)

Σ+T ∈ R6×m : Σ+T =

[
diagr×r(1/σ1, . . . , 1/σr)

... 0(r)×(m−r)
0(6−r)×r 0(6−r)×(m−r)

]
(39)

(
Σ+TΣ+

)
=

[
diagr×r

(
1/σ2

1 , . . . , 1/σ2
r
)

0(r)×(6−r)
0(6−r)×r 0(6−r)×(6−r)

]
∈ R6×6 , (40)

and inserting Equations (37), (36), and (40) in Equation (35), it results in the formulation of
the DME expressed in the base of the left singular vectors of ν̇ + ν̇Γ(νr, q, η), as follows

wT
(

Σ+TΣ+
)

w = 1 (41)

w = UT(ν̇ + ν̇Γ(νr, q, η)), w ∈ R6 . (42)

Equation (41) describes the relationship among the singular values σi of J(q) and the
DME. In greater detail, it can be observed that the singular values σi represent the length of
the DME semiaxis, expressed as in Equation (41), whereas their direction in the body-fixed
frame can be obtained from the ith column of the matrix U = [· · ·U i · · · ]. Finally, from a
practical consideration, the DME expressed in Equation (35) is studied in a decoupled
manner from the linear ν̇1 and angular ν̇2 accelerations point of view. Thus, by defining

J(q) =
[

J1(q)
J2(q)

]
, (43)
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the linear DME and the angular DME are evaluated, such as

(ν̇1 + ν̇Γ1(νr, q, η))T((J†
1 (q))

T J†
1 (q))(ν̇1 + ν̇Γ1(νr, q, η)) = 1 (44)

(ν̇2 + ν̇Γ2(νr, q, η))T((J†
2 (q))

T J†
2 (q))(ν̇2 + ν̇Γ2(νr, q, η)) = 1 . (45)

For the sake of completeness, the well-known formulations of Equations (41) and (37)
can be extended for both the linear and angular ellipsoids defined in Equations (44) and (45).

6. Metrics and Indices

As described above, the linear and angular DMEs provides a qualitative geometric
evaluation of the maneuverability of an AURV configuration; conversely, quantitative
indices will be outlined in this Section. More specifically, Yoshikawa’s manipulability
index [10,11] is defined as

W1(q) =
√

J(q)J(q)T =
6

∏
i=1

σi (46)

which is proportional to the volume of the DME. Therefore, it can be used to numerically
evaluate the overall maneuverability of the system by exploiting the following concept:
a larger volume reflects a better performance. The Equation (46) does not consider if the
vehicle is near a “singularity”, i.e., a situation where the vehicle cannot move in a direction
U i associated to a singular value σi = 0. Thus, a second manipulability index is often
associated with the inverse of condition number k2(J(q)) of the Jacobian matrix J(q) as

W2(q) =
1

k2(J(q))
=

σmin

σmax
(47)

k2(J(q)) = ‖J(q)‖2

∥∥∥J†(q)
∥∥∥

2
=

σmax

σmin
. (48)

The aforementioned index is considerably appealing since immediately provides
useful information: firstly, it can be observed that this index represents the ellipsoid ec-
centricity; then, if the vehicle is not omnidirectional (i.e., cannot move in every degree of
freedom), the index defined in Equation (47) holds to a zero value. Finally, the authors pro-
pose a third index as an absolute value of the AURV maneuverability in the three different
directions of the body-fixed frame. As described in Section 5, the problem of estimating
the maximum values of the AURV body accelerations ν̇ given the quasimaximum value of
the thruster rotational speeds have been addressed in this work. From a more practical
as well as physical perspective, it can be seen as a way to measure the difference between
the maximum admissible linear ν̇1 and angular ν̇2 accelerations along each axis of the
body-fixed reference frame. As a result, for the linear and angular DMEs, these indices can
be defined as

jW3(q) = max
i

∣∣∣(σiU i + ν̇Γ(νr, q, η))Tl j

∣∣∣ , i, j = 1, 2, 3 , (49)

where l j ∈ R3 is the unit vector identifying the jth direction of the AURV linear/angular
motion.

7. Simulations and Results

The maneuverability simulation performed for both the extreme UNIFI DIEF con-
figurations are presented in this Section. Within the context of this work, the following
notation is employed: a generic property A(q1) belongs to the “survey” AURV configu-
ration, while A(q2) relates to a feature of the “hovering” one. Furthermore, the results
hereafter presented have been obtained by means of MATLAB-coded dynamic simulations.
In particular, along with the assumptions proposed in Section 3, the following settings
have been used:
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• the AURV position η1 is the same in both the two configurations, and the vehicle
orientation η2 will be expressed with respect to the NED frame. Additionally, it
is assumed that the vehicle is in resting position (i.e., ν = 06×1) affected by the
marine currents. Although this hypothesis may seem restrictive, it was decided,
within this preliminary study, to consider the scenario in which the AURV, in both
the configurations, is stationary; realistic cases of motion will be investigated in the
future. The kinematic parameters are summarized in Table 1:

Table 1. Main kinematic parameters.

NED position (m): η1 = [0.0, 0.0, 1.0]T

NED orientation (RPY) [rad]: η2 = [0.0, 0.0, 0.0]T

Linear relative body-fixed velocity (m/s): ν1r = [−0.4, 0.0, 0.0]T

Angular relative body-fixed velocity (rad/s): ν2r = [0.0, 0.0, 0.0]T

• The dynamic terms in Equation (4) have been evaluated by exploiting several pre-
liminary hydrodynamic simulations. More accurate identification strategies will be
further analyzed in the future in order to provide an accurate estimate of the AURV
dynamic parameters. Therefore, the dynamic features of survey q1 and hovering q2
configurations are respectively listed in Table 2.

• The two different thrust allocation matrices B(q) have been evaluated by using the
body-fixed position ri and longitudinal direction ni of the ith thruster in both con-
figurations, estimated in the design stage of the AURV. As a result, Table 3 shows
the thruster configurations parameters, where the ith thruster longitudinal axis have
been expressed in the terms of the inclination θi and azimuth ϕi angle in spherical
coordinates.
It can be straightforwardly observed, as already described in the Section 2, how the first
four thrusters are necessary for the linear motion of the vehicle along the horizontal
plane, whereas the last four provide displacement along the vertical direction of the
body-fixed frame. In particular, Table 3, shows how the first four thrusters are all
aligned along the surge axis in the survey configuration, with the aim of improving
the longitudinal navigation, whilst, at the same time, the AURV cannot move in the
sway direction.

• With regard to the propulsion system parameters, Table 4 outlines the estimated
values for the BlueRobotics T200 propeller [20], the motor selected to be equipped in
the UNIFI DIEF AURV; it is worth noticing how these values have been evaluated by
exploiting the methodology described from the authors in [21].

As highlighted in Section 4, in this work, a preliminary assumption has been done
by neglecting the dead-zone boundary values and the term depending upon the motor
advance speed. Indeed, we approximate the relationship among the motor rotational speed
and the longitudinal thrust with the forward bollard coefficient defined in Table 4.
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Table 2. UNIFI DIEF AURV dynamic parameters.

Mass matrix: M(q1) =


250.0 0.0 0.0 0.0 0.0 0.0

0.0 250.0 0.0 0.0 0.0 0.0
0.0 0.0 250.0 0.0 0.0 0.0
0.0 0.0 0.0 10.7 0.0 0.0
0.0 0.0 0.0 0.0 58.2 0.0
0.0 0.0 0.0 0.0 0.0 65.3



Coriolis matrix: C(νr, q1) =


0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 100.0
0.0 0.0 0.0 0.0 −100.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 100.0 0.0 0.0 0.0
0.0 −100.0 0.0 0.0 0.0 0.0



Damping matrix: D(νr, q1) =


−21.5 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0


Gravity and Buoyancy vector: g(η) = [0.0, 0.0,−12.2, 0.0, 0.0, 0.0]T

Mass matrix: M(q2) =


250.0 0.0 0.0 0.0 0.0 0.0

0.0 250.0 0.0 0.0 0.0 0.0
0.0 0.0 250.0 0.0 0.0 0.0
0.0 0.0 0.0 49.2 0.0 0.0
0.0 0.0 0.0 0.0 31.6 0.0
0.0 0.0 0.0 0.0 0.0 77.2



Coriolis matrix: C(νr, q2) =


0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 100.0
0.0 0.0 0.0 0.0 −100.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 100.0 0.0 0.0 0.0
0.0 −100.0 0.0 0.0 0.0 0.0



Damping matrix: D(νr, q2) =


−41.2 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0


Gravity and buoyancy vector: g(η) = [0.0, 0.0,−12.2, 0.0, 0.0, 0.0]T
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Table 3. UNIFI DIEF AURV thrust configuration parameters.

Thruster positions (q1) [m]:

r1 = [0.7,−0.4, 0.0]
r2 = [0.7, 0.4, 0.0]

r3 = [−0.7,−0.4, 0.0]
r4 = [−0.7, 0.4, 0.0]
r5 = [0.0,−0.3, 0.0]
r6 = [0.0, 0.3, 0.0]
r7 = [0.8, 0.0, 0.0]

r8 = [−0.8, 0.0, 0.0]

Thruster longitudinal axis (q1) [rad]:

θ1 = π
2 , ϕ1 = 0.0

θ2 = π
2 , ϕ2 = 0.0

θ3 = π
2 , ϕ3 = 0.0

θ4 = π
2 , ϕ4 = 0.0

θ5 = 0.0, ϕ5 = 0.0
θ6 = 0.0, ϕ6 = 0.0
θ7 = 0.0, ϕ7 = 0.0
θ8 = 0.0, ϕ8 = 0.0

TAM: B(q1) =


1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 −0.3 0.3 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 −0.8 0.8
0.4 −0.4 0.4 −0.4 0.0 0.0 0.0 0.0



Thruster positions (q2) [m]:

r1 = [0.6,−0.5, 0.0]
r2 = [0.6, 0.5, 0.0]

r3 = [−0.6,−0.5, 0.0]
r4 = [−0.6, 0.5, 0.0]
r5 = [0.0,−1.0, 0.0]
r6 = [0.0, 1.0, 0.0]

r7 = [0.6,−0.0, 0.0]
r8 = [−0.6,−0.0, 0.0]

Thruster longitudinal axis (q2) [rad]:

θ1 = π
2 , ϕ1 = π

4
θ2 = π

2 , ϕ2 = −π
4

θ3 = π
2 , ϕ3 = −π

4
θ4 = π

2 , ϕ4 = π
4

θ5 = 0.0, ϕ5 = 0.0
θ6 = 0.0, ϕ6 = 0.0
θ7 = 0.0, ϕ7 = 0.0
θ8 = 0.0, ϕ8 = 0.0

TAM: B(q2) =


0.7 0.7 0.7 0.7 0.0 0.0 0.0 0.0
0.7 −0.7 −0.7 0.7 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 −0.9 −0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 −0.6 0.6
0.8 −0.8 0.8 −0.8 0.0 0.0 0.0 0.0
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Table 4. T200 BlueRobotics Thruster model parameters.

Propeller pitch: [m/rev] 0.09
Forward bollard coefficient: [Ns2] 0.0128

Backward bollard coefficient: [Ns2] −0.008753
Forward dead-zone boundary limit: [Hz] 4.8833 + 0.5866(V − 14)

Backward dead-zone boundary limit: [Hz] −4.8167− 0.5974(V − 14)
Maximum speed: [rpm] 2400

The above-illustrated parameters have been employed in order to obtain the linear
DME and angular DME, described in Equations (44) and (45), and the maneuverability
indices defined in Equations (46)–(49) in Section 6, for both the configurations of the UNIFI
DIEF AURV. Figure 5, illustrates the angular and linear ellipsoids for the survey shape of
the vehicle. In particular, it is worth noticing how the linear DME turns to a circle, since
the singular value related to the sway direction is equal to zero, as observed in the Table 5;
thus, Yoshikawa’s index W1(q1) and W2(q1) are also a zero value. If these results define the
survey configuration as a singular one (i.e., the motion on the sway axis of the body-fixed
frame is not taken into account), it should be considered as the index xW3(q1), defined as
the maximum values of the AURV body accelerations ν̇, along the surge x direction, given
the quasimaximum value of the thruster rotational speeds as input, is much larger than the
same index for the hovering configuration. Conversely, the hovering configuration has the
property of a omnidirectional motion in all the six degrees of freedom, as shown in Figure 6,
and, as a consequence, Yoshikawa’s index W1(q2) is different from zero. Additionally, it is
interesting to notice that the index W2(q2) is closer to the unit value in both linear DME and
angular DME, which implies that the hovering configuration is accurately controllable in
every direction of space and can find a realistic application in complex tasks, as, for instance,
working on an offshore structure or recovering samples from a shipwreck. Furthermore,
Figure 7 illustrates the linear DME for the survey configuration in two different situations:
firstly, when the ellipsoid is calculated considering to be in the absence of accelerations
due to nonlinear terms (i.e., ν̇Γ(νr, q, η) = 06×1), then with the assumptions explained
at the beginning of this Section. As proposed in Section 5, the nonlinear accelerations
ν̇Γ(νr, q, η) result in a translation of the linear DME center, while the shape of the linear
DME is not affected, since it is only related to the singular values σ(q). These considerations
can also be applied in the case of the angular DME indeed. In conclusion, this section
showed the results of the innovative dynamic maneuverability analysis on the UNIFI
DIEF AURV obtained by means of dynamic simulations. From a qualitative point of view,
linear and angular DMEs have been estimated for both the extreme configurations of the
vehicle. As a first observation, it can be noted that such strategy allows immediately to
distinguish if a vehicle is omnidirectional or if it is singular along a direction of motion.
Additionally, several indices have been supplied as quantitative measurements of the AURV
maneuverability. More specifically, the index proposed by the authors in Equation (49)
represents the maximum value of the AURV body accelerations given the quasi-maximum
value of the thruster rotational speeds. Therefore, this index can be used as a relevant
absolute value of maneuverability for the different AURV configurations.
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Figure 5. The estimated linear DME (top figure) and angular DME (bottom figure) for the survey
configuration of the UNIFI DIEF AURV. As can be seen from the graphs, the linear DME turns to a
circle since there is not any possible motion on the sway direction.
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Figure 6. The estimated linear DME (top figure) and angular DME (bottom figure) for the hovering
configuration of the UNIFI DIEF AURV. It can be observed as this configuration is accurately
controllable in every direction of the space.
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Figure 7. The estimated linear DME for the survey configuration of the UNIFI DIEF AURV in two
distinct different situations: firstly, in the top figure, the ellipsoid is calculated considering to be in
absence of accelerations due to nonlinear terms (i.e., ν̇Γ(νr, q, η) = 06×1), then, in the bottom figure,
with the vehicle affected by nonlinear generalized forces, resulting in the translation of the linear
DME center.
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Table 5. Quantitative maneuverability indices for the UNIFI DIEF AURV.

Survey Configuration

Linear DME Angular DME

σ1(q1) = 0.164, U1 = [1, 0, 0]T σ1(q1) = 0.839, U1 = [1, 0, 0]T

σ2(q1) = 0.164, U2 = [0, 0, 1]T σ2(q1) = 0.420, U2 = [0, 1, 0]T

σ3(q1) = 0.0, U3 = [0, 1, 0]T σ3(q1) = 0.267, U3 = [0, 0, 1]T

W1(q1) = 0.0 W1(q1) = 0.094
W2(q1) = 0.0 W2(q1) = 0.318

xW3(q1) = 0.128 xW3(q1) = 0.838
zW3(q1) = 0.115 yW3(q1) = 0.420

yW3(q1) = 0.0 zW3(q1) = 0.266

Hovering Configuration

Linear DME Angular DME

σ1(q1) = 0.164, U1 = [0, 0, 1]T σ1(q1) = 0.587, U1 = [0, 1, 0]T

σ2(q1) = 0.116, U2 = [1, 0, 0]T σ2(q1) = 0.565, U2 = [1, 0, 0]T

σ3(q1) = 0.116, U3 = [0, 1, 0]T σ3(q1) = 0.437, U3 = [0, 0, 1]T

W1(q2) = 0.022 W1(q2) = 0.145
W2(q2) = 0.707 W2(q2) = 0.745

xW3(q2) = 0.050 xW3(q2) = 0.565
yW3(q2) = 0.067 yW3(q2) = 0.587
zW3(q2) = 0.115 zW3(q2) = 0.437

8. Conclusions

This work collects the results of the preliminary research activity on the dynamic
maneuverability analysis (DMA) application on the innovative AURV designed by the
Department of Industrial Engineering of the University of Florence [8,9]. As a matter of
fact, autonomous underwater reconfigurable vehicles [3] do arise as a promising tool for
incorporating several reconfigurable modules and accomplishing several complex tasks
as intervention, maintenance, and repair (IMR) operations. The activity focused on the
study of the maneuverability methodology for underwater vehicles, by starting from the
analysis of state-of-the-art solutions in the field of robotics arm [10], and leading to the
specific case-study of the UNIFI DIEF AURV. While the concept of maneuverability has
already been studied in underwater robotics, as, for instance, for the thruster configuration
optimization [12,13], we introduce a novel analysis which relates the vehicle body-fixed
accelerations with the rotational speed of each thruster, taking into account also the AURV
dynamic model for the several configurations, and the propulsion system assumed in the
designing phase. It is worth noticing that, despite the specific application of this work,
the proposed methodology can be applied to any unmanned underwater vehicle (UUV),
if its dynamic and propulsion system parameters are correctly identified. In this context,
the application of artificial intelligence (AI) algorithms has been arisen as innovative
solutions for the identification of the UUV dynamic parameters, as suggested in [22]. As a
result, further investigations and comparisons will be performed among the UNIFI DIEF
AURV and other AUVs. Moreover, [14] inspires the possibility for further studies on
multibody modeling for reconfigurable vehicles. The last, but not least, key topic which is
worth being explored in the future is the introduction of all the nonlinear properties which
have not been considered in the AURV dynamic model, as the estimate of the added mass
terms as well as the dead-zone boundary values of the thrusters. All these open problems
and research areas, whose resolution and deepening constitute a natural continuation of the
cutting-edge research activity carried out thus far, will be subjected to further investigations
in the near future.
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