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Abstract. We study the oscillations of a spherical shell of a rate-type viscoelastic solid subject to a pressure difference between
the inner and the outer surface. The stable equilibrium configurations, in the class of spherically symmetric deformations,
correspond to the minima of the elastic energy function. Numerical simulations indicate that the way in which the equilibrium
state is reached, strongly depends on the material parameters.
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1. Introduction

Instabilities of inflated spherical membranes are a stimulating problem in continuum mechanics (see, e.g.,
Chap. 7 in [1]). The ordinary differential equations of motion describing the finite amplitude of radial
oscillations of thick-walled hyperelastic spherical shells are well known, see Truesdell and Noll [2] (pages.
217–219) for a derivation of such equations and for references to the original literature. The same problem
has been studied by Calderer [3] in the framework of the special theory of viscoelasticity. In this paper, the
author started with a general elastic strain-energy density W (F) where F is the gradient of the deformation
and, adding to W an extra history-type term, i.e., a term which depends via a suitable integral on the
history of F up to time t, she introduced a free energy functional to describe the mechanical behavior of
the material. In [3], the author provided a rigorous proof of the possibility of finite-time blow-up of the
solutions. The existence of singular solutions in such class of materials has been also considered in [4] in
the framework of traveling waves. A model similar to the one proposed in [3] has also been considered by
Fosdick and Yu [5]. In this case, the authors studied the stability of the radial oscillations of a sphere via
a suitable Lyapunov functional.

One of the many applications of this basic problem is bioenteric intragastric balloons for the treatment
of obesity [6]. Recently, there has been a renewed interest on this problem [7] studied using the celebrated
quasi-linear viscoelastic model proposed by Pipkin and Rogers [8]. However, within the framework of
traveling waves, we do know that global solutions may not exist for the quasi-linear viscoelastic models
(see, e.g., [9]).

In the present article, the spherical vibrations of a shell are deemed in the framework of rate-type
viscoelastic materials. The model we investigate is a nonlinear generalization of the standard linear solid.
The standard linear solid is a quite versatile model of linear elasticity because it describes both phenomena
as creep and stress relaxation on the basis of a simple setting. A possible generalization of this model
to a three-dimensional nonlinear context has been first put forward some years ago in [10,11]. In the
three-dimensional generalization, one major problem is the choice of the objective derivative required to
describe stress relaxation. Indeed, this choice is not unique. The differences associated with the possible
choices of the objective derivative have been pointed out in [12] and in [13].
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In this paper, to simplify the algebra, the material parameters are set constant. However, as far as the
elastic parameters are concerned, this hypothesis is not strictly necessary and many of our results might
be extended to a more general nonlinear setting. Also, the viscosity, i.e., the parameter regulating the
dissipative part of the Cauchy stress, is supposed to be constant. Indeed, a nonlinear viscous dissipation
could not only add further technical complexity, but also the mathematical problem may turn out to be
ill posed, unless the function expressing the viscosity in terms of the shear rate or the Cauchy–Green
tensor obeys very restrictive hypotheses [14].

The paper is organized as follows: in Sect. 2, we illustrate the constitutive model and, in Sects. 3 and
4, we investigate the radial deformations of a spherical shell. Next, in Sect. 5, we focus on the equilibrium
configurations confining ourselves to the class of spherical disturbances. The system dynamics is analyzed
in Sect. 6 . A few concluding remarks are drawn in the last section.

2. Preliminaries

Here, we recall some standard notations used in Continuum Mechanics (see, e. g., [15,16]). Let

x = χ(X, t) (1)

be the deformation of a three-dimensional body in the Euclidean space, where x and X are the respective
positions of a generic particle of the body at time t and at a given initial time to . Then,

F :=
∂χ(X, t)

∂X
, B := FF

T, L :=
·
FF

−1, (2)

define, respectively, the deformation gradient, the Cauchy–Green deformation tensor, and the spatial ve-
locity gradient tensor. The superimposed dot identifies the usual material time derivative. The symmetric
tensor

D :=
1
2

(
L + L

T
)
, (3)

is the stretching tensor. Next, we assume that the material is mechanically incompressible, i.e.,

detF = 1, (4)

which entails the introduction of an unknown tensor −pI (see [17]).
According to the results illustrated in the recent paper [13], we consider the following constitutive

model [18,19]
⎧
⎪⎨

⎪⎩

T = −pI + β1B + β−1B
−1 + T

V ,

·
T

V

− 1
2

(
T

V
L

T + LT
V

)
+

1
2

(
T

V
L + L

T
T

V
)

= −φ[ TV − 2ηD,

(5)

where β1, β−1, are, in general, material functions of the invariants of B, while η and φ are constant
parameters representing the material viscosity and a characteristic time,1, respectively. In particular, we
take φ and η non-negative. Concerning β1 and β−1, we consider them as constant parameters and set

β1 =
G

1 + α
, β−1 = − αG

1 + α
, (6)

with G = (β1 − β−1) > 0, material elastic modulus and α ∈ [0, 1]. When α = 0, we recover the neo-
Hookean case.

1The parameter φ is essentially the retardation time.
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3. Radial deformation and stress

We consider a spherical shell whose internal and external radii in the undeformed configuration (which we
assume to be the reference configuration) are S and Σ, respectively. We then consider a set of curvilinear
coordinates of spherical type and denote by (R,Θ,Φ) the material coordinates and by (r, θ, ϕ) the spatial
ones. We confine ourselves only to spherically symmetric deformations. So, we represent (1) as

r = r (R, t) , Θ = θ, Φ = ϕ, (7)

and, recalling (4), we obtain2 (see also [20])

r = r (R, t) = 3
√

(R3 − S3) + s3 (t), with S ≤ R ≤ Σ, (8)

where s(t) is the position at time t of the shell inner radius. The position at time t of the outer radius is

σ (t) = 3
√

Σ3 − S3 + s3 (t). (9)

The inverse of (8) is

R (r, t) = 3
√

S3 + (r3 − s3 (t)), with s (t) ≤ r ≤ σ (t) . (10)

Hence, s (t) and σ (t) are the two boundaries delimiting the material domain

Ω = {s (t) ≤ r ≤ σ (t) , −π/2 < θ < π/2, −π < ϕ ≤ π} , (11)

We remark that Ω is a time evolving domain, since both s (t) and σ (t) evolve in time. Actually s (t) and,
due to formula (9), also σ (t) are free boundaries since their evolution is a priori unknown.

Denoting by ṙ (R, t) and r̈ (R, t) the radial velocity and acceleration, the Eulerian descriptions of these
fields are

v (r, t) = ṙ (R, t)|R=R(r,t) =
s2ṡ

r2
, s (t) ≤ r ≤ σ (t) , (12)

r̈ (R, t)|R=R(r,t) =
∂v

∂t
+ v

∂v

∂r
=

s̈s2 + 2ṡ2s

r2
− 2

(
ṡs2

)2

r5
, s (t) ≤ r ≤ σ (t) .

In particular, since v = v (r, t) er, it is trivial to verify that ∇·v = 0. Moreover, introducing the so-called

acceleration potential ζ, such that r̈ = −∂ζ

∂r
, we have

ζ =
s̈s2 + 2ṡ2s

r
−

(
ṡs2

)2

2r4
. (13)

Next, it turns out that

F =

⎛

⎝
R2/r2 0 0

0 r/R 0
0 0 r/R

⎞

⎠ , F
−1 =

⎛

⎝
r2/R2 0 0

0 R/r 0
0 0 R/r

⎞

⎠ (14)

B =

⎛

⎝
R4/r4 0 0

0 r2/R2 0
0 0 r2/R2

⎞

⎠ , B
−1 =

⎛

⎝
r4/R4 0 0

0 R2/r2 0
0 0 R2/r2

⎞

⎠ (15)

L =
s2ṡ

r3

⎛

⎝
−2 0 0
0 1 0
0 0 1

⎞

⎠ , D =
1
2
(L + L

T) = L. (16)

2Following § 61 and § 62 in [2], r3 = R3 + A (t), so that in our notation A (t) = s3 (t) − S3.
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Within the class of spherical deformations, the constitutive Eq. (5) gives rise to the following system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Trr = −p + β1
R4

r4
+ β−1

r4

R4
+ TV

rr,

Tθθ = −p + β1
r2

R2
+ β−1

R2

r2
+ TV

θθ,

TV
rr = − 1

φ

·
T

V

rr − 4η
s2ṡ

r3
,

TV
θθ = − 1

φ

·
T

V

θθ + 2η
s2ṡ

r3
,

(17)

where the equations for Tϕϕ and TV
ϕϕ are formally identical to those for Tθθ and TV

θθ. This implies that
identical initial conditions lead to the same solution. Therefore, assuming Tϕϕ(0) = Tθθ(0), Tϕϕ and Tθθ

identify.

4. Motion of the spherical shell

The only non-trivial component of the motion equation is the radial one, namely

− ρ
∂ζ

∂r
=

1
r2

∂

∂r

(
r2Trr

) − Tθθ + Tϕϕ

r
, (18)

in which ρ is the material density, body forces are neglected, and ζ is the acceleration potential (13).
Concerning the force driving the motion, we assume that the shell is subjected to a uniform internal
pressure pin and to a uniform pressure pext acting on the shell external face. Recalling (12) and that
Tθθ(0) = Tϕϕ(0), Eq. (18) rewrites as

− ρ
∂ζ

∂r
=

∂Trr

∂r
+

2
r

(Trr − Tθθ) . (19)

Recalling (17), the last term can be written as

Trr − Tθθ = β1

(
R4

r4
− r2

R2

)
+ β−1

(
r4

R4
− R2

r2

)
+ k, (20)

with
k = TV

rr − TV
θθ. (21)

In particular, exploiting (17)2 and (17)4, we have

k̇ + φk = −6ηφ
s2ṡ

r3
,

whose solution is

k = k0e
−φt − 6ηφ

r3

t∫

0

ṡ (τ) s2 (τ) e−φ(t−τ)dτ, (22)

where k0 = k|t=0. We now insert (22) into (20) and integrate (19) in the r variable, for r ∈ [s, σ].
Considering the various terms separately, we have
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−
σ∫

s

∂ζ

∂r
dr = ζ (s) − ζ (σ) =

(
s̈s + 2ṡ2

) σ − s

σ
+

ṡ2

2

(
s4 − σ4

σ4

)
,

σ∫

s

∂Trr

∂r
dr = Δp, with Δp (t) = pin (t) − pext (t) ,

σ∫

s

2
r

(Trr − Tθθ) dr = f + 2

σ∫

s

k

r
dr, (23)

with

f = 2

σ∫

s

[
β1

(
R4

r4
− r2

R2

)
+ β−1

(
r4

R4
− R2

r2

)]
dr

r
. (24)

So, focussing on (23), we evaluate the second integral getting

2

σ∫

s

k

r
dr = 2k0e

−φt ln
(σ

s

)
+ 4ηφ

(
1
σ3

− 1
s3

)
y (t)

= 2k0e
−φt ln

(σ

s

)
− 4ηφ

Σ3 − S3

σ3s3
y (t) , (25)

where

y (t) =

t∫

0

ṡ (τ) s2 (τ) e−φ(t−τ)dτ. (26)

Concerning the term f given by (24), we introduce

ξ =
R

r
, ⇒

(10)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dr

r
=

ξ2

1 − ξ3
dξ,

ξ|s =
S

s
, ξ|σ =

Σ
σ

,

so that

f = − G

1 + α

{

2
(

Σ
σ

− S

s

)
+

1
2

((
Σ
σ

)4

−
(

S

s

)4
)

+

+ 2α
( s

S
− σ

Σ

)
+ α

((
Σ
σ

)2

−
(

S

s

)2
)}

, (27)

where we have exploited (6).
Summarizing, after the integration, the motion equation rewrites as

ρ

[
(
s̈s + 2ṡ2

) σ − s

σ
+

ṡ2

2

(
s4 − σ4

σ4

)]
= Δp + 2k0e

−φt ln
(σ

s

)
+

−4ηφ
Σ3 − S3

σ3s3
y (t) + f (s) ,

with y and f given by (26) and (27), respectively.
We now introduce the characteristic dimensionless parameters

Σ̃ =
Σ
S

, ã =
ηφ

G
, b̃ = φtc, with tc =

√
ρS2

G
, (28)
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the dimensionless variables

s̃ =
s

S
, σ̃ =

σ

S
=

3
√

Σ̃3 − 1 + s̃3, t̃ =
t

tc
, (29)

and the functions

f̃ =
f

G
= − 1

1 + α

⎧
⎨

⎩
2

(
Σ̃
σ̃

− 1
s̃

)

+
1
2

⎛

⎝

(
Σ̃
σ̃

)4

− 1
s̃4

⎞

⎠

+2α

(
s̃ − σ̃

Σ̃

)
+ α

⎛

⎝

(
Σ̃
σ̃

)2

− 1
s̃2

⎞

⎠

⎫
⎬

⎭
, (30)

ỹ =
y

S3
= e−bt̃

t̃∫

0

ds̃

dτ̃
s̃2 (τ̃) ebτ̃dτ̃ ,

Δp̃
(
t̃
)

=
Δp

(
t̃tc

)

G
.

We thus obtain the dimensionless equation (where we omit “˜” to keep the notation as light as possible)

s̈s
(
1 − s

σ

)
+ ṡ2

(
3
2

− 2
s

σ
+

1
2

s4

σ4

)
= Δp + 2

k0

G
e−bt ln

(σ

s

)
+

−4a
Σ3 − 1
σ3s3

y + f. (31)

If we consider as initial condition s (0) = 1, i.e., the undeformed configuration, we have k0 = 0, and
we can transform Eq. ( 31) in a system of two autonomous ODEs

⎧
⎪⎪⎨

⎪⎪⎩

s̈s
(
1 − s

σ

)
+ ṡ2

(
3
2

− 2
s

σ
+

1
2

s4

σ4

)
= Δp − 4a

Σ3 − 1
σ3s3

y + f,

ẏ = −by + ṡs2,

(32)

whose initial conditions are s (0) = 1, ṡ (0) = ṡo, y (0) = 0. In Sect. 5, we shall analyze the stability of
the equilibrium configurations of (32) in the class of spherically symmetric disturbances.

5. Equilibrium configurations

In this section, we focus on the equilibrium configurations of system (32) and their stability. However,
it should be stressed that our analysis does not guarantee stability to arbitrary disturbances, since we
only consider a restricted class of deformations, i.e., the spherically symmetric ones. A similar issue has
been deeply investigated in [21,22]. In these papers, the authors, studying the flow between rotating
plates, showed the existence of an infinite number of solutions that lack axial symmetry close to any
axially symmetric solution. Thus, none of the axially symmetric solutions are stable within the full class
of possible solutions, while just restricting to axially symmetric class one finds such solutions to be stable.
This general conclusion obviously applies also to our case.

We start considering a prescribed constant pressure difference Δp between inlet and outlet, and k0 = 0,
so that system (32) is autonomous. Recalling the energy balance, we have

d

dt

⎛

⎝
∫

Ω

ρ
v2

2
d3x

⎞

⎠ = −
∫

Ω

T · Dd3x +
∫

∂Ω

T · ver ds (33)
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where Ω is given by (11), v is the Eulerian velocity given by (12) and T represents the force (per unit
surface) acting on the shell boundary, namely

∫

∂Ω

T · ver ds = 4πΔpṡs2.

The last term at the right hand side of (33) becomes
∫

Ω

ρ
v2

2
d3x = 4πρ

[
ṡ2s3

2

(
1 − s

σ

)]
,

while, recalling (16), (17), and (21),

−
∫

Ω

T · Dd3x = 4πṡs2f (s) + 4π

σ∫

s

2
k (r, t)

r
ṡs2dr,

with f given by (24) or, in an explicit form, by (27 ). Thus, recalling (25), (26) and the dimensionless
quantities introduced in (28) and (29), formula (33) can be rewritten as3

d

dt

[
A (s)

2
ṡ2 + V (s)

]
= −χyM (s) , (34)

where

V (s) = −s3Δp

3
−

s∫

1

z2f dz , (35)

A (s) = s3
(
1 − s

σ

)
,

M (s) =
1

sσ3 (s)
, χ = 4a

(
Σ3 − 1

)
> 0,

where both A (s) and M (s) are strictly positive. So, the equilibrium configurations (seq, yeq) of (32),
which are given by

⎧
⎪⎪⎨

⎪⎪⎩

Δp − 4a
Σ3 − 1
σ3s3

eq

yeq + f (seq) = 0,

yeq = 0,

can be obtained by solving

V ′ (s) = 0, ⇒ f (s) = −Δp, (36)

with V (s) given by (35). So, in this specific case, the equilibrium configuration seq corresponds to the
stationary points of V (s). This result should not be misleading, as it is due to the peculiar mathematical
structure of the problem. Indeed, since seq is a stationary point of V , it could be automatically assumed
that seq is stable if it is an isolated minimum of V . We, however, remark that, on dissipative systems,
one cannot make general conclusions concerning stability just on the basis of the stored energy. In fact,
in entropy producing systems, it is the dissipation (entropy production) that governs the evolution of
the problem. For this reason, we study the stability of seq through a linear analysis. In other words, we

3We remark that we could have obtained (34) just by multiplying ( 32)1 by ṡs2.
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Fig. 1. Stable equilibria corresponding to three different values of Δp for fixed choices of α and Σ. We notice that seq
corresponding to Δp = 0 is the undeformed one, which, by the way, is also stable

analyze the stability of seq, i.e., the generic solution of (36), writing (32) as a first-order system in the
unknowns (s, u, y), with u = ṡ , i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

ṡ = u,

u̇ = − 1
A (S)

[
A′

2
u2 + V ′ + χyM

]
,

ẏ = −by + us2,

and performing a linear analysis around (seq, 0, 0) . This means, as already remarked, that this analysis
provides information only within the class of spherically symmetric deformations. Evaluating the Jacobi
matrix in (seq, 0, 0), we have

J (seq, 0, 0) =

⎛

⎝
0 1 0

J21 0 J23

0 s2
eq −b

⎞

⎠ ,

where

J21 (seq, 0, 0) = −V ′′ (seq)
A (seq)

, J23 (seq, 0, 0) = −χ
M (seq)
A (seq)

< 0,

The corresponding characteristic polynomial is

λ3 + bλ2 − λ
(
J21 + J23s

2
eq

) − bJ21 = 0. (37)

If all the eigenvalues satisfy Re(λ) < 0, then (seq, 0, 0) is locally asymptotically stable. In particular, if seq

is an isolated minimum of V , i.e., V ′′ (seq) > 0, the coefficients of (37) are positive. Hence, applying the
Routh–Horwitz criterion [23,24], we find that all roots of (37) have negative real part, and so (seq, 0, 0)
is stable. In particular, the natural undeformed configuration (1, 0, 0), that corresponds to Δp = 0 , is
stable, see Fig. 1.

On the other hand, if seq is an isolated maximum of V , i.e., V ′′ (seq) < 0, Routh–Horwitz criterion
entails that at least one eigenvalue has positive real part. Hence, the maxima of V correspond to unstable
configurations.

Now, still keeping k0 = 0, we investigate the solution to (36 ) corresponding to a prescribed Δp > 0.
Figure 2 shows that, depending on α ∈ (0, 1), we can have from one to three equilibria seq for given
Δp > 0 and Σ > 1.

The typical equilibrium configurations are summarized in Fig. 2. We verified the stability properties by
evaluating the sign of V ′′. Referring to the upper left panel, we have three equilibrium configurations for
α ∈ (0, αcr). However, only two branches are stable. The value α = α1,cr corresponds to a turning point
(the number of equilibria changes). When α ∈ (αcr, 1), only one equilibrium configuration (close to 1) is
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Fig. 2. Depending on the values of (Δp, Σ), the locus of equilibria shows a single branch or two disjoint branches. In the
upper left panel, we have one turning point, P = (αcr, scr) = (0.0038, 19.924), while the upper right panel does not show
any turning point. In the lowest panel, we have two turning points, P1 = (α1,cr, s1,cr) = (0.028, 2.02), P2 = (α1,cr, s2,cr) =
(0.0988, 4.806). The stable/unstable character of equilibria is clearly indicated (see also Fig. 4 in the sequel)

observable. In the upper right panel of Fig. 2, we have a single equilibrium curve which is always stable.
In the lower third panel of Fig. 2, we have a single equilibrium curve which shows two turning points
αi,cr (i = 1, 2). When α ∈ (0, α1,cr), only one equilibrium stable configuration is observable. However, we
remark that the corresponding seq values are in an nonphysical range. When α ∈ (α1,cr, α2,cr), only the
lowest and the uppest branches are stable. Finally, for α ∈ (α2,cr, 1), there is only one stable configuration.

Figure 3 shows some examples of stable solutions originated in the attraction basin of equilibria.
We now consider again the lower panel in Fig. 2 and fix an initial value so in the interval (s1,cr, s2,cr)

and select three different materials, corresponding to three different choices of α, namely s(0) = 4, and

α1 = 0.01 ∈ (0, α1,cr), α2 = 0.05 ∈ (α1,cr, α2,cr), α3 = 0.1 ∈ (α2,cr, 0.15).

The evolution of s(t) in these three cases confirms the stability/instability character of the equilibria
shown in the lower right panel of Fig. 4.
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Fig. 3. Example of solutions which originate close to equilibria. In all cases, we fixed a = 3.5 and b = 1. Left upper panel,
seq = 1.0473. Right upper panel, seq = 1.147. Lower left panel, seq = 8.01. Lower right panel, seq = 4.39

6. Dynamics

The general problem, that is (31), ( 32)2, besides being highly nonlinear, is also of integral-differential
type, namely

s̈s
(
1 − s

σ

)
= −ṡ2

(
3
2

− 2
s

σ
+ 1

2

s4

σ4

)
+

+ Δp + f + 2
k0

G
e−bt ln

(σ

s

)
− 4a

(
Σ3 − 1

)

s3σ3
e−bt

t∫

0

ṡs2ebτdτ̃ .
(38)

In particular, the initial data and Δp are linked to k0/G. Indeed, by setting s̈o = s̈ (0), ṡo = ṡ (0),
so = s (0) ≥ 1, fo = f (so), and σo = 3

√
Σ3 − 1 + s3

o, we have

2
k0

G
ln

(
σo

so

)
= s̈oso

(
1 − so

σo

)
+ ṡ2

o

(
3
2

− 2
so

σo
+

1
2

s4
o

σ4
o

)
− Δp − fo. (39)

However, (38) can be rearranged as a third-order non-autonomous ODE. Indeed, multiplying by s3σ3ebt,
we obtain

A1(s, t)s̈ = A2(s, ṡ, t) − 4a
(
Σ3 − 1

)
t∫

0

ṡs2ebτdτ, (40)

where

A1 (s, t) = s4σ3
(
1 − s

σ

)
ebt,
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Fig. 4. The upper panels and the left lower panel show three solutions which originate in s(0) = 4 for three different
materials. The three values of α are chosen in such a way to be the first in (0, α1,cr), the second in (α1,cr, α2,cr), and the
third in (α2,cr, 0.15). Only the third solution is attracted toward an equilibrium close to 1 (seq = 1.698), while the other
two tend to stable but nonphysical equilibria (seq = 15.2 and seq = 85, respectively). In all cases, a = 3.5 and b = 1

A2(s, ṡ, t) = s3σ3

[(
−ṡ2

(
3
2

− 2
s

σ
+

1
2

s4

σ4

)
+ Δp + f

)
ebt + 2

k0

G
ln

(σ

s

)]
,

with k0 given by (39). Now, it suffices to differentiate ( 40) once more with respect to time to get the
following Cauchy problem

⎧
⎨

⎩

A1
...
s = −Ȧ1s̈ + Ȧ2 − 4a

(
Σ3 − 1

)
ṡs2ebt,

s(0) = so ≥ 1, ṡ(0) = ṡo, s̈(0) = s̈o,
(41)

where A1 > 0.
Figure 5 shows some solutions to (41). In our simulations, we fixed Σ = 1.02, α = 0.5, a = b = 1,

s(0) = so ≥ 1 , and ṡ(0) = s̈(0) = 0. The pressure difference Δp is allowed to vary from 0.01 to
1.5. It should be said, anyway, that numerical simulations show an extreme sensitivity to the remaining
parameters, and physically significant bounded solutions can be obtained only for particular values of α,
Δp and Σ. Any of these solutions can easily become singular for a small change of these values.

7. Concluding remarks

The problem of inflation of a nonlinear viscoelastic thick-walled spherical shell has numerous applica-
tions ranging from biology to space technology. However, the ability of a model to properly describe
the peculiar dynamics of shells substantially resides in the reliability of the constitutive model. In this
paper, we have tested the model illustrated in [13] and applied it to the problem of the oscillations of
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Fig. 5. For fixed α, we simulate the dynamics governed by system (41). For identical choices of the initial value, the
increase of Δp leads, as expected, to the increase in asymptotic solution. Also, the oscillation frequency appears to decrease
for increasing Δp

a spherical shell driven by an inner-outer pressure difference. The model predicts the existence of sta-
tionary configurations with spherical symmetry. The stability of these configurations has been analyzed
considering only spherically symmetric disturbances, and therefore, the results obtained cannot be global.
However, limiting ourselves only to spherically symmetric deformations, it turns out that the stationary
configurations corresponding to isolated minima of the potential energy V given by (35) are stable. The
dynamics of the shell obeys to an integro-differential equation. Hence, the latter has been reduced to a
non-autonomous third-order ordinary differential equation whose solution is decidedly easier. The numer-
ical simulations have highlighted how the material parameters strongly influence the decay toward the
stable configurations.

We believe that our model, besides being able to predict both stress relaxation and creep/recovery
phenomena, has the advantage of a greater simplicity. Indeed, the comparison with other constitutive
equations has to be read not just at a mathematical level, but rather considering the minimal number of
parameters to be experimentally fitted.
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