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Abstract

The present work deals with the unsteady galloping instability, which arises at low reduced flow
velocities, for steel-concrete composite bridge decks during the incremental launching phase. In
this particular situation, the light weight and bluff shape of the steel box, which is normally first
launched, imply a high proneness to the risk of unsteady galloping. The main goal of this thesis
is to understand the unsteady galloping with respect to these special cross sections, which have
not been investigated in depth before, and to develop an analytical approach for the modeling
of unsteady galloping as a basis for design of bridges.

Wind tunnel tests on three sectional models, among which are a generic bridge deck model with
typical open cross section and two reference cylinder models, confirmed the high proneness
to unsteady galloping instability for the particular situation of bridge launching. Especially,
the typical unsteady galloping which arises due to the interaction with Kármán-vortex induced
vibration was observed at the 4◦ mean flow incidence of the bridge deck model, fixing the
galloping onset at the Kármán-vortex resonance wind speed up to a quite high Scruton number
(the mass-damping parameter). Moreover, the sensitivity of unsteady galloping behaviors to
mean flow incidence was highlighted. At the null mean flow incidence of the bridge deck model,
the unsteady galloping was initiated in less understandable manner, being the onset velocity
clearly higher than the Kármán-vortex resonance one even for a very low Scruton number.

Subsequently, mathematically modeling the unsteady galloping was carried out, with a modified
form of Taumra’s nonlinear wake oscillator model. Satisfying predictions have been achieved
not only for a 2:1 rectangular cylinder, but also for the bridge deck model at its 4◦ mean flow
incidence. In particular, the typical unsteady galloping behavior, that lower than a certain va-
lue of Scruton number galloping arises at the Kármán-vortex resonance wind speed, is well
captured by the wake oscillator model. Attention was also paid to the so-called physical con-
siderations in the wake oscillator model. Further modifications for the wake oscillator model
were consequentially proposed, exhibiting better agreements with the physics of the near-wake
of sharp-edged bluff body, maintaining at the same time a good capability for the predictions of
unsteady galloping behaviors.

Finally, the wake oscillator model was further extended for continuous structural system, ba-
sed on coupling multiple wake oscillators to the structural system via finite element method.



A case study, concerning a steel-concrete composite bridge during the critical launching phase,
was presented. In particular, by taking into account the aerodynamic contributions of a lattice
launching nose, the potentiality of efficiently suppressing the galloping instability through aero-
dynamic optimization for the launching nose was revealed in the case study. This has promoted
consequent wind tunnel tests on the further optimized launching nose, which combined with
numerical predictions from the wake oscillator model further confirmed the aforementioned
potentiality.
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Notations

Symbols for matrix and vector are extra indicated with bold font

Greek Variables

α . . . . . . . . . . . wind angle of attack or torsional degree of freedom

α0 . . . . . . . . . . mean wind angle of attack (for oscillation body)

β , λ . . . . . . . . coefficients in Tamura’s nonlinear wake oscillator model

φi . . . . . . . . . . mode shape vector for structure

Φ, Φe . . . . . . . mode shape matrix for structure, and the expanded one

ψs, ψsr . . . . . displacement vector for a structural system, and its reduced form due to boun-
dary conditions

ψt, ψtr . . . . . . displacement vector for combined system of structure and wake oscillators, and
its reduced form due to boundary conditions

ψtn . . . . . . . . . the normalized forms of ψtr, by expanded mode shape matrix Φe

ϑ, ϑr . . . . . . . displacement vector for wake oscillators, and its reduced form due to boundary
conditions

ξ . . . . . . . . . . . vector collected the generalized displacement in mode space

δ0 . . . . . . . . . . logarithmic mechanical damping

δs . . . . . . . . . . . shear layer thickness

n . . . . . . . . . . . fraction of vorticity in shear layer being transferred to downstream mature vor-
tex

γ . . . . . . . . . . . mode shape factor in VIV theories

µ . . . . . . . . . . . dynamic viscosity of flow

ω . . . . . . . . . . . circular frequency

ω0 . . . . . . . . . . circular natural frequency

φ . . . . . . . . . . . mode shape function

Φ(τ̃) . . . . . . . . Wagner’s function



vi Notations

ρ . . . . . . . . . . . air density

ρr . . . . . . . . . . correlation coefficient between two points of a distance of r

ρu,u . . . . . . . . . normalized auto-correlation function of u(t)

σL . . . . . . . . . . standard deviation of fluctuation lift due to vortex shedding

σu . . . . . . . . . . standard deviation of fluctuation part of longitudinal wind speed

τ . . . . . . . . . . . reduced time, defined through body’s natural circular frequency τ = ω0t

τlag . . . . . . . . . reduced time lag

µ̃ . . . . . . . . . . . tiny number

τ̃ . . . . . . . . . . . reduced time defined as Ut/bh

υ . . . . . . . . . . . ratio of V to Vr

υs . . . . . . . . . . ratio of US to U

Γ . . . . . . . . . . . circulation of a vortex

ϕ . . . . . . . . . . . phase angle

ϕlag . . . . . . . . . phase lag

ϕLm . . . . . . . . . phase angle by which motion-induced lift leads body’s displacement, defined
in a range −π ≤ ϕLm ≤ π

ϑ . . . . . . . . . . . near-wake inclination angle in Tamura’s nonlinear wake oscillator model

ϑe f f . . . . . . . . effective rotation angle of near-wake lamina for generating vortex shedding for-
ce on oscillation body

ξi . . . . . . . . . . . the generalized displacement in mode space (corresponding to its mode shape
vector φi)

ζ0 . . . . . . . . . . mechanical critical damping ratio

Latin variables and Constants

Ũ , Ṽ . . . . . . . instantaneous longitudinal and lateral wind speed

c̄i, c̃i, k̄i . . . . . diagonal elements forC̄, C̃ and K̄ matrices

r̄ . . . . . . . . . . . r = Ȳs
V

Ȳ . . . . . . . . . . . non-dimensional amplitude of Y

Ȳs . . . . . . . . . . . steady-state non-dimensional amplitude

Īr, C̄r, C̃r, K̄r the reduced forms ofĪ , C̄, C̃ and K̄, after applying boundary conditions

Ī , C̄, C̃, K̄ . mass of inertia, linear damping, nonlinear damping and stiffness matrices for
multiple wake oscillators



Notations vii

Âr,B̂r, Ĝr, Ĥr the reduced forms of Â,B̂, Ĝ and Ĥ , after applying boundary conditions

Â,B̂, Ĝ, Ĥ . matrices responsible for the coupling between structure and wake oscillators

Ms, Cs,Ks mass, damping and stiffness matrices for a structural system

Mt, C1t, C3t,Kt global mass, linear-damping, nonlinear-damping and stiffness matrices,
for combined degrees of freedom of structure and wake oscillators

Msr, Csr,Ksr the reduced forms ofMs, Cs andKs, after applying boundary conditions

Mtn, C1tn, C3tn,Ktn the normalized forms ofMtr,C1tr,C3tr andKtr, by expanded mode
shape matrix Φe

Mtr, C1tr, C3tr,Ktr the reduced forms of Mt, C1t, C3t and Kt, after applying boundary
conditions

qs . . . . . . . . . . external force vector for a structural system

qt, qtr . . . . . . . external force vector for combined system of structure and wake oscillators,
and its reduced form due to boundary conditions

qQS, qQSr . . . . quasi-steady transverse force vector, and its reduced form due to boundary con-
ditions

qtn . . . . . . . . . . the normalized forms of qtr, by expanded mode shape matrix Φe

âi, b̂i, ĝi, ĥi . . elements for Â, B̂, Ĝ and Ĥ matrices

êi . . . . . . . . . . . coefficent for elements in qQS vector

Iu, Iv, Iw . . . . averaged Iu, Iv and Iw, of spatially discrete points

Lu . . . . . . . . . . averaged Lu of spatially discrete points

U . . . . . . . . . . . averaged U of spatially discrete points

ã, b̃, c̃ . . . . . . . parameters in Corless&Parkinson’s model

w̃ . . . . . . . . . . . downwash

a . . . . . . . . . . . combined with bh to indicate of the position of elastic center, for elastically
supported body

A1 . . . . . . . . . . galloping factor according to quasi-steady thoery

Ai . . . . . . . . . . coefficients of polynomials approximating CFy-α curve (galloping factor A1

coresponds to the linear slope)

A1,equ . . . . . . . equivalent galloping factor for a continuous system

b . . . . . . . . . . . width of wind tunnel model or bridge deck (chord length)

bh . . . . . . . . . . half chord length

bavg . . . . . . . . . averaged value of top and bottom widths of a wind tunnel model



viii Notations

C(k), F(k), G(k) Theodorsen’s circulation function, as well as its real and imaginary part

cα . . . . . . . . . . damping for torsional degree of freedom

CD, CL, CM . . drag, lift and moment coefficient (steady part)

cg . . . . . . . . . . width of the strip of turbulence grid

C′L,c′L . . . . . . . standard deviation of lift coefficient fluctuation for the entire prism body and
for a unit length of the prism body

Cv . . . . . . . . . . unsteady lift coefficient due to vortex exciting in Corless&Parkinson’s model

cy . . . . . . . . . . . damping for heaving degree of freedom

cϑ . . . . . . . . . . cofficient related to the damping force for oscillation near-wake lamina, accor-
ding to unsteady thin airfoil theory

CFy,CQS
Fy . . . . . transverse force coefficient according to quasi-steady theory

CL,un . . . . . . . . unsteady lift due to effective rotation angle of near-wake lamina, in Tamura’s
nonlinear wake oscillator model

CL0,cL0 . . . . . . sinusoidal equivalent amplitude of the fluctuation lift coefficient due to vortex
shedding for the entire prism body, and for a unit length of the prism body

Clat,0 . . . . . . . . RMS value of the fluctuation lift coefficient due to vortex shedding

CLm0 . . . . . . . . amplitude of motion-induced lift coefficient

CLmR, CLmI . . portion of CLm0 in phase with y(t), and in phase with ẏ(t)

CLm . . . . . . . . . motion-induced lift coefficient

Cm0 . . . . . . . . . potential flow inertia coefficient in Luo&Bearman’s model

Cpb . . . . . . . . . base pressure coefficient of bluff body

CR . . . . . . . . . . derived coefficient for FR

d . . . . . . . . . . . height of wind tunnel model or bridge deck

D, L, M . . . . . aerodyanmic drag, lift and moment (steady part)

dg . . . . . . . . . . mesh size of turbulence grid

dre f , lre f . . . . . reference height and length for launching nose model

E . . . . . . . . . . . Young’s modulus

e . . . . . . . . . . . combined with bh to indicate of the position of gravity center, for elastically
supported body

f . . . . . . . . . . . slope of the unsteady vortex-excited lift coefficient to the near-wake inclination
ϑ in Tamura’s nonlinear wake oscillator model

Fb . . . . . . . . . . force reaction due to boundary support
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FL . . . . . . . . . . restoring force of near-wake lamina

FR . . . . . . . . . . lift variation on near-wake lamina, due to its circulation change induced by
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Fy . . . . . . . . . . transverse aerodynamic force

G . . . . . . . . . . . gravity center of near-wake lamina

h . . . . . . . . . . . width of near-wake behind bluff-body

h∗ . . . . . . . . . . non-dimensional form of h, defined h/d

H∗i , A∗i . . . . . . flutter derivatives

Hn(k) . . . . . . . Hänkel’s functions

havg . . . . . . . . . (hstd+hsk)/2

hsk . . . . . . . . . . wake width determined by the distance between minus peaks of skewness of Ũ ,
being Ũ transversely measured in the near-wake of bluff body

hstd . . . . . . . . . wake width determined by peak distance of std(Ũ)/U0, being Ũ transversely
measured in the near-wake of bluff body

I . . . . . . . . . . . . mass moment of inertia at elastic center

i . . . . . . . . . . . . i =
√
−1, or used as number counter

Iϑ . . . . . . . . . . mass moment of inertia for near-wake lamina

Iu, Iv, Iw . . . . . turbulence intensities

Iϑ ,a . . . . . . . . . the added inertia of moment for oscillation near-wake lamina, according to un-
steady thin airfoil theory

Ixx . . . . . . . . . . second moment of area of a cross section

Jn(k), Yn(k) . . modified Bessel’s functions of first and second kind

K . . . . . . . . . . . reduced frequency defined as bω/U

k . . . . . . . . . . . reduced frequency defined as bhω/U

kα . . . . . . . . . . stiffness for torsional degree of freedom
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1 Introduction

1.1 Unsteady Galloping

Wind induced structural vibration is an important topic in civil engineering. In recent decades,
the development of modern materials and construction techniques has promoted the emergence
of a great number of structures characterizing with light-weight and slender fashion, exhibiting
an increased susceptibility to the action of wind. Typical examples include tall buildings, chim-
neys, telecommunication masts and large-span bridges. For some particular cases, wind loading
has become the key point in controlling the design process, like the Xihoumen Bridge in China
and the Burj Khalifa in Dubai. The dynamic loading due to wind exciting will not only bring
damage accumulation for structures in the long term, but also be able to result in an entire col-
lapse of structure in a very short term. For the latter, an infamous example is the collapse of the
Tacoma Narrows Bridge on November 7th 1940 in USA.

In natural environment, the dynamic exciting of wind on structures results from various origins.
According to Naudascher & Rockwell (2012), these could be:

• EIE: Extraneously induced excitation (turbulence in natural wind);

• IIE: Instability induced excitation (flow instability inherent to the flow created by the
structure under consideration, e.g., von Kármán vortices);

• MIE: Motion induced excitation (aerodynamic forces arising from the motion of the bo-
dy).

For flexible structures with bluff cross section in natural wind, the three kinds of aerodynamic
exciting exist simultaneously and relate to each other inseparably. Nevertheless, depending on
the dominant, wind induced structural vibration can be classified as buffeting which is due to
the atmospheric turbulence, vortex induced vibration (VIV) trigger by the shed vortices, and
aeroelastic instability (i.e, galloping and flutter) driven by the motion-induced aerodynamic
force.

For this thesis, the across-wind galloping is in object (if not specially noted, galloping in this
thesis denotes the across-wind one). It is an aeroelastic instability typical of slender structures
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with bluff noncircular cross sections, like square or D shapes. Compared to the vortex induced
vibration, which could also occur in the across-wind direction, the apparent difference is the
unrestricted oscillation amplitude with the increase of wind speed. The quasi-steady (QS) theory
is well accepted as the classical approach to treat the across-wind galloping problem, provided
that a high reduced wind speed is ensured. Its validity has been confirmed for various cross
section types, both in smooth and turbulent flow, and widely adopted in many design codes, e.g.,
the Eurocode 1 (EN 1991-1-4 2010). Nevertheless, a high value of mass-damping parameter,
known as Scruton number (Sc), is usually needed to ensure that the galloping instability occurs
in a high reduced wind speed range. Otherwise, the unsteady effects due to shed vortices and
fluid memory at low reduced wind speeds become non-negligible, significantly invalidating
the quasi-steady prediction. The galloping instability occurring at low reduced wind speeds is
usually named “unsteady galloping”, as opposed to the galloping instability initiating at high
reduced wind speeds, which can be called “high-speed galloping” or “quasi-steady galloping”
due to the good performance of the QS theory.

In particular, the interaction of galloping with Kármán vortex induced vibration represents a
typical type of unsteady galloping (if not specially noted, vortex induced vibration in this thesis
denotes the one due to von Kármán type vortex). In case that the vortex induced vibration is
well separated from galloping, the two kinds of aeroelastic responses can be attained by their
respective theories. For the vortex induced vibration, several mathematical models are available
in the literature, ranging from the simplest Harmonic model (Wyatt & Scruton 1981), Single-
Degree-of-Freedom models (e.g., the Scanlan’s nonlinear model (Ehsan & Scanlan 1990)), to
the more complicated Two-Degree-of-Freedom models (e.g., the Skop-Griffin model (Skop &
Griffin 1973)). For galloping, the classical approach is the nonlinear quasi-steady galloping
theory contributed, e.g., by Prof. Parkinson (Laneville & Parkinson 1971; Parkinson & Brooks
1961; Parkinson & Smith 1964; Parkinson & Sullivan 1979), providing good predictions not
only for the reduced onset wind velocity Vg but also for the post-critical response. Under the
condition that a high reduced wind velocity is ensured, variation of the Scruton number mainly
leads to a quantitative change in the response curve (see Fig. 1.1 (a)). However, if the vortex
induced vibration is not well separated from galloping, the two phenomena are able to interact
with each other and promote together more complicated, even peculiar, aeroelastic behaviors
(see Fig. 1.1 (b)). In particular, the supposed VIV response at the reduced Kármán-vortex re-
sonance wind speed Vr, may turn into the amplitude-unrestricted galloping behavior for low
Scruton number (case b1 and b2 in Fig. 1.1 (b)). Moreover, the actual galloping may arise at a
reduced wind velocity lower than the quasi-steady predictions Vg, e.g., case b3 and b4 for medi-
um Scruton number. The variation of the Scruton number actually leads to a qualitative change
of the aeroelastic response. Apparently, the previous mentioned theories respectively for VIV
and galloping are incapable to describe this complicated phenomenon.
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(a) No interaction (b) Interaction

Fig. 1.1: Amplitude-velocity schematic diagrams for interaction and no-interaction between galloping
and VIV (by courtesy of Mannini & al. (2014), redrawn and slightly modified).

The unsteady galloping occurring at low reduced wind speeds is not only physically interes-
ting, but also of great importance for modern structures. Indeed, either for the development of
construction materials and techniques or just for aesthetic requirements, some structures are no-
wadays very slender and lightweight. In fact, evidences of unsteady galloping instability have
already appeared in the recent engineering practice. Examples are two aesthetic arches in Mi-
lan, Italy (Mannini & al. 2016a), a footbridge deck with solid parapets (Cammelli & al. 2017),
and a steel beam bridge during the construction phase (Salenko & al. 2017). In particular, the
steel-concrete composite bridges during launching phase are supposed to be very relevant to
this unsteady galloping, as it will be introduced in the next Section.

1.2 Incremental Launching of Steel-Concrete Composite

Bridges

Incremental launching technique is a widely used method for bridge construction, especially for
the multi-span continuous beam system. Typically for this method, the bridge superstructure is
constructed or assembled at one side of the obstacle to be crossed and then pushed or “launched”
to its final position. More usually, the whole launching process is composed by a series of
increments: new segment of superstructure is step-by-step jointed to the rear of the launched
out superstructure. In modern practice, the length of a new segment is in general a single span,
so that the parking status of the superstructure can be properly maintained at the top of the
erected piers during the manufacturing period of new segment for the next step launching.
This technique is one of the most reasonable way to build a bridge over inaccessible obstacles,
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such as deep valleys, environmentally sensitive or historically protected areas, and poor terrain
conditions for large equipment’s operation. Due to its minimal disturbance to the space beneath,
this method was also frequently applied for urban viaducts.

In the early 1960s, the modern bridge launching approach was developed and first applied to
prestressed concrete bridges. This concept was first implemented on the Rio Caroni Bridge
in Venezuela (Podolny & Muller 1994), built in 1962 and 1963 by its originators, Willi Baur
and Dr. Fritz Leonhardt of the consulting firm of Leonhardt and Andra (Stuttgart, Germany).
Its application to steel bridges was slightly later, not only due to the fact that steel plate was
more expensive at that time but also due to the insufficient development of analytical tools.
An important issue among these is the stability analysis of steel structures, which is particu-
larly important for the launching process. Nevertheless, the subsequent rapid developments of
research in the field of steel structures and in particular the commercial availability of finite-
element software, have promoted the competitivity of steel bridges. Moreover, combination of
reinforced concrete slabs and steel girder led to the arising of composite bridge cross section,
which attained considerable cost reduction. Nowadays, the technique for incremental launching
of steel or composite bridges is quite mature and the capability of crossing larger span is also
enabled due to its light weight.

During the launching process, the most critical condition occurs when the launched-out girder
reaches its maximal length, forming a long cantilever as shown by Fig. 1.2. Here, the static de-
formation of the structural system reaches its maximum, as well as the shear force and moment
at the root of the cantilever. From the structural dynamic point of view, this is also a extreme
condition: the fundamental frequency of the whole structural system gets considerably decrea-
sed due to the long cantilever. For example, the first bending frequency reached about 0.34 Hz
for the Nuttlar Viaduct, Germany, during its critical launching phase, while this natural frequen-
cy quickly recovered back to about 0.9 Hz once the girder reached the next pier and entered the
parking state (Niemann & Hölscher 2012). For another bridge, Aftetal Bridge, also in Germany,
the lowest first bending frequency during the launching phase is about 0.4 Hz (Niemann & Höl-
scher 2013). It is worth noting here that the low-frequency situation met by these two bridges is
actually quite typical during the launching phase, rather than just special cases.

Fig. 1.2: Incremental launching of the Aftetal Bridge, Germany (redrawn according to Hanswille (2014),
dimension in m).
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The consequence of this significantly decreased natural frequency of the structural system is the
increased susceptibility to natural wind, which is maybe the only source of dynamic loading in
this situation. On the one hand, the turbulence of the incoming natural wind has more energy
distributed in the lower frequency range (see, e.g., the longitudinal turbulence spectra measu-
red by Davenport (1961)), so that structures with lower natural frequencies are generally more
sensitive to the same incoming wind. More important is the chance given by this decrease of
natural frequency to aeroelastic phenomena. For the Nuttlar Viaduct, the wind tunnel test of the
bridge deck (the one in construction phase) reported a Strouhal number St = 0.07 in turbulent
flow (Niemann & Hölscher 2012). Considering the deck is about 5 m high, the critical wind
speed for vortex induced vibration is about Ur = 64 m/s for the parking state. This is well above
the design wind speed for the Nuttlar Viaduct (about 33 m/s). However, for the situation in cri-
tical launching phase, the onset wind speed for vortex induced vibration decreases to about Ur

= 24 m/s. Clearly, the dynamic exciting due to natural wind is relevant and should be taken into
account for bridges in the launching phase.

Extra attention should be paid to the steel-concrete composite bridges: the superstructure is
usually launched without the concrete slabs. This results in a considerable reduction of the
weight and a increased capability of crossing a larger span. However, the single steel girder wi-
thout concrete slabs may gain some disadvantages with respect to its aerodynamic properties.
Fig. 1.3 (a) and (b) show the difference of Aftetal Bridge in service status and in construc-
tion phase. Usually, the single steel box is bluffer than the completed one, presenting higher
susceptibility to aeroelastic instability, for example the across-wind galloping. For engineering
structures, risk of aeroelastic instabilities must be avoided since its violent behavior may lead
to the collapse of the whole structures. In fact, as shown in Fig. 1.3 (c), the aerodynamic outline
of the Aftetal Bridge on the first 90 m girder was totally modified during the construction phase
with temporary fairings to eliminate the risk of across-wind galloping (Hanswille 2014).

(a) (b) (c)

Fig. 1.3: Cross-section modification of the Aftetal Bridge, Germany, during the launching phase: (a)
complete steel-concrete composite deck in service; (b) original steel box, and (c) modified steel
box with temporary wind fairings during the launching phase (redrawn from Hanswille (2014)).

At this point, it is clear that the vortex induced vibration and galloping may exist at the same
time for steel-concrete composite bridges during the launching phase. Consequently, a relevant
and important question arises, that is whether the Scruton number of the structures is high
enough so that the two concerned aerodynamic problem can be treated separately. To answer this
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question, more examples of steel-concrete composite bridges erected by incremental launching
method are collected and summarized in Tab. 1.1. The collection is limited to the cases with
considerably large main spans and box type cross sections. Without the concrete slab, the main
superstructure usually has a form of rectangular or trapezoidal box. For some cases, the top of
the steel box is also open, which is typical for the steel girder of composite bridges. The side
ratio of the steel box b/d, defined here as the width to the height of the cross section, can be
found in a range from 1.6 to 2.9 (except the Vaux Viaduct). This is unfortunately the b/d range
in which galloping instability may occur for sharp-edged bluff body (in case of rectangular
cross sections, across-wind galloping is possible for side ratio within about 0.75 ≤ b/d ≤ 3.0
(Parkinson 1965)). Moreover, the mass ratio m∗ of the steel girders during launching phase was
found within 500 to 815 (m∗=m/(0.5ρd2), where m is the mass of the steel girder per meter and
ρ the air density). The damping information is however hard to be collected for these bridges.
Therefore, a logarithmic damping δ0 = 0.03 is assumed here for all the cases. For welded steel
structures, this value is supposed to be reasonable (or even overestimated). Finally, the Scruton
number Sc = δ0m∗ estimated for these bridges is about 15-25. Since the mass ratio is defined by
“d2” rather than “bd”, the Scruton number obtained here is actually quite low. This implies that
the unsteady galloping due to interaction with VIV is probably very relevant for steel-concrete
composite bridges erected by incremental launching method.

Tab. 1.1: Examples of steel-concrete composite bridges erected by incremental launching method. Sour-
ce of data: Vallsundet Bridge, Kuhlmann & al. (2008); Vaux Viaduct, Navarro & al. (2000)
and Dauner & al. (2000); Verrières Viaduct, Berthellemy (2001); Haseltal Bridge, Binder & al.
(2005); Lochkov R1 Bridge, Anistoroaiei & al. (2013); Jiubao Bridge, Wang & al. (2015); Nutt-
lar Viaduct, Niemann & Hölscher (2012) and Wagner (2013); Heidingsfeld Viaduct, Mansper-
ger & al. (2017); Aftetal Bridge, Niemann & Hölscher (2013) and Hanswille (2014).

Built
year

Section
typea

Main span
[m]

d
[m]

b/d
[-]

m
[ton/m]

m∗

[-]
δ0

c

[-]
Scd

[-]

Vallsundet Bridge 1998 Trap. (open) 80 2.8 1.8 - - 0.03 -
Vaux Viaduct 1999 Rect. 130 3.5 -6.5 1.0 -1.8 5.2 b 674 ” 20.2

Verrières Viaduct 2002 Rect. 144 4.5 1.6 8.6 680 ” 20.4
Haseltal Bridge 2006 Trap. 175 4.7 1.7 11.4 815 ” 24.5

Lochkov R1 Bridge 2010 Trap. (open) 99 4.8 2.8 11.1 767 ” 23.0
Jiubao Bridge 2012 Trap. (open) 85 4.5 2.9 8.4 663 ” 20.0

Nuttlar Viaduct 2017 Trap. 115 5.0 2.5 11.0 704 ” 21.2
Heidingsfeld Viaduct 2020 Trap. 120 4.6 2.0 7.5 571 ” 17.2

Aftetal Bridge 2020 Trap. (open) 119.5 5.0 2.0 7.7 500 ” 14.8

a Cross section type during the launching phase. “Trap.” and “Rect.” represent, respectively, the trapezoidal and
rectangular cross section, while “(open)” additionally indicates an open form cross section.
b Averaged value.
c Assumed value.
d Scruton number defined as Sc = δ0m∗ = δ0m/(0.5ρd2).



1.3 Motivation, Objectives and Scope 7

1.3 Motivation, Objectives and Scope

The research work in this thesis is devoted to the unsteady galloping problem for steel-concrete
composite bridges during their launching phase. The motivation arises from two aspects:

• Firstly, it is a fact that a considerable number of steel-concrete composite bridges are no-
wadays constructed by incremental launching method worldwide. However, according to
the author’s knowledge, the quasi-steady theory is still used as the main design tool for
the galloping problem in this situation. The unawareness of the risk of unsteady gallo-
ping may put the concerned structures in a unfavorable or even dangerous situation. An
improved approach for providing reliable predictions is in need.

• Secondly, unsteady galloping itself is a complex aeroelastic phenomenon deserving more
lights shed on. Since it occurs at relatively low reduced flow velocities, the unsteadiness
due to shed vortices and fluid memory plays important role in the flow-structure inter-
action. In fact, understanding the unsteadiness and non-linearity during flow-structure
interaction of oscillation body has always been one of the most important tasks in the
communities of wind engineering and bluff body aerodynamics.

Taking the incremental launching of steel-concrete composite bridges as realistic engineering
background, this research aims at a further contribution to shedding light on the complex nature
the unsteady galloping phenomenon and an exploration of the analytical models for practical
prediction purpose. In particular, generic bridge deck is involved to forward the researches on
simple geometries, e.g., rectangles, to more complicated but realistic structural cross section.

The research scope is limited in field of fluid-structure interaction on an oscillation body with
cross sections of small side-ratio. The dynamic degree of freedom is the across-wind one, so that
the main concerned aeroelastic phenomena are galloping and vortex induced vibration. Flutter
or vortex induced vibration in the torsional degree of freedom is beyond the scope of this thesis,
as well as the aerodynamics for cross sections of large side-ratio. However, they may sometimes
be referred, due to either a need of comparison or some related implications.

The research work of this thesis is outlined in a flow chart shown in Fig. 1.4. In Chapter 2, a
detailed state of the art concerning the unsteady galloping problem is first presented. The expe-
rimental study is organized in Chapter 3 for elaborating the experimental setups, calibrations as
well as pre-examinations, and in Chapter 4 for experimental results. Chapter 5 deals with the
mathematical modeling of unsteady galloping on the wind tunnel sectional models, with respect
to a 2:1 rectangular cylinder and a generic bridge deck model. Efforts to examine the physical
foundation in the used Tamura’s wake oscillator model is also presented. In Chapter 6, the ma-
thematical model is further extended to flexible continuous structural system, and the critical
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launching phase of a steel-concrete composite bridge is taken as a case study. Unfortunately,
due to a time limitation, the concerned predictions is not validated by wind tunnel aeroelastic
tests. This is considered as a future work, which together with a summary conclude this thesis
in Chapter 7.
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2 State of the Art

2.1 Introduction to Bluff Body Aerodynamics and

Aeroelastic Phenomena

Bluff body is a concept in contrast to streamlined body. A body can be called streamlined
when the flow streamlines follow closely the contour of the body, and the free-stream flow
is separated from the surface of body only by a thin boundary layer. In contrast, bluff body
characterizes massive flow separation. At a position (which may be not fixed), the boundary
layer is unable to attach on the surface of body anymore and becomes free shear layer. This
flow layer is still of high shear stress and vorticity, dividing the separated flow region from the
outer flow. Moreover, a free shear layer is intrinsically unstable in a sheet form and will roll
up towards the wake, forming concentrated vortices downstream which is commonly observed
in bluff body flow. Important is that, a body is streamlined or bluff not only depends on the
geometry of the body itself but also closely relates to the flow around it. For an airfoil, it is a
streamlined body at small wind angle of attack but becomes bluff body at large angles of attack,
as shown in Fig. 2.1.

(a) (b)

Fig. 2.1: Example of streamlined body and bluff body (photo copied from Schlichting & Gersten (2016)).

The portion of body downstream the separation position is called after-body. Dependent on
the further development of the separated shear layer and its interaction with the after-body,
bluff bodies exhibit different aerodynamic properties and subject to various kinds of aeroelastic
phenomena when the body is free to oscillate. A good classification with respect to the topic
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of bluff-body aerodynamics was provided by Matsumoto (1996), as reproduced in Fig. 2.2.
Among his classifications, it is needed to point out that the “Low Speed Galloping” particularly
refers to a peculiar phenomenon occurring for low side ratio bluff bodies (0.2 . b/d < 0.6) at a
velocity lower than the Kármán-vortex resonance wind speed. It is different from the concept of
unsteady galloping defined in this thesis. One can refer to Nakamura & Matsukawa (1987) and
Nakamura & Hirata (1991) for more detailed information about this peculiar phenomenon.

Flow Separation

Flow 
Reattachment

Non Flow 
Reattachment

2-Shear Layers 
Instability

Non Flow 
Separation

Quasi-steady 
Flow

Unsteady Flow

2-Shear Layers 
Instability

1-Shear Layers 
Instability

Unsteady Flow

Unsteady Flow Coupled Flutter

Coupled Flutter

High Speed Torsional Flutter

Motion-induced Vortex Excitation

Low Speed Torsional Flutter

Kármán Vortex Induced Excitation

Low Speed Galloping

High Speed Galloping

High Speed Vortex Induced Excitation

Kármán Vortex Induced Excitation2D Vortex Shedding

3D Vortex Shedding

Fig. 2.2: Bluff-body aerodynamics, reproduced from Matsumoto (1996)

For sharp-edged bluff body, like rectangular cross sections, a very important parameter is the
side ratio b/d. In a general way, it can be defined as the ratio of the streamwise dimension
to across-wind dimension of a bluff body. A good summarization with respect to this topic,
namely the dependency of flow pattern and related aeroelastic phenomena on the side ratio of
bluff body, is provided by Takeuchi & Matsumoto (1992) and reproduced in Fig. 2.3. From the
point of view of the time integrated flow pattern (time averaged flow patter), reattachment of the
shear layers on after-body occurs for b/d > 2.8. In contrast, if attention is paid to the unsteady
flow pattern (transient), intermittent reattachment of the separated shear layers already occurs at
about b/d ≈ 2.0. Such an intermittent behavior is maintained up to about b/d = 6, after which
the stationary flow reattachment dominates. These flow patterns correspond to stationary body
states. In the second half of Fig. 2.3, possible aeroelastic phenomena are indicated for various
ratio b/d. The core of these phenomena is aeroelasticity - the mutual interaction between a
movable body and its surrounding flow. They are separately introduced in following contexts.
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Fig. 2.3: Flow patterns and related aeroelastic phenomena for sharp-edged bluff bodies with various side
ratio b/d, according to Takeuchi & Matsumoto (1992).

2.1.1 Vortex Induced Vibration

Shedding of vortices is one of the most important characteristics for bluff-body flow. It may
occur for any bluff body, as it results from the instability of the flow profile created by the
presence of body. The very famous example is the vortex shedding from a circular cylinder
(occurs for Re higher than about 80-90, according to Schlichting & Gersten (2016)), leaving in
the wake region two rows of clearly visible concentrated vortices being transported downstream.
This is the well-known von Kármán vortex street. Here, Re is Reynolds number, defined as

Re =
ρUd

µ
(2.1)

where ρ is the flow density, U the free-stream velocity, d the characteristic length of body
(here, the across-flow dimension is used), and µ the dynamic viscosity of flow. Early at the end
of the nineteenth century, Strouhal (1878) has noticed that there is a linear relation between
the vortex shedding frequency and the free-stream velocity, which allows the definition of a
non-dimensional quantity known as Strouhal number

St =
nstd
U

(2.2)
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where nst refers to the frequency of vortex shed from single side of bluff body. Strouhal num-
ber, associated with the vortex shedding process, is highly dependent on the geometry of bluff
bodies. For cross sections with round outline (such as the circular cross section), it is also influ-
enced by Re and the surface roughness, since the occurring of flow separation is determined by
the boundary layer physical properties. For sharp-edged cross sections like square, flow separa-
tion is rather fixed at the upstream sharp edges so that St is less dependent on Re.

Vortex formation and periodically shedding from bluff-body represents a very complex fluid
phenomenon. With respect to the shedding pattern, a good classification was provided by Nau-
dascher & Wang (1993) (or in Naudascher & Rockwell (1994)), and schematized here based on
rectangular cross sections with varied side ratio and orientation (Fig. 2.4):

• LEVS (Leading Edge Vortex Shedding), flow separation at the leading edge and formation
of vortices dominate in the near wake of body;

• ILEV (Impinging Leading Edge Vortices), flow separation at the leading edge and im-
pingement of the leading edge vortices at the side surfaces and/or edges of the body;

• TEVS (Trailing Edge Vortex Shedding), decisive flow separation at the trailing edge and
vortex-shedding analogue to the von Kármán street behind circular cylinders;

• AEVS (Alternate Edge Vortex Shedding), vortex shedding occurring in a critical range of
incidence where alternatively one vortex separates at the leading edge and the other at the
trailing edge.

U

U

U

U

(a) LEVS (b) AEVS

(d) TEVS(c) ILEV

Fig. 2.4: Schematics of vortex shedding patterns for bluff bodies, due to Naudascher & Wang (1993).

As pointed out in Païdoussis & al. (2010), LEVS, TEVS and AEVS actually all belong to the
same class of vortex shedding as the circular cross section. The formation of vortices in this
case is a result of wake instability (also known as Bénard - von Kármán instability or 2-shear
layer instability as indicated in Fig. 2.2), which involves the mutual interaction of two free shear
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layers (a more detailed review on this topic is presented in Section 5.2.1). Formation of ILEV
is, however, due to another mechanism called Kelvin-Helmholtz instability which occurs for a
single free shear layer (corresponds to the 1-shear layer instability in Fig. 2.2). Evidently, the
presence of a splitter-plate in the wake cannot suppress the formation of ILEV (see, e.g., Naka-
mura & Nakashima (1986)). As explained in Naudascher & Wang (1993), formation of ILEV is
cultivated by a feedback loop between the leading edge and trailing edge: “vortices which form

in the unstable free shear layers on the two sides of the prism are transported with convection

velocity, towards the trailing edges where they generate pressure pulsations that are fed back

upstream and trigger the development of new vortices”. Such a mechanism is equivalent to the
large-scale vortex structures observed for open cavity flow (see e.g., Rockwell & Naudascher
(1978) and Cattafesta III & al. (2008)). It is also worth noting that, in many specific cases, the
ILEV do exist but too weak to detect especially if the dominant vortex shedding form is a von
Kármán type. An enhancement for ILEV can be achieved by external acoustic exciting (Mills
& al. 2002; Stokes & Welsh 1986) or motion of the body itself. The Strouhal number of ILEV
can be approximated by (Shiraishi & Matsumoto 1983)

St =
nstd
U
≈ 0.6

Nd
b

(2.3)

where N = 1,2,3, ... is the mode of ILEV. In a straightforward manner, N represents how many
vortices can simultaneously exist on one side of bluff-body. Eq. 2.3 also means the Strouhal
number of ILEV is predictable given that the geometry information of bluff body is known. In
fact, the ILEV is found particularly dominant for the H-shape cross section with a proper side
ratio (Nakamura & Nakashima 1986; Naudascher & Wang 1993; Schewe 2013), which may be
due to the presence of two cavities in the topology of H-Shape. Finally, for modern bridge deck
cross section, whose aerodynamics is characterized by separation, reattachment and merging of
small eddies structures, several Strouhal numbers corresponding to different shedding patterns
may be detectable (e.g. Bruno & Khris (2003)).

As a result of the periodical vortex shedding process, fluctuation of aerodynamic force on bluff
body usually contains a component characterized with the vortex shedding frequency nst . If the
body itself is movable and features a natural frequency n0, resonance could occur when the
vortex shedding frequency nst matches n0. This is the well-known vortex resonance condition,
corresponding to a critical velocity

Ur =
n0d
St

(2.4)

For a 2-d bluff body with one degree of freedom y (see Fig. 2.5), the motion is governed by

mÿ+ cyẏ+ kyy = L(t) (2.5)
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where m, cy and ky represent mass, damping, and stiffness, respectively. When the fluctuation
lift of stationary body is considered for the above equation, L(t) can be simply written as

L(t) =
1
2

ρU2dCL0sin(2πnstt +ϕ) (2.6)

where CL0 denotes the amplitude of fluctuation lift due to vortex shedding on stationary body.
Eq. 2.5 and Eq. 2.6 represent the harmonic model to approach vortex induced vibration. Ho-
wever, this model conflicts with the realities for at least two aspects: a) the amplitude of vortex
induced vibration seldom exceeds 1d in experiments (see the review paper by Williamson &
Govardhan (2004)), while the harmonic model can predict very high amplitudes; 2) in experi-
ments the maximum amplitude can occur at a flow velocity higher than Ur (see Fig. 2.6).

U

L(t)

d

ky cy

x

y

Fig. 2.5: Schematic of vortex induced vibration for a 2-d circular cylinder

In a better way, VIV can be understood as a vortex-shedding triggered, amplitude and veloci-
ty restricted aeroelastic phenomenon (“self-limited” nonlinear phenomenon). On the one side,
periodical vortex shedding from bluff body is clearly the inducement for VIV, as manifested by
the exhibition of forced vibration properties on elastically supported body for U <Ur. One the
other side, when flow velocity reaches Ur, the vortex shedding process is strongly influenced by
the motion of body, occurring the very famous “lock-in” phenomenon (also called “synchroni-
zation”): vortex shedding frequency being captured by the motion of body (nst ≈ n0), apparently
deviating from the Strouhal law nst = USt/d, for a certain range of U . When the flow veloci-
ty is further increased to a certain point, desynchronization occurs, exhibiting the vanishing of
large-amplitude oscillation and the re-obeying of nst to the Strouhal law. A typical example with
respect to this process can be found in Feng (1968)’s results (reproduced in Fig. 2.6). Moreo-
ver, vibration of bluff body in fluid will inevitably bring added fluid mass. This could lead to
different “lock-in” responses, see also Fig.2.6 for Khalak & Williamson (1997)’s results.

Shedding light on the mechanism of VIV, especially for the “lock-in” phenomenon, has always
been a task in the community of bluff body aerodynamics. However, Marra (2011), after review-
ing a large amount of predictive analytical models, reported that no model is actually able to
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Initial
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Desynchronization
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Fig. 2.6: Amplitude and oscillation frequency no responses of VIV of a circular cylinder. Grey
“◦” markers denote experimental test results in air flow with mass ratio m∗ = 248 and
ζ0 = 0.00103 (Feng 1968); black “×” makers represent experiments in water flow with
m∗ = 2.4 and ζ0 = 0.0045 (Khalak & Williamson 1997). Mass ratio is defined here m∗ =
(body mass)/(displaced fluid mass).

properly predict vortex-induced vibrations. Moreover, the frequently observed hysteresis loop
in the amplitude-velocity plot of VIV (e.g., in Fig. 2.6), implies a strong non-linearity of the
aerodynamic force during VIV. This non-linearity relates not only to the oscillation amplitude,
but also (probably) to the different modes of vortex pairs (Williamson & Roshko 1988).

VIV can be induced not only by the von Kármán type vortex shedding patterns (LEVS, TEVS
and AEVS), but also by ILEV pattern even it is not detected on a stationary body. Such a
case has been observed for rectangular cylinders with various side ratios, for example, the 5:1,
4:1 and 2:1 rectangular cylinders respectively reported by Nguyen & al. (2018), Marra & al.
(2015) and Miyata & al. (1983) in free vibration tests. This ILEV induced VIV is classified as
“motion induced vortex exciting” in Fig. 2.2 and Fig. 2.3, which emphasizes the importance
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of enhancement of ILEV due to body’s motion. The enhanced ILEV in turn further cultivates
the oscillation of body. In Fig. 2.3, “motion induced vortex exciting” is limited for b/d higher
than about 2. However, recent wind tunnel free vibration tests also reported this phenomenon
for rectangular cylinders with b/d = 1.5 (Mannini & al. 2016b) and b/d = 1.2 (Matsuda & al.
2013). In forced vibration tests, at a flow velocity about 0.5Ur and an amplitude about 0.25d,
ILEV was also observed for a square cylinder (Bearman & Obasaju 1982).

Moreover, it is to mention that vortex shedding is characterized with pronounced three-dimensional
features, even on a so-called two-dimensional body (e.g., prism body). As a matter of fact, the
unstable shear layers roll up with a limited coherence and then the forming eddies stretch in
the spanwise direction. This three-dimensional characteristic can be reflected by the spanwise
correlation of vortex shedding force. For a stationary body, one can clearly see from Fig. 2.7 the
quick loss of the pressure correlation between two spanwise separated points, although this cor-
relation is strongly enhanced for an oscillation body. In fact, the spanwise correlation of vortex
shedding force has always been a very important topic for VIV predictions of slender structures,
such as bridges and chimneys (see, e.g., Ehsan & Scanlan (1990) and Ruscheweyh (1994)).

Amp/d = 0.20

0.15

0.10

0.05

0

(a) Circular cylinder

Amp/d = 0.130

0.075

0.023

0.016
Stationary

(b) cylinder

Fig. 2.7: Effect of oscillation amplitude on the correlation coefficient ρr of pressures between two points
separated by distance r along spanwise axis: (a) results of circular cylinder from Novak &
Tanaka (1972); (b) square cylinder from Wilkinson (1981)

Finally, in air flow, it is widely accepted the Scruton number, which is a combination of mass
ratio and structural damping, as the controlling parameter for the aeroelastic responses of VIV.
This is a result of the big difference between structure density and air density. A good discussion
with respect to this topic can be found in Marra & al. (2011). In this thesis, without special
notation, the Scruton number is defined as

Sc = m∗ ·δ0 =
m

0.5ρd2 ·2πζ0 =
4πζ0m

ρd2 (2.7)
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where ζ0 is mechanical damping ratio, m the mass of structure per unit length. This definition
is kept the same as in Euro-code 1 (EN 1991-1-4 2010). Another widely used definition of Sc is
replacing “d2” in Eq. 2.7 with “db”.

2.1.2 Across-wind Galloping

Across-wind galloping, as well as the torsional flutter and the coupled flutter to be introduced
later, belong to the category of aeroelastic instability, which is driven by motion-induced-force
and features unrestricted oscillations after a critical flow velocity being exceeded. Across-wind
galloping denotes the instability occurring in the across-wind direction, typical for slender struc-
tures characterized with particular cross sectional geometry, such as rectangular or “D” shape.
Under certain conditions that are later defined, these structures can exhibit large amplitude os-
cillation (one to ten or even more across-wind dimensions of the section) at a frequency close
to the natural frequency of structure. This phenomenon was first observed and described in the
case of iced transmission lines by Davison and Den Hartog (Davison 1930; Den Hartog 1932).
Davison referred to “dancing vibrations” to describe these large amplitude oscillations. The
galloping phenomenon had received extensive attentions since the beginning of the 1960s, with
the works of Parkinson & Brooks (1961), Novak (1969, 1972) and others. The terminology
“galloping” was found rather “appropriate” by Parkinson, due to the visual impression given by
vibrating transmission lines, reminiscent of a galloping horse.

Païdoussis & al. (2010) defined galloping as “a velocity-dependent, damping-controlled insta-
bility”, which highlights the dependence of the negative aerodynamic damping on the incoming
flow velocity and the dominance of structural damping in determination of the critical state.
The mechanism of generation of negative aerodynamic damping due to body’s motion can be
explained by the schematics provided by Parkinson (1971) for a square cross section, as shown
in Fig. 2.8. At a “certain high” reduced velocity, the downward movement of the square is able
to induce higher negative pressure on the bottom side than the upper side. This results in an
aerodynamic force downward, in the same direction of the velocity of the body, so that this ae-
rodynamic force works as a negative damping force (remembering that a positive damping force
is in the opposite direction of velocity). When the flow velocity is high enough, the generated
negative damping is able to overcome the positive damping of structure, making the dynamic
system become oscillatorily unstable at its equilibrium position. At “enough high” reduced flow
velocity, this mechanism can be not only qualitatively but also quantitatively approached by the
quasi-steady theory that will be introduced later. It is to note here, that the previous mentioned
“certain high” reduced flow velocity does not equal to the “enough high” one, being the for-
mer related to a reduced flow velocity at which body’s motion can generate negative damping
force.
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Fig. 2.8: Pressure distributions on lateral sides of a square cylinder during the across-wind galloping
oscillation (Parkinson 1971).

As previously mentioned, the across-wind galloping occurs only for certain cross sections. Early
in 1930s, Den Hartog (1932) has pointed out a necessary condition for this instability

dCL

dα

∣∣∣∣
α0

+CD(α0)< 0 (2.8)

where CD and CL, as functions of wind angle of attack α , are the drag and lift coefficients of a
cross section. This is the well-known Den Hartog criterion. Clearly, according to this criterion,
the circular cross section is not subject to galloping instability. For iced transmission line, the
accumulation of ice may change its original cross section (usually close to a circular one) so
that occurrence of galloping becomes possible. For rectangular cross sections, this instability
could arise for a side ratio 0.75 . b/d . 3 according to Parkinson (1965), being also properly
collected in Fig. 2.3. However, it was found later the Den Hartog criterion is only applicable
for soft-type galloping which can arise from rest due to a minor perturbation (see e.g., No-
vak (1971) or Païdoussis & al. (2010)). For hard-type galloping, although this condition is not
fulfilled, oscillation can be excited by giving a comparably large perturbation. For rectangu-
lar cross sections, hard-type galloping occurs for 0.375 . b/d . 0.683 (Parkinson 1965). For
bridge decks, galloping instability is normally not a problem (Cao 2015). Because for large-
span bridges (like cable stayed bridges) the deck is usually characterized with more streamlined
cross section of large side ratio, while for short-span bridges (like beam bridges) the deck is
usually too stiff to give rise to this type of instability. Nevertheless, some examples of bridge
deck galloping can be found for a 10-span continuous beam bridge (Hirai & al. 1993) and a 3-
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span continuous beam bridge (Ge & al. 2002), both in Japan. Nowadays, the emergence of many
lightweight pedestrian bridges also gives rise to the risk of galloping instability, for example, a
footbridge with solid parapets in UK (Cammelli & al. 2017). Bridge decks in launching process,
which represents a special state as introduced in Section 1.2, may also suffer from this risk.

The quasi-steady theory is a classical approach to the across-wind galloping instability. The
terminology “quasi-steady” means that the motion of body is sufficiently slow compared with
the velocity of fluid moving. This sufficiency can be characterized by the reduced flow velocity
U/(bn), which physically corresponds to a ratio between body’s oscillation period (1/n) and
the time needed by flow to pass by the body (b/U). Clearly, a high reduced flow velocity corre-
sponds to a relatively slow motion of body. Under this condition, the oscillation body presents
like at its stationary state within a every short time interval ∆t, in which the unsteady aero-
dynamic effect due to she vortices, fluid memory, etc., can be all averaged out. Therefore, the
aerodynamic force within ∆t includes only the steady part (the time-averaged one). Moreover,
the added mass effect is also negligible for structures in air flow. Due to these considerations,
the aerodynamic forces on an oscillation body, which is characterized with an apparent wind
angle of attack and a resultant wind speed, can be deemed equal to the aerodynamic forces on a
stationary body attacked by the same wind angle and the same magnitude of wind speed.

For a dynamic system of single degree-of-freedom y, as schematized in Fig. 2.9, the governing
equation can be written as

mÿ+ cyẏ+ kyy = Fy (2.9)

where Fy is the aerodynamic force acting on the body in the vertical direction. Due to the motion
of body, the incident flow has been varied by the relative velocity of the body −ẏ, forming an
apparent wind angle of attack α

α = tan(
ẏ
U
) (2.10)

The magnitude of incident wind speed is also varied and can be expressed as

Urel =
√

U2 + ẏ2 =
U

cos(α)
(2.11)

For the aerodynamic force Fy, it can be expressed as

Fy =−[Lcos(α)+Dsin(α)] (2.12)

where D and L represent, respectively, the drag and lift under that apparent wind angle of attack
α . The minus sign is added here because Fy is assumed downward positive. Now, invoking the
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Fig. 2.9: Aerodynamic drag and lift on an oscillation body according to quasi-steady theory.

previously introduced quasi-steady assumption, the drag and lift on the oscillation body equal
to the same ones exerting on the stationary body which characterizes a flow incidence of α and
a velocity magnitude of Urel . Therefore, Fy can be further written

Fy =−
1
2

ρdU2
rel[CL(α)cos(α)+CD(α)sin(α)] (2.13)

where CD(α) and CL(α) are the drag and lift coefficients as functions of α for the same body
but in stationary state. With Eq.2.11, it allows the definition of a transverse force coefficient

CFy(α) =− 1
cos2(α)

[CL(α)cos(α)+CD(α)sin(α)] (2.14)

so that the expression of Fy becomes

Fy =
1
2

ρdU2CFy(α) (2.15)

Substituting this expression of Fy into Eq. 2.9, there is finally

mÿ+ cyẏ+ kyy =
1
2

ρdU2CFy(α) (2.16)

It is to note here, on the one hand, CFy(α) is a function which can be directly determined on a
stationary body by varying the wind angle of attack α . On the other hand, in determination of
the aerodynamic force for an oscillation body, the expression α = tan( ẏ

U ) is invoked as the input
of the CFy(α) function in Eq. 2.16. This connection, built between the stationary body and the
oscillation body, forms the core of the quasi-steady assumption. Until here, one can already find
from Eq. 2.16, that the input force of the dynamic system relates to a self-excited one which
depends on the velocity of body ẏ.
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For the instability about equilibrium position, very small oscillation (infinitesimal α) can be
assumed so that CFy(α) can be linearized through Taylor’s expansion

CFy(α)' CFy
∣∣
α=0 +

dCFy

dα

∣∣∣∣
α=0
·α (2.17)

where the high-order items of α is neglected. It is convenient here to define a factor A1

A1 =
dCFy

dα

∣∣∣∣
α=0

=−
(

dCL

dα
+CD

)∣∣∣∣
α=0

(2.18)

where the expression containing CD and CL is a result of substituting Eq. 2.14 in. Moreover,
since α is infinitesimal, it is able to write

α ' tan(α) =
ẏ
U

(2.19)

Substituting Eq. 2.17 - 2.19 into Eq. 2.16, and neglecting the CFy
∣∣
α=0 item which induces only

static deformation, one has

mÿ+ cyẏ+ kyy =
1
2

ρdU2A1
ẏ
U

(2.20)

By further dividing both sides by m, then moving the right-side item to the left side, there is

ÿ+2ω0(ζ0−
ρdUA1

4mω0
)ẏ+ω

2
0 y = 0 (2.21)

where ω0 =
√

ky/m is the natural circular frequency. Now, it is able to find that, if A1 > 0, the
item ρdUA1/(4mω0) is able reduce the total damping of the system. The critical state reaches
when the total damping of the system becomes zero

ζ0−
ρdUA1

4mω0
= 0 (2.22)

And the critical wind speed for this mechanism (galloping instability) is determined as

Ug =
4mω0ζ0

ρdA1
= 2

n0d
A1
·Sc (2.23)

This critical condition was first presented by Scruton (1960). The A1 factor is usually called
galloping factor as in Euro-code 1 (EN 1991-1-4 2010).

The post-critical behavior of the across-wind galloping involves larger α , which usually intro-
duces nonlinear aerodynamic force into the system. Further development of the quasi-steady
theory in this direction was contributed by Prof. Parkinson and his co-workers (Parkinson &
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Brooks 1961; Parkinson & Smith 1964), by applying high-order polynomials to approxima-
te the CFy-α curve. For brevity reason, the analytical approach to solve Eq. 2.16 is given in
Appendix A.1. Alternatively, numerical integration can be performed.

2.1.3 Torsional Flutter

Aeroelastic instability can also arise in the torsional degree of freedom, being named torsional
flutter throughout this thesis. Differing from the coupled flutter to be introduced later, torsional
flutter is a single degree-of-freedom instability exhibiting a nearly pure torsional motion. It is
right now well-accepted as the cause for the collapse of Tacoma Narrow Bridge in 1940 (Billah
& Scanlan 1991; Larsen 2000), rather than the early explanation which attributed to VIV.

Torsional flutter is also driven by the sustained generation of negative aerodynamic damping
after a critical flow velocity being exceeded. However, its physical mechanism is more compli-
cated than the across-wind galloping. As shown in Fig. 2.3, torsional flutter is possible for bluff
body with side ratio b/d higher than about 2. For the upper limit of b/d, it is at least up to about
10 (see, e.g., Matsumoto & al. (1997) for rectangular cross section and Scanlan & Tomko (1971)
for H-shape cross section). Bluff body within this range of b/d is characterized with complex
flow reattachment (either intermittent or stationary, see also Fig. 2.3), the unsteady effect is thus
pronounced in this situation. Matsumoto and co-authors carried out extensive experiments with
respect to torsional flutter (Matsumoto & al. 1996; Matsumoto 1996; Matsumoto & al. 1997),
and they classified torsional flutter by the reduced velocity range as “low speed torsional flut-
ter” and “high speed torsional flutter” (as indicated in Fig. 2.2). For the former, it was found
closely related to the convection of impinging leading edge vortices on the lateral surfaces. For
the latter, it was deemed to be governed by a similar mechanism as the coupled flutter, namely
due to the unsteady local flow separation near the leading edges of bluff body.

Finally, it is to note that the quasi-steady theory (widely used for across-wind galloping), is
rather inapplicable for torsional flutter. Although in literature there exist several quasi-steady-
theory based methods for torsional flutter predictions, Andrianne (2012) concluded that they
were all less reliable, based on his attempts of application to a 4:1 rectangular cylinder and a
generic bridge model. Reliable predictions of torsional flutter rely on the experimentally iden-
tified flutter derivatives to be introduced in next Section.

2.1.4 Coupled Flutter

When the single degree-of-freedom, either heaving or torsional, is free of instability, divergent
motion is still able to arise in a coupled form of the two degrees of freedom, known as coupled
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flutter (or classical flutter). It is first studied for airfoils, but, after the collapse of Tacoma Narrow
Bridge, flutter has become an important topic for the decks of long suspended bridges.

Thin aerofoil theory

The theoretical unsteady approach to coupled flutter is first introduced for a thin plate (or thin
airfoil), as schematized in Fig. 2.10 (in line with Pigolotti (2017), the gravity center is differed
from the mid-chord). About the elastic center, motions of the system are governed by

mÿ−Sα̈ + cyẏ+ kyy =L (2.24a)

−Sḧ+ Iα̈ + cα α̇ + kαα =M (2.24b)

where m, cy and ky represent, respectively, the mass, damping and stiffness in heaving degree of
freedom, while I, cα and kα correspond to the moment of inertia, damping, stiffness in torsional
degree of freedom. S = ebh ·m is the static mass unbalance, equal to the product of the mass m

and a distance ebh between the gravity center and the elastic center. L and M are aerodynamic
lift and moment, both about the elastic center. a and e indicate the ratios between the separated
distances and the half chord length bh. a> 0 denotes the elastic center is downstream the middle
of chord, and e > 0 means the gravity center is upstream the elastic center (see Fig. 2.10).

bh = b/2
abh
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Fig. 2.10: Schematic of a thin plate with 2 degrees of freedom and associated aerodynamic forces.

In order to analytically approach the unsteady lift L and moment M, the thin plate with infi-
nitesimal thickness is supposed to undergo small-amplitude oscillation. Moreover, the flow is
assumed inviscid (no boundary layer development and no separation), incompressible and isen-
tropic. Besides, the phenomenological rule that the flow velocity remains finite and tangent to
the flat plate at the sharp trailing edge called Kutta-Joukowski condition (e.g., see Fung (1993))
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is assumed. From basic principles of non-stationary potential flow theory, Theodorsen (1934)
showed that the expressions for L and M are linear in y and α as well as their first and second
derivatives. For small harmonic oscillation in the heaving and torsional degrees of freedom
with the same circular frequency ω (critical condition of flutter), the expression of L and M is
obtained in complex form (Simiu & Scanlan 1996; Theodorsen 1934):

L =−ρb2
h(Uπα̇ +π ÿ−πabhα̈)−2πρUbhC(k)[Uα + ẏ+bh(

1
2
−a)α̇] (2.25a)

M =−ρb2
h{π(

1
2
−a)Ubhα̇ +πb2

h(
1
8
+a2)α̈−πabhÿ}

+2ρUb2
hπ(

1
2
+a)C(k)[Uα + ẏ+bh(

1
2
−a)α̇]

(2.25b)

where k = bhω/U is the reduced frequency defined with half-chord length bh and oscillation
circular frequency ω . C(k) is the Theodorsen’s circulation function, written in complex form

C(k) = F(k)+ iG(k) =
H(2)

1 (k)

H(2)
1 (k)+H(2)

0 (k)
(2.26)

which contains Hankel’s functions

H(2)
n (k) = Jn(k)− iYn(k) (2.27)

with Jn(k) and Yn(k) the modified Bessel’s functions of the first and second kinds. F(k) and
G(k) denote, respectively, the real and imaginary part of C(k). Approximated expression of
C(k), according to Jones (1945), can be expressed (see, e.g., Fung (1993))

C(k) = 1− 0.165

1− 0.041
k

i
− 0.335

1− 0.32
k

i
(2.28)

The real and imaginary parts of C(k) are shown in Fig. 2.11, respectively, as a function of k

or U/(bn), being the latter a form of reduced flow velocity commonly used for flutter analysis.
One can find, when the reduced flow velocity tends to infinity (k→ 0), C(k) = 1 is obtained,
corresponding to a state in which no fluid memory exists. With C(k) = 1, Eq. 2.25 actually
becomes the quasi-steady expression of aerodynamic forces exerting on an oscillation airfoil.

An analysis of the force or moment combinations in Eq. 2.25 is supposed to be meaningful. In
the thin aerofoil theory (e.g., see Fung (1993)), the lift in Eq. 2.25a consists of two portions:

• the circulatory one

Ly1 =−2πρUbhC(k)[Uα + ẏ+bh(
1
2
−a)α̇] (2.29)
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(a) (b)

Fig. 2.11: Real and imaginary parts of Theodorsen’s circulatory function C(k) = F(k)+ iG(k): (a) as a
function of k; (b) as a function of reduced flow velocity U/(bn) = π/k, being ω = 2πn.

which is due to the variation of circulation around the aerofoil and exerted at the one forth
of chord aft leading edge. This portion of lift is closely related to Wagner’s function to be
introduced later.

• the non-circulatory one −ρb2
h(Uπα̇ +π ÿ−πabhα̈). This portion of lift is related to the

added mass effect, which means the wing is forcing a mass of fluid around it to move. It
can be further divided into two parts: a) a lift with center of pressure at the mid-chord

Ly2 =−ρπb2
h(ÿ−abhα̈) (2.30)

of amount equal to the apparent mass ρπb2
h of an air cylinder times the vertical accelera-

tion at the mid-chord point; b) a lift with center of pressure at the 3/4 chord aft leading
edge

Ly3 =−ρπb2
hUα̇ (2.31)

of the nature of a centrifugal force, of amount equal to the apparent mass ρπb2
h times Uα̇ .

In the pitching degree of freedom, the pure nose-down couple is

Mα2 =−
1
8

ρπb4
hα̈ (2.32)

of amount equal to the apparent moment of inertia 1
8ρπb4

h times the angular acceleration α̈ . It is
interesting to see, in thin aerofoil theory, the apparent mass of a thin plate is equal to the mass
of an air cylinder with diameter equal to the chord of the plate, while the apparent moment of
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inertia is only one fourth of the mass moment of inertia of that air cylinder. Finally, there are
L = Ly1 +Ly2 +Ly3 and M =−Ly1(

1
2 +a)bh−Ly2abh +Ly3(

1
2 −a)bh +Mα2.

The Ly1 item (Eq. 2.29), based on Theodorsen’s circulatory function C(k), is a result of the
assumed harmonic motion, mixed the expression of Ly1 in both frequency and time domains. In
the time domain, the equivalent problem had been solved some years before by Wagner (1925)
for more general motion. Consider here a thin plate orientated with a small α and immersed
in incompressible fluid of flow velocity U . Now, assume an impulsive (or indicial) increment
of wind angle of attack ∆α taking place at the moment τ̃ =Ut/bh = 0 (τ̃ is the reduced time).
Since the flow must be tangent to the plate, the downwash (the vertical velocity component of
the fluid on the thin plate) before and after the motion are, respectively, w̃ =U sinα ≈Uα and
w̃ =U sin(α +∆α)≈U(α +∆α). The downwash increment ∆w̃ =U∆α will give an increment
of the circulatory lift (exerted at the one fourth aft the leading edge)

∆Ly1(τ̃) =−
1
2

ρU2b ·2π · ∆w̃
U
·Φ(τ̃) (2.33)

where 2π in above equation corresponds to the slope of lift coefficient of stationary thin plate,
and Φ(τ̃) is called Wagner’s function

Φ(τ̃) = 1−
∫

∞

0
[(Y0(x)+Y1(x))2 +π

2(J0(x)+ J1(x))2]−1e−xτ̃x−2dx if τ̃ ≥ 0 (2.34a)

Φ(τ̃) = 0 if τ̃ < 0 (2.34b)

where J0 and J1, Y0 and Y1 are the previously mentioned Bessel’s function of the first and second
kind. Alternatively, Jones (1945) approximated Φ(τ̃) with exponential functions

Φ(τ̃) = 1−0.165e0.041τ̃ −0.335e−0.32τ̃ (2.35)

with Φ(τ̃) = 0 for τ̃ < 0. This approximated Φ(τ̃) is shown in Fig. 2.12.

Combined with Eq.2.33 and Fig. 2.12, one can find that there will be only half portion of lift
increment generated instantaneously after the impulsive increment ∆w̃ at τ̃ = 0. The full lift
increment is reached with τ̃ → ∞. Analytically speaking, ∆w̃/U represents a kind of variation
of wind angle of attack since the motion is assumed under small amplitude. This is apparent for
the impulsive motion discussed above, because ∆w̃/U can be directly replaced with ∆α .

For a general motion with two degrees of freedom, the downwash over the airfoil is not uni-
form. But the theory of oscillation airfoil shows that for heaving and torsional oscillation the
downwash velocity can be determined at the 3/4-chord point aft leading edge

w̃(t) =Uα(t)+ ẏ(t)+(
1
2
−a)bα̇(t) (2.36)
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τ

τ

Fig. 2.12: Wagner’s function after Jones (1945)’s approximation.

or expressed by reduced time

w̃(τ̃) =Uα(τ̃)+
U
b

y′(τ̃)+(
1
2
−a)Uα

′(τ̃) (2.37)

where ( )′ denotes differentiation to the reduced time τ̃ , ˙( ) to the physical time. Clearly, there
is ˙( ) = U

b ( )
′. Further more, the downwash increment can be written in differential form

dw̃(τ̃) = [Uα̇(τ̃)+
U
b

y′′(τ̃)+(
1
2
−a)Uα

′′(τ̃)]dτ̃ (2.38)

For a general motion, the lift at a given reduced time τ̃ is influence by the past downwash
variations in the whole time history. Taking Eq.2.33 and invoking the superposition principle,
the expression of lift at the current τ̃ is obtained as (under the conditions, that the motion starts
from rest at the past τ̃0 and a downwash increment ∆w̃0 is obtained immediately at τ̃ = τ̃0)

Ly1(τ̃) = Ly1,τ̃0 +πρUb[∆w̃0Φ(τ̃ +
∫

τ̃

τ̃0

dw(κ) ·Φ(τ̃−κ)]

= Ly1,τ̃0 +πρUb[∆w̃0Φ(τ̃)+
∫

τ̃

τ̃0

Φ(τ̃−κ)[Uα̇(κ)+
U
b

y′′(κ)+(
1
2
−a)Uα

′′(κ)]dκ]

(2.39)

where L1,τ̃0 corresponds to the steady lift before the motion starts (namely τ̃ < τ̃0). For more
common initial conditions, namely the thin plate starting from rest with null angle of attack
(L1,τ̃0 = 0) and putting in τ̃0 = 0, above equation becomes (see, e.g., Mannini (2006))

Ly1(τ̃) = πρUb[∆w̃0Φ(τ̃)+
∫

τ̃

0
dw(κ) ·Φ(τ̃−κ)]

= πρUb[∆w̃0Φ(τ̃ +
∫

τ̃

0
Φ(τ̃κ)[Uα̇(κ)+

U
b

y′′(κ)+(
1
2
−a)Uα

′′(κ)]dκ]

(2.40)
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Finally, it is to note that the Wagner’s function is linked to Theodorsen’s circulatory function

through inverse Fourier transform (Bisplinghoff & al. 1996)

Φ(τ̃) =
1
2

∫
∞

−∞

C(k)
ik

eikτ̃dk (2.41)

Bluff body

Flow passing by bluff body characterizes with massive separations, reattachment, bubbles, shear
layer instability as well as shedding of vortices. An analytical theory providing a closed solution
like the thin aerofoil is actually impossible. Nevertheless, a good practical way to approach the
flutter of bluff body has been proposed by Scanlan & Tomko (1971), using the experimentally
determined functions which depend on section geometry and reduced frequency of oscillation.
Referring to the dynamic system in Fig. 2.10, Scanlan & Tomko (1971) have shown that for
small oscillations the self-excited lift and moment on a bluff body may be treated as linear
in the structural heaving and torsional displacement and their first two derivatives, so that the
expression of L and M can be written in real form (Simiu & Scanlan 1996)

L(t,K) =
1
2

ρU2b[KH∗1 (K)
ẏ(t)
U

+KH∗2 (K)
bα̇(t)

U
+K2H∗3 (K)α(t)+K2H∗4 (K)

y(t)
b

]

(2.42a)

M(t,K) =
1
2

ρU2b2[KA∗1(K)
ẏ(t)
U

+KA∗2(K)
bα̇(t)

U
+K2A∗3(K)α(t)+K2A∗4(K)

y(t)
b

]

(2.42b)

where K = 2k = bω/U is the reduced frequency of oscillation defined with the chord length; H∗i
and A∗i are flutter derivatives as functions of K and dependent on section geometry. In Eq. 2.42,
terms in ÿ, α̈ have been omitted as being of negligible importance in wind engineering (Simiu
& Scanlan (1996)). Above expressions are also mixed in both frequency and time domain.
Nevertheless, when harmonic oscillations are assumed for both heaving and torsional degrees
of freedom

y = ȳeiωt (2.43a)

α = ᾱeiωt (2.43b)

the expressions become completely frequency dependent. Moreover, within this assumption, the
flutter derivatives of thin plate can be related to Theodorsen’s circulatory function (by putting
Eq. 2.43 in Eq. 2.25, then comparing the real part of Eq. 2.25 with Eq. 2.42, in which the real
part of Eq. 2.43 is substituted in)
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H∗1 (K) =−π
F(k)

k
(2.44a)

H∗2 (K) =− π

4k
[1+

2G(k)
k+2(1

2 −a)
F(k)] (2.44b)

H∗3 (K) =− π

4k2 [2F(k)−2(
1
2
−a)G(k)k+ak2] (2.44c)

H∗4 (K) =
π

2
[1+2(

G(k)
k

] (2.44d)

A∗1(K) =
π

2k
(1+

1
2
)F(k) (2.44e)

A∗2(K) =− π

8k2 [(
1
2
−a)k−2(a+

1
2
)G(k)+2k(a2− 1

4
)F(k)] (2.44f)

A∗3(K) =
π

8k2 [k
2(a2 +

1
8
)+2(a+

1
2
)F(k)+2k(a2− 1

4
)G(k)] (2.44g)

A∗4(K) =− π

4k
[ak+2(a+

1
2
)G(k)] (2.44h)

Flutter derivatives can be either determined by forced vibration tests (e.g., see Matsumoto & al.
(1996)) or free-decaying vibration tests (e.g., see Gu & al. (2000)). Fig. 2.13 shows the flutter
derivatives for rectangular cross sections of various side ratio b/d. The theoretical ones of thin
plate, calculated by Eq. 2.44, are also plotted. It can be found , that for the rectangular cross
section with very large side ratio (like b/d = 20) the experimentally identified flutter derivatives
show good agreement with the theoretical solutions for thin plate. However, for very bluff cross
section like the square one, its flutter derivatives are totally different from the ones of thin plate.
Nevertheless, flutter derivatives are also very useful for across-wind galloping and torsional
flutter predictions. For the former, it characterizes with a change of H∗1 from negative to positive
value after a certain reduced wind speed being exceeded, while for the latter it corresponds to
a similar change in the A∗2 curve. Through Fig. 2.13, it is also known that the vanishing of
torsional flutter for rectangular cross sections may occur at a side ratio b/d = 10-12.5.

Determination of the critical flutter flow velocity can be achieved in frequency domain, substi-
tuting the assumed harmonic motions (Eq. 2.43) into the equilibrium equations (combined by
Eq. 2.24 and Eq. 2.42). For nontrivial solution (ᾱ and ȳ in Eq. 2.43 are not null), the determi-
nant of the equilibrium equations must vanish, which goes to the eigenvalue problem. However,
flutter derivatives are functions of K, dependent on the circular oscillation frequency ω which
is unknown. The semi-inverse method is therefore usually used in practice, assuming a range
of K to search the solution which makes the determinant vanish at a real value of ωc (for more
details, see, e.g. Simiu & Scanlan (1996)). Once ωc is found, the critical wind speed can be
calculated from the corresponding value of assumed K. The flutter coupling circular frequency
ωc has to be larger than the circular natural frequency of heaving degree of freedom and smaller
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b/d = 1
b/d = 5
b/d = 10
b/d = 12.5
b/d = 20
Thin plate

Fig. 2.13: Flutter derivatives of rectangular cross sections with various side ratio b/d (Matsumoto 1996),
as well as the theoretical ones of thin plate.
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than the one of torsional degree of freedom, which means the torsional natural frequency has to
be larger than heaving one for the occurrence of coupled flutter.

The frequency-domain method allows efficient determination of the flutter coupling frequency
and the critical wind speed, but not suitable for supercritical and subcritical analyses. Another
classical approach to flutter problem involves the use of aerodynamic indicial functions to do
calculation in time domain (Scanlan & al. 1974). Unlike Wagner’s function, which is used for
thin plate, the indicial functions of bluff bodies were usually derived from the experimentally
determined flutter derivatives (e.g. in Costa & Borri (2006)).

Finally, as stressed by Simiu & Scanlan (1996), the coupled flutter is essentially different from
the torsional flutter. For the former, if and when it occurs, it must involve coupled degrees of
freedom, being in a condition where it is mainly the coupling terms (not the damping) to govern
the response.

2.2 Unsteady Across-wind Galloping

2.2.1 Failure of Quasi-steady Theory and Characteristics of Unsteady

Galloping

Despite the success of quasi-steady theory in predictions of the across-wind galloping, the app-
lication of this theory is actually conditional. That is the requirement of a so-called high reduced
flow velocity, which is aforementioned in Section 2.1.2. Different criteria have been proposed
in order to guarantee such a high reduced flow velocity (Païdoussis & al. 2010):

• According to Fung (1955), the criterion is that: any disturbance experienced by the os-
cillation body at a certain point in its oscillatory motion must be swept downstream suf-
ficiently far, by the time the body comes back to that same point (one period later), for
the disturbance to no longer affect the flow around the body. Assuming the disturbances
are carried downstream with a velocity equal to free stream velocity U , the distance of
disturbances being carried downstream within one period of body’s oscillation is U/n0,
where n0 is the natural frequency of oscillation (here for heaving degree of freedom).
Fung (1955) proposed that this distance should be at least 10 times the body’s diameter
or the characteristic length d (or b), giving that

U
n0d
≥ 10 or

U
n0b
≥ 10 (2.45)
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• Blevins (1977) proposed the criterion based on the vortex shedding process, that the vor-
tex shedding frequency nst must be at least two times higher than the oscillation frequency
no. For wind engineering, no can be closely replaced by the natural frequency n0, so that

U
n0d
≥ 2

U
nstd

= 2
1
St

(2.46)

where St is Strouhal number. This criterion also means that the flow velocity must be two
times higher than the resonance wind speed. Later, without further explanation, Blevins
(1990) revised this criterion to

U
n0d
≥ 20 (2.47)

which becomes independent on the vortex shedding process.

• Bearman & al. (1987) proposed a more restrictive criterion for a good performance of the
quasi-steady theory, based on the study of a square cylinder

U
n0d

& 4
U

nstd
= 4

1
St

(2.48a)

or,
U

n0d
& 30 (2.48b)

being the second one as a result of putting St = 0.13 (square cylinder) into the first one.

One can find the above criteria are actually inconsistent with each other. It is also to note, for
the two criteria proposed by Blevins at different time (Blevins 1977, 1990), the latter is more
conservative for a square cross section (St ≈ 0.13) but less conservative for a 2:1 rectangular
cross section (St ≈ 0.08). Bearman’s criterion represents the most restrictive one, and was re-
spected by a 3:2 rectangular as well (Mannini & al. 2016b), where the quasi-steady prediction
was found valid for U/(n0d) higher than about 3.5/St. However, as noted by Novak (1972), the
square section obeys relatively well to the quasi-steady theory, whereas much higher reduced
flow velocity is needed for the 2:1 or 5:2 rectangular cylinder (Santosham 1966; Smith 1962).
In particular, Santosham (1966)’s experiments on the 2:1 rectangular cylinder showed that, for
the so-called high reduced flow velocity, it could mean 5-6 times 1/St.

Nevertheless, if a high reduced flow velocity is not ensured, the quasi-steady theory will fail to
provide reliable predictions, even in a qualitative manner. Galloping occurring in the low redu-
ced flow velocity range is therefore called unsteady galloping, which is named so to highlight
the roles of unsteadiness in the interaction between oscillation body and surrounding flow.

The very typical unsteady galloping is known as an interaction with VIV, which is able to
promote unrestricted galloping-type oscillation starting at the critical wind speed for VIV, rather
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than at the quasi-steady prediction. Early in 1960s, Parkinson & Brooks (1961) have reported
this phenomenon for several 2-dimensional cylinders in case of low mechanical damping (see
Fig. 2.14). The 5:2 rectangular cross section, although not included in Fig. 2.14, was reported
also prone to this combined instability (Smith 1962). In general, it occurs for cross sections
prone to both VIV and, to be more precisely, soft-type galloping, because it is noticed that, for
the D-shape and the 1:2 rectangular cross section which are prone to hard-type galloping (Novak
& Tanaka 1974), this interaction phenomenon does not occur. In Fig. 2.14, for the rectangular
ones, it can be found that the post-critical amplitude slope decreases with the increase of side
ratio b/d. This is probably related to the smaller incident angle of flow reattachment for larger
b/d. Finally, as may be expected, these amplitude curves were found to gradually approach
to the quasi-steady solutions when the reduced flow velocity is increased high enough (see
Wawzonek (1979) for a square cylinder and Santosham (1966) for a 2:1 rectangular cylinder).
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1.725
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0.5

Fig. 2.14: Experimental amplitude-velocity curves for D-shape cylinder, circular cylinder and rectan-
gular cylinders with various b/d, considering a low mechanical damping. Reproduced from
Parkinson & Brooks (1961).

With proper increment of the amount of Scruton number, the combined instability is able to
exhibit more complicated characteristics. Fig. 2.15 shows the experimental results and the cor-
responding quasi-steady predictions for a square cylinder (Wawzonek 1979), with Sc varied
from a small value to a high one (where the quasi-steady prediction is already valid to some
extent). For a very low Scruton number (Sc = 2.2), the actual galloping arises at the reduced
Kármán-vortex resonance wind speed Vr, rather than at the quasi-steady prediction Vg (here,
Vg�Vr because of the very low Sc). Increasing Sc to a medium value (15.7-22), galloping still
arises at Vr and monotonously increases with V , but a second stable branch with lower ampli-
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tude co-exists in a range of V slightly higher than Vr. This low amplitude branch is obtainable
by releasing the square cylinder from rest, and either decrement or increment of V stepping
outside that flow velocity range will lead the oscillation back to the high amplitude branch. It is
to notice that such a low-amplitude branch is not reflected in the quasi-steady predictions. For
Sc = 32, where VIV and galloping can be separately observed, the quasi-steady theory provides
good prediction for the low amplitude branch. However, the high-amplitude branch was found
to appear at reduced wind speeds clearly lower than the quasi-steady predictions.

(a) Sc = 2.2,Vg/Vr = 0.15 (b) Sc = 15.7,Vg/Vr = 1.05

(c) Sc = 22.0,Vg/Vr = 1.47 (d) Sc = 32.0,Vg/Vr = 2.14

Fig. 2.15: Experimental results of a square cylinder and the quasi-steady predictions (gray solid line) with
various Sc (reproduced from Wawzonek (1979)). Solid cycle indicates the unstable amplitude
branch, and dashed line the reduced critical flow velocity for VIV.

For the slightly more elongated 3:2 rectangular cylinder, Mannini & al. (2016b, 2018a) reported
a different unsteady galloping behavior for the medium magnitude of Sc (Fig. 2.16). For Sc≤ 42
(Vg/Vr ≤ 1.63), the galloping response is similar to the square cylinder of low Sc conditions,
arising galloping at Vr. Increasing the Scruton number into a range of 55.5≤ Sc≤ 61.5, a VIV
peak appears in the amplitude-velocity plot, but the subsequent oscillation does not decrease
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fully to form the typical VIV response. Instead, the amplitude after the VIV peak first decreases
a little then grows again (see Fig. 2.16 (b)). For this Sc, the experiments also show an anti-
clockwise hysteresis loop, occurring in a reduced velocity range lower than the quasi-steady
prediction. Further increasing Sc, the oscillation after the VIV peak gradually drops back to the
equilibrium position, forming a classical VIV response around Vr. However, for Sc not higher
than 78, the actual galloping onset was found apparently lower than the quasi-steady prediction.
Only when the Scruton number is higher than about 90, the quasi-steady theory is able to provide
satisfying predictions. Based on the amplitude-velocity curves of various Sc, Mannini & al.
(2016b) classified the inference effects between VIV and galloping into four categories: a) Full
Interference, b) Partial Interference, c) Low Interference and d) No Interference. The four plots
of Fig. 2.16, respectively, correspond to the four classifications.

(a) Sc = 42,Vg/Vr = 1.63 (b) Sc = 61.5,Vg/Vr = 2.42

(c) Sc = 78,Vg/Vr = 3.02 (d) Sc = 90,Vg/Vr = 3.46

Fig. 2.16: Experimental results of a 3:2 rectangular cylinder and the quasi-steady predictions (gray line)
with various Sc (reproduced from Mannini & al. (2018a))

Through the aerodynamic force measurements on a vibration body, the driving mechanism of
unsteady galloping was studied in another but more direct manner. Assuming that a prism body
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is forced to do harmonic oscillation in the across-wind direction with an amplitude y0 and a
frequency nm, the motion of the body can be written as

y(t) = y0 cos(2πnmt) (2.49)

The steady-state aerodynamic lift coefficient (characterized also by a frequency nm), due to this
specified motion, can be written as

CLm(t) =CLm0 cos(2πnmt +ϕLm) (2.50)

where CLm0 is the magnitude of the lift coefficient at a frequency of nm, and ϕLm the phase angle
relative to the across-wind displacement. This equation can be further written as

CLm(t) =CLm0 cos(ϕLm) · cos(2πnmt)+CLm0 sin(ϕLm) · [−sin(2πnmt)]

=CLmR · cos(2πnmt)+CLmI · [−sin(2πnmt)]
(2.51)

where CLmR = CLm0 cos(ϕLm) and CLmI = CLm0 sin(ϕLm) are, respectively, the portion of CLm0

in phase with y(t) and in phase with ẏ(t). It is easy to understand that, for 0 < ϕLm < π , the
CLmI · [−sin(2πnmt)] component will have the same sign as ẏ(t). So this component will do
positive work (extracting energy from flow) and play a role as negative damping force, implying
an instability. Here, it is to mention that, in the linear quasi-steady theory, the phase angle of
aerodynamic force is ϕLm = π/2 for A1 > 0, see Eq.2.20.

The forced vibration method is widely used to study the motion-induced aerodynamic force and
examine the quasi-steady theory. For a square cylinder in smooth flow, the typical CLm0, ϕLm

and CLmI curves, as functions of reduced flow velocity (U/(nmd)), are shown in Fig. 2.17 (Na-
kamura & Mizota 1975). One can find that the magnitude of CLm0 shows a significant increase
around 1/St, which is definitely influenced by the resonance effect of vortex shedding. Moreo-
ver, it is to note that the phase angle ϕLm quickly changes its sign, from negative to positive,
at a reduced flow velocity slightly higher than 1/St, then gradually approaches to 90◦ at high
reduced velocities. Since “0 < ϕLm < π” implies the instability, it is reasonable to say that the
quasi-steady theory begin to qualitatively hold for U/(nmd) slightly higher than 1/St. However,
for U/(nmd) < 1/St, the quasi-steady theory is definitely invalid. For the more elongated 2:1
rectangular cylinder, results of Nakamura & Mizota (1975) and Washizu & al. (1978) show that
the variation of ϕLm with U/(nmd) is qualitatively the same as the square cylinder, but the tran-
sition of ϕLm from negative to positive is less steep and strongly influenced by the oscillation
amplitude (especially the position of ϕLm crossing zero).

Fig .2.17 (c) shows a comparison of the experiments with the linear quasi-steady predictions,
being the data points with an apparent wind angle of attack lower than 1.8◦ considered. Close
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to 1/St, one can find that the measured destabilizing force is stronger than the quasi-steady pre-
dictions. Such a characteristic is also reported for the 2:1 rectangular cylinder, in an even wider
range of reduced flow velocity (Nakamura & Mizota 1975; Washizu & al. 1978). Nevertheless,
this stronger destabilizing force agrees well with the advancing of galloping onset in the “Low
Interference” behaviors, as shown in Fig. 2.16 (c). Finally, Ma & al. (2018) adopted the forced

1/St

(a) Magnitude of CLm(t)

1/St

(b) Phase angle by which CLm(t) leads y(t)

1/St

Quasi-steady theory

(c) Comparison with linear quasi-steady theory (data points with appa-
rent angle of attack lower than 1.8◦)

Fig. 2.17: Characteristics of the motion-induced aerodynamic force measured on a vibration square cy-
linder (reproduced from Nakamura & Mizota (1975)). 1/St denotes the reduced wind speed
for Kármán-vortex resonance.
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vibration method for a square cylinder, with quite detailed variation of the reduced wind speed
and the oscillation amplitude. The measured motion-induced force was used to predict the free
vibration test results registered in Wawzonek (1979), showing satisfying agreements.

Motion-induced aerodynamic force can be also measured on a free vibration body, either through
pressure measurements (e.g., Bearman & al. (1987)) or direct force measurements (e.g., Gao &
Zhu (2016)). Bearman & Luo (1988) compared the phase angles of the motion-induced force,
obtained respectively from free vibration tests and forced vibration testes in steady oscillation
state. As expected, the agreement is quite good. Nevertheless, for force measurements on a free
vibration body, the concerned transient behaviors (e.g., the building-up process of galloping
oscillation) can be also studied, see e.g. Gao & Zhu (2016). Recently, the forced vibration test
setup also gets some developments. The quite impressive one is reported by Siedziako (2017),
consisting of two actuators to force the wind tunnel model to vibrate in any wanted manner
(even the random vibration).

The previously introduced unsteady galloping behaviors, either the aeroelastic response or the
exciting force, are based on rectangular cylinders with one face perpendicular to the incoming
flow. When the front face of these objects is not perpendicular any more, unsteady galloping
is still able to arise but may behave in different manner. Fig. 2.18 shows what is encountered
for the square cylinder being nosed up 9◦. In the left side plot, Carassale & al. (2015)’s forced
vibration tests show that the change of sign of the phase angle occurs apparently after Vr. This
is quite different from the null wind angle of attack case shown by Fig. 2.17 (b). In the right side
plot, Dai (2019)’s free vibration test results confirmed that, in this situation, the galloping arises
at about 1.6Vr rather than at Vr, even for Sc = 4 (this Scruton number is very low so that there
is quasi-steady prediction Vg�Vr). A typical VIV response around Vr is also observed. Similar
aeroelastic responses occur also for the 12◦ mean flow incidence (separately, VIV appears at Vr

and galloping arises at 2.2Vr, with Sc = 4). In contrast, for the mean flow incidence not higher
than 6◦, the typical combined VIV-galloping was observed in case of low Sc (Dai 2019).

For convenience, the phenomenon shown in Fig. 2.18 is named atypical unsteady galloping.
Qualitatively speaking, this is a phenomenon different from the typical unsteady galloping due
to the interaction with VIV. Because, even for a very low Sc, an interaction between galloping
and VIV ia actually not observed. From the point of view of the phase angle ϕLm, the difference
is exhibited by the lower bound of V , defined here as Vlb, higher than which ϕLm becomes
positive (in small-amplitude oscillation state). In the case of typical unsteady galloping, Vlb

seems at about Vr (Fig. 2.17 (b)), while for the atypical unsteady galloping it is clearly higher
than Vr (Fig. 2.18 (a)). For the quasi-steady theory, Vlb is supposed to be of great importance,
because it indicates a reduced flow velocity at which the theory becomes at least qualitatively
valid (although, quantitatively, the magnitude difference may be still very large).
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U

(a) (b)

Fig. 2.18: Instability of the square cylinder with an mean wind angle of attack of 9◦: (a) phase angle by
which CLm(t) leads y(t), obtained by forced vibration tests with fixed oscillation amplitude of
y0/d = 0.1 (Carassale & al. 2015); (b) amplitude-velocity plot of free vibration tests, with a
very low Scruton number Sc = 4 (Dai 2019). St = 0.127 for α = 9◦ is used to plot the reduced
wind speed for Kármán-vortex resonance Vr (St measured at Re = 2.6 ·103 (Dai 2019)).

Finally, it may be interesting to think about “why is Vlb just right around Vr for the cases of
typical unsteady galloping?” and “why is Vlb clearly behind Vr for the cases of atypical unsteady

galloping?”. For the first question, it may be answered by the asynchronous quenching effect,
that the vortex shedding process is able to stabilize or quench the body’s motion up to the
Kármán-vortex resonance wind speed (Mannini & al. 2014). This effect is successfully reflected
by Tamura’s nonlinear wake oscillator model to be introduced later. However, for the second
question, there exists still no convincing explanations according to the author’s knowledge.
Interestingly, a quite similar phenomenon to the atypical unsteady galloping has been observed
by Santosham (1966), for a 2:1 rectangular cylinder with split-plate presented in the wake (the
front face of the cylinder is perpendicular to the incoming flow). There, for a very low Sc,
galloping arose at about V = 3, while without split-plate it arose at about V =Vr = 2.

2.2.2 Sources of Unsteadiness in Across-wind Oscillation

On the one hand, considering a thin plate subjected to sinusoidal oscillation only in heaving
degree of freedom, the linear unsteady lift can be expressed as (according to Eq. 2.25)

L =−ρπb2
hÿ−2πρUbhC(k)ẏ (2.52)
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While, according to the linear quasi-steady theory for galloping, this lift is simply

L =−1
2

ρU2 · (2bh)
dCL

dα
· ẏ
U

=−2πρUbhẏ (2.53)

where dCL
dα

= 2π is the theoretical slope of CL-α curve for thin plate (here, CL is defined with
chord length b = 2bh). Comparing the above two equations, it is to know that, in the quasi-
steady galloping theory, the added mass item related to ÿ is neglected and C(k) = 1 is assumed
(namely the fluid memory is neglected).

On the other hand, for bluff bodies, the periodical vortex shedding process represents another
source of unsteadiness, being neglected in the quasi-steady galloping theory. Its important role
has already been reflected in the interaction phenomenon between galloping and VIV.

To sum up, there are three aspects being neglected in the quasi-steady galloping theory, as also
noted by Liu & al. (2018):

• the vortex shedding process;

• the fluid memory effect;

• the added fluid mass.

For the last item, it is usually negligible for wind engineering, due to the big difference of the
density between structure and air. So, theoretically approaching the unsteady galloping needs
to mainly take the first two aspects into account.

2.2.3 Modeling the Unsteady Galloping

(i) Integrating vortex shedding force in addition to quasi-steady motion-induced force

A considerable number of efforts were made to take into account the effect of vortex shedding
force in unsteady galloping modeling, clearly due to its important role at low reduced flow
velocities. The basic idea in these efforts is to add a fluctuation lift item due to vortex shedding
to the classical quasi-steady galloping theory.

Santosham’s model (1966) The first attempt in this direction was made by Santosham (1966),
who simply added a harmonic force of Strouhal frequency nst to the governing equation of
quasi-steady galloping (Eq. 2.16). In water flow, it was found the vortex shedding force is able
to quench the self-excited galloping to a certain reduced velocity, which is dependent on the
magnitude of vortex shedding force. However, for air flow, the effect is of insignificance.
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Corless&Parkinson’s model (1988) A more advanced model was proposed by Bouclin (1979),
to address the across-flow instability of square cylinders in water flow. The model consists of
two coupled oscillators: one is for body’s oscillation, considering the quasi-steady galloping
force and the vortex shedding induced lift as input; the other is a VIV lift oscillator according to
Hartlen & Currie (1970), externally excited by the velocity of body. Later, Corless & Parkinson
(1988) further added an inertial coupling-item for the lift oscillator to improve the solutions in
the primary resonance range. In non-dimensional form, this modified model is written as

Y ′′+2ζ0Y ′+Y =
V 2

m∗
Cv +

V 2

m∗
CQS

Fy (
Y ′

V
) (2.54a)

C′′v − ãυ

(
1− 4

3υ2C2
L0

C′v
2
)

C′v +υ
2Cv =

b̃
υ2Y ′′+

c̃
υ

Y ′ (2.54b)

where Y = y/d, υ = 2πStV =V/Vr and ( )′ denotes differentiation with respect to the reduced
time τ = 2πn0t. CL0 is the amplitude of fluctuation lift coefficient on stationary body, and CQS

Fy =

CFy is the quasi-steady transverse force coefficient (here, the superscript QS is used to highlight
its nature of being based on quasi-steady theory). ã, b̃ and c̃ are three parameters, which have
to be determined with forced- or free-vibration tests around the resonance region. For a square
cylinder, this model qualitatively captured several important features of the typical unsteady
galloping, e.g., the postponement of galloping until Vr for very low Sc and the approaching
of solutions to the quasi-steady ones at sufficiently high V . However, the predicted amplitude
around Vr was apparently overestimated. Recently, Mannini & al. (2015b) used this model for
a 3:2 rectangular cylinder and conducted sensitivity studies for ã, b̃, c̃ and CL0. The agreement
with experiments seems less satisfying, especially when a wide range of Sc is considered.

Tamura&Shimada’s model (1987) Nearly in the same time period, a similar mathematical
model was proposed by Tamura & Shimada (1987). Instead of directly modeling the fluctuation
lift due to vortex shedding, Tamura&Shimada’s model adopted the non-liner wake oscillator
model, which was originally developed by Tamura & Matsui (1979) for the VIV problem of
circular cylinder, to describe the dynamics of the near-wake rotation then relate it to the unsteady
lift. In non-dimensional form, Tamura&Shimada’s model is written as

Y ′′+2ζ0Y ′+Y =
V 2

m∗
f
(

ϑ − Y ′

V

)
+

V 2

m∗
CQS

Fy (
Y ′

V
) (2.55a)

ϑ
′′−2βυ
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1− 4 f 2
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ϑ
2
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2
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2Y ′
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(2.55b)

with

β =
f

2
√

2π2l∗
and λ =

1
b/d + l∗

(2.56)
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where f is the slope of the unsteady lift coefficient CL,un with respect to the near-wake incli-
nation ϑ , as indicated in Fig. 2.19 (a) for stationary body. For oscillation body, the effective
near-wake inclination ϑe f f = ϑ −Y ′/V is adopted to calculate CL,un. Particularly, the reduced
half near-wake length l∗ = l/d and the reduced near-wake width h∗ = h/d need to fulfill

St2 =
1

4πh∗(l∗+b/d)
(2.57)

which may be called a “local-effect” equation. There, the Strouhal number St is deemed to be
determined by the wake geometry h∗ and l∗. Besides the parameters St, CL0 and CQS

Fy , which can
be easily obtained by static tests, f and h∗ (or l∗) are still to be set for the model. Estimation of
h∗ can be based on flow visualization, and f is related to the Magnus effect analogy, in similar
way to the circular cylinder (Tamura & Matsui 1979). In Eq. 2.56 and 2.57, the expressions of λ

and St are written with b/d to facilitate its more general application (setting b/d = 1 for square
cylinder, the expressions of λ and St become the original ones in Tamura & Shimada (1987)).
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Fig. 2.19: Schematics of the wake oscillator models (on stationary body): the original “TS-1987” one
(Tamura & Shimada 1987); (b) the modified one “TS-2018” by Mannini & al. (2018a).

Recently, Mannini & al. (2018a) modified Tamura&Shimada’s model by pivoting the near-wake
lamina about the centroid of the cylinder, and applying the restoring force FL at one fourth of
the chord of the lamina (see Fig. 2.19 (b)). The modification is based on the very first idea
of Birkhoff (1953), schematizing the near-wake of bluff body as a lamina oscillating in the
rotational degree of freedom. These modifications lead to different expressions of β and λ

β =
f√

2π2l∗
and λ =

1
l∗

(2.58)

as well as the “local-effect” equation between St, l∗ and h∗

St2 =
1

8πh∗l∗
(2.59)
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This modified form of Tamura&Shimada’s model was then applied to a 3:2 rectangular cylinder,
and for a wide range of Sc it provides satisfying predictions on the typical unsteady galloping
behaviors. The identification of the f parameter was, however, not through the analogy to Ma-

gnus effect, which was deemed questionable for sharp-edged bluff body. Instead, they used the
pure VIV response of one aeroelastic test case with high Sc to calibrate out the parameter f .

Essentially speaking, in Corless&Parkinson’model, the nonlinear lift due to vortex shedding is
modeled by an externally excited Rayleigh-type oscillator, while this is achieved by a Van der
Pol-type oscillator in Tamura&Shimada’s model. Their similarity has been already mentioned
in several publications (e.g., Corless & Parkinson (1988) or Parkinson (1989)). Nevertheless,
it is necessary to highlight, that Tamura & Matsui (1979)’s nonlinear wake oscillator model
(based on Birkhoff (1953)’s linear one, and extended in Tamura & Shimada (1987) for square
cylinder) involves some physical considerations about the near-wake of bluff body. Therefore,
the parameters, h∗, l∗ and f , correspond to clearly physical meanings. A further analysis about
these physical considerations is presented in Chapter 5. Finally, to make a difference in this
thesis, the original Tamura&Shimada’s model is called “TS-1987”, and the modified one by
Mannini & al. (2018a) is called “TS-2018”.

(ii) Attempts to model the unsteady motion-induced force

In either Corless&Parkinson’s model (Eq. 2.54) or Tamura&Shimada’s model (Eq. 2.55), it is
to notice that the quasi-steady transverse force coefficient CQS

Fy was adopted for the full range
of reduced flow velocities. This is perhaps the most questionable point in these two mathema-
tical models. However, unlike the thin airfoil or flat plate, theoretical approach to the unsteady
motion-induced force for bluff bodies actually not exists. Nevertheless, there are some attempts
dedicated to an expression of the unsteady motion-induced force for bluff bodies.

Hémon&Santi (2002). Hémon & Santi (2002) suggested a modified version of the quasi-steady
theory, by introducing a time lag correction tlag between ẏ(t) and Fy(t), which is written as

Fy(t) =
1
2

ρU2dCFy(
ẏ(t− tlag)

U
) (2.60)

For bluff bodies, according to some sounds-reasonable arguments, Hémon & Santi (2002) sug-
gested that the time lag can be chosen as one period of the vortex shedding. Good agreement
with experiments has been achieved in Hémon & Santi (2002), while the predictions based on
such an idea was found poor by other researchers (Liu & al. (2018) for an square cylinder and
(Mannini & al. 2015a) for an 3:2 rectangular cylinder).

Luo&Bearman (1990). Luo & Bearman (1990) took a bold step, assuming that an equation,
which was derived in similar to an airfoil oscillating with small amplitude in incompressible
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flow, can be applied to an oscillation bluff body. This equation can be revised from Eq. 2.52
with several modifications, and is written as

L =−Cmoρπ(
b
2
)2ÿ− dCL

dα
ρU

b
2

C(k)ẏ (2.61)

where Cmo is called the potential flow inertia coefficient, and dCL
dα

is the lift-curve slope. If let
Cmo = 1, dCL

dα
= 2π , the above equation becomes Eq. 2.52 (remembering bh = b/2). For a square

cylinder (b= d), Cmo = 1.53 was estimated (Luo 1985), and the experimentally measured−dCFy
dα

at α = 0 was set for dCL
dα

(for bluff body, the contribution of drag is considered and the minus
sign is due to CFy defined downward positive). By further assuming a harmonic motion

y = Im[y0eiωmt ] = y0 sin(ωmt) (2.62)

the unsteady lift described by Eq. 2.61 can be expressed in real form (by putting complex form
of y into Eq. 2.61, then taking the imaginary part)
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(2.63)

where F(k) and G(k) are the real and imaginary part of Theodorsen’s circulatory function C(k).
The above equation contains two force items: one in phase with body’s displacement y and
the other in phase with ẏ. For wind engineering, the second item is more important, which is
equivalent to damping force. Since F(k) is within 0.5 to 1 (see Fig. 2.11), so that there is[

dCFy

dα
ρU

d
2

F(k)
]

ẏ≤
[

dCFy

dα
ρU

d
2

]
ẏ (2.64)

where the right side item actually represents the transverse force according to the linear quasi-
steady galloping theory. Clearly, the generated aerodynamic damping based on unsteady aer-
ofoil theory is dependent on the reduced frequency (or reduced flow velocity), but it is always
lower than the one according to quasi-steady theory. More important is that the sign of the aero-
dynamic damping generated by these two theories will always be the same. In Luo & Bearman
(1990), further analysis was given to a comparison with the experimental data of a square cylin-
der forced to vibrate. The pronounced good agreement is, however, found by the author of this
thesis, somewhat questionable (for example, the expression of Eq.2.61 is only meaningful for
small apparent wind angle of attack, however in Luo & Bearman (1990) the good agreement
with experiments is achieved for very large apparent attacking angles).
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Gao&Zhu (2017) An empirical approach was proposed by Gao & Zhu (2017) to model the
motion-induced force for across-wind oscillation:

Fy =
1
2

ρU2(2b)Y1(K)

[
1+ ε03(K)

ẏ2

U2 + ε03(K)
ẏ4

U4

]
ẏ
U

(2.65)

where Y1, ε03 and ε05 are parameters as a function of the reduced frequency K = ωb/U (which
is the one used in Scanlan’s flutter derivatives). The unsteady effect was considered in an “im-
plicit” way, since these parameters are dependent on K. Clearly, this is a combined formulation
referring to both the nonlinear quasi-steady theory and the flutter derivatives: if only the line-
ar item is maintained, there is 2Y1(K) = KH∗1 (K) (see Eq. 2.42); or, if the dependence on K is
removed, there are 2(b/d)Y1 =A1, 2(b/d)Y1ε03 =A3 and 2(b/d)Y1ε05 =A5 (A3 and A5 are high-
order coefficients for polynomials approximating the CFy(α) curve, see Appendix A.1). In Gao
& Zhu (2017), these parameters were determined by force measurements on a free-vibration 2:1
rectangular cylinder, which exhibited “Full-Interference” type unsteady galloping. A tendency
of these parameters to the quasi-steady ones was observed at high reduced flow velocities.

(iii) Combination of vortex shedding force and unsteady motion-induced force

Liu & al. (2018). Recently, Liu & al. (2018) introduced Theodorsen’s circulatory function to
modify the quasi-steady transverse force item (CQS

Fy ) in Corless&Parkinson’s model, as well
as in Tamura&Shimada’s model (“TS-1987”). This means that the aerodynamic force on the
oscillation body right now consists of two fully unsteady parts: one due to the vortex shedding;
and the other due to the body’s motion. Although the agreement with experiments, for a square
cylinder undergoing typical unsteady galloping, is not significantly improved (compared with
the original ones with CQS

Fy item), this attempt is definitely very interesting and meaningful.

(iv) Short summary

Previous Sections reviewed the many efforts to model the unsteadiness of aerodynamic force,
for bluff bodies undergoing across-wind oscillation at low reduced velocities. The separation
of the unsteady aerodynamic force into a portion due to vortex shedding and another portion
due to body’s motion, provides a clear picture for the mechanism of unsteady galloping. For
modeling the unsteady force due to vortex shedding, with the help of lift or wake oscillator
model which is originally developed for VIV problem, some achievements have been obtained,
for example, Corless&Parkinson’model, and Tamura&Shimada’s model as well as its modified
form in dealing with the typical unsteady galloping due to interference with VIV. However,
for modeling the motion-induced unsteady force, it seems to be still a very tough task. On
the one hand, Luo & Bearman (1990)’s bold attempt, by considering Theodorsen’s circulatory

function for bluff body, may be quite inspirational to some extent. On the other hand, one must
recognize that the using of Theodorsen’s circulatory function is definitely inaccurate for bluff
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body. Remembering that the circulatory function is related to the indicial function by Fourier
transform (see Eq. 2.41), it can be found in Scanlan & al. (1974) how big differences between
the indicial functions respectively for bluff bodies and for thin airfoil.

2.3 Effect of Incoming Turbulence and 3-dimensional

Problem

2.3.1 Turbulence’s Effect

Turbulence is the fluctuation part in incoming flow, composed of eddies of different sizes being
convected by the flow. In wind engineering, incoming turbulence is normally described in a
statistical manner, by the variance of wind speed fluctuation, power spectral density, correlation
function, etc. Turbulence in incoming flow is known able to significantly influence the aerodyna-
mics of bluff body, and the concerned mechanisms have been extensively studied and discussed
(see, e.g., Bearman & Morel (1983)). Usually, eddies in turbulent flow can distinguish between
three types for a given bluff body (as summarized in Mannini (2020)): a) small-scale eddies,
with a length scale comparable with boundary layers and separated shear layers’ thickness; b)
medium-scale eddies, with a size comparable with the vortex formation region; c) large-scale
eddies, with a scale much larger than body’s dimension. The first topology is able to enhances
the mixing and the entertainment of fluid from the near wake and accelerate the growth of the
shear layers promoting their earlier reattachment (Gartshore 1973; Nakamura & Ohya 1984;
Nakamura & Ozono 1987). The aerodynamics of bluff body is modified due to this mechanism,
making the bluff body behave in turbulent flow as if it were more elongated (see, e.g., Laneville
& Parkinson (1971) and Mannini & al. (2017)). The large-scale eddies represent a parametric
and an external excitation for a dynamic system, which can be modeled by consideration of the
variation of instantaneous wind angle of attack (Abdel-Rohman 2001; Lindner 1992; Luongo &
Zulli 2011). The role of medium-size eddies is more complicated, since it implies both effects.
A realistic turbulent wind flow includes all of these three typologies of flow fluctuations. Their
relative portion and importance is able to be reflected by the integral length scale.

With respect to galloping instability, the existence of turbulence was found able to turn a hard-
type galloping in smooth flow, which occurs usually for small side-ratio bluff body, into a soft-
type galloping, for which sustained vibration arises spontaneously from rest (Laneville & Par-
kinson 1971; Novak 1972; Novak & Davenport 1970; Novak & Tanaka 1974). In contrast, for
larger side-ratio bluff bodies, Novak & Davenport (1970) and Novak (1972) suggest that turbu-
lence attenuates the galloping oscillation until the structure becomes stable in a high turbulence
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flow (for example the 2:1 rectangular cylinder). This in line with the effect of the small-scale
eddies of turbulence being introduced previously. It is worth noting that Laneville & Parkinson
(1971) did not find any significant effect of turbulence integral length on the galloping insta-
bility of a square cylinder, although they also pointed out that the investigated range of length
scales was always comparable with body’s dimension. In contrast, recent contribution regarding
to a 3:2 rectangular cylinder indicated that the integral length scale plays also a very important
role (Mannini & al. 2018b), probably even in a non-monotonic manner. From the point of view
of the liner quasi-steady theory (e.g, the galloping factor A1), their results also showed that the
incident turbulence, dependent on intensity, could either suppress or enhance galloping insta-
bility. Nevertheless, the classical quasi-steady theory was concluded still applicable by Novak
& Davenport (1970) and Laneville & Parkinson (1971), provided that the the transverse force
coefficient is measured in the same turbulent flow condition and a higher reduced flow velocity
is ensured. Finally, turbulence was found able to impair the regularity of galloping oscillation
(Mannini 2020; Mannini & al. 2018b).

For vortex induced vibrations, the most evident effects of incident turbulence include the va-
riation of Strouhal number and the associated shift of lock-in response (see, e.g., Kobayashi
& al. (1990) and Mannini & al. (2017)). On the other hand, Vickery (1966) noticed that, for
a stationary square cylinder, the Strouhal number is the same as in smooth flow, but the root-
mean-square value and correlation length of the fluctuation lift gets significant reduction. The
loss of spanwise correlation in turbulent flow was also indicated by Novak & Tanaka (1977)
for a forced vibration circular cylinder. Matsumoto & al. (1993)’s results further indicated that
a low free-stream turbulence can either increase or reduce the VIV response, depending on the
cross-section geometry and the specific exciting mechanism. In general, the VIV response of
bluff bodies in turbulent flow still needs extensive investigation.

Finally, according to the author’s knowledge, the investigation dedicated to unsteady galloping
in turbulent flow is still very limited. Nevertheless, earlier contributions to this topic can be
found in Bearman & al. (1987) and Miyata & al. (1983), in which the square cylinder was dis-
cussed. In particular for the latter, it implied that turbulence tends to enhance the interference
between VIV and galloping for a certain range of Scruton number. Recently, Mannini & al.
(2018b) particularly paid their attention to the unsteady galloping problem of a 3:2 rectangu-
lar cylinder in turbulent flow. There, the measured CFy and St through static tests also implied
an enhancement of the VIV-galloping interference. Even more impressive are the aeroelastic
test results, in which a classical Kármán-vortex-resonance region has never been observed in
turbulent flow and the aeroelastic behaviors differ apparently between small-scale turbulence
(Lu/d = 0.3-0.9) and large-scale turbulence (Lu/d = 2.6-2.9). Very recently, Mannini (2020)
successfully captured the unsteady galloping behavior in large-scale turbulent flow, by means
of Tamura’s wake oscillator with parameters measured in turbulent flow. In contrast, for small-
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scale turbulent flow with medium to high intensity, the galloping was found to arise at a reduced
flow velocity slightly higher than Vr even for very low Sc. The mechanism for this peculiar phe-
nomenon remains unclarified.

2.3.2 3-dimensional Object

For 3-dimensional structures such as towers and high-rise buildings, the aerodynamic coef-
ficients like CFy, St and CL0 may become position dependent. Particularly in boundary layer
turbulent flow, the variation of CFy with respect to vertical position z is very apparent as repor-
ted by Parkinson & Sullivan (1979) and Hu & al. (2015). The calculation of structural dynamic
response must consider this variation carefully. In case of high reduced flow velocity ensured,
the quasi-steady theory was found still applicable for 3-dimensional structures even in turbu-
lent flow, given that the CFy(α,z) coefficient was measured in the same flow condition and the
mode shape effect was correctly considered (Parkinson & Sullivan 1979; Sullivan 1977). On
the other hand, unsteady galloping seemingly occurred during Hu & al. (2015)’s experiments
for a vertical square tower, being the galloping-type vibration initiated at about the critical wind
speed for VIV rather than at the quasi-steady prediction (predicted Ug/Ur is about 2.1). Clearly,
3-dimensional structures in turbulent flow represent the very complicated cases, but also are the
realistic situations for engineering practices. A simplified but realistically useful approach to the
instability problem in this situation could be the empirical aerodynamic-damping model (Cheng
& al. 2002; Gu & Quan 2004; Kareem & al. 1996), which is usually built on the regression of
wind tunnel measurement data.

2.4 Chapter Summary

In this Chapter, an introduction to bluff body aerodynamics and aeroelastic phenomena was first
given. In particular, the mechanism of across-wind galloping was elaborated based on the well-
known quasi-steady theory. Focuses were then put to the up-to-date knowledge about unsteady
galloping, ranging from the overview of its characteristics, via an analysis of the source of
the unsteadiness during the oscillation, to the topic about mathematically modeling unsteady
galloping, and finally ending with the brief discussion on the effects of incoming turbulence
and 3-dimension. One may notice that considerable attentions were also paid to VIV and flutter.
This is deemed necessary for a better revealing of the unsteadiness in across-wind galloping.
It may be also noticed that the current understandings on unsteady galloping, as well as its
mathematical modeling, are limited to the rectangular and square cross sections.



3 Experimental Setup and Configurations

3.1 Facility and Wind Tunnel Models

All the experimental campaigns were carried out in the boundary layer wind tunnel at the Insti-
tute of Steel Structures of Technische Universität Braunschweig, Germany. Fig. 3.1 (a) shows
the schematic view of the wind tunnel layout, and Fig. 3.1 (b) and (c) show two photos of the
wind tunnel. The wind tunnel is a suction Eiffel-type facility with a rectangular cross section
of 1.4 m width and 1.2-1.4 m height (adjustable ceiling). The total length of the wind tunnel
is 13.05 m, including a 8.75 m long working chamber with two test sections. Test section 1
is used to carry out experiments on sectional models. For a better quality of the smooth flow
this section is located at the entrance/inlet of the chamber. Test section 2 is equipped with a
High Frequency Force Balance (HFFFB) and a turntable with a diameter of 1.2 m, and used
for tests on overall building aerodynamics. The flow speed can be varied continuously up to
25 m/s through a 55 kW motor placed at the outlet. In absence of turbulence generators, the
free-stream turbulence intensity is about 1%. Examination of the flow quality will be provided
in the following sections.

In this research, all the static and aeroelastic tests for the sectional models were conducted in
the Test section 1 of the wind tunnel. The measurements of the overall aerodynamic force on
the launching nose were carried out in Test section 2.

Three sectional models were tested in this work. Their cross section geometries are shown in
Fig. 3.2. These three cross sections are selected based on the practical engineering cases col-
lected in Tab. 1.1. There, the rectangular and trapezoidal cross sections as well as the open tra-
pezoidal cross section are very common in the incremental launching process of steel-concrete
composite bridges. The side ratios of these selected cross sections, defined in this thesis as the
overall width b to height d, were purposely set to b/d = 2. In view of Tab. 1.1, this side ratio is
within the range b/d = 1.6 to 2.9 and therefore should be representative for realistic cases.

There are also some other considerations in the determination of cross sections types for wind
tunnel tests. For the 2:1 rectangular cylinder, some experimental results are already available
in the literature. Therefore, the presented results of this rectangular cylinder will also serve as
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Fig. 3.1: Boundary layer wind tunnel at the Institute of Steel Structures of TU-Braunschweig: (a) by
courtesy of Dr.-Ing. Hodei Aizpurua Aldasoro (Aldasoro 2014); (b) and (c), by courtesy of
Dr.-Ing. Luca Pigolotti (Pigolotti 2017).

an important measure to examine the validity of experimental setup, by means of comparison
with other literature reports. For the open cross section shown in Fig. 3.2(c), a detailed literature
search shows this cross section has never been well studied especially with respect to its aero-
elastic behaviors, although it is a very typical cross section for steel-concrete composite bridges
during construction phase. This cross section was therefore given a lot of attention in this the-
sis. It is designed based on the prototype of Aftetal Bridge (previously mentioned in Chapter
1), and its appearance is slightly modified to make it more representative. Nevertheless, this
cross section is characterized with its top side open, from which more complex aerodynamic
behaviors are expected. For a better understanding of those behaviors, the closed trapezoidal
cross-section, with similar geometry, is additionally selected as a reference.

Fig. 3.3 shows how the two cylinder models are composed and manufactured (only the sketch
of rectangular cylinder is given, since the way of constructing the trapezoidal one is the same).
For the two close-form cylinders, the effective lengths between the two end-plates are le = 1290
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Fig. 3.2: Geometry of the cross sections of the three wind tunnel models: (a) rectangular cross section;
(b) trapezoidal cross section; (c) bridge deck with typical open cross section (dimension in mm).

mm. The stiffness of the cylinder is provided by an internal aluminum square tube which has
a height of 50 mm and a thickness of 2 mm. Two circular tube connectors made of aluminum
were welded to the square tube, to facilitate the installation in the experimental setup. The
aerodynamic shape of the rectangular and trapezoidal cylinder is obtained by 5 mm thick balsa
wood plates. The remaining space between the square tube and the wooden plates is supported
by discretely arranged ABS plastic ribs (see Fig. 3.3, as well as Fig. 3.2 (a) and (b)). These
ribs were produced by FDM 3D printer. The smooth surface and especially the sharp corners
of the cylinder models are obtained by polishing with sand paper and carefully protected with
acrylic varnish. Finally, two 480 mm × 240 mm × 5 mm end-plates were connected to each
end of the cylinder by screws, to enforce the bidimensional flow condition. The design of the
end-plates followed the instruction given by Obasaju (1979), as well as referred to the size of
the end-plates for a 3:2 rectangular cylinder (Mannini & al. 2014).

1290 

480 

24
0 End-plate

 Tube connector

 Balsa wood plate

 ABS plastic rib

Alu. square tube

Fig. 3.3: Sketch of the rectangular cylinder model (the open portion for internal view, dimension in mm).

The manufacturing of the bridge deck model with open cross section was relatively more com-
plex. Fig. 3.4 shows an overall view of the model. The effective length of this model is le = 1300
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mm, slightly larger than those of the two close-form cylinder models. To manufacture the open
cross section shown in Fig. 3.2 (c), a 1.5 mm aluminum plate was first folded. Then, nine alumi-
num hollow ribs and two solid ribs were manufactured by CNC machine. They are connected
to the open cross section profile by screws, to enhance the global stiffness. In particular, the two
solid ribs were set at the ends, for connections to the tube connectors. Finally, two 15 mm wide
and 1 mm thick flanges were installed at the top, by connecting them to the ribs with screws and
filling the remaining slit with structural adhesive for aluminum.

However, two round corners were left at the bottom of the cross section due to the folding
process of the aluminum plate. Since the aerodynamics of a bluff body is quite sensitive to
the corner details (especially the ones close to the locations of flow separation), such round
corners may bring significant influence to the flow field around the open cross section (see,
e.g., Mannini (2015)). Therefore, the bottom corners of the open cross section were further
sharpened by usage of two-component epoxy adhesive, see Fig. 3.2 (c). Finally, the bridge deck
model was equipped with the same end-plates as the other two cylinder models. It is also worth
noting here that there is no internal core throughout the model, so that the bending stiffness of
the model is directly provided by the aluminum open cross section itself and the inside space of
the profile is maintained clean.

1300 

480 

24
0 

Open cross section

 Rib

End-plate

 Tube connector

Fig. 3.4: Sketch of the bridge deck sectional model with open cross section (dimension in mm).

Fig. 3.5 shows the photos of the three wind tunnel models, among which the bridge deck model
with open cross section is already installed inside the wind tunnel. The finished three wind
tunnel models weigh 2.05 kg, 2.02 kg and 1.75 kg, respectively. The wind tunnel blockage ratio
is 5%, defined here as the model height to the height of the wind tunnel cross section, and no
correction of wind tunnel blockage effect is made to the test results. For convenience, the three
sectional models shown in Fig. 3.2 are respectively named “rectangular cylinder”, “trapezoidal
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cylinder” and “bridge deck model”. Finally, the main information about the three wind tunnel
models are summarized in Tab. 3.1.

(a) Rectangular cylinder (b) Trapezoidal cylinder

(c) Bridge deck model (in wind tunnel)

Fig. 3.5: Photos of the three wind tunnel sectional models

Tab. 3.1: Summary about the three wind tunnel sectional models

Rectangular cylinder Trapezoidal cylinder Bridge deck model

Section height d [mm] 60 ” ”
Section width b [mm] 120 ” ”

Effective length le [mm] 1290 1290 1300
Aspect ratio le/d [-] 21.5 21.5 21.67

Weight [kg] 2.05 2.02 1.75
Blockage ratio [-] 5% ” ”

Due to need, a launching nose model is also tested in this study. Fig. 3.6 shows the sketch of
this model and Fig. 3.8 (b) gives a photo. Its design referred to the lattice launching nose used
in the construction phase of Nuttlar Viaduct (Niemann & Hölscher 2012). For facilitation of
manufacturing, some details has been modified. But the most important characteristics, namely
the overall shape and the solid ratio of each side, were maintained representative. The size
of the aforementioned sectional models was also taken into account during the design of this
launching nose model. For example, the maximum height of the launching nose is aligned to
the height of the sectional model, and its width (72 mm) is compatible with the bridge deck



54 3 Experimental Setup and Configurations

model. Therefore, this launching nose will be also applicable for the wind tunnel tests on a
whole cantilever model, which is planned as a future work of this thesis.
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Fig. 3.6: Sketch of the lattice launching nose model, mostly made of wood strip and dimension in mm.

The launching nose model was made of pine-wood strips and aluminum connectors at the four
“feet” (particularly indicated in Fig. 3.6). The wooden strips were glued to each other, while
two-component-epoxy adhesive was used for the connection between the wooden strips and the
aluminum connectors. The connection of this wind tunnel model to the test setup is through the
threaded holes on the aluminum connectors. Finally, it should be mentioned that the aim of this
model is to understand the basic aerodynamics of the launching nose, and to explore the possi-
bilities of suppressing the galloping problem during launching the phase through aerodynamic
optimization for the launching nose. This model is not a scaled one from any prototype.

3.2 Experimental Setup

3.2.1 Static Tests

The aerodynamic force measurements on the stationary sectional models were carried out with
the static setup shown in Fig. 3.7. On each side of the wind tunnel, the setup consists of three
strain-gauge load cells (one 100 N load cell for the horizontal direction and two 50 N load cells
for the vertical direction, type HBM S2M with 0.02% relative error of full scale output), steel
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connecting rods and an aluminum block. Each load cell is axially loaded due to the presence of
two plate-shaped appendices in the connecting rod working as hinged connections. The wind
tunnel model was rigidly connected to the aluminum blocks through three screws on each side.
The whole setup is fixed on an aluminum frame outside the wind tunnel, which is directly
installed to the ground through a layer of rubber gasket. Any direct contact to the wind tunnel
structure is avoided. The Data acquisition was performed with a strain/bridge input module
(type NI PXIe-4330) at a sampling frequency of 1000 Hz. The flow incidence of the model
was manually adjusted with an electronic inclinometer (type SPI-TRONIC Pro3600) with an
accuracy of 0.05° within the range -10° to 10°, and 0.1° outside that range.

Fig. 3.7: Static setup for sectional models (outside wind tunnel).

The static tests of the launching nose model were conducted with the High Frequency Force Ba-
lance (HFFB) installed at the Test section 2 of the wind tunnel (see Fig. 3.8). Instead of directly
connecting the launching nose model to HFFB, a solid steel connector was used to support the
model at a higher position above wind tunnel ground. This is to obtain a better uniform flow
attacking on the model. The incident wind profile shown in Fig. 3.8 (a) is a measured one in
absence of any turbulence generator (see Section 3.3.4). Clearly, the thick boundary layer de-
veloped on the wind tunnel floor is less preferable for the investigations on the launching nose
model, thus eliminated by usage of the steel connector. The model was connected to a steel
end-plate with a diameter of 400 mm and a thickness of 2 mm. After a further strengthening by
a 80 mm × 70 mm × 3 mm aluminum plate, the model with the end-plate was connected to the
steel-connector by screw. Finally, an ABS plastic isolator (produced by 3D printer) was used,
to avoid the exposure of the steel connector to incoming flow (see Fig. 3.8 (a)).

The HFFB platform is composed of 4 piezoelectric 3-component force sensors (Kistler Type
9317B6). These sensors are connected to a 90 mm × 90 mm ×25 mm steel plate on top, which
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Fig. 3.8: Static setup with high frequency force balance (HFFB) for the launching nose model.

provides further connection options for test objects. The supporting substructure is made of
steel, in a very massive and stiff way. The piezoelectric force sensors have an ultra-sensitive
accuracy (about 0.01 N resolution), as well as a high force range up to ±1 kN in two horizontal
directions (X and Y) and ±2 kN in vertical direction (Z). The whole HFFB system, including
the substructure, has nearly no amplification for dynamic exciting up to 400 Hz. More details
about this HFFB system can be found in Aldasoro (2014).

3.2.2 Aeroelastic Tests

Fig. 3.9 shows the aeroelastic setup, composed by eight coil springs suspending the sectional
model from the outside of wind tunnel. The horizontal motion of the wind tunnel model was re-
stricted by two sets of anti-drag cables, connected to the tube connectors of the models through
ball bearings. Two specially designed aluminum bars were used to link the wind tunnel model
to the springs, providing also place to install the aluminum plate conductors of the eddy current
damper. Any connection between spring and hooks was improved by means of nylon cables to
avoid possible friction. The dynamic response of the model was measured by two laser displa-
cement sensors (type WayCon LAS-T5-250-10 V) at each side of the wind tunnel. Data were
recorded at a sampling frequency of 1000 Hz with a NI PXI-6284 module, a high-accuracy
multi-function M-Series module optimized for 18-bit analog input accuracy. Finally, it is to no-
te that coil springs of different stiffness were used for different wind tunnel models, so that the
critical wind speeds for vortex induced vibration were purposely set at about 5-6 m/s for the
aeroelastic tests (the flow quality at lower wind speed is less satisfying, see Section 3.3.3).
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Fig. 3.9: Aeroelastic setup for sectional models (outside wind tunnel).

Additional damping was introduced into the dynamic system by means of eddy current dampers,
with the strength controlled by the input electric power. The damper device was first conceived
and tested by Pons (2014) during his work at the same wind tunnel facility, and further improved
in this study for a better capability of installation. Each damper consists of two position-fixed
electromagnets (type Tremba GTo80-0.5000, maximal nominal power 15 W) and a movable
conductor plate. The latter was made of 2 mm aluminum plate and fixed on the aforementioned
horizontal bar, simultaneously moving with the wind tunnel model. The dynamic tests were car-
ried out with two dampers at the early stage of the experimental campaign (one at each side of
the wind tunnel), introducing damping only in the heaving degree of freedom. To reach a higher
damping level and, more importantly, to suppress any motion in the pitching degree, the system
was later modified including four dampers. The amplitude of the pitching motion was therefore
successfully kept below 0.05° throughout the whole dynamic campaign. The gap between the
two electromagnets of each damper was set to 5 mm for the two-damper system and 5.4 mm for
the four-damper system. Although this gap is quite narrow, especially considering also that the
2 mm thick conductor plate will move between it, any contacts or collision between the conduc-
tor plate and the electromagnets was successfully avoided throughout the whole experimental
campaign.

3.2.3 Flow Measurements

Flow measurements were performed with a single TFI Cobra 315 Probe (Turbulent Flow In-
strumentation, Pty Ltd), as shown in Fig. 3.10. It is a multi-hole pressure probe able to resolve
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3-components of velocity and local static pressure in real time with a high time resolution more
than 2000 Hz. This device is especially suitable to measure the turbulent flow fields, with the
measuring flow angles within a ±45° cone. The Probe is about 160 mm long, with a body dia-
meter of 14 mm and a faceted head with a width of 2.6 mm. The measured raw data is provided
by 4 analogue voltage signals, which are first amplified and then sampled by an A/D-converter
(type NI PXI-6259). The recorded time history of velocities of 3-components can be easily use
to further calculate the mean flow velocity, turbulence intensity, flow pitch and yaw angles, etc.
The Cobra probe was particularly optimized for a flow velocity range 2-30 m/s by the manufac-
turer, considering the maximal wind speed 25 m/s in this wind tunnel. The sampling frequency
of Cobra probe was set to 2000 Hz throughout the whole wind tunnel activities. Finally, the
supporting system for the Cobra Probe is shown in Fig. 3.10 (c).

(a) (b)

(c)

Fig. 3.10: TFI Cobra Probe (a)-(b), by courtesy of Dr.-Ing. Hodei Aizpurua Aldasoro (Aldasoro 2014),
and its supporting system (c).

For different purposes, the work concerning flow measurements mainly includes two parts:

• Free stream measurements. This is to understand the properties of the incoming flow, e.g.,
turbulence intensity and flow uniformity. These measurements were conducted where the
sectional model was later placed. The measured mean wind speed was also used to build a
mapping relationship to the wind speed monitored by a Prandtl tube, which is installed far
from the Test section 1 for the overall wind speed in wind tunnel. Through the mapping
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relationship, a more precise mean wind speed can be estimated when the wind tunnel
model was installed inside.

• Wake measurements. Flow measurements in the wake of the sectional model is to ob-
tain information about the near-wake. This is related to the mathematical modeling with
Tamura’s wake oscillator model, which will be further explained in Chapter 5.

3.2.4 Turbulence Grid

Since the Test section 1 is already quite close to the inlet of wind tunnel (see Fig. 3.1 (a)),
the capability of generating turbulent flow by means of grid is rather limited here. In fact, the
maximal upstream distance to install a turbulence grid is about 1.0 m, and the existing grids
at the wind tunnel facility had a minimum mesh size of 140 mm × 140 mm with 30 mm
wide strips. A preliminary examination of the turbulent flow generated by this grid (upstream
distance 0.93 m) resulted in a unsatisfying uniformity. Due to this reason, a new turbulence grid
was designed and manufactured to gain more compliant turbulent flow.

Fig. 3.11 shows the new turbulence grid used in this research. It is made of wooden bars with
a cross section of 23 mm × 23 mm, featuring a mesh size of 100 mm × 100 mm in bi-planar
arrangement. The design of this grid followed the instructions given by Roach (1987), and
also refereed to the size of a similar turbulence gird documented in Mannini & al. (2018b).
The characteristics of the turbulent flow generated with this grid will be presented in Section
3.3.3.

Fig. 3.11: Photo of the used turbulence grid (upstream of the wind tunnel model).
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3.3 Pre-examinations

3.3.1 Calibration of the Static Setup

As previously mentioned, the static setup consists of three load cells and the connecting rods
on each side of the wind tunnel. Although the relative error of the load cell is already clear
(given by the manufacturer), the accuracy of the static setup is actually unknown due to the ma-
nual combination of load cells and rods. For instance, whether the steel rods with plate-shaped
appendices are perfectly installed will influence the force finally measured by the load cell.
Therefore, it is necessary to calibrate the whole static setup to understand the real accuracy. The
calibration was carried out by giving known force and moment to the static setup, as shown in
Fig. 3.12. There, a weight of known mass is used to apply loading to the measurement system.
Considering the plate-shaped appendices of the connecting rod working as hings, the applied
vertical force as well as them moment will be measured by “Cell 2” and “Cell 3”, while the
applied horizontal force is reflected by the “Cell 1”. By suspending the known weight respec-
tively at “Pos. 1”, “Pos. 2” and “Pos. 3”, vertical force, moment and horizontal force can be
measured for calibration purpose. The calibration was made side by side, in absence of wind
tunnel model.

Pulley

Fig. 3.12: Calibration of the static setup by giving known mass at three different positions.

Fig. 3.13 shows the calibration results, presented corresponding to a sequence of giving known
weights at “Pos. 1”, “Pos. 2” and “Pos. 3”. The given force, through the gravity of mass, covered
a range from 0.066 N to 16.367 N. For the vertical force (Fig. 3.13 (a)), the measured one agrees
well with the given one except at 0.066 N , reporting a relative error, defined here as the relative
difference of the measured one to the given one, lower than 0.15% for both sides. The relative
error for moment component is slightly higher, but within 0.5% for both sides (Fig. 3.13 (b)).
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However, the relative error for the horizontal one is comparably large, reporting a maximum
difference about 1.5%. At the same time, the measured one is found always lower than than the
given one except for the lowest magnitude (0.066 N).

(a) Vertical force FY (b) Moment MZ

(c) Horizontal force FX

Fig. 3.13: Results of calibrating the static setup side by side. ∆ denotes the relative difference of the
measured one to the given one.

To figure out the reason, additional calibration work was devoted to the “Cell 1” sensor, which is
responsible for the horizontal force component of the static setup. Fig. 3.14 shows the two steps
of additional work. First of all, the “Cell 1” sensor was dismounted from the static setup and
vertically installed. Then the vertical force was directly applied to the sensor, by suspending
a known weight as shown in Fig. 3.14 (a). The obtained relative error is about 0.02 % for a
magnitude of 9.937 N. This indicates that the sensor itself works well. Secondly, the sensor
“Cell 1” was installed horizontally but without the rig. The horizontal force was then applied to
the sensor by means of nylon cable and pulley, as shown in Fig. 3.14 (b). With still 9.937 N as
the given force, the measure value is about 0.91% and 0.80% less, respectively for the right side
and left side setup of the wind tunnel. This clearly means, that a small portion of the horizontal
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force is “eaten” by the pulley, probably due to the friction of the pulley. Considering this, it is
decided to introduce no correction to the measured force and moment by the static setup.

(a) (b)

Fig. 3.14: Extra calibration for the horizontal force: (a) vertical loading on “Cell 1”; (b) horizontally
loading on “Cell 1” without setup rig.

3.3.2 Linearity of the Damper System

Fluid-structure interaction usually exists strong non-linearity. So the aeroelastic test setup should
behave itself as linear as possible, to reduce the mixing of mechanical non-linearity into the ae-
roelastic responses. An important topic here is the linearity of the mechanical damping, which
can be roughly divided into two sources: a) wind tunnel model and its connected affiliations;
b) additional damping introduced by damper. For the former, it is important to reach a rigid
connection between the assembled components and avoid any possible friction movement. This
requires much attention and accuracy during the manufacturing process of the wind tunnel mo-
del as well as concerned setup, and it is usually hard to make change again once the manufac-
turing is completed. Here, more attention is put to the used damper system.

The linearity of the damper system was examined by applying different initial out-of-equilibrium
positions to the wind tunnel model, and then comparing the evaluated damping from the free-
decaying vibration. Strictly speaking, such an examination should be conducted in void to to-
tally remove the effect of still air, or using a specially designed streamline wind tunnel model
which can minimize the influence of surrounding air(e.g, in Santosham (1966)). Unfortunate-
ly, these options are not available at the current wind tunnel facility. Therefore, the carried-out
examination was performed under the situation, where a considerable amount of additional
damping was introduced. By doing so, the portion of the well-known nonlinear damping due to
the surrounding still air can be minimized. Maintaining the same input electric power for the
damper, Fig. 3.15 shows the displacement decaying records of the bridge deck model, respec-
tively for a small initial displacement (about 1 mm) and a large one (about 19 mm). For both
cases, the amplitude envelopes can be well fitted to a decaying function y = y0e−2πζ0n0t , where
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y0 depends on the initial displacement. The evaluated damping by this fitting method reports
ζ0 = 1.59% for the case with small initial displacement, and ζ0 = 1.61% for the large one.
These two very close values suggest a satisfying linearity of the damper system.

(a) (b)

Fig. 3.15: Examination of the linearity of the damper system by applying different initial out-of-
equilibrium positions (four-damper system with the same input of electric power).

3.3.3 Flow Characteristics at Test Section 1 of Wind Tunnel

Smooth flow

To understand the characteristics of the incoming flow, a total amount of 15 monitoring points
were distributed at the position where the wind tunnel model will be installed later. As shown
in Fig. 3.16, these monitoring points were arranged in five columns and three rows. They have
a horizontal distance of 200 mm and a vertical distance of 90 mm. Flow velocity measurements
were conducted with the Cobra probe at a sampling frequency of 2000 Hz. The recording time
length in a steady flow is 60 s. The recorded raw data was digitally filtered by a low-pass zero-
phase Butterworth filter of 20 orders, at a cut-off frequency of 500 Hz. It was noticed, that the
power spectral density of the along-wind fluctuation Suu(n) showed a tendency to be constant
in the frequency range higher than 500 Hz. This may be some high frequency noise but cannot
be the real energy of the turbulence, therefore they were filtered out.

Fig. 3.17 shows the statistical results of the measurements of the 15 monitoring points. There,
U represents the spatially averaged value of U of the 15 points. For U higher than about 5 m/s,
the relative standard deviation std(U)/U of the 15 points is well below 1%, and the maximum
deviation to the averaged value is smaller than 2%. This indicates a good uniformity of the
incoming flow for this wind speed range. However, the uniformity becomes less satisfying for
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Fig. 3.16: Monitoring points for Cobra probe in smooth flow condition. The dashed line indicates the
position where the wind tunnel model will be installed later.

U < 5 m/s. This problem is also observed for the turbulence intensity, see Fig. 3.18. For U >

5 m/s, the averaged turbulence intensity of the 15 points is well below 1% (even the maximum
value is just slightly higher than 1%). However, for very low wind speeds (like 3 m/s), the
turbulence intensity reaches nearly 3%.

(a) Standard deviation (b) Maximum deviation

Fig. 3.17: Relative deviation of mean wind speed of the 15 monitoring points (smooth flow). U denotes
the spatially averaged mean wind speed.

This less satisfying flow characteristic for U < 5 m/s could be due to the wind tunnel facility
itself, which is however hard to improve. Another possible reason may arise from the Cobra
probe, remembering that its working range of wind speed should be higher than 2 m/s. The
measurements with Cobra probe in such a low-velocity flow may involve more uncertainties
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Fig. 3.18: Average and maximum value of the turbulence intensity of the 15 monitoring points (smooth
flow).

and errors. To ensure a good uniformity of the incoming flow, all measurements were carried
out with a mean wind speed higher than 5 m/s. Finally, the specific values of U and Iu for each
monitoring point at given in Appendix A.2.1, for 5 representative wind speed levels.

Turbulent flow

For the measurements of turbulent flow, the positions of the 15 monitoring points were slightly
changed (see Fig. 3.19). The horizontal and vertical distance were rearranged to 230 mm and 60
mm, to avoid placing all monitoring points straightforwardly behind the strips of the turbulence
grid. The upstream position of the grid to monitoring points was varied in the three distances
of x = 94 cm, 74 cm and 54 cm. The following results are therefore labeled as “Gird-X94”,

Wind tunnel floor

Wind tunnel ceiling

W
al

l

W
al

l

Monitoring points

Fig. 3.19: Monitoring points for Cobra probe, with turbulence grid installed upstream. The dashed line
indicates the position where the wind tunnel will be installed later.



66 3 Experimental Setup and Configurations

“Gird-X74”, “Gird-X54”. The sampling frequency of the Cobra probe was set to 2000 Hz. No
filter was used for the data processing of turbulent flow measurements.

Fig. 3.20 shows the relative standard deviation of the mean wind speeds of the 15 monitoring
points, which stands here as an indicator for the spatial uniformity of the incoming flow. Com-
pared to the results in smooth flow (Fig. 3.17 (a)), the uniformity of the three turbulent flows
decrease slightly but still within 2 % for U ≥ 5 m/s.

Fig. 3.20: Relative standard deviation of mean wind speed of the 15 monitoring points, with three confi-
gurations of the turbulence grid.

Fig. 3.21 (a) shows the spatially averaged along-wind turbulence intensity Iu, with respect to U .
The averaged value Iu was found slightly dependent on U at low wind speeds for all of the three
configurations, and tend to be constant at high wind speeds. This behavior is very similar to that
reported for smooth flow (see Fig. 3.18), which suggests that the higher turbulence intensity
at low wind speeds may be not due to the turbulence grid itself. Nevertheless, the spatially

9.2%

11.2%

14.9%

(a) Spatially averaged value (b) Standard deviation

Fig. 3.21: Turbulence intensity Iu of the 15 monitoring points (turbulent flow).
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averaged Iu was further averaged for flow velocities higher than about 5.0 m/s, to characterize
an overall indicator. They are reported 14.9%, 11.2% and 9.2%, respectively, for the three grid
configurations. Fig. 3.21 (b) shows the relative standard deviation of Iu to the averaged value
Iu for the 15 monitoring points. For U ≥ 5 m/s, they are generally within 4 % and considered
well-acceptable for turbulent flow.

Fig. 3.22 shows the ratio of Iv and Iw to Iu, where Iv and Iw denote the spatially averaged
turbulence intensities in lateral and vertical direction. The three different grid configurations
lead to very similar results, with the ratios Iv/Iu and Iw/Iu in a range between 0.8 and 0.9 for
U ≥ 5 m/s.

(a) Turbulencen intensity Iv (b) Turbulencen intensity Iw

Fig. 3.22: Intensity of the other two turbulence components (spatially averaged value).

The along-wind turbulence integral length Lu = UTu is calculated based on Taylor’s frozen
eddy hypothesis, where Tu =

∫
∞

0 ρu,u(tlag)dtlag is the integral time length and ρu,u(tlag) is the
normalized auto-correlation function of the along-wind fluctuation component u(t) (here, tlag is
the time lag). To reduce the uncertainties, the measured ρu,u(tlag) was first approximated by an
exponential decaying function and then integrated, adopting the same method as used in Clobes
(2008) and Hoebbel & al. (2018).

In Fig. 3.23 (a) the spatially averaged integral length Lu is reported, with respect to U . Compared
with the turbulence intensity (see Fig. 3.21), the averaged integral length Lu shows a slight trend
of increase with U for all grid configurations. It is known that the energy distribution of the
turbulent flow is characterized by the normalized frequency (nLu/U) (e.g., see the von Kármán
spectrum Eq. 3.1), thus the portion of turbulence energy left outside the sampling frequency
(2000 Hz) is actually dependent on U . This portion of energy will be transported into sampled
data due to the aliasing effect in the sampling process, but in a form similar to the white noise
(this is confirmed by artificially generating a turbulent flow u(t), containing energy only in a



68 3 Experimental Setup and Configurations

frequency band from 500.1 Hz to 3000 Hz, and then sampled at 500 Hz). In frequency domain,
the contribution of this “white noise” will slightly “lift” the measured spectrum Suu over the
whole frequency band. In particular, the “being-lifted” low-frequency signals is crucial, which
will increase the estimation of turbulence integral length. The aliasing effect can be reduced
by using a higher sampling frequency so that the turbulence energy left outside the sampling
frequency is minimized. In fact, this may be particularly necessary for small scale turbulence
transported by high mean flow velocity. Anyway, for U ≥ 5.0 m/s, the spatial averaged values
are further averaged over the mean wind speeds to obtain overall indicators for the different
turbulent flows.

3.81

3.14

2.58

(a) Spatially averaged value (b) Standard deviation

Fig. 3.23: Average and standard deviation of the turbulence integral length Lu of the 15 monitoring points.

Fig. 3.23 (b) shows the relative standard deviation of the estimated turbulence integral length
of the 15 monitoring points. Its non-uniformity is apparently larger than that for the mean wind
speed and turbulence intensity. In the distribution map provided in Appendix A.2.2, one can find
a difference of 1 cm between two monitoring points at the same U (see Fig. A.7 (a)). Anyway,
the uncertainties in the estimation of the turbulence integral length is a well-known issue in
wind engineering (Simiu & Scanlan 1996), especially for full scale measurements (Hoebbel
& al. 2018).

Before the presentation of the concerned power spectral density, the commonly used theoretical
model for the homogeneous isotropic turbulence proposed by von Kármán (Von Kármán 1948)
should be introduced. For the auto spectral density Suu of longitudinal turbulence u(t), it is
written in a normalized form:

nSuu(n)
σ2

u
=

4nLu/U
(1+70.8(nLu/U)2)5/6 (3.1)
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where Lu is the turbulence integral length and σu the standard deviation of u(t). By putting the
measured Lu into the above equation, the von Kármán spectrum Suu provides a way in frequency
domain to examine the quality of the grid-generated turbulent flow, which is well-accepted as
nominally homogeneous isotropic turbulent flow.

Fig. 3.24 shows the measured power spectral density Suu for the three grid configurations, ex-
emplified by the central measuring point at a mean wind velocity about 10 m/s. Their respective
measured integral lengths Lu were used to plot the von Kármán ones. Clearly, the measured
spectra show a good agreement with the theoretical ones in the low to medium normalized fre-
quency range, but are overestimated in the high normalized frequency range. This is caused
by the previously mentioned aliasing effect. Because the magnitude of Suu at high normalized
frequency is relatively small, so that the distortion of the “white noise” due to aliasing effect
becomes apparent here, making the measured Suu look like tending to be constant.

Measured

Von Kármán

(a) Grid-X94

Measured

Von Kármán

(b) Grid-X74

Measured

Von Kármán

(c) Grid-X54

Fig. 3.24: Examples of the power spectral density Suu at the central monitoring point.
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Tab. 3.2 summarized the flow characteristics at the wind tunnel Test section 1. In general, the
uniformity of the incoming flow is satisfying, reporting a relative standard deviation of the 15
monitoring points less than 1% for smooth flow and less than 2% for turbulent flow. The in-
tensity of the grid-generated turbulent flow represents typical values of the natural wind filed.
However, the length scale of turbulence is quite small, just in the same order of the height of the
wind tunnel models. This indicates a big difference from the full scale situation, where the tur-
bulence integral length could be 20 times larger than the bridge deck height. The simulation of
turbulent flow in a boundary layer wind tunnel, fulfilling both high intensity and large integral
length, has always been a challenge, especially for sectional bridge deck models. With respect
to across-wind galloping instability, Laneville & Parkinson (1971) have shown, that mainly the
turbulence intensity has an influence on the galloping stability of a bluff body. Recent experi-
mental studies, on the other hand, pointed out, that also the turbulence integral length has an
important impact (Mannini & al. 2018b). This suggests that the effect of the turbulence integral
length on the galloping instability requires further investigations, which is, however, experi-
mentally very difficult due to the challenge in obtaining large scale turbulent flow. For the ratios
Iv/Iu and Iw/Iu in Tab. 3.2, it is known that the generated turbulent flow is not fully isotropic but
satisfying to some extent.

Tab. 3.2: Summary of the flow characteristics (further averaged value over mean wind speeds higher than
about 5 m/s). xg is the distance between turbulence grid and monitoring points, dg the grid mesh
size 10 cm, d wind tunnel model height 6 cm.

Config. xg [cm] xg/dg [-] std(U)/U [-] Iu [-] Iv/Iu [-] Iw/Iu [-] Lu [cm] Lu/d [-]

No Grid - - < 1% ∼ 1% - - - -

Grid-X94 94 9.4 < 2% 9.2% 0.81 0.85 3.81 0.64

Grid-X74 74 7.4 < 2% 11.2% 0.82 0.85 3.14 0.52

Grid-X54 54 5.4 < 2% 14.9% 0.81 0.87 2.58 0.43

Fig. 3.25 shows a comparison between the generated turbulent flow and the one generated by
a similar grid in Mannini & al. (2018b), as well as the empirical prediction provided by Roach
(1987). The presented turbulence intensity Iu vs. xg/dg agrees well with the results in Mannini
& al. (2018b), while Roach’s empirical equation reports a slightly lower intensity. For integral
lengths, the estimation according to Roach (1987) is also lower than the two experimental ones,
which agree fairly well with each other.

Finally, for the convenience of results presentation in following Chapters, the spatially averaged
mean wind speed U is replace by U to represent the incoming mean wind speed (if without
special notation). At the same time, the turbulence intensity and integral length reported in Tab.
3.2 are also simply indicated by Iu and Lu.
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Mannini & al. (2018b)

(a) Intensity

Mannini & al. (2018b)

(b) Integral length

Fig. 3.25: Comparison of the turbulence characteristics with other literature reports. The turbulence grid
in Mannini & al. (2018b) features a mesh size 10 cm × 10 cm and strip width cg = 2.5 cm.
Empirical equation provided by Roach (1987) for the prediction of turbulence intensity is
Iu = 1.13(xg/cg)

−5/7, and for the integral length it is Lu/cg = 0.2(xg/cg)
1/2, with cg = 2.3 cm.

3.3.4 Flow Characteristics at Test Section 2 of Wind Tunnel

The flow characteristics at Test section 2 were examined in absence of any turbulence genera-
tors. Measurements were conducted with the Cobra probe prior to the installation of the wind
tunnel model. The 10 monitoring points were arranged in one vertical line just above the HFFB
(see Fig. 3.26 (a)). In particular, the monitoring points at the heights of 16 cm and 52 cm corre-
spond respectively to the bottom and top of the launching nose model to be installed (see Fig.
3.8). The procedure for data acquisition is the same as in Section 3.3.3.

The profiles of the mean wind speed and the turbulence intensity are shown in Fig. 3.26 (b) and
(c), for three different wind speed levels. Apparently, for wind tunnel without any turbulence
generators, the flow quality close to the ground is less satisfying. The turbulent boundary layer
developed above the ground seems quite thick. For the mean wind speed, good uniformity is
available for position higher than about 16 cm. For the turbulence intensity, it is less satisfy-
ing either. At z = 22 cm, the turbulence intensity is still higher than 2%. Because of this, a
steel connector (shown in Fig. 3.8) was used to put the launching nose model at a higher po-
sition. Therefore, an approximately uniform smooth flow attacking the wind tunnel model is
achieved.
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(a) Monitoring points (b) Mean wind speed (c) Turbulence intensity

Fig. 3.26: Flow characteristics for static tests of the launching nose model: (a) monitoring points; (b)
approaching mean wind speed U and (c) turbulence intensity Iu. The legend is shared between
results of U and Iu.

3.4 Chapter Summary

In this chapter, the experimental facility, the wind tunnel models and the different setups were
presented. Some preliminary investigations, performed prior to the formal tests, were given here
for an understanding on the accuracy and uncertainties of the setups, as well as the characteri-
stics of incoming flows. The formal wind tunnel tests were performed for different purposes and
the corresponding results will be presented in three parts. The first part of tests focused on the
aerodynamic forces and aeroelastic behaviors of the three sectional models, whose results will
be presented in Chapter 4 as a separated section. The flow velocity measurements in the wake
of the sectional models (wake measurements) are arranged in Chapter 5. This part of measu-
rements is closely related to the mathematical modeling with Tamura’s wake oscillator model.
Finally, the aerodynamic force measurements on the launching nose model will be given in
Chapter 6, in combination with the mathematical modeling for continuous structural system.
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4.1 Static Results

For the convenience of result presentations, definitions of aerodynamic force and moment co-
efficients are first given in Fig. 4.1. For the two close-form cylinder model, the force center is
put at the mid-height of cross section. For the bridge deck model, this center is at 5d/12 to its
bottom side, which corresponds also to the gravity center of the cross section.

Fig. 4.1: Definition of the aerodynamic force and moment coefficients on the three sectional models.

The aerodynamic drag, lift and moment coefficients are all defined with the height d of sectional
models

CD =
D

0.5ρU2dle
, CL =

L
0.5ρU2dle

, CM =
M

0.5ρU2d2le
(4.1)

where D, L and M are the drag, lift and moment. Without special notation, these three coef-
ficients denote the mean value of the steady-state measurements over a time length of 100 s.
They are the steady parts of the measured force and moment coefficients. The transverse force
coefficient CFy is defined downward positive, and calculated from CD and CL by Eq. 2.14 which
is re-given here for convenience

CFy(α) =− 1
cos2(α)

[CL(α)cos(α)+CD(α)sin(α)]
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The galloping factor A1, for strictly across-wind instability, is calculated according to the well-
known Den Hartog criterion

A1 =−
(

dCL

dα
+CD

)∣∣∣∣
α=α0

where α0 denotes a mean flow incidence. If α0 = 0, there is also A1 =
dCFy
dα

∣∣∣
α=0

according to
Eq. 2.18.

From the unsteady part of lift, the Strouhal number and the strength of vortex shedding force
can be evaluated. The Strouhal number is defined in this thesis with the model height d

St =
nstd
U

(4.2)

where nst is the vortex shedding frequency, identified from the power spectral density of fluctua-
tion lift SLL. The Root Mean Square (RMS) value of vortex shedding force coefficient, named
Clat,0 in Eurocode 1 (EN 1991-1-4 2010; Ruscheweyh & al. 1996), is obtained by integrating
SLL with a frequency band around nst

Clat,0 =
σL

0.5ρU2dle
with σL =

√∫ nst+∆n

nst−∆n
SLL(n) dn (4.3)

where 2∆n is the frequency band. Respectively, ∆n = 3 Hz and ∆n = 9 Hz were used for mea-
surements in smooth and turbulent flow. The latter is larger since the vortex shedding force
characterizes a wider frequency band in turbulent flow. For both situations, it has been con-
firmed that a wider frequency band has no significant influence on the results.

Clat,0 obtained in this way is inevitably affected by the dynamic amplification effect, unless
the first bending natural frequency of the model is very high compared to the vortex-shedding
frequency. Unfortunately, the natural frequencies of the three wind tunnel models are not high
enough (all around 50 Hz) in the static setup. To correct this bias, the classical dynamic amplifi-
cation factor for a single-degree-of-freedom system was employed. Firstly, a sensitivity analysis
showed that for damping ratios up to 5% the amplification factor exhibits negligible variations,
if the ratio of the vortex-shedding frequency to the model natural frequency is lower than 0.84
(this is the maximum frequency ratio encountered during the static tests, occurred for the bridge
deck model at α = -5◦ and U = 14.9 m/s). Consequently, since for sectional models rigidly
mounted in the static setup, the damping ratio of the first bending mode is unlikely to be higher
than 5%, a null damping ratio was considered to calculate the amplification factor and to correct
the Clat,0 values. As it will be shown later, this correction is very important.
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Finally, for measurements in smooth flow, it is also convenient to use the sinusoidal equivalent
amplitude coefficient:

CL0 =
√

2Clat,0 (4.4)

to indicate the strength of vortex shedding force.

4.1.1 In Smooth Flow

Rectangular cylinder

The rectangular cylinder was first tested. Fig. 4.2 shows the mean drag and lift coefficients mea-
sured at various wind angle of attack α , at three different Reynolds numbers. The experimental
results from Brooks (1960) and Santosham (1966) are also included for comparison. In general,
the effects of Re on CD and CL are rather limited in the presented results. The drag and lift
coefficients reaches their minima at about α = 7◦, which implies a definite reattachment of free
shear layer on the side face of the cylinder according to Parkinson (1971). The agreement with
literature reports is fairly good. Nevertheless, one can find that the negative slope of CL around
α = 0◦ is slightly larger than the reports of Brooks (1960) and Santosham (1966). This implies
a larger galloping factor for the presented results.

(a) (b)

Fig. 4.2: Mean drag and lift coefficients (CD and CL) for the 2:1 rectangular cylinder at various wind
angles of attack α . The two subplots share their legends.

Fig. 4.3 shows the galloping factors A1 at α = 0◦, for three different Re. They are calcula-
ted based on the aforementioned Den Hartog criterion, and the evaluation of the slope of CL

considered only the data points within [-1◦, 1◦]. Obtained A1 shows slight dependence on Re,
increasing from 5.6 at Re = 2.0 ·104 to 6.8 at Re = 6.0 ·104. Nevertheless, limited dependence
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on Re is quite common even for sharp-edged bluff body. From Fig. 4.2 (b), one can also notice
the slightly different slopes of CL in Santosham (1966)’s results between different Re.

(a) Re = 2.0 ·104 (b) Re = 4.0 ·104 (c) Re = 6.0 ·104

Fig. 4.3: Evaluation of galloping factor A1 for the 2:1 rectangular cylinder at α = 0◦.

Fig. 4.4 shows the Strouhal number St and the sinusoidal equivalent amplitude of the fluctuation
lift coefficient due to vortex shedding CL0. In general, the effect of Re is rather limited, except
that the CL0 coefficient within −4◦ < α < 4◦ shows an increase with Re. The CL0 reported here
is already corrected by the previously mentioned dynamic amplification factor. However, the
dependence on Re is still there and apparently more evident than other aerodynamic coefficients.
This issue will be made clear later with more measurements.

(a) (b)

Fig. 4.4: Strouhal number St and strength of vortex shedding force CL0 of the 2:1 rectangular cylinder at
various α . Gray points in subplot (a) and (b) correspond to a second Strouhal number and its
intensity of vortex shedding force.

In Fig. 4.4 (a), a jump of the dominated St is visible at about α = 6◦ (for brevity, only the
results of α ≥ 0◦ are discussed here due to symmetry of the cylinder). Before this jump, a
second Strouhal number, marked with gray color in Fig. 4.4 (a), can be identified for 3◦ ≤ α ≤
5◦, characterized with a weaker strength of vortex shedding force as shown by Fig. 4.4 (b).
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According to Deniz & Staubli (1997), the jump of the dominant St and the co-existence of two
St are related to the transition process of vortex shedding pattern during the increase of α (from
LEVS for small α to AEVS for large α , see also see Fig. 2.4 for schematics of LEVS and
AEVS). Such a transition process can be also viewed from Fig. 4.5, which shows the power
spectra SLL at various α . It is also interesting to note that the strength of vortex shedding force
becomes quite low, either for LEVS or AEVS, during this transition process.

Fig. 4.5: Power spectral density SLL for various α , at Re = 6.0 ·104. SLL is square-rooted for better view.

To further understand the dependence of CL0 on Re, the static test setup was re-mounted more
than one year later and aerodynamic force measurements were repeated at the null wind angle
of attack, with more and higher Reynolds numbers evolved. The new CL0-Re relationship is
shown in Fig. 4.6, combined also with the uncorrected CL0 results. The old results, marked with
gray color, are added as well. Some points in the new obtained results must be explained first:

Fig. 4.6: Effects of Reynolds number and dynamic amplification on the CL0 coefficient, for the 2:1 rec-
tangular cylinder at α = 0◦. Gray points denote old results (the ones reported in Fig. 4.4 (b)).
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a) the peculiarly low CL0 at about Re = 1.2 · 104 is due to the unsatisfying flow quality of the
low wind speed in wind tunnel (U = 3 m/s), see Section 3.3.3; b) the drop of CL0 around about
Re = 4.4 · 104 is influenced by the process of 3nst passing by n0 during the increment of wind
speed. From the uncorrected data, one can find that the CL0 coefficient increases linearly with
Re. This trend is actually abnormal, also less reasonable for a sharp-edged body. In contrast, the
corrected CL0 behaves in a more reasonable way, reaching a constant trend for Re > 5.3 · 104,
although for 2.0 · 104 ≤ Re ≤ 5.3 · 104 a slight increase of CL0 with Re is still visible. Finally,
one can find the new results and the old ones have a good agreement with each other.

In Tab. 4.1 the presented results are compared with more literature reports particularly at α = 0◦.
The literature data is limited to experimental results obtained in a similar test condition. Clearly,
the presented St and CD coefficients agree well with other literature reports. The obtained A1

factor also falls correctly into the range 2.9-8.6 suggested by other literature reports, although

Tab. 4.1: Comparison of the global aerodynamic parameters for the 2:1 rectangular cylinder with other
literature reports (limited to experimental data, obtained on cylinder model, measured in air
flow with low turbulence intensity and Re > 104). The original collection of literature data
is provided by Mannini & al. (2014), except the very recent piece “Gao & al. (2020)”. The
galloping factor A1 marked with “∗” is inferred by Mannini & al. (2014) from the published
graphics.

Reference blockage [-] Iu [-] Re×10−3 [-] St [-] CD [-] A1 [-]

Brooks (1960) 2.8% < 0.5% 33 0.079 1.53 3.2∗

Santosham (1966) 2.6% < 0.1% 20.4 - 1.53 3.9∗

” ” 38.0 - 1.49 2.9∗

Nakaguchi (1968) - Smooth 20-60 0.085 1.46-1.54 -

Nakamura & Mizota (1975) - Smooth - 0.083 1.69 6.1∗

Washizu & al. (1978) 5.5% 0.3% - 0.077 1.48 4.71

Miyata & al. (1983) - - - 0.083 - -

Okajima & al. (1985) - < 0.5% 20 0.076-0.079 - -

Ruscheweyh & al. (1996) - 2% - - - 4.3∗

Deniz & Staubli (1997) - Smooth 32 0.087 1.40 7.19

- ” 48 0.089 1.38 7.82

- ” 80 0.088 1.26 5.92

Itoh & Tamura (2002) 5% < 0.5% 16-37 0.078 - -

Hansen (2013) - 2% - 0.066 1.4 8.6

Gao & al. (2020) 5% < 1% 80-120 0.078 1.27-1.31 4.06

Present 5% ∼1% 20 0.079 1.52 5.6

” ” 40 0.079 1.51 6.35

” ” 60 0.079 1.50 6.78
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the presented ones (A1 = 5.6− 6.78) seems quite large. In fact, one can find the variation of
the collected A1 is considerably larger, compared with St and CD. According to Mannini & al.
(2014), this big variation of A1 could be due to the different flow characteristics and test condi-
tions. Finally, it is to note that the Eurocode 1 (EN 1991-1-4 2010) reports CD = 1.65, St = 0.06
and A1 = 2 for the 2:1 rectangular cross section. The latter two parameters can be found lower
than the collections in Tab. 4.1.

In summary, the static test results of the 2:1 rectangular cylinder show good agreements with the
literature reports, so that the static setup as well as the size of used end-plates are validated.

Trapezoidal cylinder

Fig. 4.7 shows CD and CL for the trapezoidal cylinder. At α = 0◦, wind tunnel test reports CD =
1.53-1.54 and CL = 0.69-0.76 for the investigated Re. From a global point of view, the effect of
Re is still limited for the cylinder. It is to note that the local maximum of CD moves to α = 3◦,
mainly due to an inclination of the front face. The two local minimums of CD occur at α =−6◦

and α = 10◦, corresponding to a local maximum and minimum in the CL(α) plot respectively.
Finally, in the CL(α) plot, there exists a inflection point around α = −2◦. This may be due to
an intermittent re-attachment of the separated shear layer on the upper surface of the cylinder,
according to the explanation for the square cylinder by Luo & al. (2003).

(a) (b)

Fig. 4.7: CD and CL of the trapezoidal cylinder at various α .

For brevity, Fig. 4.8 (a) shows only the dominant Strouhal number, although the second one
is also observed for some wind angles of attack. For −3◦ ≤ α ≤ 8◦, St = 0.088-0.093 was
obtained, which is relatively unvaried. Out of this range, jumps of St occur and the dominant
vortex shedding pattern is supposed to change from LEVS to AEVS. Interesting is that, the local
maximum of CL0 also moves to α = 3◦, around which the dependence on Re is apparent and
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qualitatively similar to the rectangular cylinder (see Fig. 4.8 (b)). Quantitatively, the magnitude
of CL0 at α = 3◦ is higher than CL0 at α = 0◦ of the rectangular cylinder for the same Re.

(a) (b)

Fig. 4.8: St and CL0 of the trapezoidal cylinder at various α .

Bridge deck model

Fig.4.9 shows the CD, CL and CM coefficients for the bridge deck model. The moment coefficient
is additionally given here, considering that it may be very useful for engineering practices (due
to the high representativeness of the studied object). The effect of Re is generally limited as
well, but for CL within −5◦ < α < 12◦ one can find relatively apparent dependence on Re (a
clear reason for this dependence is still unknown). At Re = 6.0 · 104, the static tests report a
drag coefficient CD = 1.62 and a lift coefficient CL = 1.41 for the null wind angle of attack.
In fact, one can find the lift coefficient for this bridge deck is positive (upward) for a wide
range of angles of attack, from -15◦ to 9◦. For α = −5◦ at Re = 6.0 · 104, the lift coefficient
reports about CL = 2.15, which is even higher than the drag coefficients within the investigated
flow incidences. A local maximum of CD occurs at about α = 5◦. Referring to the trapezoidal
cylinder, the occurrence of maximal CD at a non-null wind angle of attack is probably due to
the inclination of the front face.

For St shown in Fig. 4.10 (a), some limited but clear effects of Re can be found for 0◦<α < 12◦.
Nevertheless, a clear jump of St is found around α = −5◦, which implies a change of vortex
shedding pattern. It is very possible that the AEVS pattern dominates for α <−5◦, but without
flow visualization it is hard to imagine how the flow develops on the upper side of the cross
section (due to the existence of an open cavity). A change of vortex shedding pattern may
also occur around α = 0◦, since a slight jump of St can be found there (in particular clear for
Re = 6.0 ·104). For 0◦ < α < 10◦ and α > 12◦, it is supposed that the LEVS and AEVS patterns
dominate respectively. In Fig. 4.10 (b), a local maximum of CL0 appears about α = 4◦, showing
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(a) (b)

(c)

Fig. 4.9: CD, CL and CM of the bridge deck model at various α .

(a) (b)

Fig. 4.10: St and CL0 of the bridge deck model at various α .
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also dependence of CL0 on Re around this incidence. Such a characteristic is qualitatively similar
to the two close-form cylinder models. Nevertheless, attentions should be paid to−5◦≤α ≤ 0◦,
where a low magnitude of CL0 was maintained in this comparably wide range. This is different
from around α = 10◦, where the recovering of CL0 toward higher α is more pronounced. In
contrast, the recovering of CL0 toward negative α seems to be obstructed within −5◦ ≤ α ≤ 0◦.
Finally, for this open cross section, the incoming flow attacking from a negative angle may
induce an interaction between the leading-edge-separated shear layer and the “trapped” flow
inside the open cavity. Strecha (2014)’s CFD flow visualization on a “U” cross section (b/d =
4.6) has highlighted a complicated flow pattern for such interaction, although it may be not fully
applicable here due to the different side ratio.

Fig. 4.11 shows the normalized power spectral density of fluctuation lift for four wind angles
of attack, at Re = 2.0 ·104 (U = 4.92m/s). For α =−7◦ and α = 4◦, the normalized spectra are

(a) α =−7◦, St = 0.149 (b) α =−2◦, St = 0.109

(c) α = 0◦, St = 0.105 (d) α = 4◦, St = 0.102

Fig. 4.11: Normalized power spectral density of fluctuation lift at various α of the bridge deck model,
Re = 2.0 ·104.
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quite similar, except for α = −7◦ the dominant peak is less sharp. At α = −2◦, the Strouhal
frequency peak is clear but the corresponding frequency band is rather narrow. Therefore, the
calculated CL0 is quite low (see Fig. 4.10 (b)). At α = 0◦, the Strouhal frequency peak is less
prominent. On the other hand, for nd/U slightly higher than 2St, one can find a peak at nd/U =

0.231. A careful analysis shows this peak roughly corresponds to the super-harmonic of order
two of a vortex shedding frequency of St = 0.114, which dominates for higher Reynolds number
at α = 0◦ (see Fig. 4.10 (a)).

As for the 2:1 rectangular cylinder, new measurements particularly for the CL0-Re relationship
were carried out for this bridge deck model at its α = 4◦. Fig. 4.12 shows a agreement between
the new and old results. Unfortunately, for 6 ·104 < Re < 8 ·104, the new measured CL0 seems to
be influenced by the super-harmonic resonance of order two of the vortex shedding frequency,
as exemplified by the normalized spectra in Fig. 4.13. No higher wind speed was reached due
to the limitation of the wind tunnel facility. Nevertheless, a constant trend of CL0 is found for
4.5 · 104 ≤ Re ≤ 6 · 104. Finally, it is interesting to note that, for this bridge deck model, this
super-harmonic resonance occurs with an order of two of nst , while for the rectangular this is
with an order of three of nst .

Fig. 4.12: Effect of Re on evaluated CL0 at α = 4◦ of the bridge deck model. Gray points denotes the old
results (the ones reported in Fig. 4.10 (b)).

Comparison of the three wind tunnel models

In Fig. 4.14 the static results of the three sectional models are compared. Besides the positive
shift of the local maximal CD, the range of α , featuring a negative slope of CL, is also positively
shifted for the trapezoidal cylinder and the bridge deck model. This range is about −7◦ to 7◦

for the rectangular cylinder, while they are−6◦ to 10◦ and−5◦ to 12◦ for the other two models.
Moreover, the differences between the maximal CL and minimal CL are 2.25, 2.11 and 2.53,
respectively for the three models.
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(a) Re = 6.1 ·104 (b) Re = 6.9 ·104

Fig. 4.13: Power spectral density of fluctuation lift at α = 4◦ of the bridge deck model, Reynolds number
corresponding to Fig. 4.12.

Around α = 0◦, the other two models feature a higher St than the rectangular cylinder. However,
if bavg is considered as the streamwise dimension (bavg, the averaged value of top and bottom
width of a cross section), the side ratio bavg/d will be lower for the trapezoidal cylinder and
the bridge deck model (bavg/d = 1.73 and 1.62, respectively). Therefore, the increase of St for
these two models is understandable, referring to the St variation with b/d on rectangular cross
sections (see, e.g., Shimada & Ishihara (2002)).

For all these three models, a connection is seemingly held between the magnitude of CL0 and the
CL−α curve: the local maximum of CL0 appears at a flow incidence, which roughly corresponds
to the middle of the α range limited by maximal CL and minimal CL (check Fig. 4.14 (b) and
(d)). Such a characteristic can be also found for the angle cross sections (Slater 1969), as well
as for two trapezoidal cross sections and a triangle cross section (Luo & al. 1994). However,
according to the author’s knowledge, a convincing explanation for this connection is still absent.
Finally, all the three models have shown the dependence of CL0 on Re, around the wind angle of
attack where the local maximal CL0 appears (see Fig. 4.4 (b), Fig. 4.8 (b) and Fig. 4.10 (b)).

4.1.2 In Turbulent Flow

Static tests in turbulent flow are mainly considered for the 2:1 rectangular cylinder and the
bridge deck model. As already stated in Section 3.3.3, the grid-generated turbulent flow fea-
tures an integral length in the same order of the heights of the sectional models. Small-scale
turbulence is called here, as opposed to the large-scale turbulent flow (e.g., Lu > 20d) which is
a situation for bridge decks in natural wind field. In particular, steady drag and lift coefficients
at Re = 5.8-6.0·104 were presented, while for St and Clat,0 the results of Re = 1.9-2.0·104 were
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(a) CD (b) CL

(c) St (d) CL0

Fig. 4.14: Comparison of the static results of the three sectional models (Re = 6.0 · 104 for CD and CL,
Re = 2.0 ·104 for St and CL0).

given. For the static setup, the dynamic amplification effect is rather limited at Re = 1.9-2.0·104,
so that no correction was made to the Clat,0 coefficient. CL0 is not used here anymore, because its
“sinusoidal equivalent” concept is less meaningful for the broad-band characteristics of vortex
shedding in turbulent flow. Finally, results in smooth flow are included for comparison.

Rectangular cylinder

The 2:1 rectangular cylinder was first tested, being its aerodynamic properties dramatically
varied in this small-scale turbulent flow (see Fig. 4.15). For CD, the hump characteristic around
α = 0◦ is invisible any more in turbulent flow. Instead, CD exhibits the minimum at α = 0◦. The
effect of varying Iu from 9.2% to 14.9% is not apparent for CD. In contrast, CL is very sensitive
to this variation, although the difference between smooth and turbulent flow is already apparent.
For Iu = 9.2%, a negative slope of CL is still visible around α = 0◦, but much flatter than that in
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smooth flow. Moreover, the α range featuring a negative slope of CL also gets narrower. Further
increase of Iu makes this slope tend to zero and finally becomes positive at Iu = 14.9%.

(a) CD (b) CL

(c) St (d) Clat,0

Fig. 4.15: Turbulence’s effect on the aerodynamic coefficients of the 2:1 rectangular cylinder. Subplots
share the same legend.

The small-scale turbulence brings also pronounced effects on St and Clat,0 (see Fig. 4.15 (c)
and (d)). Around α = 0◦, the identified St is highly disordered, and Clat,0 decreases apparently.
Moreover, the characteristic of a local maximal Clat,0 around α = 0◦ completely disappears in
turbulent flow. These results show a consistency with the fact that the incoming turbulence is
able to suppress the unsteady lift due to vortex-shedding and leads to less periodical shedding
process. Two examples of power spectral density of fluctuation lift, respectively for Iu = 9.2%
and Iu = 14.9%, are given in Fig. 4.16. One can clearly see the “explosion” of vortex shedding
force on the nd/U axis. For Iu = 9.2%, it is still able to observe a concentration of energy
around nd/U = 0.05. But for Iu = 14.9%, such a feature becomes unapparent. A dominant
Strouhal frequency peak is therefore hard to identify and of many uncertainties (corresponding



4.1 Static Results 87

to the highly disordered St in Fig. 4.15 (c)). In contrast, for α > 10◦, the Clat,0 coefficient gets
recovered and St is comparable to the counterpart in smooth flow.

(a) (b)

Fig. 4.16: Normalized power spectral density of fluctuation lift for the 2:1 rectangular cylinder in turbu-
lent flow (α = 0◦, Re = 1.9 ·104).

A comparison of CFy with Laneville (1973)’s results is presented in Fig. 4.17, for two levels
of Iu. It needs to first mention that the Lu/d ratios are quite different between the two sets
of tests. Nevertheless, an important agreement is achieved: the positive slope of CFy around
α = 0◦ disappears at a turbulence intensity Iu = 9%-12% for the two sets of results (comparing
Fig. 4.17 (a) and (b)). In addition, the agreement in Fig. 4.17 is fairly good, despite that the

Iu = 9.2%, Lu/d = 0.64 

Iu = 9.1%, Lu/d = 2.42 

(a)

Iu = 11.2%, Lu/d = 0.52 

Iu = 12.5%, Lu/d = 2.09 

Iu = 12.7%, Lu/d = 4.15 

(b)

Fig. 4.17: Comparison of the presented results with data collected from Laneville (1973), with respect
to the CFy coefficient of the 2:1 rectangular cylinder in turbulent flow. The specific values of
turbulence intensity and integral length are additionally indicated by arrows. Re = 6.0 ·104 for
the presented results, and Re = 1.5−1.6 ·104 for ones of Laneville (1973) (extra indicated in
Mannini & al. (2014)).
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Lu/d ratio for Laneville (1973)’s results is about 4 times the presented ones. In fact, in a series
of works of Laneville (Laneville & al. 1977; Laneville & Parkinson 1971; Laneville 1973),
it has been claimed that the turbulence integral length plays a minor role in the transverse
galloping instability for their investigated 1:2, 1:1 and 2:1 rectangular cylinders. The presented
results seem to support this conclusion. In contrast, a recent investigation shows that the integral
length plays also an important role and its effect may be non-monotonic (Mannini & al. 2018b).
There, although the Lu/d ratio has reached at about 8, it is still not enough for bridge decks in
reality (for a 5 m high bridge deck, the Lu/d could be more than 20 in natural wind filed). An
effort to clarify the integral length effect, covering a wide range of Lu/d, is definitely of great
needs. Finally, Bokaian & Geoola (1983) reported that, in a turbulent flow with Iu = 6.5%, the
rectangular cylinders with b/d = 2− 2.75 characterize with disorganized vortex shedding and
no Strouhal number was identified. In contrast, for rectangular cylinders with b/d out of this
range, the Strouhal number is clearly identifiable. Their results were obtained in water tunnel
and no galloping instability was found for this turbulence intensity.

Bridge deck model

In Fig. 4.18, effects of incident turbulence were presented for the bridge deck model. For Iu =

14.9%, the minimal CD moves to α = 0◦, while for Iu = 9.2% the tendency of a maximal
CD around α = 4◦ can be still found. From the CL - α plot, up to Iu = 14.9%, one can find the
bridge deck model still suffers from the possibility of galloping instability due to the presence of
negative slope of CL. In fact, a galloping factor A1 = 5.23 is evaluated at α = 4◦ for Iu = 14.9%,
which is higher than A1 = 4.17 at the same flow incidence but in smooth flow. Nevertheless, the
shrinkage of α range for negative slope of CL is apparent in turbulent flow.

The identification of St is also difficult for the bridge deck model (examples of SLL were given
in Fig. 4.19). Nevertheless, in the range −4◦ < α < 6◦, a decrease of St in turbulent flow is
apparent (Fig. 4.18 (c)). Interesting is the Clat,0 coefficient. For the bridge deck model in turbu-
lent flow with Iu = 9.2% and Iu = 11.2%, one can still find a maximal Clat,0 localizing around
α = 4◦ (Fig. 4.18 (d)). Compared with the results in smooth flow, the strength apparently get
decreased, but the corresponding α almost remains.

Compared with the 2:1 rectangular cylinder, it is found the bridge deck model shows a stronger
tendency to galloping instability in turbulent flow, being the CL-α curve characterized with a
pronounced negative slope up to Iu = 14.9%. Taking the aforementioned bavg/d ratio, this bridge
deck model with bavg/d = 1.62 behaves actually closer to a 3:2 rectangular cylinder reported
by Mannini & al. (2018b), which is also unstable in a comparable small-scale turbulent flow
(up to Iu = 15.9%, and Lu/d = 0.4). Moreover, the vortex shedding force coefficient Clat,0 was
found also stronger for this bridge deck model in turbulent flow, maintaining at the same time
the hump characteristic of Clat,0 around α = 4◦ (especially for Iu = 9.2%-11.2%). It is worth
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(a) CD (b) CL

(c) St (d) Clat,0

Fig. 4.18: Turbulence’s effect on the aerodynamic coefficients of the bridge deck model. Subplots share
the same legend.

(a) (b)

Fig. 4.19: Normalized power spectral density of fluctuation lift for the bridge deck model in turbulent
flow (α = 4◦, Re = 1.9 ·104).
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reminding that, in smooth flow, the magnitude of the strongest vortex shedding force for the
bridge deck model is lower than the 2:1 rectangular cylinder at the same Re (see Fig. 4.14 (d)).
Comparing Fig. 4.16 and Fig. 4.19, one can also find the energy of vortex shedding force is
more concentrated for the bridge deck model, especially for Iu = 9.2%.

4.2 Aeroelastic Results

4.2.1 Effect of Mean Flow Incidences

Aeroelastic tests for the three wind tunnel models started with investigation of the effect of
mean wind angle of attack α0 (here, α0 is particularly used to indicate the “mean” concept
for an oscillation model). The test cases are summarized in Tab. 4.2, where a very low Sc was
considered to fully detect the possible vibration for each model at different α0. St and galloping
factor A1 from static test results are also supplemented in Tab. 4.2 for prediction purpose. In
reduced form, the critical velocity for VIV (Kármán-vortex resonance) is

Vr =
1

2πSt
(4.5)

And the critical velocity of galloping according to QS theory is

Vg =
Sc

πA1
(4.6)

with the Scruton number defined as Sc = 4πMeζ0/(ρd2le), being Me the effective oscillation
mass of wind tunnel model. Since the considered Sc is very small, the calculated Vg is always
lower than Vr, as shown by the last column in Tab. 4.2.

Fig. 4.20 shows the aeroelastic results, in terms of amplitude-velocity plot (
√

2yrms/d vs. V ).
From the results, it can be found that the QS prediction is inaccurate for such low Sc, being
no galloping type oscillation found for V <Vr. The velocity-restricted oscillation occurring for
V < 1 is due to the “motion-induced vortex exciting” mechanism, which corresponds to a higher
vortex shedding mode (see, e.g., Mannini & al. (2016b)). For the rectangular cylinder at α0 =
0◦-3◦, the trapezoidal cylinder at α0 = 0◦-3◦ and the bridge deck model at α0 = 2◦-4◦, galloping
was found initiated at Vr, as typical for the unsteady galloping due to interaction with VIV.

On the other hand, for the rectangular cylinder at α0 = 5◦, the trapezoidal cylinder at α0 =−4◦

and the bridge deck model at α0 =−2◦- 0◦, galloping clearly started at a reduced velocity higher
than Vr. For the bridge deck model at α0 =−4◦, galloping was not observed for V up to about 5.
Clearly, these cases are essentially different from the typical unsteady galloping cases, although
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Tab. 4.2: Characteristics of aeroelastic test cases for the investigation of the effect of the mean wind
angle of attack α0. Galloping factor A1 was evaluated according to Den Hartog criterion within
[α0−1◦, α0 +1◦], with CD and CL data of Re≈ 6 ·104. St of Re≈ 2 ·104 is given here.

Sectional
model

α0
[deg]

Static results Aeroelastic test cases

St
[-]

A1
[-]

Me
[kg]

n0
[-]

ρ

[-]
ζ0

[%]
Sc
[-]

Vr
[-]

Vg
[-]

Vg/Vr
[-]

Rectangular cylinder

0 0.079 6.78

4.35 7.64

1.19 0.052 5.1 2.02 0.24 0.12

3 0.079 4.54 1.20 0.045 4.4 2.01 0.31 0.15

5 0.079 11.6 1.20 0.044 4.3 2.02 0.12 0.06

Trapezoidal cylinder

-4 0.132 12.1

3.88 9.27

1.13 0.074 6.8 1.20 0.18 0.15

0 0.091 1.50 1.15 0.075 6.8 1.75 1.44 0.83

3 0.089 5.96 1.17 0.070 6.3 1.78 0.33 0.19

Bridge deck model

-4 0.125 7.28

3.60 9.63

1.20 0.076 6.1 1.27 0.27 0.21

-2 0.121 6.30 1.19 0.079 6.4 1.32 0.33 0.25

0 0.109 9.43 1.17 0.083 6.9 1.45 0.23 0.16

2 0.105 8.25 1.20 0.074 6.0 1.52 0.23 0.15

4 0.102 4.17 1.19 0.067 5.5 1.56 0.42 0.27

they also feature a Vg much lower than Vr (see Tab. 4.2). In contrast, they should belong to the
previously defined atypical unsteady galloping (see Fig. 2.18 in Section 2.2.1). From the many
investigations devoted to rectangular cylinders with one face perpendicular to the incoming flow
(e.g., Parkinson & Brooks (1961), Santosham (1966), Wawzonek (1979),Mannini & al. (2014)),
it is easy to be preconceived that the galloping will be initiated at the Vr for Vg/Vr < 1, as the
typical unsteady galloping behavior. However, the presented results indicate that the α0 plays
also a very important role. This may be particularly vital for bridge decks, since their flow
incidences are rather limited around α0 = 0◦ in full-scale. Therefore, applying the experiences
on rectangular cylinders to bridge decks needs to be cautious about the role played by α0.

It is interesting right now to have a look at the CL0 coefficient re-given in Fig. 4.20 (d). One can
find that the test cases characterized with typical unsteady galloping in Fig. 4.20 all features a
relatively high CL0 coefficient, while the atypical unsteady galloping occurs at a flow incidence
of considerably low CL0 coefficient. Moreover, for the rectangular cylinder at α0 = 0◦, trape-
zoidal cylinder at α0 = 3◦ and bridge deck model at α0 = 4◦, their CL0 coefficients correspond
to a local maximum in Fig. 4.20 (d), and their oscillation amplitudes tend to be the largest ones
at high V as shown in Fig. 4.20 (a)-(c). Although it may be less suitable to use the static test
results to explain the aeroelastic phenomena because the fluid-structure interaction is not fully
reflected on the stationary model, it is quite intuitive to relate the strength of vortex shedding
force to the unsteady galloping due to interaction with VIV. Especially, such a regularity was
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Vr

(a) Rectangular cylinder

Vr

(b) Tra[pezoidal cylinder

Vr

(c) Bridge deck model (d) CL0 for three models

Fig. 4.20: Effect of mean flow incidence on the aeroealstic behaviors of the three models, considering
only a very low Sc. Dashed line indicate the position of Vr, and Vg is always lower than Vr (see
last column of Tab. 4.2). Arrows indicates a sudden change of amplitude. Subplot (d) is extra
given here for a convenience of discussion (reproduced from Fig. 4.14 (d)).

observed for all the three wind tunnel models. Therefore, for structures potentially suffering
from unsteady galloping problem at low Sc, the wind angle of attack featuring high CL0 should
be paid particular attentions to.

4.2.2 Effect of Scruton Number

Effect of Sc was then investigated for the three sectional models. Besides the null mean wind
angle of attack, attention was also paid to α0 = 3◦ for the trapezoidal cylinder and α0 = 4◦ for
the bridge deck model. For convenience, the classifications for typical unsteady galloping due
to interaction with VIV, according to Mannini & al. (2014, 2016b) for a 3:2 rectangular cylinder,
are first given here from low Sc to high Sc (although already mentioned in Section 2.2.1):
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• Full-Interference. Galloping arises at Vr, presenting a unrestricted and monotonic increase
of the post-critical amplitude.

• Partial-Interference. Separation of VIV and galloping can be observed (emergence of VIV
peak amplitude), but the galloping-type oscillation is directly connected to the end of VIV
region. For the stability about equilibrium position, galloping onset is still deemed at Vr.

• Low-Interference. Clearly separated VIV and galloping behaviors can be observed, but
the onset wind speed of galloping is lower than the QS-prediction Vg.

Above three categories are clearly reflected in Fig. 2.16 (a)-(c), as well as Fig. 1.1 (b). Moreover,
a new class is defined here due to observations on the square cylinder (see, e.g, Fig.2.15)

• Pre-Separation. Continuously increasing wind speed results in similar post-critical ampli-
tude as the “Full-Interference”. However, a second stable amplitude branch can be found
in the post-critical region, by giving initial displacement condition from rest.

Rectangular cylinder

Tab. 4.3 lists the test cases for the rectangular cylinder at α0 = 0◦, with the Scruton number
varied from Sc = 5.1, with small-step increment, to Sc = 200.7. Correspondingly, the Vg/Vr

ratios range from 0.12 to 4.67. Velocity-amplitude results are shown in Fig. 4.21 and Fig. 4.22,
where Fig. 4.21 presents an overview of all the test cases and Fig. 4.22 gives them in detail. The
varying of Sc in small-step reveals complex dynamic responses for this cylinder, especially for
the medium Sc range. In general, the phenomena shown in Fig. 4.21 are consistent with the 3:2
rectangular cylinder reported by Mannini & al. (2016b).

For Sc ≤ 107.1, the threshold of galloping was found always fixed at Vr (corresponding to
Vg/Vr up to 2.5). The amplitude-velocity curve shows a monotonic increase, in a unrestricted
manner. In Fig. 4.22 (a), where the results of Sc = 5.1 and Sc = 107.1 are particularly given, it is
interesting to note that the amplitude slopes are almost the same for V < 3.5 (V/Vr < 1.75 and√

2yrms/d < 0.2). During the wind tunnel tests, several attempts, namely manually stopping the
oscillation model then releasing it from rest, have been carried out for the post-critical range, and
no second amplitude branch was found. These characteristics correspond to the classification
“Full-Interference”. Finally, for the presented results, it is to note that the Strouhal frequency
peak nst is invisible in the power spectral density of y for V >Vr.

For a slightly higher Scruton number Sc = 127.9 (Fig. 4.22 (b)), continuously increasing V

without manually stopping the oscillation model will result in a amplitude-velocity curve similar
to the “Full-Interference” cases. However, a second medium-amplitude branch was revealed
at about V = 4.4, by manually stopping the oscillation model and then releasing it from rest
(indicated in Fig. 4.22 (b)). The velocity range for this branch is rather limited, and either
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Tab. 4.3: Characteristics of aeroelastic test cases for the rectangular cylinder at α0 = 0◦, with various
values of Sc.

Static results Aeroelastic test cases

St
[-]

A1
[-] Config. Me

[kg]
n0
[-]

ρ

[-]
ζ0

[%]
Sc
[-]

Vr
[-]

Vg
[-]

Vg/Vr
[-]

0.079 6.78

#R0-0

4.35 7.64

1.19 0.052 5.1

2.02

0.24 0.12

#R0-1 1.20 0.135 13.3 0.62 0.31

#R0-2 1.18 0.291 29.0 1.36 0.68

#R0-3 1.17 0.458 46.2 2.17 1.07

#R0-4 1.16 0.625 63.2 2.97 1.47

#R0-5 1.18 0.794 79.3 3.72 1.85

#R0-6 1.18 0.934 93.4 4.39 2.17

#R0-7 1.19 1.079 107.1 5.03 2.49

#R0-8 1.18 1.279 127.9 6.00 2.98

#R0-9 1.20 1.387 136.6 6.41 3.18

#R0-10 1.18 1.464 145.9 6.85 3.40

#R0-11 1.18 1.624 162.0 7.61 3.77

#R0-12 1.19 1.733 171.5 8.05 3.99

#R0-13 1.18 1.857 184.8 8.67 4.30

#R0-14 1.19 2.020 200.7 9.42 4.67

decrease or increase of wind speed stepping out this range will lead the oscillation jump back
to the high-amplitude branch. Moreover, the Strouhal frequency peak nst is visible in the power
spectra Syy for this medium-amplitude oscillation. The existence of this branch is very probably
due to the combined effect of VIV and galloping, since pure VIV response usually features
a clockwise hysteresis loop while the hysteresis loop in galloping response is usually anti-
clockwise (Ma & al. 2018). Nevertheless, this unsteady galloping behavior belongs to the “Pre-
Separation” category, which was also observed for a square cylinder in smooth flow (Wawzonek
1979) and a 3:2 rectangular cylinder in slightly turbulent flow (Mannini & al. 2016b).

The spontaneous separation of galloping and VIV begins when Sc reaches about 136.6 (Fig.
4.22 (c)). There, one can clearly see a amplitude peak at V ≈ 3.5, after which the further in-
crement of velocity results in an amplitude decrease. However, this separation is just “partial”.
The subsequent oscillation amplitude for V > 3.5 does not drop to null, but gradually incre-
ases again with the further increment of V . At about V = 5.4, the oscillation suddenly jumps
to a high-amplitude branch. Continuously decreasing V after this jump, the oscillation can be
maintained at the high-amplitude branch until about V = 3.7, after which the oscillation drops
back to the lower amplitude branch. An anti-clockwise hysteresis loop can be observed here.
Further examination of the Syy power spectra indicates the appearance of nst frequency peak
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Fig. 4.21: Effect of Scruton number on the across-wind response of the 2:1 rectangular cylinder. Arrows
indicates a sudden change of amplitude.

immediately after the separation point at V ≈ 3.5, but just for the low amplitude branch. From
the point of view of frequency response, the vortex shedding process can be deemed decoupled
from the motion of body for the low amplitude branch. However, the unsteady effect of vortex
shedding on the galloping oscillation is still strong, resulting in the galloping oscillation being
directly connected to the end of VIV synchronization region. Moreover, nst is still invisible for
the oscillation at the high amplitude branch. For Sc = 145.9, also shown in Fig. 4.22 (c), it is es-
sentially the same as Sc = 136.6, except a lower VIV peak amplitude and a narrower hysteresis
loop. These two cases belong to the “Partial-Interference” category. In this situation, the onset
of galloping can be deemed still at Vr, since oscillation starts there and never dies out again.

Increasing Sc up to 162.0 (Fig. 4.22 (d)), a complete and classical VIV response can be obser-
ved, and a new galloping-type oscillation arises at V ≈ 5.0. However, the QS-theory prediction
for this case is at Vg≈ 7.6 so that the unsteady effect is still non-negligible. Moreover, at V ≈ 6.5,
a violent jump occurs, resulting in a doubled amplitude for that small-step velocity increment.
Such a large jump was not expected during the wind tunnel tests, so that the wind tunnel was
stopped immediately for safety consideration. The mini-plot inside Fig. 4.22 (d) shows the en-
velope of time-displacement history for this violent jump. One can find that a considerably long
time is needed to cultivate this jump. Although no further measurement was carried out after this
jump, it is reasonable to infer that there is hysteresis behavior around this reduced velocity.
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The last three test cases, with considerably high Scruton number, all show complete VIV re-
sponse and newly-arising of galloping oscillation. However, none of the observed galloping

(a) (b)

(c) (d)

(e)

Fig. 4.22: Same results as in Fig. 4.21 but with divided plots for better view.
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onset agrees with the QS-theory prediction, although the Vg/Vr ratio for the last case is already
about 4.7. In the galloping-universal plot Fig. 4.23, the actual galloping onset is indicated at
about 0.7Vg. Together with the test case of Sc = 162.0, the last four test cases can be classified
as “Low-Interference” cases, where separated VIV and galloping can be observed but the gal-
loping onset is advanced to some extent by the unsteady effect. Finally, it is understandable for
the 2:1 rectangular cylinder, that the QS prediction is still not applicable for Sc up to even about
200 (Vg/Vr up to 4.7). In an early work (Santosham 1966), a high reduced velocity of 5-6 times
Vr was found necessary for the application of QS theory to this cylinder.

Fig. 4.23: Last three test cases (#R0-12 to #R0-14) of the 2:1 rectangular cylinder in universal plot.

The amplitude modulation phenomenon (or beat phenomenon), has been frequently obser-
ved for this 2:1 rectangular cylinder. It is particularly clear and of regularity for the “Full-
Interference” cases, in a reduced velocity range about Vr <V < 3.5 (where the RMS-amplitude
nearly does not change for varied Sc, see Fig. 4.22 (a)). Fig. 4.24 (a) and (b) show two time-
history records at V/Vr = 1.46 respectively for Sc = 5.1 and Sc = 107.1. There, the saw-tooth
envelope of the amplitude can be found for both cases. For Sc= 5.1, the modulation process was
found clearly faster than that for Sc = 107.1 (compare Fig. 4.24 (a) and (b)). From the norma-
lized power spectra for Sc = 5.1 (Fig. 4.24 (c)), a pitchfork shape around the natural frequency
n0 can be found. Finally, as previously mentioned, the Strouhal frequency nst is invisible.

Fig. 4.24 (d) collects the frequency peaks from the power spectra Syy for Sc = 5.1 and Sc =

107.1, at various reduced wind speeds. The term “1st peak” denotes the dominant peak in the
spectrum, while “2nd peak” is the second strongest peak. With increase of V , the vortex shed-
ding frequency nst , which is dominant for V < Vr, gradually evolves into the model’s main
oscillation frequency, with a value slightly lower than n0. On the other hand, for evolution of
the “2nd peak” with V , the natural oscillation frequency n0 gradually becomes the right-side
peak in the spectral pitchfork during amplitude modulation phenomenon, with a value slightly
higher than n0. After the amplitude modulations disappear at higher V , the “2nd peak” becomes
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(a) (b)

1st peak 

2nd peak 

(c) (d)

Fig. 4.24: Time records for test cases of Sc = 5.1 (a) and Sc = 107.1 (b) at V/Vr = 1.46; (c) normalized
power spectral density of displacement response y for test case of Sc = 5.1 at V/Vr = 1.46;
(d) collected frequency peaks at various reduced wind speeds for the two test cases, being ‘1st
peak’ the dominant peak in the spectrum and ‘2nd peak’ the second strongest peak.

the superharmonic of order two of the ‘1st peak’, thus not included in the plot. Similar results
were also presented by Itoh & Tamura (2002) for the 2:1 rectangular cylinder. In Fig. 4.24 (d),
the gap between the “1st peak” and “2nd peak” can be found smaller for Sc = 107.1, consistent
with the longer period of amplitude modulation shown in Fig. 4.24 (b). In Santosham (1966),
this frequency gap was named “modulation frequency”. Finally, it is to note that the “1st peak”
of the two Sc cases match perfectly again for V/Vr > 1.75, corresponding to the velocity range
where the RMS amplitudes of the two Sc cases show clear difference (see Fig. 4.22 (a)).

Finally, some literature reports were collected to make a comparison for this 2:1 rectangular
cylinder, shown in Fig. 4.25 for four different magnitudes of Scruton number. In general, the
agreement between the presented results and other reports is quite good, confirming the carried-
out tests. Nevertheless, some points need to be pointed out. Firstly, in Fig. 4.25 (a), one can find
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the amplitude slope of Santosham (1966)’s results decreases slightly around V = 5.0. This trend
is not reached for the presented results, since the wind speed was not pushed so high. Howe-
ver, in Fig. 4.21, one can clearly see such a trend although that is for another Scruton number.
Secondly, in Fig. 4.25 (c), all the three groups of results show two amplitude branches for V

higher about 3. However, the high-amplitude branch in Yamada & Miyata (1984)’s results ex-
tended more toward to the VIV lock-in range than the presented results. Itoh & Tamura (2002)’s
results are actually more different from the other two groups: for V > 3, the oscillation will not
go to the low amplitude branch but continue to “climb” with the high amplitude branch. Finally,
although not included here, Gao & Zhu (2016)’s experiments show that the “Full-Interference”
behavior is maintained at least up to Sc = 105.2 for the 2:1 rectangular cylinder.

(a) (b)

(c) (d)

Fig. 4.25: Comparison of the present results of the 2:1 rectangular cylinder with other literature re-
ports, for several selected Scruton numbers. In the legend, “Santosham-1966”, “Miyata-1983”,
“Yamada-1984” and “Itoh-2002” represent results, respectively, taken from Santosham (1966),
Miyata & al. (1983), Yamada & Miyata (1984) and Itoh & Tamura (2002). Vr is calculated with
St = 0.079.
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Trapezoidal cylinder

For the trapezoidal cylinder, tests with varied Sc were carried out for the mean flow incidence
of α0 = 3◦ and α0 = 0◦. However, the response curves are quite similar with the results of the
rectangular cylinder. For the purpose of brevity, they were presented in Appendix A.3.1.

Bridge deck model

In Tab. 4.4 the aeroelastic test cases are listed for the bridge deck model at its mean wind angles
of attack α0 = 0◦ and α0 = 4◦. It can be found the effective oscillation mass Me is slightly
different for test case #B0-9, as well as #B4-6 to #B4-8. This is because four dampers were
used for these test cases, while two dampers for other cases. The analysis of dynamic results
starts for α0 = 4◦, where unsteady galloping due to strong interaction with VIV occurs.

Tab. 4.4: Aeroelastic test cases for the bridge deck model at α0 = 0◦ and α0 = 4◦, with various Sc.

α0
[deg]

Static results Aeroelastic test cases

St
[-]

A1
[-] Config. Me

[kg]
n0
[-]

ρ

[-]
ζ0

[%]
Sc
[-]

Vr
[-]

Vg
[-]

Vg/Vr
[-]

0 0.109 9.43

#B0-0

3.60 9.63

1.17 0.083 6.9

1.45

0.23 0.16

#B0-1 1.18 0.170 14.0 0.46 0.32

#B0-2 1.17 0.297 24.6 0.83 0.57

#B0-3 1.17 0.473 39.0 1.31 0.90

#B0-4 1.16 0.633 52.8 1.77 1.22

#B0-5 1.15 0.823 69.0 2.32 1.60

#B0-6 1.14 1.037 88.0 2.96 2.04

#B0-7 1.15 1.273 106.7 3.58 2.47

#B0-8 1.15 1.583 132.8 4.47 3.08

#B0-9 3.67 9.53 1.18 0.803 67.4 1.45 2.26 1.56

4 0.102 4.17

#B4-0

3.60 9.63

1.19 0.067 5.5

1.56

0.42 0.27

#B4-1 1.18 0.163 13.3 1.01 0.65

#B4-2 1.18 0.270 22.1 1.68 1.08

#B4-3 1.17 0.470 38.7 2.96 1.90

#B4-4 1.19 0.617 50.3 3.84 2.46

#B4-5 1.16 0.837 69.6 5.32 3.41

#B4-6

3.67 9.53

1.17 0.983 83.0

1.56

6.33 4.06

#B4-7 1.16 1.253 106.4 8.13 5.21

#B4-8 1.18 1.387 115.8 8.85 5.67

Fig. 4.26 shows the aeroelastic results for the bridge deck model at α0 = 4◦. Typical “Full-
Interference” behaviors were observed for Sc≤ 69.6, corresponding to Vg/Vr ≤ 3.41. The inva-
riance of oscillation amplitude regardless of Sc is also observed for this bridge deck model, up
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to
√

2yrms/d = 0.25 (V/Vr < 1.9), beyond which the dependence of amplitude on Sc becomes
clear again. Like the 2:1 rectangular cylinder, amplitude modulation phenomenon was observed
for 1 <V/Vr < 1.9 (for brevity, it is not shown here again, one can refer to the published paper
Chen & al. (2020) for more details). Unlike the 2:1 rectangular cylinder, further increasing Sc

will not lead the oscillation to a typical “Partial-Interference” behavior. For Sc ≥ 83, the am-
plitude after the VIV peak drops directly back to null. Nevertheless, a second branch of high
amplitude was newly detected for Sc = 83−115.8 in a velocity range far behind the VIV region
(see Fig. 4.26), by releasing the wind tunnel model from a higher displaced position.

Fig. 4.26: Effect of Scruton number on the across-wind response of the bridge deck model at α0 = 4◦.

For the bridge deck model at the its α0 = 4◦, the cases corresponding to “Pre-Separation” and
“Partial-Interference” were not observed. The last three test cases probably belong to the “Low-
Interference” cases, although this is not confirmed by the wind tunnel tests, due to safety reason
purposely not reaching the spontaneous galloping onset wind speed. From the galloping uni-
versal plot (Fig. 4.27), the upper amplitude branch can be found to extend to a reduced velocity
less than 0.5Vg, suggesting that a large hysteresis loop may exist here.

At α0 = 0◦, the observed aeroelastic behaviors are essentially different, as illustrated in Fig. 4.28
and Fig. 4.29. In Section 4.2.1, it has shown that for this α0 the galloping arises behind Vr even
for a very low Sc. Slightly increasing Sc to 24.6, the galloping onset wind speed is maintained
unchanged at about V = 2 (see Fig. 4.29 (a)). For Sc= 39 to Sc= 69, the onset wind speed varies
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Fig. 4.27: Last three test cases (#B4-6 and #B4-8) of the bridge deck model in universal plot (α0 = 4◦).

with the increased Sc (Fig. 4.29 (b) and (c)). Moreover, these three test cases all characterize
with a jump of amplitude after the onset, leaving a hysteresis loop visible in the amplitude-
velocity plot. For Sc = 88 to Sc = 132.8 (Fig. 4.29 (d)), the difference of onset wind speeds
become again small. Meanwhile, one can find the post-critical amplitudes for Sc = 88−132.8
are quite different from the test cases of Sc = 6.9− 69. For the latter, the amplitude branches
are qualitatively maintained in the same “bunch”, while for Sc = 88−132.8 the oscillations go
out of this “bunch” (see Fig. 4.28). It is worth noting that, for all the test cases except the last

Fig. 4.28: Effect of Scruton number on the across-wind response of the bridge deck model at α0 = 0◦.
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one in Fig. 4.28, the actual galloping onset was found at a flow velocity higher than the QS
prediction. The onset velocity for the last test case (Sc = 132.8), shows a good agreement with
the QS prediction (see Fig. 4.30).

(a) (b)

(c) (d)

Fig. 4.29: Same results as in Fig. 4.28 but with divided plots for better view.

Moreover, a quite interesting phenomenon was observed for the test case of Sc = 52.8 and
Sc = 69.0. In addition to the anti-clockwise hysteresis loops near the galloping onset, a second
amplitude branch was found around V = 2Vr, by manually releasing the model from a higher
displaced position (see Fig. 4.29 (c)). This branch was found in a quite limited wind speed
range. Indeed, an increase or a decrease of the wind speed stepping outside this range will make
the oscillation die out, as shown by the arrows in Fig. 4.29 (c). A repetition of the test case of
Sc = 69.0 with four dampers, named “#B0-9”, was carried out several weeks later, remounting
the aeroelastic setup. The double-check shown in Fig. 4.31 further confirms the existence of
such a response branch. Since this amplitude branch locates around 2Vr, it is probably due to a
slight interaction of galloping with the vortex-shedding process with shedding frequency about
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Fig. 4.30: Last three test cases (#B0-6 and #B0-8) of the bridge deck model in universal plot (α0 = 0◦).

2n0. For this reason, it may be inferred that the vortex shedding process still plays a role for the
atypical unsteady galloping occurring at low reduced velocities, although a clear VIV response
around Vr was never observed during the experiments.

Fig. 4.31: Aeroelastic response of test case “#B0-9” (a repetition of test case “#B0-5” with 4-damper
system).

4.2.3 Effect of Incoming Turbulence

Aeroelastic tests in turbulent flow were focused on the bridge deck model, since it shows stron-
ger tendency to across-wind galloping than the other two cylinder models through the static
tests. The carried out test cases, with detailed experimental conditions, are summarized in Tab.
4.5.

Firstly, the effect of α0 on aeroelastic response was shown in Fig. 4.32. For test cases with Iu =

11.2% and Iu = 14.9%, the damper system was activated to suppress some unwanted vibrations
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Tab. 4.5: Characteristics of aeroelastic test cases for the bridge deck model studied in turbulent flow.

Iu
[-]

α0
[deg]

Static results Aeroelastic test cases

St
[-]

A1
[-] Config. Me

[kg]
n0
[-]

ρ

[-]
ζ0

[%]
Sc
[-]

Vr
[-]

Vg
[-]

Vg/Vr
[-]

9.2%

4 0.065 7.79

# X94B4-0

3.89 6.94

1.22 0.037 3.2

2.44

0.13 0.05

# X94B4-1 1.21 0.268 23.2 0.95 0.39

# X94B4-2 1.21 0.582 50.4 2.06 0.85

# X94B4-3 1.21 0.824 71.3 2.91 1.19

# X94B4-4 1.21 1.089 94.1 3.85 1.58

# X94B4-5 1.20 1.470 128.4 5.25 2.15

# X94B4-6 1.21 1.722 149.2 6.10 2.50

2 0.063 10.01 # X94B2-0 3.89 6.94 1.20 0.033 2.9 2.52 0.09 0.04

0 0.068 11.09 # X94B0-0 3.89 6.94 1.19 0.031 2.7 2.35 0.08 0.03

-2 0.087 5.46 # X94B-2-0 3.89 6.94 1.20 0.036 3.1 1.82 0.18 0.10

11.2%

4 0.058 6.79

# X74B4-0

3.77 6.22

1.18 0.043 3.7

2.73

0.17 0.06

# X74B4-1 1.18 0.312 26.8 1.26 0.46

# X74B4-2 1.19 0.597 51.0 2.39 0.88

# X74B4-3 1.18 0.830 71.4 3.35 1.23

# X74B4-4 1.20 1.126 94.7 4.44 1.63

# X74B4-5 1.20 1.126 118.2 5.54 2.03

# X74B4-6 1.21 1.682 140.8 6.60 2.42

2 0.069 9.47 # X74B2-1 3.77 6.22 1.19 0.313 26.6 2.31 0.89 0.39

0 0.071 9.30 # X74B0-1 3.77 6.22 1.18 0.312 26.7 2.24 0.91 0.41

-2 0.079 3.67 # X74B-2-1 3.77 6.22 1.19 0.311 26.5 2.00 2.30 1.15

14.9%

4 0.055 5.23

# X54B4-0

3.76 5.14

1.20 0.048 4.0

2.87

0.24 0.09

# X54B4-1 1.20 0.286 24.1 1.47 0.51

# X54B4-2 1.20 0.561 47.2 2.87 1.00

# X54B4-3 1.20 0.807 67.9 4.14 1.44

# X54B4-4 1.16 1.054 91.9 5.59 1.95

# X54B4-5 1.17 1.381 119.7 7.29 2.54

2 0.064 7.19 # X54B2-1 3.76 5.14 1.17 0.283 24.5 2.49 1.08 0.44

0 0.064 4.16 # X54B0-1 3.76 5.14 1.15 0.284 24.8 2.51 1.90 0.76

in the torsional degree of freedom (as an example, without additional damping from dampers,
torsional vibration up to 0.3◦ was found for α0 = 2◦ in case of Iu = 11.2%). In turbulent flow,
for a nearly same Sc, the actual galloping was found always first initiated at the α0 = 4◦. In
contrast, from Tab. 4.5, one can find the galloping factor A1 at α0 = 4◦ is not the highest one.
Remembering the similar tests in smooth flow (Section 4.2.1), where galloping was found first
initiated around α0 = 4◦ for low Sc, such a characteristic is also maintained in turbulent flow.
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It may be reasonable to take α0 = 4◦ of this bridge deck model as the “most-disadvantageous
angle” in low Sc conditions, because the galloping arises at a lower reduced velocity than the
other angles for the same Sc. Finally, if one goes back to have a look at the Clat,0 coefficient
(Fig. 4.18 (d)), a local maximum of Clat,0 around α = 4◦ can be found (especially for Iu =

9.2% and Iu = 11.2%). Such a characteristic seems to be very useful in identifying the “most-
disadvantageous angle” for low-Sc galloping, either in turbulent flow or in smooth flow.

In Fig. 4.32, another important feature should be pointed out: the galloping always arises behind
Vr in this small-scale turbulent flow. Nevertheless, the range of α0, where galloping can be
observed, gets narrowed with the increasing of Iu. This trend is consistent with the narrowed α

range characterizing a negative slope of CL (see Fig. 4.18 (b)). Finally, no apparent VIV-type
oscillation was found around Vr even for Sc low as 3.

(a) Iu = 9.2% (b) Iu = 11.2%

(c) Iu = 14.9%

Fig. 4.32: Effect of α0 on the aeroelastic behaviors of the bridge deck model in turbulent flow.

Subsequently, Scruton number was particularly varied at α0 = 4◦, with results shown in Fig.
4.33. Unlike in smooth flow (galloping onset being fixed at Vr for Sc≤ 69.6), the onset velocity
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of galloping clearly varies with the increase of Sc. For the first two turbulence intensities, one
can also observe a decrease of the amplitude slope when Sc is increased from the lowest value
to the medium value (about 94).

(a) Iu = 9.2% (b) Iu = 11.2%

(c) Iu = 14.9%

Fig. 4.33: Effect of Sc on the aeroelastic behaviors of the bridge deck model in turbulent flow (α0 = 4◦).

In Fig. 4.34, the last three test cases of each Iu were presented in the galloping universal plot.
These test cases all feature with comparably high Scruton number, leading to a Vg/Vr ratio
between 1.44 to 2.54 (see Tab. 4.5). It is to note that, for the first two turbulence intensities,
the increase of Sc make the galloping onset gradually approach to a value about 0.7Vg and
0.8Vg, respectively. However, with the increase of Sc, this approaching process is found “left-
side towards” in the universal plot. This means that the arising of galloping at Vg has been met
for a certain Sc, for example Sc = 94.7 for Iu = 11.2%, but further increasing Sc leads to the
galloping onset pass by Vg and reach at a value clearly lower than Vg (see Fig. 4.34 (a) and (b)).
For Iu = 14.9%, the three test cases with the increase of Sc also show this “left-side towards”
approaching process, although their galloping onset velocities are all above the QS predictions.
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Theoretically speaking, with a high enough Scruton number, the across-wind galloping should
follow well the QS theory. However, in the presented results, the investigated Sc seems not high
enough, so that the full picture of the approaching process is unfortunately unavailable.

Iu = 9.2% Iu = 11.2% Iu = 14.9%

Fig. 4.34: Galloping universal plot for the last three test cases of each turbulent flow (α0 = 4◦).

In Fig. 4.35, the effects of turbulence intensity is shown, for four different Sc. Results in smooth
flow are also included for comparison purpose. For Sc ≤ 69.6 (Fig. 4.35 (a) and (b)), due to
the “Full-Interference” behaviors, the galloping in smooth flow arises at a reduced flow velocity
lower than that in turbulent flow. In contrast, when the “Full-Interference” in smooth flow ends
for Sc ≥ 83.0, the galloping instability about the equilibrium position seems to be enhanced
in turbulent flow, in particular for the Iu = 9.2% and Iu = 11.2% (see Fig. 4.35 (c) and (d),
where Sc for turbulent flow is even higher). This enhancement agrees with the higher galloping
factor A1 in turbulent flow, see Tab. 4.5, qualitatively confirming the validity of QS theory for
high Scruton number. Moreover, for this small-scale turbulent flow, the increase of Iu leads to a
furhter postpone of galloping onset for a given Sc level.

Finally, the aeroelastic responses of the bridge deck model qualitatively agree well with a 3:2
rectangular cylinder tested in a similar turbulent flow condition (Mannini & al. 2018b). These
agreements include: a) galloping was always initialized behind Vr; b) pure VIV oscillation was
not observed; c) the phenomenon of “fixing galloping onset at a specific V regardless of Sc

variation” was not observed any more. However, for very low turbulence intensities (about
Iu < 5.4%) or large-scale turbulent flow (Lu/d ≥ 2.6), Mannini & al. (2018b) showed that the
galloping can be still initiated at Vr for low-Sc cases.

4.3 Chapter Summary

In this chapter, extensive experimental results have been presented. In particular, the 2:1 rec-
tangular cylinder has been used to confirm the validity of the experiential setups, by comparing
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Sc = 5.5 

Sc = 3.2

Sc = 3.7

Sc = 4.0

(a)

Sc = 69.6 

Sc = 71.3 

Sc = 71.4 

Sc = 67.9 

(b)

Sc = 83.0 

Sc = 94.1 

Sc = 94.7 

Sc = 91.9 

(c)

Sc = 115.8 

Sc = 128.4 

Sc = 118.2 

Sc = 119.7 

(d)

Fig. 4.35: Effect of turbulence intensity on the aeroelastic behaviors of the bridge deck model at α0 = 4◦,
for 4 different levels of Scruton number (results in smooth flow are also included).

with other literature reports. Besides, a comparably full picture of the galloping response of this
rectangular cylinder was provided, covering a range of 5 < Sc < 200 with small-step increment.
Such a picture is supposed to contribute a deeper understanding for the galloping instability of
this typical cylinder body.

The bridge deck model with open cross section has been paid rather more attention. At the mean
flow incidence α0 = 4◦, the galloping was found strongly interacting with the vortex induced
vibration, being the actual galloping fixed at the Kármán-vortex resonance wind velocity for
Scruton number up to at least 70 (corresponding to the Vg/Vr ratio about 3.4). Slightly different
from the aeroelastic responses of the 2:1 rectangular cylinder, the “Partial Interference” as well
as “Pre-Separation” behaviors were not observed for this bridged deck model. The important
role played by the mean flow incidence was also highlighted. At α0 = −2◦-0◦ of the bridge
deck model, the typical unsteady galloping due to the interaction with VIV was not observed
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any more. Instead, galloping arises at a reduced flow velocity clearly higher than Vr, even for a
very low Sc number. This unsteady galloping behavior was named atypical unsteady galloping

in this thesis, as opposed to the typical one. Such an atypical one was also observed for the
rectangular cylinder at α0 = 5◦ and the trapezoidal cylinder at α0 =−3◦. Interesting is that, for
all the three models, it was found that the atypical unsteady galloping always arises at a flow
incidence with comparably weak vortex shedding force.

In grid-generated turbulent flow, a strong tendency to galloping instability is also observed for
the bridge deck model. With Iu up to about 14.9%, static tests still indicate a positive galloping
factor A1 around its null flow incidence and aeroelastic tests confirmed this instability. Differing
from in smooth flow, apparent interaction between VIV and galloping was not observed in
turbulent flow, and the arising of galloping instability was found always behind Vr even for
every low Sc.

Finally, the test results shown in this Chapter will serve as the input parameters for the mathe-
matical model in the next Chapter, as well as the references to examine the performance of the
mathematical model.



5 Mathematically Modeling the Unsteady

Galloping for Prism Body

This chapter deals with the mathematical modeling of unsteady galloping behaviors for prism
body (to be more specific, the wind tunnel sectional models). Nonlinear wake oscillator model
of Tamura’s form is adopted for this task. Attention was first paid to the prediction capability of
the used wake oscillator model. Then, combined with wake flow measurements, the so-called
physical considerations in wake oscillator model were examined. A new method to identify a
key parameter for the wake oscillator model was also conceived during the wake measurements,
thus additionally presented in this chapter. Finally, some further modifications were made to the
wake oscillator model, for a better reflection of the physical considerations on sharp-edged bluff
bodies such as rectangular cylinders.

5.1 Modeling with “TS-2018” Wake Oscillator Model

The modified version of Tamura&Shimada’s wake oscillator model, “TS-2018” (Mannini & al.
2018a), is selected to model the unsteady galloping. One important origin for the using of wake
oscillator model is due to its so-called physical considerations (Birkhoff 1953; Tamura & Matsui
1979). Mathematical modelings were made for the 2:1 rectangular cylinder and the bridge deck
in smooth flow condition. Aiming at these two objects actually represents a further exploration
of the prediction capability of the wake oscillator model, due to the following two facts.

a) Either literature reports (e.g., Novak 1972; Santosham 1966) or the previous wind tunnel
results indicate that, the 2:1 rectangular cylinder shows more pronounced proneness to the
unsteady galloping due to interference with VIV than the square or 3:2 rectangular cylin-
der. Mathematical modeling for this cylinder is therefore supposed to be more challenging,
although similar works have been carried out for the square cylinder (e.g., in Tamura &
Shimada (1987)) and for the 3:2 rectangular cylinder (Mannini & al. 2018a).

b) It is probably the first time that the wake oscillator model is applied to a generic bridge deck,
whose geometry is much more complex than the rectangular ones.
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For convenience, the two coupled equations of “TS-2018” wake-oscillator model (Eq. 2.55 in
Section 2.2.3) are re-given here:

Y ′′+2ζ0Y ′+Y =
V 2

m∗
f
(

ϑ − Y ′

V

)
+

V 2

m∗
CQS

Fy (
Y ′

V
) (5.1a)
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V
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where Y and ϑ denote, respectively, the non-dimensional transverse motion of body and the
rotation angle of near-wake lamina. For wind tunnel sectional models, the mass ratio is m∗ =

Me/(0.5ρd2le). ( )′ represents differentiation to non-dimensional time τ = 2πn0t, and υ =

nst/n0 = V/Vr is the frequency ratio. With the “local-effect” equation of “TS-2018”, St2 =

1/(8πh∗l∗) (Eq. 2.59), parameters β and λ , described by Eq. 2.58, can be re-written with h∗

β =
4
√

2
π

St2h∗ f and λ = 8πSt2h∗ (5.2)

Therefore, five aerodynamic parameters need to be set for the mathematical model: a) the quasi-
steady force coefficient CQS

Fy ; b) the amplitude of fluctuation lift coefficient due to vortex shed-
ding CL0; c) St; d) the normalized near-wake width h∗ = h/d; e) the slope f , relating the near-
wake rotation to the induced unsteady lift. The first three are available from the static test results
(Tamura & Matsui (1979); Tamura & Shimada (1987)). Identification of h∗ is also relatively ea-
sy if flow visualization is provided for a stationary body. More crucial is the setting of parameter
f . For circular cylinder (Tamura & Matsui 1979), identification of f is related to the Magnus

effect analogy. However, for sharp-edged bodies (especially the studied bridge deck), such an
analogy seems very questionable. Alternatively, based on the physical definition of f (the slope
between unsteady lift coefficient and near-wake rotation), the identification of f would be pos-
sible if reliable flow visualization and synchronous force measurements were carried out on a
stationary body. Unfortunately, such complicated measurements are not available in the current
wind tunnel facility. At this stage, the method proposed by Mannini & al. (2018a) is adopted,
using a set of aeroelastic test results of high Sc to calibrate this parameter in the VIV region.

Eq. 5.1 were numerically solved by the ODE45 solver of Matlab®. The relative and absolute
error tolerance of the solver were respectively set to 10−6 and 10−8, well balancing the com-
putational cost and accuracy (tests with lower or higher tolerances were also carried out). The
performance of the mathematical model was examined by comparison with the experimental
results in a wide range of Sc, in terms of the amplitude-velocity curves. The quasi-steady gal-
loping solutions were also reported as a reference, by integrating only Eq. 5.1a after setting
f = 0.
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5.1.1 The 2:1 Rectangular Cylinder at α0 = 0◦

Fig.5.1 shows the schematic of wake oscillator model for the 2:1 rectangular cylinder at α0 =

0◦. Motion of body is defined downwards positive, while for the rotation of the wake lamina
it is anti-clockwise positive. Combined with Eq. 5.1a and assuming a stationary state for the
cylinder, it is known that a positive ϑ will generate a downward unsteady lift. This is compatible
with many CFD simulation results about this cylinder (e.g. see Shimada & Ishihara (2002)).

x

y

ϑ

2 l

FL

l / 2

ky cy

h
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.
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O

Fig. 5.1: Schematic of the “TS-2018” wake oscillator model for the 2:1 rectangular cylinder. Pivot po-
sition O, gravity center of the equivalent near-wake lamina G, and the position of the restoring
force FL being applied are particularly indicated.

Parameter setting

Fig.5.2 (a) and (b) show, respectively, the approximations of CQS
Fy and CL0 coefficients from static

test results. The experimental CQS
Fy coefficient was calculated through Eq. 2.14 with the measured

drag and lift coefficients at Re = 6 ·104, then approximated with cubic spline interpolation for
mathematical model use. For the CL0 coefficient, static test results have shown non-negligible
dependence on Re. For this reason, CL0 was approximated by a piecewise-function as shown
by Fig.5.2 (b). There, problematic data points for Re < 2 · 104 and around Re = 4.4 · 104 were
already excluded (see Fig. 4.6 for comparison). Finally, a constant St = 0.079 was set.

Due to the lack of equipment for flow visualization, estimation of h∗ therefore relies on literature
reports. Tamura & Shimada (1987) adopted h∗ = 1.8 for the square cylinder, according to the
flow patterns registered by Mizota & Okajima (1981). Mannini & al. (2018a) supposed h∗ =

1.8 also reasonable for a 3:2 rectangular cylinder, combining with a double-check of the CFD
simulations in Shimada & Ishihara (2002). Moreover, they (Mannini & al. 2018a) performed
sensitivity study for h∗, highlighting the insensitivity of wake-oscillator model solutions to this
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(a) (b)

Fig. 5.2: Approximating the static test results of the 2:1 rectangular cylinder: (a) cubic spline interpola-
tion of CQS

Fy (α) data (Re = 6 ·104); (b) piecewise-linear approximation of the CL0(Re) data.

parameter. For the 2:1 rectangular cylinder in object, however, a value of h∗ = 2.1 is found
more reasonable after a crosscheck of the unsteady flow patterns reported in several publications
(Mizota & Okajima 1981; Shimada & Ishihara 2002, 2012; Yu & Kareem 1998).

After setting above 4 parameters, numerical integration was performed with a set of known f

values to do the calibration procedure reported in Mannini & al. (2018a): comparing the nu-
merical results with the experimental ones of a high Scruton number (Sc = 201) in the VIV
region. This procedure is shown in Fig. 5.3. Due to a private communication with Dr. Mannini
(University of Florence, Italy), the priority of this calibration is a comparable amplitude slope

Fig. 5.3: Calibration of the f parameter with aeroelastic test results of Sc = 201, h∗ = 2.1 and initial
condition [Y,Y ′,ϑ ,ϑ ′] = [0.001,0,0,0].
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between the numerical and experimental results. Therefore, f = 18 or f = 20 is supposed to be
suitable one. Here, f = 18 is chosen, considering its slightly smaller peak amplitude and a better
match of V at which the VIV peak appears. However, with f = 18, one can find that the VIV
peak amplitude is overestimated (39% higher than experiments). This is partially due to CQS

Fy of
Re = 6 · 104 being used, while the experimental VIV response arises at Re ≈ 2.3 · 104 (see the
different A1 in Fig. 4.3 for different Re). Attempt of adopting CQS

Fy of Re = 2.0 · 104 was also
made, showing that the numerical results of h∗ = 2.1 and f = 18 peaked at V/Vr = 1.30 and
the amplitude was about 22% higher than the experiments. Nevertheless, CQS

Fy at Re = 6.0 ·104

will be continuously adopted, since it is more accurate for galloping predictions at high reduced
velocities. Finally, the obtained f value can be found much higher than f = 9 for the 3:2 rec-
tangular cylinder ((Mannini & al. 2018a)), as well as f = 1.16 for the square cylinder (Tamura
& Shimada 1987).

Numerical results

After all the parameters being set, the mathematical model is solved for different test cases
listed in Tab. 4.3. It is to note that h∗ = 2.1 and f = 18 are kept unvaried for different Sc.

Fig. 5.4 compared the numerical solutions with wind tunnel test results, covering a wide range
of Sc from 5.1 to 200.7. For a very low Scruton number Sc = 5.1 (Fig. 5.4 (a)), the wake oscilla-
tor model successfully postpones the galloping onset until Vr, although the predicted amplitude
is overestimated. This postponement is successfully maintained up to Sc = 107.1 (Fig. 5.4 (b)),
agreeing very well with the experimental observations. For Sc = 127.9, wind tunnel tests start
to show a second amplitude branch, in addition to the main one. This behavior is also captured
by the mathematical model, in a slightly lower range of V . For Sc = 136.6, wind tunnel tests
show the “Partial-Interference” behavior, where spontaneous separation of VIV and galloping
occurs (VIV peak emerges) but galloping-type oscillation continues right after this separation.
This behavior is reflected in the mathematical model, for the solutions attained form small initial
conditions. However, the upper amplitude branch extents down back to the VIV lock-in range,
which is not reached in the experiments (but almost, see Fig. 5.4 (d)). Moreover, the range of V ,
where two amplitude branches co-exist, is narrower in the mathematical predictions (especially
for the upper limit). For Sc = 145.9 (Fig. 5.4 (e)), around V = 2Vr, the mathematical model
shows the co-existence of 3 amplitude branches, agreeing the medium one well with the expe-
riments. The high amplitude branch agrees also with the experimental ones, but it extents again
down to the VIV lock-in region (as for Sc = 136.6). Such a behavior continues for Sc = 162.0
(Fig. 5.4 (f)), where the “Low-Interference” behavior is experimentally observed. Moreover, a
large amplitude jump has been observed at V/Vr = 3.30 in wind tunnel tests, while in the mathe-
matical predictions this occurs at a lower reduced wind speed. For Sc = 184.8 and Sc = 200.7,
numerical solutions with small initial conditions well predict the VIV response but overestimate
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(a) Sc = 5.1 (b) Sc = 107.1

(c) Sc = 127.9 (d) Sc = 136.6

Fig. 5.4: Numerical solutions of the “TS-2018” wake oscillator model, in comparison with experimental
results of the 2:1 rectangular cylinder. Heavy maker and solid line indicate solutions obtained
with initial conditions [Y,Y ′,ϑ ,ϑ ′] = [0.001,0,0,0]. Figure continued in next page.

the galloping onset wind speed. Interestingly, before the onset wind speed, a second amplitude
branch is found, agreeing with the experimental ones. Finally, the mathematical model predict
a large upper amplitude-branch behind the experimental VIV region, which is not observed in
experiments.

Compared with the QS theory, the wake oscillator model clearly provide much better predic-
tions. To be specific, several highlights should be pointed out for the wake oscillator model:
a) the “Full-Interference” behavior is very well predicted, except the amplitude being overesti-
mated to some acceptable extent for very low Sc; b) several important features of the “Partial-
Interference” behavior have be captured, including the VIV peak amplitude, the co-existence
of multiple amplitude branches just after the separation of VIV and galloping, as well as the
increasing trend of the upper-amplitude branch; c) the classical VIV response in case of “Low-
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Interference” is well captured for solutions attained from small initial conditions, as well as the
being-advanced galloping onset than QS predictions; d) the solutions of wake oscillator model
approach to the QS predictions at high reduced flow velocities, which is deemed reasonable.

Nevertheless, there are also some aspects needed to be further improved for predictions of wake
oscillator model. A important one is the strong tendency to the high-amplitude branch for V

properly higher than Vr. This tendency has led to some solutions which are not observed in the
wind tunnel tests (e.g., 1.7≤V/Vr ≤ 2.1 for Sc = 145.9, 1.6≤V/Vr ≤ 2.9 for Sc = 162.0, and
the two large amplitude branches after VIV regions for Sc = 184.7-200.7). Moreover, for the
last two cases (Sc = 184.7 and Sc = 200.7), amplitude lumps are observed at V slight higher
than 3Vr (attained from large initial conditions). This is supposed to be a sub-harmonic exci-
ting due to nst/3. Finally, it is understandable that the mathematical model didn’t reflect the
motion-induced-vortex exciting, which is experimentally observed at V ≈ 0.3Vr for Sc = 5.1
and induced by the ILEV mechanism.

(e) Sc = 145.9 (f) Sc = 162.0

(g) Sc = 184.8 (h) Sc = 200.7

Fig. 5.4 (cont.)
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5.1.2 The Bridge Deck at α0 = 4◦

The “TS-2018” wake oscillator model was then applied to the bridge deck at its mean flow
incidence of α0 = 4◦, as schematized in Fig. 5.5. The pivot position O of the wake lamina was
assumed at the centroid of the cross section.
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Fig. 5.5: Schematic of the “TS-2018” wake oscillator implemented for the bridge deck model at 4◦ mean
flow incidence.

Parameter setting

The CQS
Fy and CL0 coefficients approximated for the mathematical model are shown in Fig.5.6.

For CQS
Fy , a static shift has been performed (resetting α = 4◦ as the new null wind angle of attack

(a) (b)

Fig. 5.6: Approximating the static test results of the bridge deck model at α0 = 4◦: (a) cubic spline inter-
polation and linear extrapolation of CQS

Fy (α) data (Re = 6 ·104, after static shift of the coefficient
for α = 4◦); (b) piecewise-linear approximation of the CL0(Re) data (gray and black markers
represent two sets of experimental data measured at different time periods).
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for the CD and CL data, then applying Eq. 2.14 to obtain the CQS
Fy curve, finally neglecting the

part of CQS
Fy inducing only static deformation). Moreover, the CQS

Fy coefficient has been properly
extrapolated (in a linear way) for α > 12◦. This is to ensure a stable numerical integration for
large amplitude oscillations. The CL0 was also approximated as a piecewise-function of Re, in
a same way as for the 2:1 rectangular cylinder. Compared with Fig. 4.12, it is easy to find that
the problematic data points have been excluded. Finally, St = 0.102 was set.

Currently, there exists no reliable flow visualization for the estimation of the h∗ parameter for
this bridge deck. It is therefore decided to maintain the same value h∗ = 1.8, as for the square
cylinder (Tamura & Matsui 1979) and for the 3:2 rectangular cylinder (Mannini & al. 2018a).
Thanks also to the sensitivity study of h∗ in Mannini & al. (2018a), a rough estimation for this
parameter is supposed to be acceptable for prediction purpose. Calibrating the key parameter f

was then carried out, reporting f = 15 as the proper one as shown in Fig. 5.7.

Fig. 5.7: Calibration of the f parameter with aeroelastic test results of Sc = 115.8, with h∗ = 1.8 and
initial condition [Y,Y ′,ϑ ,ϑ ′] = [0.001,0,0,0].

Numerical results

With h∗ = 1.8 and f = 15 unvaried, the performance of the mathematical model is examined
by comparison with experimental dynamic results (Fig. 5.8 and Fig. 5.9). For Sc ≤ 50.3, both
the mathematical model and experiments show “Full-Interference” behaviors. For Sc = 69.6,
the mathematical model begins to predict a second branch of medium-amplitude, while this
branch was not observed during the wind tunnel tests. Nevertheless, after a careful check of
the time history records of manually releasing the wind tunnel model from rest, it is found
at about V = 2.13Vr the amplitude building-up process has shown a tendency to the medium-
amplitude branch (additionally added in Fig. 5.8 (c)). It is therefore reasonable to conjecture
that the medium-amplitude branch can be reached if a slightly higher Sc was considered in the
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(a) Sc = 5.5 (b) Sc = 50.3

(c) Sc = 69.6 (d) Sc = 83.0

(e) Sc = 106.4 (f) Sc = 115.8

Fig. 5.8: Numerical solutions of the “TS-2018” wake oscillator model for the bridge deck at α0 = 4◦,
in comparison with the experimental results. Heavy maker and solid line indicate solutions
obtained with initial conditions [Y,Y ′,ϑ ,ϑ ′] = [0.001,0,0,0].
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experiments. For Sc = 83-115.8, the mathematical model very well predicted the VIV response
when the solutions are attained from a small initial condition, including the VIV peak amplitude,
lock-in velocity range and the amplitude-velocity curve. Moreover, the high-amplitude branches
much after the VIV region (which were experimentally detected by releasing wind tunnel model
from a high displaced position), are also captured by the mathematical model. Nevertheless, the
tendency to the upper amplitude branch seems quite strong, leading to this branch extend down
directly to the VIV lock-in region (similar to the conditions for the 2:1 rectangular cylinder).

In Fig. 5.9, additional results for Sc = 83.0 at higher V are given. There, both the QS theory
and the wake-oscillator model predict a very large amplitude jump just at the galloping onset
wind speed. Such a jump is very violent for the current experimental setup so that it was purpo-
sely avoided during experiments. Nevertheless, one can find the wake-oscillator has predicted
a lower onset velocity than the QS theory. This lower onset velocity is deemed more reliable,
considering that the better prediction capability of wake oscillator model has been confirmed for
the 2:1 rectangular cylinder (Fig. 5.4) and the 3:2 rectangular cylinder (Mannini & al. 2018a).

Fig. 5.9: Numerical solutions of the “TS-2018” wake oscillator model for the bridge deck at α0 = 4◦.
Extra results for Sc = 83.0 at larger V .

Finally, it is interesting to note, that form Sc = 69.6 to Sc = 83.0, the numerical solutions for
the bridge deck did not show so many “Partial-Interference” behaviors as for the 2:1 rectangular
cylinder. This is generally in line with the experimental results of the two wind tunnel models.

5.1.3 The Bridge Deck at α0 = 0◦

Up to here, the wake oscillator model has exhibited quite satisfying capabilities in predicting the
unsteady galloping behaviors due to inference with VIV, not only for the 2:1 rectangular cylin-
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der which is well-known to undergo strong interference between galloping and VIV, but also for
the bridge deck model whose geometry topology is rather complex. However, for the unsteady
galloping not due to the interaction with VIV (namely the previously named atypical unstea-

dy galloping), the wake oscillator model seems less applicable. Fig. 5.10 shows an attempt of
applying the wake oscillator model to the bridge deck model at its α0 = 0◦ (for parameter set-
ting, see caption of Fig. 5.10). For a very low Scruton number (Sc = 6.9), the wake oscillator
continues predicting a galloping onset at Vr, and varying the f value brings nearly no change to
this threshold. In contrast, the galloping onset was experimentally observed at V ≈ 1.3Vr. Re-
membering the observations for the square cylinder at α0 = 9◦ (see Fig. 2.18 in Section 2.2.1),
it may be questionable to set here the quasi-steady coefficient CQS

Fy in the mathematical model,
at least for Vr <V < 1.3Vr. A further discussion for this topic is presented in Section 5.5.2.

Fig. 5.10: Wake oscillator model results for the bridge deck at a mean flow incidence of 0◦, considering
a very low Scruton number Sc = 6.9. CQS

Fy (α) at Re = 6.0 · 104, constant CL0 = 0.17 of Re =

2.0 ·104, St = 0.109 and h∗ = 1.8 were set in the mathematical model.

5.2 Examination of the Physical Considerations in Wake

Oscillator Model

From the above numerical results, the modified version of Tamura’s wake oscillator (namely
“TS-2018”) clearly shows some satisfying capabilities in predicting the unsteady galloping due
to interaction with VIV. Up to there, it may be reasonable to say that the “TS-2018” model
serves as an effective analytical tool for practical use. In this Section, one of the so-called phy-
sical considerations in wake oscillator model, that St is determined by the near-wake geometry
through a “local-effect” (Birkhoff’s idea), will be examined with respect to sharp-edged bluff
body such as rectangular cylinders. To be more comprehensive, it is deemed necessary to first
introduce the basic knowledge about the physics of the near-wake behind bluff body.
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5.2.1 Physics of the Fluid Wake behind Bluff Body

Unless very low Re, flow separation, vortex formation and shedding normally occur when flow
passes bluff body. The disturbed flow field behind the obstacle is called wake. Typically, for
bluff body of small side ratio, this wake is illustrated in Fig. 5.11. In particular, the region
just behind the obstacle is called near-wake, where vortex grows to “maturity” and then shed
(thus sometimes also called “vortex formation region” (Gerrard 1966) or “base region” (Lander
& al. 2016; Lyn & al. 1995)). Here, the formation of vortex belongs to the Bénard-Kármán
mechanism, due to the two-shear-layer instability in the wake (the existence of body is actually
not necessary for the vortex formation, see, e.g., Pier & Huerre (2001) and Afanasyev & Korabel
(2006)). According to Gerrard (1966), the streamwise length of this region is characterized by
the formation length lF , which can be experimentally quantified (elaborate later in details).

The wake in the more downstream region can be called far-wake, where the shed vortices are
mature and distinct. This is where the famous vortex street can be observed. Typically, the
vortices in the “street” are arranged in two rows, with opposite sign of vorticity. The spacing of
these vortices can be characterized with streamwise distance lV and across-flow distance hV . In
Fig. 5.11, the speed of vortex being transported downstream is also indicated, which is usually
smaller than the free-stream velocity U . For viscous flow, the strength of vortices in the “street”
will gradually decrease because of the viscosity dissipation, and finally vanish.

lF

h V

lV

ΓUS
U - uV

Far-wakeNear-wake

Fig. 5.11: schematic of the wake behind bluff body.

Classical explanation on vortex shedding frequency

Wake of bluff body is a complex phenomenon. “Despite the fact that two-dimensional (2-D) and

three-dimensional (3-D) vortical instabilities in wakes have been a subject of interest to engi-

neers as well as to scientists for a great many years, an understanding of the flow behind a bluff

body poses a great challenge“ (Williamson 1996). “The problem of bluff body flow remains al-

most entirely in the empirical, descriptive realm of knowledge” (Roshko 1993). Particularly, for
the periodicity of vortex formation and shedding, there exist various up-to-date explanations.
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In the early but classical work of von Kármán (Von Kármán 1911, 1912), it was noticed that
the transportation of vortices in the far-wake was governed by specific geometric arrangement.
By assuming an ideal (non-viscous) flow and two arrays of concentrated vortex (point vortex)
in equilibrium moving downstream with opposite sign of circulation Γ , von Kármán showed
that the vortices have first-order instability, i.e., exponentially growing perturbations, except at
one specific anti-symmetric configuration exhibiting neutral stability. This is the case for infi-
nite vortex arrays with a spacing ratio of lV/hV = 0.281. The vortex shedding frequency can
be determined through the stable geometric arrangement and the transportation velocity, name-
ly nst = (U − uV )/lV provided another equation Γ /(uV lV ) = 2

√
2 in von Kármán’s theorem.

Experimentally, somewhat larger values of lV/hV are found (0.28 < lV/hV < 0.5, summarized
by Birkhoff (1953)), since hV slightly increases downstream while lV is trivially invariant. Alt-
hough the original stability analysis of von Kármán spawned a great number of papers for the
instability of the vortex arrays, it is unclear how to relate these studies to the vortex formation
and shedding behind the bluff body. An attempt to build such a relation was made by Kronauer
(1964): the vortex formation and shedding are mainly determined by the feedback of velocity
fluctuations to the boundary layer separation point from the wake.

Some deeper descriptive understandings on the periodicity of vortex shedding comes from Ger-
rard (1966), who paid particular attentions to the near-wake just behind the bluff body: “The

growing of one vortex continues to be fed by circulation from the shear layer until the vor-

tex becomes strong enough to draw the other shear layer across the wake. The approach of

oppositely-signed vorticity in sufficient concentration cuts off further supply of circulation to

the vortex, which then ceases to increase in strength. We may speak of the vortex as being

shed from the body at this stage”. Clearly, based on above description, the “cutting-off” process
plays the key role in the formation of discrete vortices, thus further determining the shedding
frequency. Such an explanation is generally in line with the instantaneous-streamline patterns
drawn by Perry & al. (1982) (based on flow visualization), as pointed out by Williamson (1996).
Furthermore, Gerrard (1966) suggested two important characteristic lengths for the aforemen-
tioned mechanism. The first one is the previously mentioned vortex formation length lF , whose
decrease leads to the increase of the shedding frequency. This is explained as: the decrease of
lF will bring the two shear layers closer together so that their interaction is facilitated and the
periodic time becomes shorter. The second characteristic length is called diffusion length lD,
which corresponds to the thickness of the shear layer when it reaches the region of strong inter-
action at the end of the formation region. When the shear layer is diffused (thicker), it will take
a longer time for a sufficient concentration of vorticity to be carried across the wake and initiate
shedding. Therefore, the increase of lD tends to decrease the vortex shedding frequency.

More recently, although a conclusive explanation on the mechanism of vortex shedding is still
not totally achieved, with the development of new experimental techniques and hence incre-
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ased knowledge, following arguments seem robust: a) vortex shedding is a global instability
in the sense that the whole wake is affected; b) the source of vortex shedding is the vorticity
continuously produced by the shear layers; c) vortex shedding is the results of complex three-
dimensional fluid-dynamics process (see the review paper by Williamson (1996)).

Other aspect

At this conjuncture, it is deemed necessary to supplement the knowledge about the relationship
between the vorticity in the shear layer and the circulation carried by the downstream vortex.
Roshko (1954b) showed that the rate of circulation (per unit time) produced by the vorticity of
single-side shear layer can be calculated as U2

S /2. Here, US is the flow velocity outside the shear
layer close to the separation point, as illustrated in Fig. 5.11. Downstream in the far-wake, the
rate at which circulation is carried by vortices is nstΓ . Experimentally, Fage & Johansen (1928)
showed that only a fraction n of the vorticity in the shear layer is transferred to the downstream
mature vortex. Therefore the relationship between upstream shear and downstream vortex can
be built through the rate of circulation nstΓ = nU2

S /2. Fage & Johansen (1928) estimated the
magnitude of n is about 0.5, and more recent measurements showed this factor is usually lower
than 0.5 (see Cantwell & Coles (1983) for a circular cylinder and Lyn & al. (1995) for a square
cylinder). Apparently, a considerable portion of U2

S /2 was “eaten” in the near-wake region, as
explained by Lyn & al. (1995): “the two separated shear layers with oppositely signed vorticity

interact more directly and vigorously, resulting in substantial cancellation of vorticity”. In the
far-wake, the circulation of single vortex also decreases during the transportation downstream
but it is much slower.

5.2.2 Birkhoff’s Explanation on Vortex Shedding Frequency (Linear

Wake-oscillator)

Garrett Birkhoff provided a totally different perspective on the mechanism of near-wake oscil-
lation behind bluff body. Early in the 1950s, he observed that “behind the cylinder, the wake

swings from side to side, somewhat like the tail of a swimming fish” (Birkhoff 1953). He belie-
ved that the vortex shedding frequency is determined by the “local-effect” of near-wake, rather
than the asymptotic downstream behavior (the aforementioned von Kármán’s theorem).

Birkhoff considered the near-wake behind bluff body as a lamina, geometrically characterized
by a length 2l up to its first bending and a width h for the dead-air region. The latter is actually
a length scale relevant to the wake flow rather than the immersed bluff body, and, in Birkhoff’s
concept, the obstacle itself only served to anchor the forward end of the wake lamina. In the
case of the circular cylinder, the anchor/pivot point was put about the centroid. The cross-force
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(restoring force) acting on the lamina was calculated by analogy to a thin airfoil of the same
length 2l and displaced to the same angle of attack as the near-wake inclination ϑ . The theo-
retical lift coefficient 2πϑ was then obtained (“2π” is the theoretical slope of CL(α) curve for
thin airfoil, where CL is the steady lift coefficient and α the wind angle of attack). Therefore,
the magnitude of restoring force was calculated FL =

1
2ρU2 ·2l ·2πϑ , acting at one fourth of the

chord of the lamina. On the other hand, the considered lamina has a mass ρh per unit length0.
In the rotational degree of freedom about the pivot point, the torque due to the restoring force is
−1

2ρU2 ·2l ·2πϑ · 1
2 l and the moment of inertia can be simplified as ρh2l · l2 (the torque has an

opposite sign to ϑ so that FL is called restoring force). Further invoking Newton’s second law,
the equilibrium equation is obtained as ρh2l · l2 · ϑ̈ =−1

2ρU2 ·2l ·2πϑ · 1
2 l, or

Iϑ ϑ̈ + kϑ ϑ = 0 (5.3)

with Iϑ = 2ρhl3 and kϑ = πρU2l2. Solution of the equation gives an oscillation frequency for
the near-wake lamina nst =U/

√
8πhl, and the conventional Strouhal number is obtained as

St = 1/
√

8πh∗l∗ (5.4)

with h∗ = h/d and l∗ = l/d. The presented deducing procedure is in line with Mannini & al.
(2018a) and slightly different from Birkhoff (Birkhoff & Zarantonello 1957; Birkhoff 1953),
but the final expression of St is the same. By putting h = 1.33d and 2l = 1.5d (Birkhoff 1953)
in Eq.5.4 (or, h = 1.25d and 2l = 1.6d in Birkhoff & Zarantonello (1957)), Birkhoff finally
obtained a Strouhal number St ≈ 0.2 for the circular cylinder in the sub-critical region of Re.
The geometric size, namely h and 2l, was also deemed physically reasonable.

From Eq. 5.3, one can find the physical foundation behind Birkhoff’s explanation is actually a
mechanical oscillator. Although without damping item at this stage, it forms the basis for Tamu-
ra’s further extension for a non-linear wake oscillator model (Tamura & Matsui 1979). Eq. 5.4
is called “local-effect” equation, where the geometrical parameters of the near-wake (l and h)
are used to determine St. Its specific form can be found different due to modifications made for
different purposes (Funakawa 1969; Tamura & Shimada 1987). Nevertheless, values of l, h and
St should be realistic in fulfilling a “local-effect” equation, so that the considerations reflected
by the “local-effect” equation can be called physically meaningful. Such physical consideration
is obviously achieved for circular cylinders. However, for sharp-edged bodies (e.g., rectangular
cylinder), base on the author’s knowledge, a careful examination on this point is still in lack.

In following, attempts are first made to relate the two near-wake parameters to more specific
length scales in the physical world of near-wake. This will facilitate the examination work for
the 2:1 rectangular cylinder to be presented in next Section.
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Near-wake length 2l

Through a search in literature reports, two measurable length scales are supposed to be very
relevant to the longitudinal dimension of the near-wake behind bluff bodies. The first one is
called vortex closure length lC (see, e.g., Norberg (1998) or Hu & al. (2006)), sometimes also
known as recirculation length (e.g, Xu & al. (2011)). It characterizes the position, where the
time-averaged flow velocity on the wake centerline transfers from negative to positive.

The second one is the aforementioned vortex formation length lF . In particular, it is found this
scale (lF ) matches very well with the “2l” conception in Birkhoff’s idea, as shown by Fig.
5.12. The streamwise position of the first bending of the wake, according to Birkhoff’s idea,
is consistent with the explanation, that, at lF , the growing vortex draws the irrotational free-
stream across the wake centerline as shown by the arrows in Fig. 5.12 (a). Moreover, Bloor &
Gerrard (1966) also concluded that the end of formation region is characterized by a strongest
flow fluctuation on the wake centerline, as they described: “the intensity of the fluctuations

on the axis depends on the vortex strength, the position and the size of the vortex... all these

factors contribute to the appearance of a maximum (u′/U) at the end of the formation region”.
Here, u′ is standard deviation of streamwise flow fluctuation. Based on that argument, lF can
be easily quantified by wake measurements with anemometer, e.g., the hot-wire probe, on the
wake centerline. For the circular cylinder, 2l = 1.5d (or, 1.6d) adopted by Birkhoff corresponds
well to the measured lF in Bloor & Gerrard (1966) at Re ≈ 2 · 104. In a later application of
Birkhoff’s idea, Funakawa (1969) modified the “local-effect” equation and took a near-wake
length of 2.7d (from cylinder center to the downstream limit) based on his flow visualization
at Re = 1.4 ·103. This agrees also with the measured lF in Bloor & Gerrard (1966) at the same
Re (one may notice that the near-wake length gets increased at Re = 1.4 · 103, which may be
the reason for Funakawa (1969)’s modification of the “local-effect” equation). Recently, Lander
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Fig. 5.12: Resemblance of Gerrard’s and Birkhoff’s concepts for the near-wake length: (a) the vortex
formation length lF , reproduced from Gerrard (1966); (b) the near-wake length 2l, up to the
first bending of wake, reproduced from Birkhoff & Zarantonello (1957).
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& al. (2016) used the long-duration time-resolved particle image velocimetry (PIV) technique
to investigate the wake of a square cylinder at Re = 5.0 ·104. Remarkable agreement has been
found between the position of maximal v′/U and the downstream edge of formed vortex in
the vorticity plot of near-wake (at a specific phase corresponding to the description of Gerrard
(1966)). It is to note here, Lander & al. (2016) used v′/U rather than u′/U to identify lF , being
v′ the standard deviation of across flow fluctuation.

For above reasons, the author of this thesis tends to believe, that a physically meaningful near-
wake length for wake oscillator model is closely related to the vortex formation length lF .

Near-wake width h

For the width of near-wake behind bluff body, there exist several length scales both given in a
quantitatively definable manner. A well-known one is from Roshko (1954b)’s attempt for a uni-
versal Strouhal number, defined as St∗ = nsth/US. Here, the wake width h denotes the parallel
distance between two idealized surface shear layers and is calculated by Roshko (1954a)’s ho-
dograph theory. Another attempt for a universal Strouhal number was made by Bearman (1966),
assuming the wake width as the distance between shear layers at the commencement of vortex
formation and determined by Kronauer (1964)’s stability criterion. Clearly, these wake widths
(either Roshko’s or Bearman’s) are determined through an analytical manner.

By measurements, Fage & Johansen (1928) defined the wake width as the maximum distance
between the outer edges of shear layers in the near-wake region (see also the related comments
in Roshko (1954b)). Here, the related shear layer is a time-averaged one, and its outer edge can
be determined by analyzing the mean velocity distribution in the across-flow direction. For a
circular cylinder, the measured wake width in this way is 1.45d at about Re = 3.0 · 104 ( Re

roughly estimated by the author of this thesis). This width is larger than the one calculated
according to Roshko’s hodograph theory for a close Reynolds number (about 1.1d at Re = 1.7 ·
104, see Roshko (1954b) Table 1). Also for detecting the outer edges of shear layers, Mariotti
& Buresti (2013) made the identification through the negative peaks of skewness of streamwise
flow velocity fluctuation, measured from a set of monitoring points transversely arranged.

Simmons (1977) and Griffin (1981) made also attempts for a universal Strouhal number, deter-
mining the wake width through the method proposed by Calvert (1967). Here, the wake width
is defined as the distance between the major peaks of transversely measured u′, at a streamwise
location where the static pressure reaches the minimum on the wake centerline. This positi-
on actually corresponds to the end of vortex formation region which is characterized by lF , as
pointed out by Simmons (1977) (see also Bloor & Gerrard (1966), in which different manners
were outlined to find lF ). The wake width defined in this manner is facilitated for experimental
measurements: for a given bluff body, the vortex formation length lF can be first determined
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through u′(x) on the wake centerline, then the wake width can be found by the peaks of u′(y)

measured at x = lF (here, x and y denote streamwise and across-flow directions). Moreover,
Calvert (1967) noticed , that wake width determined in this way is closely equal to the width at
which U/U0 = 0.6 (here, U0 is used to indicate the incoming flow speed and U is the mean flow
velocity for a specific location). For a circular cylinder, Griffin (1981) reported that the wake
width defined in this way is less dependent on Re for 500 < Re < 2 · 105, maintaining about
1.1d. Based on several pieces of evidence, he further noticed that there exists a good agreement
between the measured wake width with the predicted one by equation h/d =−CD/Cpb, which
is closely related to Roshko’s hodograph theory (Cpb is the base pressure coefficient).

In addition, Williamson & Brown (1998) used an effective wake width for the universal Strouhal
number. This wake width is defined as d+2δs, being δs the characteristic thickness of separated
shear layer. They obtained a good collapse of the universal Strouhal number for the circular
cylinder within 55≤ Re≤ 1.4 ·104 by taking δs = δs,w/2, where δs,w is the shear layer vorticity
thickness measured in the near-wake region (1d downstream cylinder center).

From above literature reviews, it can be found that the definition of a near-wake width is fre-
quently related to the efforts for a universal Strouhal number. On the other hand, it is interesting
to note that the using of the “local-effect” to determine St (Birkhoff’s idea) actually also reflects
a universal Strouhal number. From Eq. 5.4, it can be easily written as

St∗ = St
√

h∗l∗ = 1/
√

8π (5.5)

which means that multiplying St of a bluff body with its near-wake geometrical scale (
√

h∗l∗)
will obtain 1/

√
8π as the result. Nevertheless, attempts are made now to relate the near-wake

width in wake oscillator model to the more specific and quantifiable length scales.

For the circular cylinder, the wake width set in wake oscillator model was h= 1.33d by Birkhoff
(1953). Later, this value was varied to h = 1.25d (Birkhoff & Zarantonello 1957). The same va-
lue was offered by Funakawa (1969) through flow visualization observation at Re = 1.4 · 103,
and was further used in Tamura & Matsui (1979). However, either h = 1.33d or h = 1.25d is
larger than the measured ones collected by Griffin (1981) (about 1.1d, by means of u′/U dis-
tribution at x = lF ), also representing the upper limit of Roshko (1954b)’s analytical results. In
contrast, h = 1.33d or h = 1.25d is smaller than the measured value 1.45d by Fage & Johan-
sen (1928), which was determined from the outer edges of shear layers. The used wake width
h = 1.25d (or 1.33d) for the wake oscillator model, which is determined by “observing” the
flow visualization, can be found between the two measured ones (1.1d and 1.45d).

For the square cylinder, the wake width for wake oscillator model was set 1.8d by Tamura
& Shimada (1987) based on flow visualization reported in Mizota & Okajima (1981). On the
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other hand, by examining the u′/U distribution at lF due to wake measurements reported in Lyn
& al. (1995) and Lander & al. (2016), the distance between u′/U peaks is found just about 1d

(estimated by the author of this thesis from the concerning graphics). Therefore, this measured
wake width at lF is much smaller than the 1.8d used by Tamura & Shimada (1987). Moreover,
in Lander & al. (2016)’s measurements (Figure 15, to be more specific), one can also see a
decrease of u′/U peaks’ distance within the vortex formation region (from about 1.5d at 0.25d

to the rear face of cylinder, to 1.0d at the end of vortex formation region).

From above analyses, for the near-wake width h of the wake oscillator model, it seems hard
to relate it to a single length scale that can be quantified by wake measurements. However, it
may be reasonable to conclude that the wake width used for the wake oscillator model should
be between the one determined by peaks of u′/U distribution, and the other one corresponding
to the outer edges of shear layers. This point will be further clarified later, combining with the
wake measurements carried out for the 2:1 rectangular cylinder.

5.2.3 The 2:1 Rectangular Cylinder as an Examination Case

The 2:1 rectangular cylinder is used to examine one of the physical considerations in the wake
oscillator model, namely the “local-effect” equation which relates St to the near-wake geome-
trical parameters h∗ and l∗. The use of a rectangular cylinder, rather than the bridge deck model,
is mainly due to its clean shape. Moreover, flow visualizations for this cylinder are available in
literature reports so that comparison can be made. The wake measurements were carried out for
the cylinder in the stationary state, with an incoming wind speed U0 ≈ 9.8m/s (to make a dif-
ference, U0 is especially used here). The measurements were performed with the Cobra Probe
(see Section 3.2.3). Monitoring points in the wake region are outlined in Fig. 5.13, following
three vertical reference lines LV 1, LV 2 and LV 3, as well as the wake center line LH .

Estimation of the vortex formation length lF from wake measurements

To estimate lF , instantaneous wind speeds need to be measured along the wake centerline (LH).
However, the used Cobra probe shows some limitations for this task, due to the inverse flow
in the near-wake region. Fig. 5.14, through a time history record, shows these limitations. One
can find that only the instantaneous streamwise velocity Ũ of the positive sign was registered.
The information about negative Ũ is totally missing, replaced by unreal values close to null (for
example, 99.558 s < t <99.572 s). The registration of lateral component Ṽ was also influenced:
for the time segment where Ũ is distorted, Ṽ is distorted at the same time. Fortunately, both
the positive and negative values of the Ṽ signal were registered, although in an incomplete
manner.
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Fig. 5.13: Positions for flow velocity measurements in the wake of the 2:1 rectangular cylinder. LV 1, LV 2,
LV 3 and LH represent reference lines for monitoring points (marked with ◦ and ×).

Fig. 5.14: Effect of inverse flow on the Cobra probe output for Ũ(t) and Ṽ (t) (time history example of a
monitoring point on reference line LH , x/d = 5).

The lateral velocity component Ṽ , rather than Ũ , is adopted for the estimation of lF , following
the same way in Lander & al. (2016). This is due to two considerations. Firstly, the registered
Ũ lost its negative counterpart due to instrument’s limitation, so that it is unable to fulfill this
task. Secondly, a careful analysis of Lyn & al. (1995)’s results for a square cylinder implies:
a) the same values of lF should be obtained, given that only the organized (or, coherent) part
of Ũ(t) or Ṽ (t) is adopted to estimate lF ; b) on the other hand, if the whole fluctuation part is
considered, the result of lF from the lateral velocity component will not change too much, but
the one from the longitudinal component tends to vary. For b), it is explained that the coherent
fluctuation part in Ṽ (t) is much stronger than its incoherent fluctuation (turbulence). It is also
necessary to supplement that, a strict application of u′/U0 for the lF identification should only
involve the organized fluctuation part as outlined in Bloor & Gerrard (1966).
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Fig. 5.15 shows the distribution of std(Ṽ ) along the wake centerline LH . In calculating std(Ṽ ),
only the undistorted data points were used, as exemplified in Fig. 5.14. The ratio of Ṽ (t) data
points being distorted to the total sampled population is also given in Fig. 5.15. In the same
plot, the average of 10% largest peaks in time history of Ṽ (t) is also provided (defined with
variable Ṽ10). To calculate this value, the Ṽ (t) data was first passed through a 10-order zero-
phase Butterworth low-pass filter with cutoff frequency 50 Hz (> 3nst ≈ 38.4 Hz). The maximal
peaks in the filtered signal were then identified, with a time interval not less than 0.8×1/(nst)

(for x/d ≥ 3.67, Strouhal frequency nst dominates the spectra of Ṽ (t)). Subsequently, the 10%
largest peaks were averaged to obtain Ṽmax10. Similarly, the minimum peaks were identified
and the 10% lowest peaks were averaged to get Ṽmin10 (negative sign). Finally, Ṽ10 = (Ṽmax10−
Ṽmin10)/2 is obtained. In Fig. 5.15, either std(Ṽ ) or Ṽ10 is further normalized by U0.

peak

Fig. 5.15: Standard deviation of Ṽ (t) after removing the distorted data points, and 10% largest peaks
in the filtered time histories of Ṽ (t). The ratio of problematic population to total sampled
population is also indicated, being a rough criterion for distorted samplings Ũ(t)< 0.1m/s.

The peak of std(Ṽ ) appears at about x/d = 5.67. For Ṽ10, this is about x/d = 5.33, quite close
to the former. In fact, the position of the Ṽ10 peak clearly represents, that, at this position, the
instantaneous flow velocity in the lateral direction reaches its maximum for the whole wake
centerline. Such a position agrees also with the characteristics at the end of vortex formation
region: the vortex grows to its maximal strength and draws irrotational flow across the wake
centerline (see also Fig. 5.12 (a)). Therefore, it is understandable that Ṽ10 is able to peak at
a position quite close to the one of std(Ṽ ). Moreover, the Ṽ10 value is supposed to be less
influenced by the distorted data points, due to its particular calculation procedures (although
not given here, the peak position of Ṽ10 of the un-filtered signal doesn’t change). Upon these
reasons, it is decided to take lF = 5.33d as the vortex formation length for the 2:1 rectangular
cylinder (unlike the circular cylinder in Fig. 5.12 (a), lF is defined here starting from the leading
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edge). By inspecting the flow visualizations in Mizota & Okajima (1981), a net vortex formation
length about lF,net = 3d (from rear face of cylinder to the end of vortex formation region) is
deemed reasonable for this cylinder. Finally, this lF,net is found much larger than the one for a
square cylinder (lF,net = 1.21d or lF,net = 1.25d, according to Lander & al. (2016) or Lyn & al.
(1995), respectively).

Estimation of the near-wake width

Fig. 5.16 shows the statistical results of Ũ(t) along the three vertical lines. For std(Ũ), mea-
surements along LV 1, LV 2 and LV 3 respectively report a peak at y/d = 0.833, y/d = 0.75 and
y/d = 0.583. These lead to wake widths hstd,1 = 1.67d, hstd,2 = 1.50d and hstd,3 = 1.17d for the
three locations, defining wake width through peak distance of std(Ũ)/U0 (see Griffin (1981), but
not limited at x = lF ). In line with Calvert (1967), it is found the y/d position, where std(Ũ)/U0

(a) (b)

(c) (d)

Fig. 5.16: Statistical results of Ũ(t) measured at the reference lines LV 1, LV 2 and LV 3: (a) time-averaged
value; (b) standard deviation; (c) skewness; (d) distortion ratio of sampled Ũ(t) population,
being a rough criterion for distorted samplings Ũ(t)< 0.1m/s.
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peaks, features a time-averaged flow velocity about 0.6U0 (either for LV 1, LV 2 or LV 3). On the
other hand, the time-averaged outer edges of shear layers are identified from the minus peaks
of skewness of Ũ(t) (Mariotti & Buresti 2013). When these minus peaks are used to define the
wake width, they are hsk,1 = 2.67d, hsk,2 = 2.83d, and hsk,3 = 3.17d for the three locations.

Still, neither hstd nor hsk seems to agree with the one h = 2.1d, which is estimated from the flow
visualizations of Mizota & Okajima (1981) and Shimada & Ishihara (2002). hstd is smaller than
2.1d and decreases with downstream location (similar to the square cylinder reported in Lander
& al. (2016)), while hsk is larger than 2.1d and increases with the downstream location. In
contrast, if the averaged value havg =(hstd+hsk)/2 is considered (about havg = 2.17d at the three
reference lines), there is a good agreement with h = 2.1d. Therefore, it may be reasonable to
consider havg as the measured wake width for wake oscillator model use. Finally, form Fig.5.16
(d), it is known that the used Cobra probe suffered also the inverse flow problem for y/d < 1.
This is supposed to bring some influences, but in a limited way, to the appearing of std(Ũ)/U0

peak on the y/d axis. The minus peaks of skewness of Ũ(t) are not influenced.

Examining “TS-1987” and “TS-2018” wake oscillator models

Strouhal number St, non-dimensional near-wake width h∗ = h/d and length l∗ = l/d are cons-
trained by the “local-effect” equations in wake oscillator models (Eq. 2.57 for “TS-1987” and
Eq. 2.59 for “TS-2018”). If two of these parameters are known, the last one can be predicted by
the “local-effect” equation. Supposing now h∗ and St are the known ones, l∗ is obtained

l∗ =
1

4πh∗St2 −b/d for “TS-1987” (5.6a)

l∗ =
1

8πh∗St2 for “TS-2018” (5.6b)

Further combined with the schematics shown in Fig. 2.19, a net near-wake length lF,net , starting
from the rear-face of body to the end of near-wake, can be defined as

lF,net/d = 2l∗ for “TS-1987” (5.7a)

lF,net/d = 2l∗−0.5b/d for “TS-2018” (5.7b)

Now, by putting in St and properly realistic h∗ in to the “local-effect” equation, the predicted
lF,net/d can be used to compare with the measured lF,net/d. By doing so, it is able to know
whether the concerned “local-effect” equation is physically meaningful or not.

Fig. 5.17 (a) shows the predicted lF,net for the 2:1 rectangular cylinder, by assigning St = 0.079,
h∗ = 2.1, and allowing at the same time a variation of h∗ up to ± 30%. At h∗ = 2.1, “TS-
1987” predicts about lF,net = 8, which is much larger than the measured one. “TS-2018” gives
better results about lF,net = 5 for h∗ = 2.1, which is however still larger than the measured one.
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Increasing h∗ to about 2.7, predictions of both models tend to approach the measured one but
still not reached. Since h∗ also needs to hold its physical representation, it is less meaningful to
further increase it. Nevertheless, if it also allows a variation up to± 30% for the measured lF,net ,
“TS-2018” is able to fulfill the so-called physical consideration for h∗ > 2.4, while “TS-1987”
seems still not reasonable. The similar condition is also encountered for the square cylinder, as
shown in Fig. 5.17 (b). There, measured value of St = 0.132 and lF,net = 1.21d is according to
Lander & al. (2016)’s experiments, while the basic value h∗ = 1.8 is adopted due to Tamura &
Shimada (1987).

Exp. lF,net ± 30% 

(a) 2 : 1 rectangular cylinder

Exp. lF,net ± 30% 

(b) Square cylinder

Fig. 5.17: Predicted and measured net near-wake length lF,net . “◦” and “×” are the predicted ones (being
h∗ ± 30% varied), gray solid line is the measured one and the gray area denotes a ± 30%
relaxation of it. (a) 2:1 rectangular cylinder: h∗ = 2.1, St = 0.079, measured lF,net/d = 3.33.
(b) square cylinder: h∗ = 1.8 reported by Tamura & Shimada (1987), St = 0.132 and lF,net/d =
1.21 according to Lander & al. (2016).

In general, it is to conclude that, for the existing wake oscillator models, the physical conside-
ration in the “local-effect” equations is less well respected on sharp-edge bodies such as square
or 2:1 rectangular cylinder. The modified “TS-2018” form behaves better than the original one
(“TS-1987”) in this examination, but it still needs to be further improved in this regard.

5.3 Proposed Method for Estimating the f Parameter by

Means of Wake Measurements

5.3.1 Rationale of the Method

In developing the non-linear wake oscillator, Tamura & Matsui (1979) assumed that the unstea-
dy lift coefficient on the cylinder is proportional to the effective rotation angle of the near-wake
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lamina through a parameter f . That is CL,un(τ) = f
(

ϑ(τ)− Y ′(τ)
V

)
, as can be viewed in Eq.

2.55a (or Eq. 5.1a). For a stationary body and assuming the near-wake rotate to its maximum
angle ϑ0, there is CL0 = f ϑ0, being CL0 the amplitude of lift coefficient due to vortex shedding.
It is easy to understand that the value of f can be directly calculated if ϑ0 is known

f =
CL0

ϑ0
(5.8)

In Mannini & al. (2018a), it has been noticed that instantaneous flow visualization can be used
to estimate this ϑ0 value. However, the related equipment is not available in the current wind
tunnel facility. Here, a new approach is conceived for a rough estimation of ϑ0, adopting only
simple anemometer instruments like Cobra or hot-wire probe.

The key of the proposed method is to detect the limit positions of the outer edge of shear layer
during the near-wake vibration, based on the special velocity variation of monitoring points set
close to these positions. Fig. 5.18 illustrates these limit positions, corresponding respectively to
the maximal anti-clockwise and clockwise rotation of the near-wake during the steady vibration
state. Assuming right now two monitoring points yU1 and yU2 in Fig. 5.18 (a), the difference of
the measured flow velocity variations are supposed to be:

• compared with yU1, the minimal instantaneous velocity at yU2 will show an apparent
decrease. This is because the yU2 point is periodically enclosed into the upper shear layer
(where the flow velocity varies intensively) during the near-wake rotation, while the yU1

point stays always outside the outer edge of shear layer.

On the other hand, for the assumed yL1 and yL2 points in Fig. 5.18 (b), the difference would
be:

• compared with yL1, the maximal instantaneous velocity at yL2 will show an apparent de-
crease. This is because the yL1 point is still able to stay periodically outside the outer
edge of shear layer so that the maximal instantaneous velocity can be as high as the other
monitoring points above it. However, this is not possible for the yL2 point, which stays
always inside the outer edge of shear layer.

In practice, a set of monitoring points can be assigned laterally in the near-wake region. By ana-
lyzing the minimal and maximal instantaneous velocity distribution, the two limit positions of
shear layer outer edge can be then roughly located. As also shown in Fig. 5.18, the thickness of
shear layer actually increases with downstream position. This is supposed to influence the shar-
pness of the previously mentioned “apparent decrease” feature in the velocity distribution.

To relate the measured yU and yL to the ϑ0 angle in a wake oscillator model, some features in
wake oscillator model must be assumed for a physical near-wake. These include: a) the wake
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Fig. 5.18: Schematics of near-wake rotation at two limit states: (a) maximal anti-clockwise rotation; (b)
maximal clockwise rotation. The black solid curve indicates the outer edge of shear layer,
being the thickness of shear layer also illustrated by gray area. ◦ denotes monitoring point.

width at a specific downstream position does not change apparently during the near-wake vi-
bration; b) the instantaneous near-wake centerline does not show apparent bending during the
near-wake vibration. Thus, combined with the schematics of Fig. 5.19, the following relation-
ships can be approximately built

yU = x1 tan(ϑ0)+
h′

2
· 1

cos(ϑ0)
(5.9a)

yL = x1 tan(−ϑ0)+
h′

2
· 1

cos(−ϑ0)
(5.9b)

Here, yU and yL are the two limit positions of shear layer outer edge (see Fig. 5.18), x1 the
distance between O and the vertical reference line where yU and yL is measured, h′/2 the di-
stance of shear layer outer edge to the instantaneous near-wake centerline. Subtracting above
two equations, ϑ0 can be obtained as

ϑ0 = arctan
(

yU − yL

2x1

)
(5.10a)

or, ϑ0 ≈
yU − yL

2x1
for small value of ϑ0 (5.10b)

After ϑ being determined, the value of f can be easily calculated from Eq.5.8, since CL0 can be
measured from static tests.

5.3.2 The 2:1 Rectangular Cylinder as a Case study

The wake measurements for the 2:1 rectangular cylinder were used here to exhibit the above
method (monitoring points see Fig. 5.13). As previously stated, the key step is to locate the yU
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Fig. 5.19: Schematics for the relationship between ϑ0 in wake oscillator model and the measured yU

and yL positions. O is the pivot point of near-wake lamina, and the black solid line is the
instantaneous near-wake centerline.

and yL position, according to the characteristic “apparent decrease of maximal and minimal in-
stantaneous flow velocities when an anemometer probe is transversely moved towards the wake
centerline”. To find these maximal and minimal instantaneous flow velocities, the Ũ(t) data was
first passed through a 10-order zero-phase Butterworth low-pass filter. The cutoff frequency is
set at 50 Hz (> 3nst ≈ 38.4 Hz). Then the maximal and minimal peaks were then respective-
ly identified, with a restriction on the minimum time interval 0.8/nst . These measures aim to
utilize only the organized part of Ũ(t), since the turbulent part of Ũ(t) is able to influence the
maximal or minimal value of a signal a lot. Finally, the averaged value of maximal (or minimal)
peaks over the recording time length was used as representatives for the maximal (or minimal)
instantaneous flow velocity, denoted by Ũmax (or Ũmin).

The Ũmax and Ũmin distributions at the reference line LV 1 are given in Fig. 5.20 (a). There, an
apparent decrease of Ũmin can be found at about y/d = 1.5, while for Ũmax this occurs at about
y/d = 1.0. In the same plot, the negative peak position of skewness of Ũ(t) is also given, which
is about y/d = 1.33. It is to remind that this peak position corresponds to the time-averaged
position of shear layer outer edge, and one can find its value falls correctly into the range
delimited by y/d = 1.0 and y/d = 1.5. At the reference line LV 2, the positions for a “apparent
decrease” of Ũmax and Ũmin is difficult to locate. As previously mentioned, this is probably due
to the increased shear layer thickness, leading to the flow velocity variation in the shear layer
less intense.

The determination of ϑ0 depends on the distance x1 between the pivot point O and the reference
line. This is influenced by the specific form of a wake oscillator model. Taking the reference
line LV 1, the distance to O is x1 = 3d for “TS-1987” form and x1 = 2d for “TS-2018” form.
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(a) Reference line LV 1 (b) Reference line LV 2

Fig. 5.20: Maximal and minimal instantaneous flow velocity (Ũmax and Ũmin) at the reference lines LV 1
and LV 2. Dashed line indicates the negative peak location of skewness of Ũ(t) (see Fig. 5.16
(c)). The mean value of Ũ(t) was also provided for reference (gray ◦ marker).

Tab. 5.1 shows the estimated ϑ0 adopting Eq. 5.10, and the further calculated f value adopting
Eq. 5.8 (CL0 measured from the static tests). To be conservative, small ranges of yU and yL are
used rather than specific values. For the “TS-2018” form, the estimated ϑ0 is between 5.97◦

and 8.35◦, leading to a f parameter about 7.0 to 9.8. On the other hand, due to the larger x1, the
estimated ϑ0 is smaller for “TS-1987” from, thus resulting in a higher value of f .

Tab. 5.1: Estimated f value from the wake measurements for the 2:1 rectangular cylinder at the reference
line LV 1 ( U0 = 9.8 m/s).“O”is the pivot point of near-wake lamina. “S.P.” and “C.” respectively
mean “Stagnation Point” and “Centroid”.

Wake Oscillator model O yU/d [-] yL/d [-] x1/d [-] ϑ0 [◦] CL0 [-] f [-]

TS-1987 S.P.
1.417-1.5 0.917-1.0

3.0 3.98-5.57
1.02

10.50-14.68
TS-2018 C. 2.0 5.97-8.35 7.00-9.78

It is to note that, for the “TS-2018” form, the estimated f value is much lower than the one f =

18 identified according to Mannini & al. (2018a)’s method (“calibration with a set of aeroelastic
tests of high Scruton number”, see Fig. 5.3). However, Mizota & Okajima (1981)’s experimental
results seems to support the estimated low value of f . There, one can estimate a ϑ0 about 5.5◦

from the instantaneous streamline plots (Figure 16 in Mizota & Okajima (1981)). Combined
with the reported CL0 = 1.0, a value of f = 10.4 is obtained. Moreover, Shimada & Ishihara
(2002)’s CFD results seem also to imply a low value of f , where ϑ0 ≈ 3.0◦ at the moment
of maximum lift can be estimated (Figure 7 of Shimada & Ishihara (2002)). With CL0 ≈ 0.62
(Figure 6 (c) of Shimada & Ishihara (2002)), a value of f = 11.8 is finally obtained.
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To summarize, for the 2:1 rectangular cylinder studied here, the proposed method provided a
f value which is qualitatively comparable with the ones inferred from two sources of literature
reports. Despite the fact that this value is quantitatively lower than the “calibrated” one, it quali-
tatively supports the using of a comparably high f value for this 2:1 rectangular cylinder, rather
than somewhat f ≈ 1 which is originally used for the circular cylinder. Moreover, in next sec-
tion it will show that, if the form of wake oscillator model is further modified, the “calibration
method” will result in a f closer to the measured one. Finally, it is to note that, from the Figure
14 and 16 in Mizota & Okajima (1981), one can observe a phase lag between the unsteady lift
and the near-wake rotation. This issue will be particularly discussed in Section 5.5.1.

5.4 Further Modifications to the Wake Oscillator Model

5.4.1 Elaboration of the Modifications

Despite the good prediction capability of “TS-2018” in modeling the unsteady galloping due to
the interaction with VIV (see Section 5.1), further modifications to the wake oscillator model
are motivated by the analyses presented in Section 5.2 and 5.3. These modification are appli-
cable for rectangular cylinders with small side-ratio or similar bluff bodies, for which the flow
separation happens at the leading edges and no apparent flow reattachment occurs on the after-
body.

Fig. 5.21 shows the schematic for the further modified wake oscillator model. The concerned
modifications include: a) the pivot point O is put back to the stagnation point as in “TS-1987”;
b) the length scale b+ 2l (starting from stagnation point to the end of near-wake) is used for
calculating the restoring force FL; c) the position of restoring force FL being applied is (b+2l)/4
to the pivot point; d) only the net near-wake length, starting from the rear-face of body to the
end of near-wake, is considered to calculate the inertia of moment of the wake lamina.

These adjustments are supposed to be supported by the following arguments:

a) Unlike circular cylinder, rectangular cylinders have flow separation at the leading edge.
Therefore, rotation of near-wake about the stagnation point is supposed to be more rea-
sonable than about the centroid. The operation of moving the pivot point from centroid
to stagnation point was already made in the “TS-1987” form (Tamura & Shimada 1987),
when Tamura’s wake-oscillator model (which was originally developed based on circular
cylinder (Tamura & Matsui 1979)) was for the first time applied to a square cylinder.
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Fig. 5.21: Schematic of the further “Modified” wake oscillator model (on stationary body). See also Fig.
2.19, for comparison with “TS-1987” and “TS-2018” form.

b) Considering the flow field delimited by the shear layers up to the separation points is able
to achieve a better analogy to a complete airfoil. Therefore, the portion “b” is included for
the chord length, which is used to calculate the restoring force according to airfoil theory.

c) In airfoil theory, the lift acts at the one-fourth of chord to the leading edge.

d) Part of near-wake is occupied by the body itself, so that it is more reasonable to use the
net near-wake length to calculate the inertia of moment.

Due to above adjustments, the restoring force for the near-wake lamina becomes FL = 1
2ρU2 ·

(2l+b) ·2πϑ (the theoretical lift coefficient of a thin airfoil with displaced angle of attack ϑ is
2πϑ ), and its torque about O is FL · 1

4(2l + b) = −1
2ρU2(2l + b)2πϑ · 1

4(2l + b). On the other
hand, the moment of inertia about O can be simplified as 2ρhl ·(l+b)2. Now, invoking Newton’s
second law for the rotation degree, there is 2ρhl(l +b)2 · ϑ̈ = −1

2ρU2(2l +b)2πϑ · 1
4(2l +b).

This equilibrium equation can be written in the same form of Eq. 5.3

Iϑ ϑ̈ + kϑ ϑ = 0

but with Iϑ = 2ρhl(l+b)2 and kϑ = 1
4πρU2(2l+b)2. The corresponding oscillation frequency

for the near-wake lamina is given by

nst =
1

2π

√
kϑ

Iϑ

=U

√
(2l +b)2

32πhl(l +b)2

And the “local-effect” equation for Strouhal number becomes

St =

√
(2l∗+b/d)2

32πh∗l∗(l∗+b/d)2 (5.11)
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The rest extension to a non-linear wake oscillator and the coupling to an oscillation body follows
the same procedures in Tamura & Matsui (1979). The new expression of β is obtained as

β =
2
√

2 f (l∗+b/d)
π2(2l∗+b/d)2 (5.12)

The expression of λ , which is decided by the distance between O and G, holds the same as the
“TS-1987” form (in Tamura & Shimada (1987), it is put b/d = 1 for the square cylinder)

λ =
1

l∗+b/d
(5.13)

The two coupled equations, which govern the transverse motion of the cylinder and the near-
wake rotation, maintain the same as Eq. 2.55. For convenience, they are re-written here

Y ′′+2ζ0Y ′+Y =
V 2

m∗
f
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)
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V
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ϑ
2
)

ϑ
′+υ

2
ϑ = λY ′′+υ
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Above equations vary not among “TS-1987”, “TS-2018” and the new “Modified” form. The
differences of thees three forms are exhibited by the expressions of β and λ , as well as the
“local-effect” equation St(h∗, l∗). They are summarized in Tab. 5.2, including also notations
about O, lFL, lI and lFL,O (see caption of Tab. 5.2). It is to remind that the definition of l is
slightly different for “TS-2018” form (see Fig. 2.19 and Fig. 5.21).

Tab. 5.2: Comparison of different forms of wake oscillator models. Meanings of symbols: O, pivot po-
sition of near-wake lamina; lFL, wake length scale used for calculating the restoring force FL;
lFL,O, distance between the position FL being applied and O; lI , length of wake lamina used to
calculate Iϑ . St(h∗, l∗) represents the “local-effect” equation, relating St to h∗ and l∗. “S.P.” and
“C.” represent respectively abbreviation of “Stagnation Point” and “Centroid”.

O lFL lFL,O lI St(h∗, l∗) β λ

“TS-1987” S. P. 2l l +b 2l St2 =
1

4πh∗(l∗+b/d)
f

2
√

2π2l∗
1

b/d + l∗

“TS-2018” C. 2l
l
2

2l St2 =
1

8πh∗l∗
f√

2π2l∗
1
l∗

Modified S. P. 2l +b
2l +b

4
2l St2 =

(2l∗+b/d)2

32πh∗l∗(l∗+b/d)2
2
√

2 f (l∗+b/d)
π2(2l∗+b/d)2

1
b/d + l∗
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5.4.2 Prediction Capability

The prediction capability of the new “Modified” form is examined by comparing with the wake
oscillator model of “TS-2018” form, in case of the 2:1 rectangular cylinder. To achieve a fair
comparison, all the parameter (CQS

Fy , CL0(Re), St = 0.079 and h∗ = 2.1) except f are maintained
the same as the “TS-2018” form (see Section 5.1.1). The key parameter f is re-calibrated for
the “Modified” form according to Mannini & al. (2018a)’ method, resulting in f = 16.

Numerical integration was then carried out for test cases of varied Sc, showing a high agree-
ment with the predictions of “TS-2018” form with f = 18. Fig. 5.22, for brevity and clarity
reason, exemplifies only several test cases with numerical solutions attained from small initial
conditions. Considerations for the selected test cases are: a) Sc = 5.1, the lowest Scruton num-
ber reached in experiments, which is the best choice to examine the asynchronous quenching

(a) Sc = 5.1 (b) Sc = 107.1

(c) Sc = 127.9 (d) Sc = 200.7

Fig. 5.22: Selected cases for comparing the prediction capability of the new “Modified” wake oscillator
with “TS-2018” from. All numerical solutions are attained with small initial conditions.
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effect of wake oscillator model (postponement of galloping onset until Vr); b) Sc = 107.1, a
key Scruton number, up to which the “Full-Interference” is maintained; c) Sc = 127.9, a slight-
ly higher Scruton number than the former, for which the “Partial-Interference” tends to occur;
d) Sc = 200.7, the highest Scruton number reached in the wind tunnel tests. Clearly, the per-
formance of the new “Modified” wake oscillator model is comparable as the “TS-2018” form.
Interestingly, the “Modified” one with f = 16 actually gives nearly the same predictions as
the “TS-2018” form with f = 18, except at several wind speeds where the amplitudes change
intensely (e.g., Fig. 5.22 (c) around V/Vr = 2).

5.4.3 Physical Considerations for the Near-wake

From above numerical results, it is reasonable to conclude that the new “Modified” wake os-
cillator model maintains a comparable prediction capability as the “TS-2018” form, in dealing
with the unsteady galloping interacted with VIV. In fact, the improvements achieved by the new
“Modified” form are mainly about the physical considerations of the near-wake.

First of all, the value f = 16 obtained by Mannini & al. (2018a)’s “calibration” method can be
found closer to the measured one f = 10.5-14.68 (see Tab. 5.1, with pivot point O at stagnation
point). This improvement is mainly due to the movement of pivot point O from the centroid to
the stagnation point. Nevertheless, one can find f = 16 is still higher than the measured one. A
detailed discussion on the possibilities leading to this difference is presented in Section 5.5.1.

The second improvement is for the physical representation of the “local-effect” equation Eq.
5.11. Fig. 5.23 (a) shows the examination results for the 2:1 rectangular cylinder (as Fig. 5.17).
For h∗ close to 2.1, one can find the predicted net near-wake length lF,net by the Eq. 5.11 is
closely around the measured one lF,net = 3.33d. Very interesting is that, such an achievement
is also reached for the square cylinder as shown by Fig. 5.23 (b). This improvement is quite
apparent, in comparison with the predictions of “TS-1987” and “TS-2018” (see Fig. 5.17).

5.5 Discussion

5.5.1 On Identifying the f Parameter

In Section 5.3, it was found the parameter f identified through the maximal near-wake rotation
tends to be lower than the one obtained according to the “calibration” method proposed by
Mannini & al. (2018a), either for the “TS-2018” or the new “Modified” form wake oscillator
model. The possible reasons contributed to this difference are discussed here.
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Exp. lF,net ± 30% 

(a) 2:1 rectangular cylinder

Exp. lF,net ± 30% 

(b) square cylinder

Fig. 5.23: The calculated net near-wake length lF,net (= lI = 2l) through the “local-effect” equation of
the “Modified” wake oscillator model, by setting the base value of h∗ with ± 30% variation.
Gray solid line denotes the measured lF,net and the gray dashed lines correspond to a ± 30%
variation of it. (a) 2:1 rectangular cylinder: St = 0.079, measured lF,net/d = 3.33, base value
h∗ = 2.1; (b) square cylinder: St = 0.132, measured lF,net/d = 1.21, base value h∗ = 1.8.

Phase lag between near-wake rotation and the resulting unsteady lift

As previously mentioned, in Figure 14 and 16 of Mizota & Okajima (1981), it is able to notice a
phase lag between the unsteady lift and the near-wake rotation for the 2:1 rectangular cylinder.
In contrast, in Tamura’s non-linear wake oscillator model (Tamura & Matsui 1979), there is
no consideration for this phase lag, due to the assumption that “the unsteady lift coefficient

is obtained in proportion to the angular displacement through the constant factor f ”, namely
CL,un(t) = f ·ϑ(t) for stationary cylinder.

To examine the effect of this possible phase lag, the equation can be varied as

CL,un(t) = f ·ϑ(t + tlag) (5.15)

for periodical motion of near-wake. The phase lag is included through the time lag tlag, which
depends on the oscillation frequency of the wake lamina nvs. And it is easy to understand that the
phase lag is ϕlag = 2πnvstlag for this situation. For oscillation cylinder with natural frequency
n0, the unsteady lift is determined by the effective near-wake rotation ϑe f f = ϑ−Y ′/V . Further
invoking the non-dimensional time τ = 2πn0t, the above equation can be written as

CL,un(τ) = f ·ϑe f f (τ + τlag) (5.16)
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Put this equation back to the two-coupled equations (Eq. 2.55) for tamura’s nonlinear wake
oscillator model, there are

Y ′′+2ζ0Y ′+Y =
V 2

m∗
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V 2
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(5.17b)

The assignment of a specific phase lag into the mathematical model can be therefore performed
by the reduced time lag τlag = n0/nvs ·ϕlag, provided that nvs is known in advance. Qualitatively
speaking, nvs could be either no or nst =USt/d for steady oscillation state, depending on whe-
ther the synchronization between cylinder and wake lamina occurs or not (no is the oscillation
frequency of the cylinder). However, for transient behaviors, nvs may transfer between nst and
no. Even more crucial is that, there is no clue indicating that the phase lag for a stationary bo-
dy is maintained the same as an oscillation body. Perhaps, an equation must be established to
describe how ϕlag involves with the oscillation state. Nevertheless, a sensitivity study of ϕlag

aiming at particular oscillation state is still possible.

The 2:1 rectangular cylinder with Sc = 107.1 is considered for such a sensitivity study. The
adopted wake oscillator model is the “TS-2018” from (same conclusions are expected for the
new “Modified” form). The chosen reduced velocity range is from V/Vr = 1.1 to V/Vr = 4.0.
From Fig. 5.4 (b), it is known for this particular situation the wake oscillator model exhibit
“Full-Interference” behavior. It was also confirmed that the steady-state solutions of either Y or
ϑ are characterized with a single frequency no ≈ n0 within 1.1 ≤ V/Vr ≤ 4.0. For the sensiti-
vity study in object, all the other parameters except ϕlag to be introduced, are maintained the
same as in Section 5.1. In contrast, the initial condition is right now set with a large displace-
ment ([Y,Y ′,ϑ ,ϑ ′] = [tan(15◦)V,0,0,0]) for each velocity point, so that the dominant frequency
around n0 is supposed to be maintained for the transient process at the beginning of numerical
integration. The investigated phase lag ϕlag is within −π/2 to π/2 (too large magnitude of ϕlag

seems unrealistic). The numerical integration was carried out with two rounds for each veloci-
ty points. The first round serves to find no by setting τlag = n0/nvs ·ϕlag with nvs = n0. In the
second round, the more accurate no is set for nvs and the integration is then repeated.

Fig. 5.24 shows the results of this sensitivity study. One can find that the introduced phase lag
plays an important role in the amplitude solutions of wake oscillator model (a magnitude of
ϕlag like π/4 can already bring apparent influence). In general, a positive ϕlag tends to increase
the amplitude while a negative ϕlag works in the opposite way. The oscillation frequency is also
influenced, but in a very limited extent. It is right now to remind that, in the “calibration” method
for determining the f parameter, the alignment of amplitude slope of numerical solutions to
experimental ones is the very important criterion. Because of this, one can expect a different
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value of f being calibrated, if a non-null phase lag was considered in the wake oscillator model.
For the example of the studied 2:1 rectangular cylinder, if a negative ϕlag was set into the wake
oscillator model, a lower value of f could be expected from the calibration process.

(a) (b)

Fig. 5.24: Effect of the introduced phase lag ϕlag on the numerical solutions of wake oscillator model:
(a) amplitude; (b) oscillation frequency. “TS-2018” form wake oscillator model as an example,
implemented for the 2:1 rectangular cylinder with Sc = 107.

However, as previously mentioned, the evolution of ϕlag with reduced flow velocity and oscil-
lation amplitude may be very complicated. The sensitivity study carried out here only serves to
reveal its important role and the potential influence on the “calibration” process of the f parame-
ter. Fully integrating ϕlag in the wake oscillator model definitely needs further investigations.

Spanwise correlation of vortex shedding force

Another possible reason leading to a lower “measured” f value than the “calibrated” one could
attribute to the spanwise correlation effect of vortex shedding force. In this thesis, the vortex
shedding force coefficient CL0 =

√
2C′L is a result of force measurement on a prism body with

aspect ratio le/d = 21.7. So, strictly speaking, CL0 represents for the whole prism body, rat-
her than the strictly 2-dimensional one cL0 =

√
2c′L, which has to be measured by pressure

measurements. Here, C′L and c′L represent respectively the standard deviation of lift coefficient
fluctuation due to vortex shedding for the whole prism body and for a unit length of the prism
body. According to Holmes (2014), the following relationship holds between C′L and c′L

C′L = c′L

√∫ le
0
∫ le

0 ρr(|zi− z j|)dzidz j

l2
e

(5.18)
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in case of c′L being constant along the spanwise coordinate z. ρr(r) is the spanwise correlation
function between the vortex shedding forces at two locations zi and z j of the prism body. For the
full correlation case (an ideal situation), there is ρr = 1 constantly, so that the above equation
becomes C′L = c′L. For partial correlation (which is the reality), ρr(r) is normally a decaying
function, gradually approaching to null with increased r (ρr = 1 for r = 0). Therefore, from Eq.
5.18, the measured C′L is supposed to be lower than c′L in reality, further leading to CL0 < cL0.

In the determination of f through wake measurements (Section 5.3), the estimated ϑ0 corre-
sponds to, however, a real 2-dimensional condition. Therefore, cL0 should be used rather than
CL0, which leads to a lower f value for the same ϑ0. Pressure measurements would be very
interesting to obtain the cL0 coefficient, to examine this conjecture. In contrast, the f parameter,
obtained through the “calibration” method, seems to be more representative for the whole prism
body. In other words, the obtained f in this way may have included the spanwise correlation
effect of vortex shedding.

Short summary

The above two analyses imply, that the “calibration” method for the f parameter probably en-
capsulates some unconsidered effects into this single parameter. For the purpose of a good pre-
diction capability of the wake oscillator model, this is fine and even an advantage. From another
point of view, these unconsidered effects, which may be also scientifically interesting and can
be further explored for the wake oscillator model, are however hidden during this “calibration
” process. Nevertheless, for the studied 2:1 rectangular cylinder, the measured f value provides
at least a sound-solid basis for the calibrated high f value, rather than for a value like f ≈ 1
which is originally for the circular cylinder (Tamura & Matsui 1979).

5.5.2 On Modeling the Atypical Unsteady Galloping

In Section 5.1.3, it showed that the wake oscillator model fails to capture the atypical unsteady

galloping for the bridge deck model at α0 = 0◦, even in a qualitative manner. The main reason
for this failure is supposed to be the quasi-steady force coefficient CQS

Fy set in the wake oscilla-
tor model. In fact, the use of quasi-steady theory at a low reduced wind speed should always be
cautious (as mentioned by Gao & Zhu (2017)). But interesting is that, the wake-oscillator model
does show some at least qualitative agreement with the experimental results for a few rectangu-
lar cylinders with the short side perpendicular to the flow (see Tamura & Shimada (1987) for the
square cylinder, Mannini & al. (2018a) for the 3:2 rectangular cylinder, and the 2:1 rectangular
cylinder presented in Section 5.1.1), also for the studied bridge deck model at α0 = 4◦. The rea-
sons behind that could be: i) for V <Vr, setting a proper value of f , the asynchronous quenching

effect is able to suppress the self-excited motion (as discussed in Mannini & al. (2018a)), so that
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the inaccuracy of the quasi-steady force is irrelevant; ii) for V > Vr but still low reduced wind
speed, experimental results from forced-vibration tests show that the phase angle of the motion-
induced aerodynamic lift changes its sign from negative to positive (thus suggesting a possible
instability) at a reduced wind speed just slightly higher than Vr (Carassale & al. 2015; Ma & al.
2018; Washizu & al. 1978). This fact confirms the overall validity of the wake-oscillator model,
also implying that the quasi-steady force set in the equations is qualitatively correct for this
reduced wind speed range. However, attention must be paid to the phase angle evolution for the
rectangular cylinders when a considerable large mean flow incidence is imposed. For example,
Carassale & al. (2015) showed that the phase angle changes its sign from negative to positive
at about 1.8Vr for the square cylinder with a mean flow incidence of 9◦, being the concerned
instability later confirmed by Dai (2019) (see Fig.2.18 for the reproduced results). In this case,
the further use of a quasi-steady force in the wake-oscillator model for Vr < V < 1.8Vr is very
questionable. Despite the lack of experimental evidence, the unsteady galloping behavior ob-
served for the bridge deck at 0◦ mean flow incidence is probably due to a phase angle evolution
similar to that of the square cylinder at 9◦ mean flow incidence.

To model the atypical unsteady galloping, the CQS
Fy item in the wake oscillator model needs to

be replaced by more realistic unsteady motion-induced force coefficient (properly named it as
Cun

Fy). As already mentioned in Section 2.2.3, a bold attempt to this direction has already been
made by Luo & Bearman (1990) for the square cylinder (followed also by Liu & al. (2018)),
adopting the thin-airfoil theory to modify the quasi-steady one. This is a a meaningful and in-
spirational attempt, but the direct application of thin-airfoil theory to sharp-edged bodies seems
quite groundless. The author of this thesis believes that the proper expression of Cun

Fy would
be the key to the modeling of the atypical unsteady galloping behavior. This should be further
studied in the future.

5.6 Chapter Summary

In this chapter, mathematical modeling was carried out for the unsteady galloping behaviors
observed in wind tunnel tests, combined with many explorations and discussions on the physical
considerations in the used mathematical model.

Firstly, the modified form of Tamura’s nonlinear wake oscillator model “TS-2018” (Mannini
& al. 2018a) was implemented for the 2:1 rectangular cylinder and the bridge deck model. After
setting the key parameter f according to the “calibration” method proposed in Mannini & al.
(2018a), satisfying prediction capability was found for the typical unsteady galloping due to
interference with VIV. However, for the peculiar unsteady galloping behavior observed at the
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null mean wind angle of attack of the bridge deck (named as atypical unsteady galloping in this
thesis), the wake oscillator model shows considerable limitations.

Secondly, efforts were dedicated to examine the so-called physical considerations in the wake
oscillator model. The basic knowledge concerning the physics of near-wake after bluff-body
was first reviewed, highlighting the possibility to relate the parameters h∗ and l∗ in wake oscil-
lator model to the physical vortex formation region after bluff body through comparably easy
wake measurements. These measurements were then carried out for the 2:1 rectangular cylinder.
The very important assumption in wake oscillator model, that the Strouhal number is determined
by a “local-effect” via near-wake geometry (Birkhoff’s idea, see Birkhoff (1953) and Birkhoff
& Zarantonello (1957)), was then examined. The examination shows the “TS-2018” wake os-
cillator model exhibits a more physically meaningful “local-effect” equation than the original
“TS-1987” form (Tamura & Shimada 1987). Nevertheless, there is still big space for a further
improvement.

Thirdly, during the wake measurements, another approach to determine the key parameter f

for the wake oscillator model was convinced. This idea is built upon the estimation of the
maximum near-wake rotation angle ϑ0 on a stationary body, through a set of monitoring points
laterally arranged in the near-wake region. Then, the f value can be calculated according to its
definition. The approach was applied to the 2:1 rectangular cylinder, with the identified f value
well supported by flow visualizations reported in literature. However, for the “TS-2018” wake
oscillator model, the identified f parameter was found lower than the “calibrated” one.

Fourthly, the wake oscillator model was further modified. The new “Modified” one is able
to maintain a good prediction capability as the “TS-2018” form in dealing with the typical
unsteady galloping interacted with VIV. The improvements in this “Modified” one are mainly
on the physical considerations, being its “local-effect” equation more physically meaningful.
The value of f determined by the two methods gets also closer for this “Modified” form.

Finally, discussions were made to several points on mathematically modeling the unsteady gal-
loping with wake oscillator model.



6 Mathematically Modeling the Unsteady

Galloping for Continuous Structural System

Continuous structural system refers here to the slender structure who has its main deformation
continuously along one axis. They are represented by high-rise buildings, chimneys, towers,
bridges, etc. Differing from prism body or wind tunnel sectional model, the interaction of flow
with continuous structural system has more aspects needed to be considered, for example:

• the flexibility of structure along the axis;

• the variation of attacking wind condition along the axis, like mean wind speed profile;

• the change of aerodynamic properties along the axis, due to the cross section shape being
varied or 3-dimensional flow condition (for example, the tip region of a cantilever).

The work in this chapter aims at applying the research results achieved on prism body to more
realistic structural system. It will be mainly theoretical and numerical investigations, based on
the classical beam theory and Tamura’s wake oscillator model (whose performance has been
confirmed in previous chapter). The concerned unsteady galloping problem is currently limited
to the typical one, which arises due to the interaction with vortex induced vibration.

6.1 Extension of Wake Oscillator Model for Continuous

System

6.1.1 Finite-element-method based Approach

Applying wake oscillator model to continuous system can already been found in some litera-
ture reports (e.g., Tamura & Amano (1983) and Violette & al. (2007)), but both for the VIV
problem of structures with circular cross section. For example, in Tamura & Amano (1983), the
near-wake rotation angle and the across-wind displacement of structure are rewritten as ϑ(t,z)

and y(t,z), which depend on the axis position z in the continuous system. By considering a sin-
gle mode shape, the governing equations for ϑ(τ,z) and y(t,z) were finally expressed by one
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differential equation of order 4, with the mode shape and the mean wind profile collected in
several constants. However, such a route was found technically hard to follow, if a non-circular
cross section is in object. The main reason is, that the quasi-steady force coefficient CQS

Fy for
non-circular cross section is usually of higher orders of ẏ/U , rather than simply CD · ẏ/U for the
circular one. This leads the final differential equation much more complex, and prolix.

Therefore, it is decided in this thesis to realize the objective by coupling multiple discrete wake
oscillators to the structural system which is described by finite element method. The implemen-
tation of this approach is outlined in detail as follows.

Coordinates and degrees of freedom

Fig 6.1 shows the schematic of the proposed approach. For galloping and VIV problems, the
bending deformation of the beam in the across-wind direction, namely y, is relevant. Therefore,
the plane beam element can be applied. Moreover, for most applications, considering only two
degrees of freedom for each node, namely y and p shown in Fig. 6.1 (p is the rotation of node
about x coordinate), is supposed to be enough for sufficiently high accuracy. When each node is
implemented with wake oscillator, additional degree of freedom, namely the near-wake lamina
rotation ϑ , has to be added for the dynamics of the whole system. Assuming the total number of
nodes N, the degrees of freedom for the system without considering boundary conditions are:

• y1, y2, y3, ..., yN ;

• p1, p2, p3, ..., pN ;

• ϑ1, ϑ2, ϑ3, ..., ϑN .

A total number of 3N degrees of freedom is therefore for the dynamics of the whole system.

ϑi

pi

yi

i

N

1

U
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z
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Fig. 6.1: Schematic of discrete wake oscillators coupled to a structural system described by finite element
method.
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Matrix form for structural dynamics

Based on finite element method, the dynamics of a structure can be described in matrix form

Msψ̈s+Csψ̇s+Ksψs = qs (6.1)

whereMs, Cs andKs represent respectively the global mass, damping and stiffness matrices,
having a dimension of (2N×2N) due to the ignorance of axis deformation

Ms =


m11 m12 m13

m21 m22 m23

m31 m32 m33
. . .


(2N×2N)

Cs =


c11 c12 c13

c21 c22 c23

c31 c32 c33
. . .


(2N×2N)

Ks =


k11 k12 k13

k21 k22 k23

k31 k32 k33
. . .


(2N×2N)

ψs = [y1, p1,y2, p2, ...,yN , pN ]
> is the displacement vector, with a dimension of (2N×1). qs is

the force vector applying at nodes. Relating to the aerodynamic forces in wake oscillator model
(Eq. 2.55 (a)), qs can be written as

qs = Âϑ− B̂ψs+qQS (6.2)

with

Â=



â1 0
0 0

â2 0
0 0

â3
. . .


(2N×N)

B̂ =



b̂1

0
b̂2

0
b̂3

. . .


(2N×2N)

qQS =



ê1 ·CQS
Fy,1(

ẏ1
U1
)

0
ê2 ·CQS

Fy,2(
ẏ2
U2
)

0
ê3 ·CQS

Fy,3(
ẏ3
U3
)

...


(2N×1)

where âi =
1
2ρU2

i dils,i fi, b̂i =
1
2ρUidils,i fi and êi =

1
2ρU2

i dils,i, being ls,i the spanwise reference
length for aerodynamic force calculation for node i. The variables U , d, f and CQS

Fy are also
written with subscript “i”, to consider their possible dependence on the locations of nodes. Ne-
vertheless, it is easy to understand that the complex “tip” effects at the free end of structure are
not fully taken into account. Finally, with a dimension (N×1), vector ϑ= [ϑ1,ϑ2,ϑ3, ...,ϑN ]

>

collects the degrees of freedom for wake oscillators.
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Matrix form for wake oscillators

In lack of the correlation on stationary body, the degree of freedom for the wake oscillator at
each node is independent from each other. However, it may be easy to understand that these
wake oscillators will become not independent any more if the body is free to move. This is
because the motion of each node is actually controlled by the modes of the structural system,
and the implemented wake oscillators are excited externally by these “correlated” nodes. The
normalized Eq. 2.55 (b) is first written back in physical time domain. At each node, there is

ϑ̈i−2βiωv,iϑ̇i

(
1− 4 f 2

i

C2
L0,i

ϑ
2
i

)
+ω

2
v,iϑi = λi

ÿi

di
+ω

2
v,i

ẏi

Ui
(6.3)

where ωv,i the circular vortex shedding frequency, defined by Strouhal law. The equations of all
the implemented wake oscillators are collected together and written in matrix form

Īϑ̈− C̄ϑ̇+ C̃(ϑ̇◦ϑ◦ϑ)+K̄ϑ= Ĝψ̈s+Ĥψ̇s (6.4)

with

Ī =


1

1
1

. . .


(N×N)

C̄ =


c̄1

c̄2

c̄3
. . .


(N×N)

C̃ =


c̃1

c̃2

c̃3
. . .


(N×N)

K̄ =


k̄1

k̄2

k̄3
. . .


(N×N)

Ĝ=


ĝ1 0
0 0 ĝ2 0

0 0 ĝ3
. . .


(N×2N)

Ĥ =


ĥ1 0
0 0 ĥ2 0

0 0 ĥ3
. . .


(N×2N)

where c̄i = 2βiωv,i, c̃i = 2βiωv,i
4 f 2

i
C2

L0,i
, k̄i = ω2

v,i, ĝi =
λi
di

, ĥi =
ω2

v,i
Ui

, and “◦” denotes the Hadamard

product between vectors.

Global matrix form

Eq. 6.1 and Eq.6.4 can be combined together to form a new equation

Mtψ̈t+C1tψ̇t+C3t(ψ̇t ◦ψt ◦ψt)+Ktψt = qt (6.5)
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where the new global matrices Mt, C1t, C3t and Kt all have a dimension of (3N×3N), and
are expressed as

Mt =

[
Ms O

−Ĝ Ī

]
(3N×3N)

C1t =

[
Cs+ B̂ O

−Ĥ −C̄

]
(3N×3N)

C3t =

[
O O

O C̃

]
(3N×3N)

Kt =

[
Ks −Â
O K̄

]
(3N×3N)

Here, O is null matrix, with its dimension relied on its position in above matrices. Correspon-
dingly, the new global vectors ψt and qt are written

ψt =

[
ψs

ϑ

]
(3N×1)

qt =

[
qQS

O

]
(3N×1)

Boundary conditions

The application of boundary conditions to Eq. 6.5 can be considered in two steps.

Firstly, for the displacement boundary conditions of the structural system, the reduction of con-
cerned matrices (Ms, Cs, Ks) and vector (ψs) can be performed in the typical way of finite
element method. Correspondingly, the related rows or columns in matrices (Ĝ, B̂, Ĥ , Â) and
vector (qQS) should be eliminated. If the eliminated degrees of freedom of the structure are
coupled by wake oscillators, the matrices (Ī , C̄, C̃, K̂) and vector ϑ should be reduced accor-
dingly. In this case, the matrices Ĝ, Ĥ and Â need to be further reduced, and set the related
element b̂i in B̂ matrix as null. Finally, in some cases, additional lump mass or spring may be
required for the structural system. This can be performed in the typical way of finite element
method, bringing no changes to the matrices or vectors related to the wake oscillator part.

Secondly, in the situation where the implementation of wake oscillators is unnecessary at some
nodes, the matrices Ī , C̄, C̃, K̂ and vector ϑ can be independently reduced. Corresponding
reduction should be also made to the matrices Ĝ, Ĥ and Â, and setting the related element b̂i

in B̂ matrix as null. Attention should be paid to the qt vector. If the quasi-steady contribution
is ignored at the same time for these nodes, the êi coefficient should be set as null. Otherwise, it
should be maintained unchanged.

After applying the boundary conditions, Eq. 6.5 is convenient to be re-written with additional
subscript “r”

Mtrψ̈tr +C1trψ̇tr +C3tr(ψ̇tr ◦ψtr ◦ψtr)+Ktrψtr = qtr (6.6)
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The total amount of degrees of freedom is now indicated with Nr, which is the summation of
the amount of degrees of freedom for structural part Nsr and the one for wake oscillator part
Nwr. Accordingly, the matrices and vectors in above equation become

Mtr =

[
Msr O

−Ĝr Īr

]
(Nr×Nr)

C1tr =

[
Csr + B̂r O

−Ĥr −C̄r

]
(Nr×Nr)

C3tr =

[
O O

O C̃r

]
(Nr×Nr)

Ktr =

[
Ksr −Âr

O K̄r

]
(Nr×Nr)

and

ψtr =

[
ψsr

ϑr

]
(Nr×1)

qtr =

[
qQSr

O

]
(Nr×1)

Here, the dimensions for the matrices and vectors are listed as below:

• Msr, B̂r,Ksr, andKsr: (Nsr×Nsr);

• Īr, C̄r, C̃r, and K̄r: (Nwr×Nwr);

• Ĝr and Ĥr: (Nwr×Nsr);

• Âr: (Nsr×Nwr);

• ψsr and qQSr: (Nsr×1)

• ϑr: (Nwr×1).

Strategy for numerical integration

Eq. 6.6 is ready to be solved by means of numerical integration in time domain. However,
for wind engineering, the lowest several modes of a structural system are more interested in,
especially for the galloping problem. This is an advantage should be taken to accelerate the
numerical integration in time domain. As an example, the lowest 6 modes of the structural
system are considered. So the displacement vector of the structural system can be written as

ψsr = Φξ (6.7)

where Φ is the mode shape matrix, collecting the first 6 mode shape vectors

Φ =
[
φ1 φ2 φ3 φ4 φ5 φ6

]
(Nsr×6)
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and ξ = [ξ1,ξ2,ξ3,ξ4,ξ5,ξ6]
>, of dimension (6×1), collects the generalized displacements in

mode space. Utilizing Eq. 6.7, the ψtr vector in Eq. 6.6 can be written as

ψtr = Φeψtn (6.8)

where

Φe =

[
Φ O

O Ia

]
(Nr×(6+Nwr))

can be called the “expanded” mode shape matrix, with Ia the added unit matrix of dimension
Nwr. And ψtn is the vector collecting ξ and ϑr

ψtn =

[
ξ

ϑr

]
((6+Nwr)×1)

Substituting Eq. 6.8 into Eq.6.6, and left-multiplying Eq. 6.6 with Φ>e , there is

Mtnψ̈tn +C1tnψ̇tn +C3tn(ψ̇tn ◦ψtn ◦ψtn)+Ktnψtn = qtn (6.9)

with

Mtn = Φ>eMtrΦe =

[
Φ>MsrΦ O

−ĜrΦ Īr

]
((6+Nwr)×(6+Nwr))

C1tn = Φ>eC1trΦe =

[
Φ>(Csr + B̂r)Φ O

−ĤrΦ −C̄r

]
((6+Nwr)×(6+Nwr))

C3tn =

[
O O

O C̃r

]
((6+Nwr)×(6+Nwr))

Ktn = Φ>eKtrΦe =

[
Φ>KsrΦ −Φ>Âr

O K̄r

]
((6+Nwr)×(6+Nwr))

and

qtn = Φ>e qtr =

[
Φ>qQSr

O

]
((6+Nwr)×1)
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Attention should be paid here to the derivation of expression for C3tn, it is a result of

Φ>eC3tr(ψ̇tr ◦ψtr ◦ψtr) =

[
Φ> O

O I>a

]
((6+Nwr)×Nr)

[
O O

O C̃r

]
(Nr×Nr)

[
ψ̇sr ◦ψsr ◦ψsr

ϑ̇r ◦ϑr ◦ϑr

]
(Nr×1)

=

[
0

C̃r(ϑ̇r ◦ϑr ◦ϑr)

]
((6+Nwr)×1)

=

[
O O

O C̃r

]
((6+Nwr)×(6+Nwr))

[
ξ̇ ◦ξ ◦ξ

ϑ̇r ◦ϑr ◦ϑr

]
((6+Nwr)×1)

=C3tn(ψ̇tn ◦ψtn ◦ψtn)

This can be seen as a “trick” to make the whole integration process of Eq. 6.9 clearer. Moreover,
it is to note that, in the expression of qtn, there still exists qQSr, which needs the velocities of
nodes ẏ as input. This means additional calculation ψ̇sr =Φξ̇ must be performed for every time
step so that the quasi-steady transverse force can be obtained and then applied to nodes. This
additional operation will lead to a loss of computational efficiency, but the numerical integration
of Eq.6.9 is still much faster than directly integrating Eq.6.6.

Finally, the numerical integration in time domain was carried out with ODE45 solver of Mat-
lab®. Related error tolerance was the same as in Chapter 5. Initial conditions were applied to
the generalized displacements ξ and then distributed to each node according to mode shapes.

6.1.2 Validation of the Approach

Validation 1 - Comparison with single-wake-oscillator results of prism body

The proposed approach was first examined on the wind tunnel 2:1 rectangular cylinder, which
features a mode shape φ1(z) = 1. By comparing with the numerical results presented in Section
5.1, the algorithm of the propose approach can be confirmed at the first stage.

The implementation of multiple wake oscillators on a spring-suspended wind tunnel model is
illustrated in Fig. 6.2. The wind tunnel model is considered as a beam with 21 equally spaced
nodes. Two springs with equal stiffness constants were applied at the node 1 and node 21, and
the bending stiffness of the beam was assumed very high so that the motion of beam is nearly
fully due to the deformation of springs. Other parameters, such as the effective oscillation mass
and damping, were set the same as the wind tunnel model. A total number of 10 wake oscillators
of the “TS-2018” form were coupled to every two nodes of the beam system. For this reason,
the length of two elements, which relate directly to the node of a wake oscillator being coupled,
was used as the reference length li for the aerodynamic force calculation. Other aerodynamic
parameters (CQS

Fy , St, CL0(Re), h∗ and f ) were maintained the same as that in Section 5.1. Only
the fundamental mode of this beam system was taken into account. Nevertheless, attention must
be paid to the numerically calculated mode shape, whose y component values are usually not
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exactlyφ1 = 1. For the purpose of comparison with the single-wake-oscillator results, manually
setting φ1 = 1 is therefore necessary. From Fig. 6.3, the perfect match of the two sets of results
confirms the accuracy of the algorithm of the proposed approach.

Validation 2 - Comparison with Tamura & Amano (1983)’s results for VIV response

In Tamura & Amano (1983), the analytical solutions have been provided for the VIV response
of three different continuous systems with circular cross section (see Fig. 6.4). Their results can
been used for a comparison with the numerical results of the proposed approach. The second
case, a simply supported beam under constant wind profile, is selected for this purpose (the third
case is also suitable, but the structural properties along the Z axis must be carefully adjusted to
perfectly match the normalized mode shape Z1.8).

To apply the proposed approach, a 50 m long simple-supported beam was assumed, with a
constant circular cross section of 1 m diameter and a mass ratio m∗ = m/(0.5ρd2) = 450 (in
Tamura & Amano (1983), the mass ratio is about 454-555). 10 wake oscillators were coupled to
the structural system with equally longitudinal space. The wake oscillator model used herein is
the one reported in Tamura & Amano (1983) (CQS

Fy =CD · ẏ/U for circular cross section). All the
aerodynamic parameters will maintained the same as in Tamura & Amano (1983) (sub-critical
Reynolds number range). Only the fundamental mode was considered, and properly large initial
conditions were applied for a quick search of the maximal VIV amplitude response.
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Fig. 6.2: Implementation of 10 wake oscillators to the 2:1 rectangular cylinder.
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(a) Sc = 107 (b) Sc = 128

Fig. 6.3: Comparison of the numerical solutions of implementing single wake oscillator and multiple
wake oscillators for the 2:1 rectangular cylinder (“TS-2018” form wake oscillator with small
initial conditions).

W = Z 0.2

ϕ1= Z 1.8
W =1
ϕ1= sin(πZ

W = 1
ϕ1= 1 )

1 2 3

Fig. 6.4: Three normal mode shapes and flow velocity profiles considered in Tamura & Amano (1983).
W represents the normalized wind profile, Z the normalized coordinate.

In Fig. 6.5, the numerical solutions of the propose approach are compared with Tamura &
Amano (1983)’s analytical approximations, with respect to the VIV peak amplitude. A good
agreement can be found. Nevertheless, the presented ones are found slightly lower than the
analytical ones. This is probably due to some overestimation in the analytical approximations.
Because, in Tamura & Amano (1983), numerical integration of the aforementioned differential
equation of order 4 was carried out for the cantilever case in trans-critical Reynolds number
range, and the slight overestimation of the analytical ones can be also found.

Finally, a quick test for the convergence of numerical results were carried out with a Scruton
number Sc = 2πm∗ζ1 = 3.21, coupling respectively 5, 10 or 20 wake oscillators to the conti-
nuous system with equal space. Results show the peak VIV amplitudes at mid-span, respective-
ly, 0.256d, 0.259d and 0.259d. This suggests the consideration of 10 wake oscillators for the
single span is proper.
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Tamura & Amano (1983)

Fig. 6.5: Comparison of the numerical results of the proposed approach with Tamura & Amano (1983)’
analytical approximation, with respect to the VIV peak amplitude of a simply supported beam
of circular cross section understand constant wind profile.

6.2 Bridge Launching in Critical Phase as a Case Study

6.2.1 Engineering Background

The Aftetal Bridge (Germany) during its critical launching phase, early mentioned in Section
1.2, is employed here as a case study. It is a 7-span continuous beam bridge, with a span arran-
gement of 94 m + 5×119.5 m + 94 m. The critical launching phase considered here corresponds
to the moment shown in Fig. 1.2, before the launched girder reaching the fourth pier from right
side. In this case, the length of the cantilever reaches its maximum 119.5 m (and 68.8 m above
the ground). For investigating the unsteady galloping issue, the bridge deck with open cross
section is considered rather than the one treated by aerodynamic optimization (see Fig. 1.3).
During the launching of Aftetal Bridge, a 30 long lattice launching nose was utilized. Here, as
a case study, the situation without launching nose will be also studied.

6.2.2 Implementation of the Proposed Approach

The superstructure of Aftetal Bridge during the critical launching is first described by finite
element method, as shown in Fig. 6.6. It includes 92 elements and 93 nodes. The open cross
section has a height of 5 m, and the mass per unite length is about 7.7 ton/m. The second moment
of area of this cross section is set to about Ixx = 4.89 m4 , and the Young’s modulus E = 210 ·109

N/m2 and the Poisson’s ratio 0.3 are considered for the material properties. At this stage, the
30 m long lattice launching nose was assumed with a square cross section of 5 m height. The
launching nose was simply treated as beam elements, having the same bending stiffness as the
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main girder but weighing 3.0 ton/m. The structural damping matrix was obtained by assuming
the classical Rayleigh damping, setting the 1st and 2nd modes with the same damping ratios. In
this case study, varied damping ratio, starting with ζ0 = 0.17%, was investigated.

30m

Fig. 6.6: Description of the superstructure of Aftetal Bridge with finite element method, being the nodes
indicated by the small dots on the beam. Additionally, the first bending mode shape of the
superstructure is indicated by the gray line, indicated meanwhile the cross section of the beam.

The total number of implemented wake oscillators, dependent on with or without launching
nose, is 43 or 46. For the latter, the first 30 m long cantilever features also the open cross section,
three more wake oscillators are therefore considered. The aerodynamic properties of the open
cross section is assumed as same as the experimentally tested one in this thesis, and the mean
flow incidence is set at 4◦ so that the parameters for the “TS-2018” wake oscillator model are
maintained the same as in Section 5.1.2. In case of existence of launching nose, the contribution
of drag and lift to flow-structure interaction is also considered in a quasi-steady way, although
no wake oscillator is implemented here. The drag and lift force coefficients measured from the
launching nose model (see Section 3.1 for the wind tunnel model, Section 3.2.1 for the test
setups, and Section 3.3.4 for the flow condition) is provided in Fig. 6.7, and defined as:

CD =
D

0.5ρU2dre f lre f
CL =

L
0.5ρU2dre f lre f

(6.10)

where D and L represent mean drag and lift of steady measurements of 60 s, under an incoming
wind speed U = 10.36 m/s. dre f = 0.06 m and lre f = 0.36 m were used to calculate CD and
CL, thus these two coefficients stand for the overall-averaged values for the launching nose.
Since the mean wind incidence α0 = 4◦ is considered, the CD and CL needs to be also shifted
by resetting α = 4◦ as the new null wind angle of attack, then calculate the CQS

Fy coefficient
and neglect at the same time the part of CQS

Fy inducing only static deformation. Finally, it is to
mention that a correction of the friction force induced on the end-plate has not been considered
for the presented results in Fig. 6.7. Although this friction force may lead to the reported CD

overestimated to some extent (≈ 13%, estimated based on a friction coefficient reported in
Schlichting & Gersten (2016)), it is more important to maintain a 2-dimensional flow condition
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at the root of the launching nose model (especially for the modified launching nose models to
be presented in Section 6.3).
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Fig. 6.7: Drag and lift coefficient measured for the lattice launching nose.

The calculated first bending frequency reports 0.387 Hz in presence of launching nose, and
0.305 Hz without launching nose (the first mode shape is depicted in Fig. 6.6). Combined
St = 0.102 for the open cross section at its 4◦ mean flow incidence, the critical wind speed
for VIV can be estimated 19.0 m/s and 14.9 m/s, respectively. The second bending frequency
of the structural system is rather high (more than 3.9 times the first one), either with or without
launching nose. It is therefore decided to take only the first mode into account.

6.2.3 Pre-discussion

Prior to the numerical integration, some first-discussions are deemed necessary.

The incoming wind

According to the location of the Aftetal Bridge (Bad Wünnenberg, Germany), Euro-code 1 (EN
1991-1-4 2010), combined with the national appendix for Germany (DIN EN 1991-1-4/NA
2010), specifies a 50-year design wind speed 22.5 m/s (the German wind zone “WZ1”). The
terrain analysis in Niemann & Hölscher (2013) has shown a low vegetation area for the valley
below Aftetal Bridge (the German terrain category “GK II”, featuring a roughness length 0.05
m and an exponent 0.16 for power-law wind profile). The vertical wind profile is therefore

U(y) = 22.5
( y

10

)0.16
(6.11)
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For the considered case study, the design wind speed at the altitude of the cantilever is U = 30.6
m/s (by putting y = 66.8 into above equation). The previously estimated critical wind speed for
VIV (19.0 m/s or 14.9 m/s) is clearly within this design wind speed limit. The realistic wind
condition for the bridge site could be more complicated, especially considering that the valley
may bring acceleration effect for the incoming wind. In lack of full-scale measurements or wind
tunnel tests, the highest wind speed for the numerical calculation was considered up to at least
3 times the critical wind speed for VIV. Moreover, to stand on the safe side, a constant wind
profile was assumed along the bridge. Finally, turbulence in incoming wind was ignored.

Differences of m∗ and CL0 between wind tunnel tests and full-scale

The open cross section used in this case study is 5 m high and weighs 7.7 ton/m, resulting in
a mass ratio m∗ ≈ 500 as the full-scale condition. However, for the wind tunnel model, this
value is about m∗ ≈ 1300. This difference is to be discussed, although for wind engineering the
combined mass-damping parameter is usually known more dominant. Moreover, the Reynolds
number for full-scale (in an order of 106) is also quite different from the wind tunnel tests (in an
order of 104). According to trend outlined in Fig. 5.6 (b), the used value of CL0 will be constant
at about 1.085 for the full scale, but it is varied with Re for wind tunnel model.

Prior to the computation for the continuous structural system, the effects of these differences
were first examined on wind tunnel sectional model implemented with single wake oscillator,
by means of manually adjusting the value of m∗ and CL0. It is to note that, when the mass ratio
is decreased to m∗ ≈ 500, the damping of the system was increased to keep a same Scruton
number for comparison purpose. Moreover, the spring stiffness was also adjusted so that the
natural frequency will not be changed. As shown by Fig. 6.8, three different Scruton numbers
were selected to investigate these effects, with the gray “◦” markers correspond to the original
wind tunnel test condition. The CL0 coefficient was first set to 1.085, which is the value will
be used for full scale. This operation leads to slightly higher amplitude response for V/Vr < 2,
but one can find that the amplitude-velocity curve is not essentially changed. Subsequently, the
mass ratio is decreased to about 500, reaching a close condition as the full-scale (both for m∗

and CL0). For most reduced velocities, as long as the same Scruton number being maintained,
the amplitude response is nearly the same as the high mass ratio case. However, in Fig. 6.8
(b) around V/Vr = 1.9, the medium amplitude branch become invisible any more when the
solutions are attained with small initial conditions. Moreover, in Fig. 6.8 (c) the critical wind
speed for galloping onset is also slightly advanced. Nevertheless, considering that the oscillation
state at these specific velocities may be of high sensitivity to parameter change, the difference
due to a mass ratio variation is understandable.
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(a) Sc = 5.5 (b) Sc = 69.6

(c) Sc = 83

Fig. 6.8: Numerical solutions of “TS-2018” wake oscillator model, with manually changed m∗ and CL0
for the wind tunnel bridge deck model. Solutions attained with small initial conditions.

6.2.4 Numerical Results

The numerical results for the case study are presented in following four parts.

Effect of the mode shape

First of all, the effect of the flexibility of the continuous system is studied. For a fair comparison
with the numerical results of wind tunnel sectional model, no launching nose is considered in
the continuous system. Moreover, m∗ ≈ 500 and CL0 = 1.085 are manually set for the wind
sectional model. By doing so, the only difference between the sectional wind tunnel and the
continuous system is the mode shape. Fig. 6.9 presents the comparison, with respect to the
amplitude response at the tip of the cantilever. In views of the comparison, one can find that the
mode shape of the continuous system mainly exhibits an amplification effect for the responses
of a sectional model, being the shape of amplitude-response curve not essentially changed.
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(a) Sc = 5.5 (b) Sc = 83.0

Fig. 6.9: Comparison of the numerical solutions between wind tunnel sectional model and the studied
continuous structural system. No launching nose is considered for the structural system, and
m∗ ≈ 500 and CL0 = 1.085 are set for the wind tunnel sectional model. Mode shape factor
γ1 = 1.72 and γ2 = 1.28.

Attempts of converting the results on wind tunnel sectional model to the continuous system are
also made, through the mode shape factor in classical VIV theories. The expression of a mode
shape factor is, however, dependent on the VIV models. For the simple harmonic VIV model,
it can be written as (see, e.g., Irwin (1998), Macdonald & al. (2002), Marra & al. (2017))

γ1 =

∫
l′ |φ(z)|dz∫
l′ φ

2(z)dz
(6.12)

for the fully correlated VIV cases. Here, l′ denotes the length of structure applied with vortex
shedding force. For the studied case of its first mode shape (Fig. 6.6), γ1 = 1.72 is obtained by
taking the whole length of the structural system as l′. On the other hand, for Scanlan’s non-linear
VIV model, the mode shape factor is written (Ehsan & Scanlan 1990; Scanlan 1981)

γ2 =

√∫
l′ φ

2(z)dz∫
l′ φ

4(z)dz
(6.13)

also for fully correlated VIV cases. In this case, the mode shape factor reports γ1 = 1.28.

The results of multiplying the responses of wind tunnel model with γ1 and γ2 are also given in
Fig. 6.9. Interestingly, for a wide range of V except very close to Vr, the results multiplied with
γ2 show a good agreement with the numerical ones directly calculated for the flexible structural
system. A straightforward explanation for this good agreement is still in lack, although it is
noticed that the Van der Pol oscillator is also used in Scanlan’s non-linear VIV model. On
the other hand, for V quite close to Vr, the multiplication with γ1 results in better agreement.
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Finally, it should be mentioned that, in the non-linear quasi-steady galloping theory, the shape
of the amplitude-velocity curve of a continuous system will depend on the specific mode shape
function (see, e.g., Novak (1969)). Because of this, it is theoretically unable to use a single mode
shape factor to convert the post-galloping response of a prism body to a continuous system.

synchronicity of the discrete wake oscillators

In the coupling of wake oscillators to the nodes of structural system, no correlation has been
assumed between the discrete wake oscillators. If the structural system is totally stationary,
this means two nearby wake oscillators will vibrate independently, depending only on their
respective initial conditions. This is apparently in conflict with the many physical observations,
for example, the correlation function of vortex shedding force on stationary prism body (see
Fig. 2.7). However, it is very interesting that, the implemented discrete wake oscillators become
correlated when the structural system is free to move. Fig. 6.10 shows the ϑ(t) time histories of
selected wake oscillators at different positions of the structural system. The oscillation state of
the structural system corresponds to the VIV peak amplitude show in Fig. 6.9 (b).

For the two wake oscillators located at the tip of the cantilever (Fig. 6.10 (b)), one can find their
ϑ(t) records are quite synchronous, oscillating at the same frequency n0 with nearly no phase
angle difference. A lower amplitude for ϑ45(t) is probably the only visible difference in Fig.6.10
(b). With a large distance to the position of ϑ46(t), the time-history of ϑ40(t) exhibits a clear
phase angle difference as well as a lower oscillation amplitude. However, ϑ40(t) still features
an oscillation frequency n0 as can be learned from Fig. 6.10 (c). For the next wake oscillator
(Fig. 6.10 (c)), the time records of ϑ39(t) begin to show a high frequency component. This high
frequency component becomes the dominant one for ϑ35(t), whose location is nearly at the root
of cantilever. This high frequency is actually the Strouhal frequency nst = 1.7n0. From above
analysis, it is easy to understand that the wake oscillators, numbered from 46 to 40, are in a
full synchronization with the structural oscillation. They also correlate to each other through
a phase angle shift. On the other hand, the wake oscillators numbered from 39 to 35 seem to
oscillate differently from former ones, due to the emergence (or dominance) of nst in ϑ(t).

In another attempt, small initial conditions, in a manner of random vector, are given to ϑ (rather
than ξ1). The final oscillation state are the same as that shown in Fig. 6.10, although much
longer time was needed to achieve the steady oscillation state.

For Sc = 5.5 at V/Vr = 1.7 (structural response see Fig. 6.9 (a)), the ϑ(t) time histories are also
examined. It is found the wake oscillators in full-synchronization state expand to ϑ38(t), as in-
dicated in Fig. 6.11. Since the oscillation amplitude of the structural system in this case is larger
than the case of Sc = 83.0, it seems reasonable to conclude that the larger structural oscillation
has promoted more wake oscillators on the cantilever entering into the synchronization state.
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ϑ46 ϑ45 ϑ35ϑ39ϑ40

ϑ37ϑ38

(a)

(b) (c)

(d) (e)

Fig. 6.10: Time history records of wake oscillators at various positions of the structural system: (a) posi-
tions of the implemented wake oscillators, (b)-(e) time history solutions of ϑi with Sc = 83.0
at V/Vr = 1.7 (corresponding to the VIV peak shown in Fig. 6.9 (b)).

Contribution of the launching nose

For bridge construction with incremental launching method, the use of a light-weight launching
nose will not only increase the first bending frequency for the critical launching phase, but may
also help to stabilize the possible wind induced vibration. Fig. 6.12 shows the effect of launching
nose, considered a very low damping ratio for the first mode. With or without consideration of
the launching nose, the wake oscillator model predicted a galloping onset both at Vr. However,
from the quasi-steady solutions, one can find the galloping onset has been postponed a lot for
the case with launching nose. This is a result of the drag force of the launching nose played
a stabilizing effect for the whole structural system. Although the drag coefficient of a lattice
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(a) (b)

Fig. 6.11: Time history solutions of ϑi with Sc= 5.5 at V/Vr = 1.7. See also Fig. 6.10 (a) for the locations
of the implemented wake oscillators, and Fig. 6.10 (a) for the structural amplitude response.

structure is low, the special location of the launching nose has made this stabilizing effect quite
pronounced. The concerned mechanism can be better understood by following equation

∫
l′

m(z)φ 2(z)dz ·
[
ξ̈ (t)+2ζ0ω0ξ̇ (t)+ω

2
0 ξ (t)

]
=

1
2

ρU2d
[∫

l′
A1(z)φ 2(z)dz

]
ξ̇ (t)
U

(6.14)

which is the dynamic equation for a structural system about its equilibrium position (fundamen-
tal mode). It is derived from equilibrium equation unit length of the beam system

m(z)
[
ÿ(z, t)+2ζ0ω0ẏ(z, t)+ω

2
0 y(z, t)

]
=

1
2

ρU2dA1(z)
ẏ(z, t)

U
(6.15)

by expressing y(z, t) = φ(z)ξ (t), multiplying both sides with φ(z) and then integrating over the
whole length of structural system l′. Here, the linear part of quasi-steady aerodynamic force is
considered, i.e., CQS

Fy (ẏ/U) = A1(ẏ/U). For the lattice launching nose, there is A1 ≈−CD. From
Eq.6.14, one can find the coefficient A1(z) actually works with φ 2(z) to determine the stability
of a structural system. And, at the location of launching nose, the value of φ(z) is quite large.

The stabilizing effect of the launching nose becomes also apparent in the solutions of wake
oscillator model, when the damping of the system is further increased, as shown in Fig. 6.13. At
a damping ratio of 1.17% (logarithmic damping δ0 = 0.074), the response with launching nose
turns into a VIV response rather than a galloping starting at Vr. However, such a behavior is still
not reached for the one without launching nose, up to a damping ratio of 1.54% (logarithmic
damping δ0 = 0.097). Moreover, it is to mention that the structural system with launching nose
features a lower equivalent mass ratio mequ than the one without launching nose, because the
launching nose has been assumed 50% lighter than the main girder per unit length. Therefore,
for the same damping level, the Scruton number calculated with mequ is actually lower for the
structural system with launching nose.
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Fig. 6.12: Effect of the launching nose for a very low damping ratio of 0.17% (logarithmic damping δ0
= 0.011). Solutions are obtained with small initial conditions. “TS” denotes “TS-2018” wake
oscillator model, “QS” nonlinear quasi-steady galloping model, and “L. N.” the abbreviation
of “Launching Nose”.

Dominance of the cantilever

It is to note that the implementation of many wake oscillators on the structural system has
brought a quite high computational cost. On the other hand, for a structural system shown in
Fig. 6.6, the main contribution to the dynamic response of the system may just come from
the cantilever part. Therefore, it is decided to check whether precise enough results can be
obtained when only the cantilever is implemented with wake oscillators. Specifically, the 34
wake oscillators implemented on the other spans were all removed, as well as the quasi-steady
aerodynamic force contribution. By doing so, there are only 9 wake oscillators remained on the
cantilever, and the quasi-steady aerodynamic force for the launching nose is still maintained.

The computational speed was found about 3 times faster than the case with wake oscillators
implemented on the full structure, and the resultant amplitude was found slightly lower but still
acceptable as shown in Fig. 6.14. This is somewhat understandable, due to the high dominance
of the cantilever portion in the mode shape (see Fig. 6.6). The numerical investigations carried
out here seems also to support the idea, that for the critical bridge laughing phase the conside-
ration of the single cantilever, rather than the whole bridge, might be sufficient for wind tunnel
aeroelastic tests. Nevertheless, if a higher accuracy is wanted, including at the same time the
adjacent span will be sufficiently enough (as indicated also in Fig. 6.14).
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(a) With Launching nose (b) Without Launching nose

Fig. 6.13: Wake oscillator model solutions for the structural system with and without launching nose, at
different damping levels. Solutions attained from small initial condition.

6.3 Aerodynamic Optimization for the Launching Nose

From the case study, it is learned that the aerodynamic properties of the launching nose is able
to play an important role for the aeroelastic behaviors of the whole structural system. From
another perspective, this also implies a potential way to suppress the galloping issue during
bridge launching phase, in an efficient and economic manner. That is a particular optimization
for the aerodynamics of the launching nose, to make it generate more stabilizing force (positive
aerodynamic damping). This implication has promoted the author of this thesis to make some
preliminary optimizations for the used launching nose model, as shown in Fig. 6.15 (a) and (b).
Here, the concerned preliminary optimization was simply performed by closing the top side
(“Optim. 1”), or both top and bottom side (“Optim. 2”), of the lattice launching nose with wood
plate. Measuring also at U ≈ 10.36 m/s, the steady CD and CL coefficients for the optimized
launching noses are provided in Fig. 6.15, including also those of the original lattice launching
nose for a comparison.

Once the aerodynamic optimization is applied, either for “Optim. 1” or “Optim. 2”, one can find
the lift emerges and varies intensively with α . In particular, “Optim. 2” clearly features a quite
good CL−α curve, which presents always positive slope in the investigated flow incidences.
Based on the measured CD and CL, the galloping factor A1, according to Den Hartog criterion,
can be calculated for the launching noses and presented in Tab. 6.1 for two mean wind angles
of attack. Further assuming A1 of the launching noses constant along its axis, an equivalent A1

factor can be derived form Eq.6.14 to indicate the stability of the structural system

mequ ·
[
ξ̈ (t)+2ζ0ω0ξ̇ (t)+ω

2
0 ξ (t)

]
=

1
2

ρU2d ·A1,equ ·
ξ̇ (t)
U

(6.16)
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(a) ζ0 = 0.17% (b) ζ0 = 1.54%

Fig. 6.14: Comparison of the numerical results, between wake oscillators implemented on the full struc-
ture and on only the cantilever part.

in a quasi-steady galloping manner. Here, mequ is the equivalent mass

mequ =

∫
l′m(z)φ 2(z)dz∫

l′ φ
2(z)dz

(6.17)

and A1,equ is the equivalent A1 factor

A1,equ =

∫
l′ A1(z)φ 2(z)dz∫

l′ φ
2(z)dz

(6.18)

Tab. 6.1: A1 factor evaluated for the three configurations of launching nose, at two mean wind angles of
attack. Range of wind incidence for evaluating A1: α0−1◦ ≤ α ≤ α0 +1◦.

Original Optim. 1 Optim. 2

α0 = 0◦ -0.46 -5.19 -6.75
α0 = 4◦ -0.52 0.68 -2.41

Now, it is supposed the “Optim. 2” launching nose being used for the case study. With A1 = 4.17
for the bridge deck at α0 = 4◦, A1 = −2.41 for the “Optim. 2” launching nose, and the mode
shape of the structural system (see Fig. 6.6), it is able to obtain A1,equ = 0.035. Such a low value
suggests the galloping instability problem of the system is almost eliminated. Furthermore, if
we assume that the optimization of launching nose is specially made for α0 = 4◦ of the bridge
deck, then the galloping factor A1 =−6.75 of “Optim. 2” at α0 = 0◦ might be simply taken as an
more efficient optimization. In this situation, the calculated equivalent galloping factor reports
A1,equ = −2.70. Fig. 6.16 provided wake oscillator model solutions for these two cases, for a
very low damping (see also caption of Fig. 6.16). Clearly, no galloping was predicted at Vr with
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(a) Optim. 1 (b) Optim. 2

(c) Drag coefficient (d) Lift coefficient

Fig. 6.15: (a) and (b), two optimizations for the launching nose; (c) and (d), the drag and lift coefficients
measured by wind tunnel static tests.

the optimized launching nose, although the “Optim. 2a” has reported quite large VIV responses
due to the fact that A1,equ = 0.035 is close to null in this case. In contrast, for “Optim.2b” with
A1,equ =−2.70 the VIV response is also significantly reduced.

Finally, it is needed to point out that the above analyzes are based on considering the aerodyna-
mic forces of an oscillation launching nose in a quasi-steady manner. This is fine for the original
lattice launching nose, since its dominant aerodynamic force (drag) is unlikely to change too
much during the oscillation. For the two modified launching noses, featuring large-size imper-
meable plates, the aeroelastic forces might differ quantitatively from the quasi-steady estima-
tion. Because of this, aeroelastic tests on the optimized launching nose would be necessary, to
understand how much aerodynamic stabilizing force can be really introduced. Moreover, the ae-
rodynamic coefficients (like CD, CL) may vary along the launching nose axis, especially for the
studied tapered one. This effect should be also further taken into account in the future study.
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Fig. 6.16: Wake oscillator model solutions with the “Optim. 2” launching nose, for ζ0 = 0.17%. “Optim.
2a” denotes the wind attacking the launching nose at α0 = 4◦, while “Optim. 2b” at α0 = 0◦

(say, the launching nose is orientated −4◦ relative to the bridge deck).

6.4 Chapter Summary

Based on finite element method, the approach of extending Tamura’s wake-oscillator model to
the continuous structural system has been presented. Multiple wake oscillators are coupled to
nodes of the structural system to consider the flow-structure interaction. Compared with a simi-
lar approach proposed by Tamura & Amano (1983), which is for the VIV problem of continuous
system with circular cross section, the presented approach is more suitable for non-circular cross
sections in dealing with the unsteady galloping problem (also VIV). This approach enables a
higher flexibility for practical use, since the variation of either structural or aerodynamic para-
meters along the axis can be easily considered. Moreover, this approach can consider multiple
modes participation and has the potential of being further extended to take into account the
structural non-linearity as well as the incident turbulence.

After validating the algorithm, the critical launching phase of a steel-concrete composite bridge
was considered as a case study. There, the mode shape effect and the synchronicity of the
coupled multiple wake oscillators were presented and discussed. Practically maybe very mea-
ningful, the used lattice launching nose was found able to mitigate the unsteady galloping of the
structural system in an efficient way, thus implying a economic way to suppress the galloping
problem by optimizing the aerodynamic shape of the launching nose. Inspired by this, some
preliminary optimizations have been made to the used tapered lattice launching nose. The static
test results and the associated wake oscillator model predictions confirmed the previous impli-
cation at the first stage. Finally, aeroelastic tests on, e.g., a pivoted cantilever model are needed,
not only to confirm the prediction capability of the proposed approach, but also to examine the
real performance of the optimized launching nose.
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The studies presented in this thesis are originally motivated by the incremental launching of
steel-concrete composite bridges. After a statistical survey on the bridge deck geometry and
Scruton number distribution for this particular situation, the potential threat of unsteady gallo-
ping to these bridges was revealed. Wind tunnel tests, mathematical modelings and attempts of
suppressing the unsteady galloping were then carried out, aiming at a better understanding of the
phenomenon itself, on the scientific side, and how to predict and suppress it on the engineering
side. These works composed the main content of this thesis.

7.1 Summary and Main Contributions

The main original contributions and findings in this thesis are summarized as follows.

Experimental data set Extensive wind tunnel tests have been carried out based on three sec-
tional wind tunnel models and a lattice launching nose model. Especially, the bridge deck mo-
del with an open cross section, which is typical during the construction phase of steel-concrete
composite bridges but less well studied, was paid particular attentions. Static tests on this bridge
deck model first revealed a negative slope of CL within the flow incidence−5◦ to 12◦, indicating
the possibility of across-wind galloping instability. Aeroelastic tests confirmed this instability
and also highlighted the sensitivity of unsteady galloping behaviors to the mean flow incidence
angle α0. For the bridge deck model at α0 = 2◦ and especially α0 = 4◦, the typical unstea-
dy galloping due to an interaction with VIV was observed, being its threshold at the reduced
Kármán-vortex resonance wind speed Vr. However, for α0 = −2◦ and α0 = 0◦, the unsteady
galloping arose in manner more difficult to understand, being the onset velocity clearly higher
than Vr even for a very low Scruton number (this behavior was named atypical unsteady gallo-

ping in this thesis). Although it may be not a direct evidence, it was found the strength of vortex
shedding force coefficient CL0 is quite different between the typical unsteady galloping and the
atypical one, being the latter characterized with a much weaker CL0. Such a connection was also
noticed for the 2:1 rectangular cylinder and the trapezoidal cylinder. Nevertheless, if the typical
unsteady galloping occurred, a quite high Scruton number was found to be needed to decouple
the interaction with VIV. For the studied bridge deck at α0 = 4◦, the galloping onset was fixed
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at Vr for Scruton number up to at least 70. This value is much larger than the typical one, Sc =

15-25, for this kind of bridges in launching phase. With respect to the typical unsteady galloping
behaviors, the bridge deck model also showed some differences from the other two cylinder mo-
dels, such as the “Partial-Interference” behavior outlined by Mannini & al. (2016b) being not
observed. In small-scale turbulent flow (Lu/d ≈ 0.5, Iu = 9.2%-14.9%), the bridge deck model
also showed a strong tendency to galloping instability. Differing from that in smooth flow, the
typical unsteady galloping due to interaction with VIV was not observed anymore. Instead, for
very low Sc, the galloping arose clearly behind Vr, in a similar manner as the atypical unsteady

galloping observed in smooth flow.

Mathematical modeling on prism body The nonlinear wake oscillator model of Tamura’s
form was considered for the mathematical modeling of the unsteady galloping due to inter-
ference with VIV. To be more specific, the actually used wake oscillator model is a slightly
modified one by Mannini & al. (2018a) (named “TS-2018” in this thesis), adopting also their
method for identifying the key parameter f (by means of calibrating with a set of aeroelastic
test results of high Scruton number in the VIV region). Maintaining the identified f parameter
unvaried in the mathematical model, numerical predictions were compared with the aeroelastic
test results in a wide range of Scruton number. Satisfying agreements were obtained not only
for the 2:1 rectangular cylinder, but also for the bridge deck model at α0 = 4◦. In particular, the
typical unsteady galloping behavior, that lower than a certain value of Sc the galloping onset
is fixed at Vr, is perfectly captured by the wake oscillator model. It is also worth noting here
that this is probably the first time to apply the wake oscillator model to a generic bridge deck
model of complex geometry. Moreover, additional efforts have been contributed to examine the
so-called physical considerations in the wake oscillator model, based on the 2:1 rectangular
cylinder due to its clean shape. This part of work has promoted further modifications for the
wake oscillator model. This further “Modified” one maintains a comparable prediction capabi-
lity as the “TS-2018” form, but its wake geometric parameters agree better with the physical
near-wake of sharp-edged bluff body. Such a better agreement was achieved not only for the
2:1 rectangular cylinder studied in this thesis, but also for the square cylinder reported by other
researchers (e.g., Lander & al. (2016)). Finally, efforts were also made to estimate the key para-
meter f for wake oscillator model by means of direct wake flow measurements. The estimated
f value qualitatively supports the use of a high value of f for the sharp-edge bluff bodies, rat-
her than a low value like f = 1.16 which is originally derived for circular cylinder. However, a
quantitative agreement is not achieved with the f value due to the calibration method proposed
by Mannini & al. (2018a). A discussion on this point is particularly presented.

Predictions for the continuous system A approach of extending the wake oscillator model
for continuous structural system is proposed. In this approach, multiple wake oscillators we-
re coupled to the nodes of the structural system, which is described by finite element method.
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This approach can be seen as an improved one of the approach proposed by Tamura & Amano
(1983), particularly suitable for unsteady galloping problem. It is of high flexibility to consi-
der the variation of either structural or aerodynamic parameters along the axis of a continuous
system, and has the potentiality to be further extended for considerations of the structural non-
linearity as well as the turbulence in incoming flow. A case study, which corresponds to the
structural system of a steel-concrete composite bridge during its critical launching phase, was
presented for the proposed approach. The mode shape effect of the flexible structural system
and the synchronicity of the coupled multiple wake oscillators were presented and discussed.
Moreover, through this case study, the role of the aerodynamics of the launching nose was
highlighted, revealing at the same time a potentially efficient way to mitigate the unsteady gal-
loping by means of aerodynamic optimization for the launching nose. Wind tunnel static tests
on a tapered lattice launching nose and its optimized configurations, associated with the wake
oscillator model predictions, together confirmed this potentiality at the preliminary stage.

Unsatisfying results There are also some unsatisfying results or weaknesses in this thesis, and
should be pointed out:

• For some Scruton numbers in certain reduced wind speed ranges, the numerical solutions
of the wake oscillator model presented a high amplitude oscillation branch, which is,
however, not observed on in the wind tunnel aeroelastic tests.

• For the atypical unsteady galloping arising at α0 = 0◦ of the bridge deck model, the
mathematical modeling with wake oscillator model was unsuccessful.

• For flow velocity measurements in the near-wake of bluff body, the used anemometer (Co-
bra probe) is unable to deal with the inverse flow. Due to this reason, some reported data
points are affected. Fortunately, several key features are supposed to be not influenced or
in a very limited manner.

• In the wind tunnel tests, the generated turbulent flow features a rather small integral length
compared to full-scale engineering practices. Attentions should be paid to this difference,
when the reported experimental data in this thesis is used for full-scale purposes.

7.2 Outlooks and Future Works

Either due to a time limitation or laboratory restrictions, there are some works not complemen-
ted or some ideas not put in practice in this thesis. They are considered as future works:
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• As previously mentioned, the experimentally generated turbulent flow in this thesis has a
relatively small length scale. A very recent publication (Mannini & al. 2018b) indicated,
however, that the turbulence integral length may also play an important role for the gal-
loping instability. Due to this reason, further investigations in large-scale turbulent flow
would be very meaningful. However, the generation of large scale turbulence, maintaining
at the same time a high turbulence intensity, is usually difficult in wind tunnel, conside-
ring that the geometrical scaling ratio of a bridge deck cannot be very small so that details
can be well-reproduced. Alternatively, the computational fluid dynamic (CFD) technique
maybe a good choice for this purpose, considering the rapid increase of computation ca-
pability in these years.

• The wind tunnel tests on a cantilever model should be considered as a future work, for fol-
lowing three reasons: a) the galloping problem of steel-concrete composite bridges during
launching phase can be studied in a way more close to the full-scale conditions; b) aero-
elastic results from the cantilever model can be used to examine the prediction capability
of the wake oscillator model for continuous structural system; c) the idea of suppres-
sing unsteady galloping through aerodynamic optimizations for the launching nose can
be better confirmed.

• The unsteadiness in flow-structure interaction has been a research topic for many decades,
and it is supposed to be also interesting in the future. With respect to the studied unsteady
galloping problem, the nature of the unsteadiness of motion-induced aerodynamic force is
still not fully understood. The failure in mathematically modeling the atypical unsteady

galloping clearly implies the insufficiency of putting the quasi-steady force item in the
controlling equations of wake oscillator model (Eq. 2.55). To attain the mathematical
modeling of the atypical unsteady galloping, an essential modification to the quasi-steady
force item may be needed.

• Finally, for the studied bridge deck with open cross section, the across-wind galloping
instability was found as the dominant issue probably due to its comparably small side-
ratio (b/d = 2.0). For open cross section with larger side-ratio, the instability in torsional
degree of freedom may arise and suppose to be also interesting.
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A.1 Analytical Approach to the Nonlinear Across-wind

Galloping with Quasi Steady Theory

Here, based on the classical quasi-steady theory, the analytical approach to the nonlinear beha-
viors of across-wind galloping is supplemented. As an example, the square cylinder is taken as
an object for this analysis. First of all, the static-test measured CFy coefficient is plotted as a
function of tan(α), as shown in Fig. A.1. Then, polynomials are used to approximate the expe-
rimental data. Due to the symmetrical geometry of the square cross section, odd polynomials up
to 7th order are enough to provide a good approximation (Parkinson & Smith 1964). Therefore,
the CFy coefficient can be written as

CFy = A1[tan(α)]+A3[tan(α)]3 +A5[tan(α)]5 +A7[tan(α)]7 (A.1)

where Ai is the coefficient for the [tan(α)]i item.

Considering now for an osculation body, due to tan(α) = ẏ/U , Eq. A.1 can be written as
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Substituting Eq.A.2 in the governing equation of motion (Eq. 2.16), there is
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(A.3)

For convenience, the above equation can be further written in non-dimensional form, by defining
Y = y/d as the non-dimensional displacement, V =U/(ω0d) as the reduced velocity and m∗ =

m/(0.5ρd2) as the mass ratio. Moreover, non-dimensional time τ = ω0t is used and ( )′ denotes
the differentiate with respect to τ . The above equation becomes
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Fig. A.1: Transverse coefficient CFy vs. tan(α) for a square cross section. Experimental data, as well
as the coefficients for the 7-order odd polynomials approximation (A1 = 2.69, A3 = −168,
A5 = 6270, A7 =−59900), are taken from Parkinson & Smith (1964).

To analytically solve the above equation, the routine reported in Parkinson & Smith (1964) and
Parkinson (1989) is followed, which is based on the first approximation method of Krylov and
Bogoliubov (Minorsky 1962). Above equation can be further re-written in the form

Y ′′+Y =
A1

m∗

[(
V − 2ζ0m∗

A1

)
Y ′+

(
A3

A1V

)
Y ′3 +

(
A5

A1V 3

)
Y ′5 +

(
A7

A1V 5

)
Y ′7
]

= µ̃ f (Y ′), µ̃ =
A1

m∗
� 1 for air flow.

(A.5)

Eq. A.5 has the form of weakly nonlinear autonomous differential equation. For µ̃ = 0, the
solution is the familiar sinusoidal form

Y = Ȳ cos(τ +φ), Y ′ =−Ȳ sin(τ +φ) (A.6)

where Ȳ is constant. For µ̃ 6= 0 but small, the method of Krylov and Bogoliubov allows the
assumption of a solution consisting of a series in powers of µ̃:

Y = Ȳ cos(τ +φ)+ µ̃Y1(Ȳ ,φ ,τ)+ µ̃
2Y2(Ȳ ,φ ,τ)+ ... (A.7)

where Ȳ and φ are now the slowly varying functions of τ . In most applications, the first appro-
ximation (the first item at the right-side of Eq. A.7) is enough to given an accurate estimate of
the oscillation phenomenon. Moreover, in this first approximation, Parkinson & Smith (1964)
have shown that the phase angle φ is constant over a complete period, and it is convenient to set
it as zero. Therefore, for the first approximation, it is able to write

Y = Ȳ cos(τ), Y ′ =−Ȳ sin(τ) (A.8)
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with Ȳ still as a function of τ . Multiplying both side with Y ′, Eq. A.5 can be re-written as

Y ′′Y ′+Y ′Y =
1
2

d(Y ′2 +Y 2)

dτ
= µ̃ f (Y ′) ·Y ′ (A.9)

Further substituting Eq. A.8, the above equation becomes

1
2

dȲ 2

dτ
=−µ̃ f (−Ȳ sin(τ)) · Ȳ sin(τ) (A.10)

It can be found from Eq.A.10 that the amplitude variation with τ is also small because of µ̃ , so
that the change of Ȳ is negligible over one oscillation cycle. Therefore, it will be satisfactory to
replace the right side of Eq.A.10 by its average over one cycle, namely

dȲ 2

dτ
=− µ̃

π

∫ 2π

0
f (−Ȳ sin(ν)) · Ȳ sin(ν)dν (A.11)

Substituting in the expression of “ f ()”, the integration of the right-side of Eq.A.11 yields

dȲ 2

dτ
=

A1

m∗

[(
V − 2ζ0m∗

A1

)
Ȳ 2 +

3
4

(
A3

A1V

)
Ȳ 4 +

5
8

(
A5

A1V 3

)
Ȳ 6 +

35
64

(
A7

A1V 5

)
Ȳ 8
]

(A.12)

Eq.A.12 can be written in brief form

dR
dτ

= F(R) = a1R+a3R2 +a5R3 +a7R4 (A.13)

where R = Ȳ 2, and a1, a3, a5 and a7 are the coefficients dependent only on the parameters of a
given system. Clearly, in a differential form, Eq. A.13 describes how the amplitude of the system
evolves with the reduced time τ . For steady-state oscillation, there is the condition dR/dτ = 0
(oscillation amplitude does not change anymore with τ), so that the steady-state amplitudes
include R = 0, and the real positive roots given by the cubic equation

a1 +a3R+a5R2 +a7R3 = 0 (A.14)

In particular, R = 0, the initial position of the equilibrium, represents a singular point at the
origin called a focus. The other positive roots Ri of Eq. A.14, if exists, define the trajectories
in the phase plane (Y,Ẏ ) called limited cycles (concentric circles of radius Ȳsi =

√
Ri). For the

stability of the limit cycle or the focus, it is determined by the differential of F(R) with respect
to R about the root Ri

dF(R)
dR

∣∣∣∣
Ri

= a1 +2a3Ri +3a5R2
i +4a7R3

i (A.15)
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There are three possibilities:

• dF(R)
dR

∣∣∣
Ri
< 0, stable.

Since F(Ri)= 0 and the slope around Ri is negative, in the close region (Ri−δR, Ri+δR),
there are F(Ri− δR) > 0 and F(Ri + δR) < 0. Remembering F(R) = dR/dτ , F(Ri−
δR) > 0 means that the amplitude of the oscillator will increase if the amplitude is dis-
placed from Ri to a slightly lower one Ri−δR. On the other hand, if the amplitude of the
oscillator is displaced from Ri to a slightly larger one Ri+δR, the amplitude will decrease
in the following time because of F(Ri + δR) < 0. These imply that the considered limit
cycle oscillation is resistant to small perturbation.

• dF(R)
dR

∣∣∣
Ri
> 0, unstable.

This case is in contrast to the last one. Since the slope of F(R) about Ri is positive,
in the close region (Ri− δR, Ri + δR), there are F(Ri− δR) < 0 and F(Ri + δR) > 0.
The amplitude of the oscillator will decrease when the amplitude is displaced from Ri to
Ri− δR, while it will increase if the amplitude is displaced from Ri to Ri + δR. In other
words, any small perturbations will make the oscillation leave its original limit cycle.

• dF(R)
dR

∣∣∣
Ri
= 0, partial unstable.

For this case, the slope of F(R) around Ri must have different signs for the close regions
(Ri− δR, Ri) and (Ri, Ri + δR). Therefore, for the perturbation in one close region the
oscillation is able to return back to its original limit cycle, but unable for the other close
region.

Here, it is convenient to combine the square cylinder (Parkinson & Smith 1964) for further ana-
lysis. For the given mechanical properties, the solutions of steady-state amplitude Ȳs at various
reduced velocity V are plotted in Fig. A.2. Roots of F(R) = 0 (Eq.A.13) and the limit cycles
in phase plane are reported in Fig. A.3 for different situations. They are separately discussed as
follows.

• V < V0 (Fig. A.3 (a)). Here V0 = Vg = 2ζ0m∗/A1 is critical wind speed for galloping in
reduced form. Solution of F(R) = 0 reports only one non-negative real root that is at
R = 0, namely the focus. This solution is stable as indicated by the arrow in phase plane
(clearly, a1 < 0).

• V0 < V < V1 (Fig. A.3 (b)). Solution of F(R) = 0 reports a real positive root R1, and the
solution at R = 0 becomes unstable. Small perturbation applied to the focus or the limit
cycle will finally return to the only limit cycle featuring a radius of Ȳs1.



A.1 Analytical Approach to the Nonlinear Across-wind Galloping with Quasi Steady Theory 183

• V = V1 (Fig. A.3 (c)). Solution of F(R) = 0 reports two real positive root R1 and R2. In
particular, R2 is also a local maximum, reflected by F(R)-curve’s slope changing its sign.
Its corresponding limit cycle oscillation is partial unstable (with radius Ȳs2). For pertur-
bation from the higher amplitude side the oscillation is able to return back to the original
limit cycle, while perturbation from the lower amplitude side will make oscillation lea-
ve the original limit cycle and finally go to the Ȳs1 one. This partial unstable solution
corresponds to the point 5 in Fig. A.2.

• V1 < V < V2 (Fig. A.3 (d)). Solution of F(R) = 0 reports three real positive roots R1, R2

and R3. In particular, the limit cycle corresponding to R2 is unstable, any small perturbati-
on will make the oscillation leaves its original limit cycle, dropping to the stable one with
lower amplitude or jumping to the stable one with higher amplitude.

• V =V2 (Fig. A.3 (e)). Solution of F(R) = 0 reports two real positive roots R1 and R2. In
particular, R1 is right now a local minimum. The inability of its corresponding limit cycle
is in contrast to the V = V1 case, namely the higher amplitude side is unstable while the
lower amplitude side is stable. This partial unstable solution corresponds to the point 2 in
Fig. A.2.

• V >V2 (Fig. A.3 (f)). Solution of F(R) = 0 reports only one real positive roots R1, which
corresponds to a stable limit cycle.

V0 V1 V2

Ys

0
1

25

3

4

Fig. A.2: Ȳs - V curve for a square cylinder according to the nonlinear quasi-steady galloping theory, re-
produced from Parkinson & Smith (1964). Short dash line represents unstable solutions, while
long dash line corresponds to the asymptotic line for high reduced wind speed solutions.
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Fig. A.3: Roots of F(R) = 0 and limit cycles in phase plane. The arrow indicates the amplitude develop-
ment after a small perturbation to the limit cycle or the focus.

It can be also observed in Fig. A.2, the oscillation amplitude will follow the trajectory “0-1-
2-3-4” for continuously increased V , while another trajectory “4-3-5-1-0” will be followed for
continuously decreased V . A hysteresis loop therefore exists in the amplitude-velocity curve.
Moreover, there are two another important characteristics for the amplitude-velocity curve of
galloping.

Firstly, if the left side of Eq. A.12 is set null, then further divided by A1VȲ 2
s /m∗, there is

0 =

(
1− 2ζ0m∗

A1V

)
+

(
3A3

4A1

)(
Ȳs

V

)2

+

(
5A5

8A1

)(
Ȳs

V

)4

+

(
35A7

64A1

)(
Ȳs

V

)6

(A.16)
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Assuming V → ∞, the 2ζ0m∗
A1V item will vanish in Eq. A.16. In this case, solution of Eq. A.16 is

dependent only on parameter Ai and V . Further defining r̄ = Ȳs
V , Eq. A.16 becomes

0 = 1+
(

3A3

4A1

)
r̄2 +

(
5A5

8A1

)
r̄4 +

(
35A7

64A1

)
r̄6 with, V → ∞ (A.17)

Clearly, the root of Eq.A.17, if a positive real value exists, is a constant. This means, for V →∞,
the Ȳs -V curve becomes asymptotic to a line through the origin of slope r̄.

Secondly, if the left side of Eq. A.12 is also set to null, but then divided by V 3
0 (V0 = 2ζ0m∗/A1),

there is

0=
(

V
V0
−1
)(

Ȳs

V0

)2

+

(
3A3

4A1(
V
V0
)

)(
Ȳs

V0

)4

+

(
5A5

8A1(
V
V0
)3

)(
Ȳs

V0

)6

+

(
35A7

64A1(
V
V0
)5

)(
Ȳs

V0

)8

(A.18)

The solution Ȳs/V0 can be right now found dependent only on V/V0, rather than m∗ or ζ0. This
means Ȳs/V0 - V/V0 curve is universal and results of different m∗ and ζ0 will collapse on this
curve.

Finally, although not shown here for brevity, Parkinson’s nonlinear quasi-steady galloping theo-
ry has been quantitatively confirmed by the experimental results of a square cylinder at high
reduced flow velocities, not only for the amplitude predictions but also for the hysteresis phe-
nomenon as well as the asymptotic behavior. Moreover, the above analytical approach, which is
based on polynomials approximating the experimental data, provides comprehensive understan-
dings for the nature of the galloping phenomenon. For more complicated CFy(α) curve, higher
order of polynomials can be introduced to enhance the approximation of experimental data (like
in Novak (1972) and Andrianne & Dimitriadis (2014)). To solve the equation of motion des-
cribed by Eq. 2.16, there exist also many other methods as introduced by Vio & al. (2007). In
particular, direct numerical integration is nowadays a powerful tool, which also allows more
complicated curved fitting to fully use the experimental data.

A.2 Additional Results of Incoming Flow Measurements

A.2.1 Smooth Flow

Mean flow velocity and turbulence intensity at each monitoring point are presented in Fig. A.4,
for five selected rotation speeds of the wind tunnel turbine.
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Fig. A.4: Distribution of the mean wind speed U (left) and turbulence intensity Iu (right) among the
monitoring points, with variation of the rotation speed of wind tunnel turbine. Figure continued
in next page.
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Fig. A.4 (cont.)
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A.2.2 Turbulent Flow

Distribution of mean flow velocity, turbulence intensity and turbulence integral length among
the monitoring points are presented in Fig. A.5- Fig. A.7, for three turbulence gird configurati-
ons at a mean wind speed about 10 m/s.
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Fig. A.5: Distribution of the mean wind speed U among the monitoring points, for three turbulence grid
configurations (example of rotation speed of wind tunnel turbine at 600 rpm)
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Fig. A.6: Distribution of the turbulence intensity Iu among the monitoring points, for three turbulence
grid configurations (example of rotation speed of wind tunnel turbine at 600 rpm)
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Fig. A.7: Distribution of the turbulence integral Lu among the monitoring points, for three turbulence
grid configurations (example of rotation speed of wind tunnel turbine at 600 rpm)
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A.3 Extra Results for the Trapezoidal Cylinder

A.3.1 Effects of Scruton Number on the Aeroelastic Response

Tab. A.1 lists the aeroelastic test cases for the trapezoidal cylinder, for the investigations of the
effect of Scruton number.

Tab. A.1: Characteristics of aeroelastic test cases for the trapezoidal cylinder at α0 = 0◦ and α0 = 3◦,
with various Sc.

α0
[deg]

Static results Aeroelastic test cases

St
[-]

A1
[-] Config. Me

[kg]
n0
[-]

ρ

[-]
ζ0

[%]
Sc
[-]

Vr
[-]

Vg
[-]

Vg/Vr
[-]

0 0.091 1.50

#T0-0

3.88 9.27

1.15 0.076 6.8

1.75

1.44 0.83

#T0-1 1.16 0.161 14.6 3.10 1.78

#T0-2 1.17 0.256 23.0 4.88 2.80

#T0-3 1.16 0.428 38.7 8.23 4.72

#T0-4 1.16 0.572 51.9 11.0 6.32

#T0-5 1.14 0.727 67.0 14.2 8.16

#T0-6

3.97 9.17

1.18 0.972 88.5

1.75

18.8 10.8

#T0-7 1.19 1.096 98.7 21.0 12.0

#T0-8 1.19 1.322 119.2 25.3 14.5

3 0.089 5.96

#T3-0

3.88 9.27

1.17 0.070 6.3

1.78

0.33 0.19

#T3-1 1.16 0.152 13.7 0.73 0.41

#T3-2 1.18 0.262 23.4 1.25 0.70

#T3-3 1.17 0.425 38.2 2.04 1.14

#T3-4 1.18 0.578 51.6 2.76 1.55

#T3-5 1.17 0.748 67.3 3.60 2.02

#T3-6 1.16 0.937 85.0 4.54 2.55

#T3-7 3.97 9.17 1.20 1.198 107.3 1.78 5.73 3.22

#T3-8

8.07 6.43

1.20 0.610 110.8

1.78

5.92 3.32

#T3-9 1.19 0.756 138.4 7.39 4.15

#T3-10 1.22 0.875 156.4 8.36 4.69

Aeroelastic results are first presented for the α0 = 3◦ mean flow incidence (Fig. A.8 to Fig.
A.10), where a stronger interaction of VIV and galloping occurs. The dynamic responses under
various Sc are qualitatively the same as the 2:1 rectangular cylinder at α0 = 0◦. Nevertheless,
there are some quantitative differences: a) the “Full-Interference” behavior is maintained up to
Sc = 67.3 (Vg/Vr = 2.02), while this is Sc = 107.1 (Vg/Vr = 2.49) for the rectangular cylinder;
b) the “Partial-Interference” is maintained up to Sc = 110.8 (Vg/Vr = 3.32), while this is Sc =
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145.9 (Vg/Vr = 3.40) for the rectangular cylinder; c) for Sc = 156.4 (Vg/Vr = 4.69), the actual
galloping occurs at about 0.8Vg (see Fig. A.10), while this is at about 0.7Vg for the rectangular
cylinder which features a even higher Scruton number Sc = 200.7 (Vg/Vr = 4.67). From the
point of view of Scruton number, the interaction effect between galloping and VIV is weaker
for the trapezoidal cylinder. However, if the Vg/Vr ratio is taken as indicator, the interaction
effect for the two cylinders seems close to each other.

Fig. A.8: Effect of Scruton number on the across-wind response of the trapezoidal cylinder at α0 = 3◦.

Besides, some other points should be mentioned. In Fig. A.9 (a), one can find that the un-
affected amplitude of Sc variation is maintained up to about

√
2yrms/d = 0.26, corresponding

to a velocity range 1 < V/Vr < 1.9, which is slightly wider than the 2:1 rectangular cylinder.
Also, clear and regular amplitude modulation phenomenon was observed for this velocity range.
In Fig. A.9 (c), for the test case of Sc = 107.3, the upper amplitude branch was obtained by
releasing the wind tunnel model from a higher displaced position as indicated by the arrow. The
possible spontaneous jump was purposely not reached due to a safety consideration (since the
wind speed in the wind tunnel is already quite high). Nevertheless, the test case of Sc = 110.8,
which was carried out with added mass to decrease n0 (so that a higher reduced velocity is easier
to reach), shows that the possible jump has not occurred up to V = 7.
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(a) (b)

(c) (d)

Fig. A.9: Same results as in Fig. A.8 but with divided plots for better view.

Fig. A.10: Last two test cases (#T3-9 and #T3-10) of the trapezoidal cylinder in universal plot (α0 = 3◦).
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Effects of varying Scruton number for the trapezoidal cylinder at its null mean wind angle
of attack are shown in Fig. A.11 and Fig. A.12. From the static results, this angle of attack
features a CL0 about 25% lower than that at the 3◦ wind angle of attack (see Fig. 4.8 (b) for
Re = 2.0 · 104). Moreover, the galloping factor is considerably lower (A1 = 1.50 compared to
A1 = 5.96, see Tab. A.1), combined also with a worse linearization of the lift coefficient around
this wind angle of attack (see Fig. 4.7 (b)).

Fig. A.11: Effect of Scruton number on the across-wind response of the trapezoidal cylinder at α0 = 0◦.

Nevertheless, from the dynamic test results at α0 = 0◦, the “Full-Interference” behavior is still
able to be maintained for Scruton number up to Sc = 51.9, corresponding to Vg/Vr = 6.32. Mo-
reover, from Fig.A.12 (a), one can notice an increase of the amplitude slope occurring at about
V = 2.5. Qualitatively speaking, from the point of view of quasi-steady theory, this may be attri-
buted to the steeper CL slope for larger apparent wind angle of attack during the oscillation (so
that more negative aerodynamic damping can be introduced in). For Sc = 88.5, the oscillation
exhibits a sort of “Partial-Interference” behavior. While an anti-clockwise hysteresis loop is ob-
served in the high reduced velocity range, a clock-wise hysteresis loop in the VIV region is also
observed. This clock-wise hysteresis loop is maintained further for Sc = 98.7 but disappears
for Sc = 119.2. Despite that the amplitude slope is considerably small, galloping oscillation is
already initiated at about V = 3 for Sc = 119.2. For this case, the quasi-steady prediction of
galloping onset is Vg = 14.5Vr, which is far away from the actual observation.
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(a) (b)

(c) (d)

Fig. A.12: Same results as in Fig. A.11 but with divided plots for better view.

Clearly, the interaction of VIV and galloping occurred for this mean flow incidence. However,
the use of Vg/Vr ratio as an indicator, to judge the interaction behavior or to judge when the
quasi-steady should work, seems rather meaningless here. Due to the low value of A1, the Vg/Vr

ratio can easily go beyond 10, but the actual galloping may just occur at a much lower reduced
velocity (for the example of Sc = 119.2, galloping occurs at V = 1.7Vr, while the ratio of Vg/Vr

is already 14.5).
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