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ABSTRACT
We consider a model for a queue in which only a fixed num-
ber N of customers can join. Each customer joins the queue
independently at an exponentially distributed time. Assuming
further that the service times are independent and follow an
exponential distribution, this system can be described as a
two-dimensional Markov chain on a finite triangular region S
of the square lattice. We interpret the resulting random walk
on S as a Dyck path that is weighted according to some
state-dependent transition probabilities that are constant
along one axis, but are rather general otherwise. We untangle
the resulting intricate combinatorial structure by introducing
appropriate generating functions that exploit the recursive
structure of the model. This allows us to derive an explicit
expression for the probability mass function of the number of
customers served in any busy period (equivalently, of the
length of any excursion of the Dyck path above the diagonal)
as a weighted sum with alternating sign over a certain sub-
class of Dyck paths.
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1. Introduction

Time-dependent queueing models are powerful tools for the analysis of
real-life situations where the long-term behavior of a system is not a good
approximation for its performance. Examples of applications include call
centers[6], airline check-in counters[22,30], vaccination hubs[12], outpatient
wards of hospitals where the server operates only over a finite amount of
time[18,19], and optimal outpatient appointment scheduling[17]. On the
other hand, rigorous and explicit results on time-dependent models are
mostly out of reach because the standard tools of renewal theory and erg-
odic theory are often not applicable. In this article we focus on a certain
class of time-dependent models called transitory queueing systems, intro-
duced by Honnappa and Ward[16], and defined as systems that operate
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only during a finite time horizon. Thus only the time-dependent behavior
is of interest. Hence transitory queueing systems are time-dependent mod-
els that present even greater technical challenges because their steady-state
distribution is trivial (all the probability mass is concentrated in zero). One
common approach to tackle this issue is to introduce a scaling parameter
N in the queueing model and approximate the resulting system with the
asymptotic model obtained by taking N ! 1: This approximation is justi-
fied in terms of stochastic process limits, see e.g.,[31,32] and references
therein. This approach is robust because it relies on a functional Central
Limit Theorem and it has proven to be highly successful. However, this
approach has two drawbacks. First, the asymptotic results yield precise
approximations only for very large N, and often accurate error estimates
are not available. Second, the asymptotic model is often still too compli-
cated to be analyzed exactly, and thus further approximations are needed.
In this article we aim at developing novel tools for the analysis of transient
queueing systems that do not rely on any approximation scheme and that
provide explicit formulas for the relevant performance metrics. In this art-
icle we focus on the number of customers served during a busy period as a
proxy for system performance. We emphasize that our approach is not
meant to replace the classical asymptotic approximation scheme, but rather
to complement it when the approximations it provides are unreliable or
analytically intractable.
The canonical model for the study of transitory queueing systems is the

so-called DðiÞ=G=1 model[15,16] in which a single queue serves a finite pool
of N potential customers, where N will be fixed throughout this article.
Each customer joins the queue at a time Ti, where ðTiÞNi¼1 are positive i.i.d.
random variables. Once in the queue, customers are served in a first-come-
first-served fashion. Each customer requires an amount of service Si, where
are i.i.d. random variables which are independent from the Ti. Once a cus-
tomer is served, they leave the system permanently. The DðiÞ=G=1 model
was first introduced in Honnappa and Jain[14], where it emerged as the
solution of a game-theoretic optimization problem in a queueing setting.
Furthermore, in Honnappa and Ward[16] it was proven that, under the
appropriate scaling, several other transitory models have the same asymp-
totic behavior as the DðiÞ=G=1 model. Hence, the DðiÞ=G=1 model should be
seen as the canonical transitory queueing model, similarly as how the
G=G=1 queue is the canonical stationary queueing model. The asymptotic
regime N ! 1 of the DðiÞ=G=1 queue has been studied extensively in
recent years. In Honnappa et al.[15] the authors prove a functional Law of
Large Numbers (fLLN) and a functional Central Limit Theorem (fCLT) for
the queue-length process. They identify the limit processes explicitly, but
these are considerably difficult to analyze and explicit formulas for
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quantities of interest are not available. In a series of works[2–5] the authors
consider the DðiÞ=G=1 queue in the heavy-traffic regime that is obtained by
assuming the instant of peak congestion is at t¼ 0. Their results are also
fCLT’s for the queue-length process. In all the cases, the limit process is a
reflected stochastic process with negative quadratic drift, for which several
explicit expressions for quantities of interest are available, see Bet et al.[4]

for details.
Here we offer a new perspective on the DðiÞ=G=1 model, which we now

summarize. We assume that the arrival times Ti are exponentially distrib-
uted with rate k, and that the service times Si are exponentially distributed
with mean 1=l: We focus on the embedded Markov chain associated to
the queueing process, and we show that the path of the Markov chain is a
Dyck path of order N, that is, a staircase walk in N

2 from (0, 0) to (N, N)
that stays above (but may touch) the diagonal. It follows that the transition
probabilities of the Markov chain induce a probability measure on the
space of Dyck paths. Our result is then an explicit expression for the prob-
ability mass function of the excursion lengths of the Dyck path above the
diagonal as a weighted sum over a certain subclass of Dyck paths that,
roughly speaking, do not fluctuate between any two consecutive diagonal
visits. Furthermore, we show that our result holds for general transition
probabilities that include the transition probabilities associated with the
DðiÞ=G=1 model.

1.1. Related work

1.1.1. Relation to combinatorics and path counting
Dyck paths are some of the most well-studied objects in combinatorics and
thus the literature on the subject is vast. Perhaps closest to our approach is
the work of Viennot[29]. That article finds general relationships between a
certain class of orthogonal polynomials and weighted Motzkin paths, which
are a generalization of Dyck paths that allow for diagonal jumps. In par-
ticular, Viennot shows that the elements of the inverse coefficient matrix of
the polynomials are related to the sum of the weights of all Motzkin paths
starting in (0, 0) and with varying length and endpoint. This is in line with
our proof technique for Proposition 3.3. A Dyck path may be seen as a cer-
tain type of list structure where only insertions and deletions are allowed.
In Louchard[20], several list structures are considered and it is shown that,
if one assumes a uniform distribution over all admissible lists, the resulting
stochastic process converges to an appropriate Markov process. This is in
contrast with our setting, where the probability of a path depends crucially
on the spatial structure of the path. Moreover, we do not obtain asymptotic
results, rather exact results that hold for paths of finite length. In Haug and
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Prellberg[13], the authors are able to compute the generating function of
Dyck paths weighted according to both their area and length. However,
their result hinges on asymptotic approximations as the argument of the
generating function tends to one. Furthermore Van Rensburg et al.[28],
investigates, among others, the enumeration problem for Dyck paths con-
strained to lie inside a wedge. See the references in Van Rensburg et al.[28]

for an overview of the vast literature on the subject. Weighted lattice walks
have also received some attention lately. In Courtiel et al.[8] the authors
consider weighted paths in the quarter-plane under the assumptions that
the weights are central. A weight is central if paths with the same start
point, end point and length have the same weight. This symmetry allows
for explicit expressions for the generating functions. In our case the start
and end points are fixed, but the weight of a path depends not only on its
length, and so we cannot exploit the same techniques as Courtiel et al.[8].

1.1.2. Relation to queueing theory
The transient behavior of queueing system is challenging to study and, as
such, few results are available on transient behavior of the DðiÞ=G=1 model
and related models. Nevertheless, in this section we position our work in
the literature and we compare it with various approaches that focus on the
steady-state behavior of similar models.
As mentioned in the introduction, our model is instrumental to capture

the process taking place at, e.g., an any boarding gate, since, ignoring the
no-shows, there is a fixed total number N of passenger that all need to
board. Motivated by this application, a model identical to ours was already
considered in Wang et al.[30], but the main results therein concern (i) the
expected “makespan”, that is the total amount of time requested to pro-
cess/board all passengers (i.e., the expected hitting time of the state (N, N))
and (ii) the probability that the n-th customer finds, upon arrival, i cus-
tomers already in the system. On the other hand, a slightly different model
was considered in Parlar and Sharafali[22]: differently from us, the authors
made the simplifying (yet unrealistic) assumption that clerks work propor-
tionally faster when there are more customer queuing. In this setting[22],
shows how to derive transient occupancy probabilities by solving a system
of differential equations.
The DðiÞ=G=1 model is also intimately connected with queues with

Markov-modulated arrival processes, the simplest of which is the MMP/M/
1 queue. In a MMP/M/1 queue, customers arrive according to a Poisson
process with a random intensity that depends on an underlying Markov
chain. Therefore, the DðiÞ=G=1 model can be seen as a MMP/M/1 queue,
where the underlying Markov chain is a simple pure-death process. There
is a rich literature dedicated to the analysis of the MMP/M/1 queue as well
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as its numerous generalizations. The early works[25,26] deal with numerical
approximations of such systems. In particular[26], introduces a diffusion
approximation for a Markov-modulated queue where the underlying
Markov chain has two states. The approximation is based on matching the
first and second moment of the workload process and of the approximating
diffusion, but is not theoretically justified. The diffusion approximation
leads to approximate steady-state performance metrics. On the other hand,
the early works[7,23] were concerned with a theoretical analysis of Markov-
modulated queueing systems. In particular[23], considers a single-server
queue with Markov-modulated Poisson input and general service times
which depend on the underlying Markov chain. They obtain expressions
for the steady-state waiting time and queue length at arrival epochs and in
continuous-time by matrix factorization methods applied to Wiener-Hopf-
like equations[27]. considers single-server queue with K classes of customers
and Markov-modulated arrivals. Their main contribution is allowing the
service speed to depend on the underlying Markov chain. The main results
of the article hinge on a time-change that normalizes the work speed to
one. The authors then give relationships between performance measures of
the original system and the normalized system. Crucially, most of their
results concern the steady-state behavior of the queue. They characterize
the distribution of the length of a busy period, and the number of custom-
ers served in a busy period. However, this is given in terms of a fixed-point
equation which is not solved explicitly. Their only explicit solution is in
steady-state. In Asmussen and Bladt[1], the authors derive an explicit
expression for the mean busy period of a general Markov-modulated queue
using a sample path approach. To do this, they generalize the classical rela-
tionship between the stationary distribution of a queue and the distribution
of the maximum of the time-reversed net input process[21].
In Garikiparthi et al.[10], the authors consider a quasi-birth-death process

and they derive the distribution of the number of customers served during
a busy period. This process corresponds to a queueing system where the
maximum system size is limited. Their model is quite different from ours.
Indeed, the busy period distribution they find does not depend on how
many busy periods have already occurred. Nevertheless, their techniques
are loosely related to ours. They find a recursive expression for the matrix
of conditional probabilities representing paths of height less than some
level j and length 2i. They write a recursive equation, over both i and j, for
determining these matrices. However, they do not solve the recursion.
They use a similar argument to justify a recursion for the joint Laplace
transform of the number served and length of a busy period. In the
works[9,11], the authors consider MEP/MEP/1 queueing systems, where
MEP stands for Matrix Exponential Process, which includes the Poisson
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process, and renewal processes. This allows both arrival and service proc-
esses to be non-renewal. The techniques are very similar to the ones in
Garikiparthi et al.[10], i.e., they derive recursive equations for matrices sum-
marizing quantities of interest (and their moments), even if these recur-
sions are not solved explicitly. Both[9,11] remark on the combinatorial
complexity of the sample path analysis, since also for their model there is a
deep connection with Dyck paths. The likelihood of any such path, how-
ever, does not only depend on the number of upwards/downwards moves,
but is crucially path-dependent – this is a key feature also of our model.
More recently[24], considers a single-server queue with Markov-modulated

Poisson input and exponential service times. Their main contribution is
allowing the service speed to depend on the queue length. Approximate
expressions for steady-state performance measures are provided.

1.2. Organization

The rest of the article is organized as follows. In Section 2 we define the
DðiÞ=G=1 model formally and we state our main result. In Section 3 we
prove our main result by first developing a recursion for the distribution of
the number of customers served in the first busy period, and then solving
the recursion explicitly.

2. Model description, Dyck paths and main result

Consider a single-server queue that serves customers in a first-come first-
served manner. There is a finite pool of N customers, each of which enters
the system only once. Each customer independently joins the queue after
an exponential time with rate k and requires a service time that is expo-
nentially distributed with rate l. For notational convenience we denote by

kn :¼ kðN�nÞ (1)

the arrival rate of customers to the system if n customers have already
arrived to the system. In fact, our main result holds for any sequence of
transition rates ðknÞNn¼1 such that ki<kj for i> j, and such that kN ¼ 0:
However, when kn is not given by Eq. (1), the resulting Markov chain does
not correspond to the DðiÞ=G=1 model. When kn is given by Eq. (1), the
resulting combinatorial expressions simplify significantly, and so in our
results throughout the article we will give both the general expressions, as
well as the expressions corresponding to the specific choice Eq. (1). More
generally, our technique also works for state-dependent service times
ðlnÞNn¼1, as long as qj :¼ lj=ðlj þ kjÞ is such that q1<q2<:::<qN ¼ 1: In
this more general model, the service rate may depend on the number of
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customers that have left the pool. For the sake of simplicity, in the rest of
the article we only consider the case of constant service rate l.
The state of the system at time t � 0 is described by a vector YðtÞ :¼

ðY1ðtÞ,Y2ðtÞÞ 2 N
2 where Y1ðtÞ is the number of completed services at time

t and Y2ðtÞ is the number of customers that have joined the system up
until time t. In view of our assumptions, the process fYðtÞgt�0 is a con-
tinuous-time Markov chain on the state space

S :¼ fði, jÞ 2 N
2 : 0 � j � N, 0 � i � jg: (2)

The transition rate diagram is depicted in Figure 1. The continuous-time
Markov chain fYðtÞgt�0 is clearly reducible and admits the trivial equilib-
rium distribution p with pN,N ¼ 1 and pi, j ¼ 0 otherwise.
As illustrated in Figure 1, the state space S is highly structured. Our

approach crucially leverages this structure. We refer to the set of states in
the j-th row of S

Pj :¼ fð0, jÞ, ð1, jÞ, :::, ðj, jÞg (3)

as the j-th phase, which corresponds to the situation in which exactly j cus-
tomers have arrived in the system. We denote the collection of diagonal
states as D0 :¼ fð1, 1Þ, ð2, 2Þ, :::, ðN,NÞg, and further use the notation Dn :

¼ fð0, nÞ, ð1, nþ 1Þ, :::, ðN�n,NÞg, 1 � n � N to denote the set of states
on the n-th superdiagonal of S:
It does not seem possible to find an explicit solution for the Kolmogorov

equations associated to Y(t) due to the time-inhomogeneous arrival process.

Figure 1. Transition rate diagram of the continuous-time Markov chain fYðtÞgt�0:
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Therefore, we study the jump chain on S associated to fYðtÞgt�0, which
we denote as ðXðkÞÞ2Nk¼0: Conditionally on XðkÞ ¼ ði, jÞ with i< j, we have

Xðkþ 1Þ ¼ ðiþ 1, jÞ with probability qj
ði, jþ 1Þ with probability 1�qj,

�
(4)

where

qj :¼
l

lþ kj
: (5)

In terms of the queueing system, qj is the probability that a service occurs
before an arrival when j customers have already arrived, but not all of
them have already been served. Note that, conditionally on XðkÞ ¼ ði, iÞ,
we have Xðkþ 1Þ ¼ ði, iþ 1Þ with probability one.
The DðiÞ=G=1 queueing model corresponds to the choice qj ¼ 0 if j¼ 0

and qj ¼ l=ðlþ kjÞ if j ¼ 1, :::,N: We focus on the random variable S
describing the number of customers served in the first busy period, which
is the time between the instant a customer arrives to an empty system and
the instant a customer departs the system leaving behind an empty system.
Our main result is an explicit expression for the probability si that exactly i
customers are served in the first busy period, i.e., si :¼ P ðS ¼ iÞ:
From the discussion above it follows that the trajectory of the Markov

chain is a Dyck path of order N. For any n 2 Nþ, we denote the set of
Dyck paths of order n as Dn: A Dyck path u 2 Dn is fully characterized by
the sequence ðujÞnj¼1 of jumps to the right at each of the phases Pj, with
j ¼ 1, :::, n: With an abuse of notation we write

Dn ¼ fðu1, :::, unÞ 2 N
n :
Xk
j¼1

uj � k for all k ¼ 1, :::, n�1, and
Xn
j¼1

uj ¼ ng:

(6)

The transition probabilities Eq. (4) of the Markov chain introduced
above induce a probability measure �P on DN such that,

�PðuÞ ¼
YN
j¼1

q
uj
j ð1�qjÞ

1�Pj
i¼1

ui<j

o
, u ¼ ðu1, :::, uNÞ 2 DN: (7)

From a probabilistic perspective, Eq. (7) can be understood as follows:
the probability that the Markov chain jumps uj times to the right at phase
Pj is q

uj
j : Moreover, if

Pj
i¼1 ui ¼ j, then the Markov chain hits the diag-

onal on (j, j) and in that case it jumps up with probability one. Otherwise,
it jumps up with probability 1�qj: From a combinatorial perspective, qj
and 1�qj may be interpreted as weights associated to their respective edges
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in S: Equation (7) then assigns to the Dyck path u a weight �PðuÞ, which is
simply the product of the weights of the edges it traverses.
Equation (7) suggests partitioning the state space S in the N phases

P1, :::,PN in order to study the probability measure �P: Crucially, the
ðjþ 1Þ�th phase may only be reached from the j-th phase and the transition
probabilities between Pj and Pjþ1 only depend on j. We exploit this recursive
structure by associating to each phase a generating function PjðzÞ and then
expressing Pjþ1ðzÞ in terms of PjðzÞ: We then obtain the probability mass
function of the number of customers served in the first busy period (equiva-
lently, the probability mass function of the length of the first excursion of the
associated Dyck path above the diagonal) by computing Pjð�zÞ for some expli-
cit �z 2 R: We are able to fully solve this recursion by rewriting it as a linear
system of equations and then inverting its coefficients matrix.
A crucial role in our result will be played by those Dyck paths that hit

the diagonal whenever they jump to the right, see Figure 2. We make this
precise in terms of the number of right jumps ðu1, :::, unÞ of the Dyck path
u at each phase Pj: We define a feasible allocation ðu1, :::, unÞ in a recursive
manner, starting from u1, as follows: u1 is either 1 or 0, then
1. If ui�1 ¼ ui�2 ¼ ::: ¼ ui�kþ1 ¼ 0, and ui�k 6¼ 0, then ui is either k or 0;
2. If ui�1 6¼ 0, then ui is either 1 or 0.
Moreover, ðu1, :::, unÞ is such that

Pn
i¼1 ui ¼ n: We denote by Un the set

of feasible allocations. Equivalently,

Un :¼ fðu1, :::, unÞ 2 Dn : 81 � i � n�1, either ui ¼ 0 or
Xi
j¼1

uj ¼ ig:

With a minor abuse of terminology, we refer to elements of Un inter-
changeabily as feasible allocations or as Dyck paths. The set Un then

Figure 2. Examples of feasible and unfeasible allocations in U4 displayed as Dyck paths. The
Dyck path on the left corresponds to the feasible allocation u ¼ ð1, 1, 0, 2Þ, the one on the
right corresponds to the allocation u ¼ ð1, 0, 1, 2Þ, which is unfeasible since u3 must be 0 or 2.
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represents all those Dyck paths of order n � N that hit the diagonal when-
ever they jump to the right. Some examples of feasible allocations for n¼ 4
are ð1, 1, 0, 2Þ, ð0, 0, 3, 1Þ, ð0, 2, 0, 2Þ and ð0, 0, 0, 4Þ: Some examples of
unfeasible allocations for n¼ 4 are ð1, 0, 1, 2Þ, since if u1 ¼ 1, u2 ¼ 0, then
u3 must be 0 or 2, ð1, 0, 0, 2Þ, since if u1 ¼ 1, u2 ¼ 0, and u3 ¼ 0, then u4
must be 3, and ð0, 0, 2, 2Þ, since if u1 ¼ 0, u2 ¼ 0, then u3 must be 0 or 3.
See Figure 2 for an example of both a feasible and an unfeasible allocation
in terms of Dyck paths. For every Dyck path u 2 UN there exists J ¼
J ðuÞ � f1, :::,Ng such that Eq. (7) simply reads

�PðuÞ ¼
Y
j2J

q
uj
j

Y
k2Jc

ð1� qkÞ, (8)

where J c :¼ f1, :::,Ng n J : Here the set J represents the phases where
the Dyck path jumps to the right and hits the diagonal. The set J c then
represents the phases where the Dyck path jumps up without jumping to
the right. Conditioning on the phase in which the path first jumps to the
right, it can be shown that j Unj ¼ 2n�1 for 1 � n � N: In order to state
our main result, we need an additional definition. For any n 2 N and any
vector a ¼ ða1, :::, anÞ 2 ðRþÞn, we define M ¼ MðaÞ to be the number of
entries of the vector a that are not equal to one, i.e.,

M ¼ MðaÞ :¼
Xn
i¼1

1fai 6¼ 1g, (9)

and by jð1Þ<jð2Þ<:::<jðMÞ the ordered indices corresponding to those entries
of a. For notational convenience, we also define jð0Þ :¼ 1 � jð1Þ and jðMþ1Þ :
¼ n � jðMÞ, so that

a ¼ ðajð0Þ , 1, :::, 1, ajð1Þ , 1, :::, 1, ajðM�1Þ , 1, :::, 1, ajðMÞ , 1, :::, 1, ajðMþ1ÞÞ:
We then introduce the function bn : ðRþÞn ! R,

bnðaÞ :¼ ð�1ÞM�1
YM
m¼0

Yjðmþ1Þ�1

k¼jðmÞ

kk
kk � kjðmþ1Þ

, a 2 ðRþÞn: (10)

Note that plugging in kn ¼ kðN�nÞ we get

bnðaÞ ¼ ð�1ÞM�1
YM
m¼0

N�jðmÞ
jðmþ1Þ�jðmÞ

� �
: (11)

Note that bð�Þ takes both positive and negative values. We can now state
our main result.

Theorem 2.1. The probability that exactly i customers are served in the first
busy period of the DðiÞ=G=1 queue or, equivalently, the probability that the
corresponding Dyck path hits the diagonal for the first time in (i, i) is
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given by

P ðS ¼ iÞ ¼ si ¼
X

ðu1, u2, :::, uiÞ2U i

biðqu11 , qu22 , :::, quii Þqu11 qu22 � � � quii , (12)

where bið�Þ is given in Eq. (10).
From a combinatorial perspective, si may be interpreted as the sum of

the weights of all those Dyck paths of order i that do not hit the diagonal,
which are in bijection with Dyck paths of order i� 1. Then, equation (12)
may be interpreted as a decomposition of the sum of weighted Dyck paths
of order i� 1 in terms of only those weighted Dyck paths that are associ-
ated with feasible allocations in U i (the right-hand side). The term bð�Þ
then represents the contribution of the upward jumps to the total weight of
the path u ¼ ðu1, :::, uiÞ: The weight of each edge of the path depends on
the phase where it is located, hence to compute the total weight of the path
it is crucial to keep track of the location of the rightward jumps. This is
accomplished by the indices jð1Þ, :::, jðMÞ associated to the Dyck path u. In
particular, between the jðmÞ-th phase and the jðmþ1Þ-th phase, u only makes
upward jumps. With this in mind, M represents the total number of excur-
sions above the diagonal that u makes.
Let us briefly make explicit the dependence of si on the initial number of

customers N as sðNÞ
i : Then, conditionally on S¼ n, the probability that i

customers are served in the second busy period is sðN�nÞ
i and, hence,

Theorem 2.1 gives the joint distribution of the number of customers served
in all busy periods.

3. The number of customers in the first busy period

We prove Theorem 2.1 in two steps. First, in Subsection 3.1 we define a
generating function PjðzÞ associated to phase j and derive a relation
between PjðzÞ and Pj�1ðzÞ: The probabilities si are obtained by evaluating
Pnð�zÞ in a specific point �z ¼ �zðnÞ, yielding a recursive relation for
s1, :::, sN: Then, in Subsection 3.2 we interpret this recursive relation as a
linear system As ¼ b, where s ¼ ðs1, :::, sNÞ and A is a lower-triangular
matrix. By calculating the inverse A�1 explicitly, we finally obtain the
expression for the probabilities s ¼ ðs1, :::, sNÞ as stated in Eq. (12).

3.1. Developing a recursion

We begin by introducing some notation. For every subset A(S, the hitting
time HA is the random variable

HA :¼ infft � 0 : YðtÞ 2 Ag, (13)

which describes the first time that the process fYðtÞgt�0 started at (0, 0)
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enters the subset A: When x 2 S is a singleton, Hx should be understood
as Hfxg:
Let pnðiÞ be the probability that the continuous-time Markov chain

fYðtÞgt�0 first visits phase n hitting state (i, n) and without previously vis-
iting D0, i.e.,

pnðiÞ :¼ P ðHPn<HD0 , XðHPnÞ ¼ ði, nÞÞ, 0 � i � n, 1 � n � N: (14)

Note that pnðn�1Þ ¼ pnðnÞ ¼ 0 for 2 � n � N: Define the generating
function of the sequence ðpnðiÞÞn�2

i¼0 as

PnðzÞ :¼
Xn�2

i¼0

pnðiÞzi, z 2 C, 2 � n � N: (15)

For notational convenience, we also define P1ðzÞ :¼ 1: Clearly, if N¼ 1,
then s1 ¼ 1, hence from now on we will focus on N> 1. The strong
Markov property implies that s1 ¼ q1, and furthermore

sn ¼
Xn�2

i¼0

pnðiÞqn�i
n ¼ qnnPnðq�1

n Þ, 2 � n � N, (16)

where qn is defined in Eq. (5). Note that Eq. (16) implies sN ¼ PNð1Þ:
Equation (16) is the crucial relation that allows us to obtain a recursive

expression for the probabilities ðsnÞNn¼1 starting from a recursive expression

for the generating functions ðPnð�ÞÞNn¼1:

Finally, let GpðzÞ denote the probability generating function of a geomet-
ric random variable with support f0, 1, :::g and success probability 1�p,
i.e.,

GpðzÞ :¼ 1�p
1� pz

, jzj< 1
p
: (17)

We are now ready to state our first result.

Lemma 3.1. For any choice of positive transition probabilities ðqjÞNj¼1, the
generating functions satisfy the recursion

Pnþ1ðzÞ ¼ GqnðzÞ PnðzÞ�snz
n½ �, 1 � n � N�1: (18)

In particular,

Pnþ1ðzÞ ¼
Yn
i¼1

GqiðzÞ�
Xn
i¼1

siz
i
Yn
j¼i

GqjðzÞ, jzj< 1
qn

: (19)

Proof. We start by expressing Pnþ1ðzÞ in terms of PnðzÞ: From the strong
Markov property at time HPn we can write
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pnþ1ðiÞ ¼
Xi
j¼0

pnðjÞqi�j
n ð1�qnÞ, 0 � i � n�2, (20)

pnþ1ðn�1Þ ¼
Xn�2

j¼0

pnðjÞqn�1�j
n ð1�qnÞ: (21)

Multiply both sides of Eq. (20) by zi and sum over all i with 0 � i �
n�2 and multiply both sides of Eq. (21) by zn�1: Sum the two resulting
expressions to get

Pnþ1ðzÞ ¼
Xn�2

i¼0

Xi
j¼0

pnðjÞqi�j
n ð1�qnÞzi þ

Xn�2

j¼0

pnðjÞqn�1�j
n ð1�qnÞzn�1: (22)

Switch the order of the double summation to obtain

Pnþ1ðzÞ ¼ ð1�qnÞ
Xn�2

j¼0

pnðjÞ
Xn�2

i¼j

qi�j
n zi þ

Xn�2

j¼0

pnðjÞqn�1�j
n zn�1

2
4

3
5

¼ ð1�qnÞ
Xn�2

j¼0

pnðjÞ
Xn�2�j

k¼0

qknz
jþk þ

Xn�2

j¼0

pnðjÞqn�1�j
n zn�1

2
4

3
5:

(23)

The summation over k is a geometric sum. Performing this summation
and rewriting yields the recursive expression

Pnþ1ðzÞ ¼ ð1�qnÞ
Xn�2

j¼0

pnðjÞ z
j�qn�1�j

n zn�1

1� qnz
þ
Xn�2

j¼0

pnðjÞqn�1�j
n zn�1

2
4

3
5

¼ 1�qn
1� qnz

Xn�2

j¼0

pnðjÞzj�znqnn
Xn�2

j¼0

pnðjÞq�j
n

2
4

3
5

¼ GqnðzÞ PnðzÞ�snz
n½ �:

(24)

To prove the explicit expression Eq. (19) we iterate the recursion Eq.
(24), obtaining

Pnþ1ðzÞ ¼ P2ðzÞ
Yn
i¼2

GqiðzÞ�
Xn
i¼2

siz
i
Yn
j¼i

GqjðzÞ, (25)

which we can further simplify by noting that

P2ðzÞ ¼ p2ð0Þ ¼ 1�q1 ¼ ð1�q1zÞGq1ðzÞ: (26)

Since s1 ¼ q1, we finally obtain Eq. (19).
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Note that for the DðiÞ=G=1 queue we have q�1
i ¼ ðlþ kiÞ=l>ðlþ

kjÞ=l ¼ q�1
j for any i< j. Therefore, Gqiðq�1

n Þ is well defined for all i< n.

In the proof of Lemma 3.1 we did not make use of the precise expression
of qn, and so Eq. (19) still holds when replacing ki with any sequence of
positive decreasing numbers. Combining Lemma 3.1 with Eq. (16) allows
us to obtain a recursive expression for sn. We first present the expression
for sn for a general decreasing sequence ðknÞNn¼1, and then the one obtained
when setting kn ¼ kðN�nÞ: We adopt the convention that the empty sumP0

i¼1ð�Þ ¼ 0 and the empty product
Q0

i¼1ð�Þ ¼ 1:

Corollary 3.2. Assume ðknÞNn¼1 is a sequence such that k1>:::>kN�1>
kN ¼ 0. Then,

sn ¼ qnn
Yn�1

k¼1

kk
kk � kn

�
Xn�1

i¼1

siq
n�i
n

Yn�1

k¼i

kk
kk � kn

, 2 � n � N, (27)

with initial term s1 ¼ q1. In particular, when kn ¼ kðN�nÞ, the probabilities
sn satisfy the recursion

sn ¼ qnn
N�1
n�1

� �
�
Xn�1

i¼1

siq
n�i
n

N�i
n�i

� �
, (28)

with initial term s1 ¼ q1:

Proof. Combining the result of Lemma 3.1 with Eq. (16) yields the follow-
ing recursion, for 2 � n � N�1,

sn ¼ qnn
Yn�1

i¼1

Gqiðq�1
n Þ�

Xn�1

i¼1

siq
n�i
n

Yn�1

j¼i

Gqjðq�1
n Þ, sN ¼ 1�

XN�1

i¼1

si: (29)

Note that, by our assumption on the sequence ðknÞNn¼1, we have
q�1
1 > � � �>q�1

N ¼ 1: Therefore, Gqiðq�1
n Þ is well defined for all i< n. The

first expression Eq. (27) follows from

Gqkðq�1
n Þ ¼ 1�qk

1� qk
qn

¼
1� l

lþkk

1� lþkn
lþkk

¼ kk
kk � kn

: (30)

Moreover, when kn ¼ kðN�nÞ we get

Yn�1

k¼l

Gqkðq�1
n Þ ¼

Yn�1

k¼l

N�k
n� k

¼ N�l
n� l

N�l�1
n� l� 1

N�l�2
n� l� 2

� � �N�nþ 1
1

¼ N�l
n�l

� �
,

which proves Eq. (28).
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3.2. Solving the recursion

In this section we solve the recursion Eq. (27) to find an explicit expression
for sn. Recall that for n ¼ 1, 2, :::,N,

sn ¼ qnn
Yn�1

k¼1

kk
kk � kn

�
Xn�1

i¼1

siq
n�i
n

Yn�1

k¼i

kk
kk � kn

, (31)

Divide both sides by qnn and bring all si terms to one side to obtain

Xn
i¼1

si
qin

Yn�1

k¼i

kk
kk � kn

¼
Yn�1

k¼1

kk
kk � kn

: (32)

We can write Eq. (32) in the matrix-vector notation As ¼ b, where we
introduced the column vectors

s :¼ ðsiÞi¼1, 2, :::,N , and b :¼
Yn�1

k¼1

kk
kk � kn

 !
n¼1, 2, :::,N

(33)

and the lower-triangular matrix A with element (n, i) given by

ðAÞn, i :¼
1
qin

Yn�1

k¼i

kk
kk � kn

, 1 � i � n � N: (34)

We can calculate s as s ¼ A�1b: In particular, since A is a lower-triangu-
lar matrix, so is its inverse A�1: Hence, we can determine the inverse using
the well-known recursive formulas

ðA�1Þn, n ¼
1

ðAÞn, n
¼ qnn, n ¼ 1, 2, :::,N, (35)

ðA�1Þn, i ¼ �ðA�1Þi, i
Xn
k¼iþ1

ðA�1Þn, kðAÞk, i, 1 � i<n � N: (36)

This recursion is solved in a specific order. One first determines
ðA�1Þn, n, for n ¼ 1, 2, :::,N, then all ðA�1Þn, n�1, for n ¼ 2, 3, :::,N, fol-
lowed by ðA�1Þn, n�2, for n ¼ 3, 4, :::,N, and so on until finally ðA�1ÞN, 1 is
reached. We exploit this recursion in order to derive an explicit expression
for the elements of the inverse.
To this end, it is useful to work with a slightly more general definition

of the function bð�Þ introduced in Eq. (10). Let Sn :¼
fðk1, :::, knÞ 2 N

n : k1<k2<:::<kng be the set of non-decreasing indices of
length n. Recall that M ¼ MðaÞ is the number of entries of the vector a
that are not equal to one and jð1Þ<jð2Þ<:::<jðMÞ are ordered indices corre-
sponding to those entries. For a vector a 2 ðRþÞn and a vector of indices
k 2 Sn, we define kð0Þ :¼ k1, kð1Þ :¼ kjð1Þ , … , kðMÞ :¼ kjðMÞ , and kðMþ1Þ :¼
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kn: We introduce the function ~bn : ðRþÞn � Sn 7!R that associates to the
vector a ¼ ða1, :::, anÞ and a set of indices k ¼ ðk1, :::, knÞ the scalar ~bnða, kÞ
defined as

~bnða, kÞ :¼ ð�1ÞM�1
YM
m¼0

Ykðmþ1Þ�1

k¼kðmÞ

kk
kk � kkðmþ1Þ

: (37)

Note that bnð�Þ in Eq. (10) is recovered when k ¼ ð1, 2, :::, nÞ, since
bnðaÞ ¼ ~bnða, ð1, 2, :::, nÞÞ: (38)

In order to prove Theorem 2.1, we first obtain an explicit expression for
the inverse coefficient matrix A�1:

Proposition 3.3. Assume that ðknÞNn¼1 is a sequence such that k1>:::>
kN�1>kN ¼ 0. Then, for any i ¼ 1, :::,N and n ¼ 1, 2, :::, i�1 we have

ðA�1Þi, i�n ¼
X

ðu1, u2, :::, unÞ2Un

~bnðqui, n, ki, nÞqi�n
i�nq

u1
i�nþ1q

u2
i�nþ2 � � �quni , (39)

where

qui, n :¼ ðqi�n
i�n, q

u1
i�nþ1:::, q

un
i Þ, (40)

ki, n :¼ ði�n, i�nþ 1, :::, iÞ, (41)

and ~bð�Þ was defined in Eq. (37).

Proof. We proceed by induction, by assuming that Eq. (39) holds for all
m � n for some n 2 f1, :::, i�1g and then proving it for nþ 1. We use Eq.
(36) together with Eq. (34) to obtain

ðA�1Þi, i�ðnþ1Þ ¼ �qi�ðnþ1Þ
i�ðnþ1Þ

Xi
k¼i�n

ðA�1Þi, kðAÞk, i�n�1

¼ �qi�ðnþ1Þ
i�ðnþ1Þ

Xn
j¼0

ðA�1Þi, i�jðAÞi�j, i�n�1

¼ �qi�ðnþ1Þ
i�ðnþ1Þ

Xn
j¼0

ðA�1Þi, i�j
1

qi�ðnþ1Þ
i�j

Yi�j�1

k¼i�ðnþ1Þ

kk
kk � ki�j

:

(42)

In the last equality we highlight the inductive structure in the product
term. To avoid encumbering the computations, let us denote the product
in Eq. (42) as

Bi, j, n :¼ �
Yi�j�1

k¼i�ðnþ1Þ

kk
kk � ki�j

: (43)
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Inserting the expression for ðA�1Þi, i�j into Eq. (42) gives

qi�ðnþ1Þ
i�ðnþ1Þ

Xn
j¼0

ðA�1Þi, i�j
1

qi�n�1
i�j

Bi, j, n

¼ qi�ðnþ1Þ
i�ðnþ1Þ

Xn
j¼0

X
ðu1, :::, ujÞ2U j

qi�j
i�jq

u1
i�jþ1:::q

uj
i
~bjðqui, j, ki, jÞ

1
qi�n�1
i�j

Bi, j, n

¼
Xn
j¼0

X
ðu1, :::, ujÞ2U j

qi�ðnþ1Þ
i�ðnþ1Þq

nþ1�j
i�j qu1i�jþ1:::q

uj
i
~bjðqui, j, ki, jÞBi, j, n,

(44)

where, recall,

qui, j ¼ ðqi�j
i�j, q

u1
i�jþ1:::, q

uj
i Þ: (45)

Now, observe that ðnþ 1�jÞ þ u1 þ :::þ uj ¼ nþ 1: Crucially, we also
have thatXn

j¼0

X
ðu1, :::, ujÞ2U j

qi�ðnþ1Þ
i�ðnþ1Þq

nþ1�j
i�j qu1i�jþ1:::q

uj
i
~bjðqui, j, ki, jÞBi, j, n

¼
X

ðv1, :::, vnþ1Þ2Unþ1

qi�ðnþ1Þ
i�ðnþ1Þq

v1
i�n:::q

vnþ1
i

~bnþ1ðqvi, ðnþ1Þ, ki, nþ1Þ,
(46)

with

qvi, ðnþ1Þ :¼ ðqi�ðnþ1Þ
i�ðnþ1Þ, q

v1
i�n, :::, q

vnþ1
i Þ

ki, nþ1 :¼ ði�ðnþ 1Þ, i�n, :::, iÞ:
Indeed, the left-hand side of Eq. (46) corresponds to the feasible assign-
ment in which the first jump to the right occurs at phase i�ðnþ 1Þ, which
is necessarily of length i�ðnþ 1Þ: Then, for any fixed j ¼ 0, :::, n, the next
jump to the right occurs at phase i – j, which is necessarily of length nþ
1�j: A sum is then performed over the remaining feasible assignments.
Summing over all possible j ¼ 0, :::, n on the left-hand side of Eq. (46), one
obtains a sum over all feasible assignments such that the first jump to the
right occurs at phase i�ðnþ 1Þ, which is the sum on the right-hand side

of Eq. (46). Furthermore, for the vector qi, nþ1, j :¼ ðqi�ðnþ1Þ
i�ðnþ1Þ,

qnþ1�j
i�j , qu1i�jþ1, :::, q

uj
i Þ and the indices ki, nþ1, j :¼ ði�ðnþ 1Þ, i�j, i�jþ

1, :::, iÞ, we have that kð0Þ ¼ kð1Þ ¼ i�ðnþ 1Þ and kð2Þ ¼ i�j, so that

Bi, j, n ¼ �
Yði�jÞ�1

k¼i�ðnþ1Þ

kk
kk � ki�j

¼ �
Ykð2Þ�1

k¼kð1Þ

kk
kk � kkð2Þ

: (47)
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It follows that

~bjðqui, j, ki, jÞBi, j, n ¼ ~bjþ1ðqi, nþ1, j, ki, nþ1, jÞ: (48)

Figure 3 illustrates this decomposition in terms of Dyck paths.

We can finally prove Theorem 2.1 by applying Proposition 3.3 to invert
the matrix A.

Proof of Theorem 2.1. Writing s ¼ A�1b explicitly yields

si ¼
Xi�1

n¼0

ðA�1Þi, i�n

Yi�n�1

k¼1

kk
kk � ki�n

: (49)

Plugging Eq. (39) into Eq. (49), using the same inductive argument as in
Eq. (46) and noting that

Yi�n�1

k¼1

kk
kk � ki�n

¼
Ykð1Þ�1

k¼kð0Þ

kk
kk � ki�n

, (50)

gives

si ¼
X

ðu1, u2, :::, uiÞ2U i

qu11 q
u2
2 � � � quii ~biððqu11 , qu22 , :::, quii Þ, ð1, 2:::, iÞÞ, (51)

concluding the proof.

Figure 3. On the left-hand side of the inductive step Eq. (46), the first right jump of the Dyck
path occurs at phase i�ðnþ 1Þ, and the first jump after that occurs at phase i – j. Summing
over j ¼ 0, :::, n, one obtains all paths that jump to the right for the first time at phase i�ðnþ
1Þ, which is the right-hand side of Eq. (46).
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