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ABSTRACT Rainfall induced landslide is one of the main geological hazard in Italy and in the world. Each 

year it causes fatalities, casualties and economic and social losses on large populated areas. Accurate short-

term predictions of landslides can be extremely important and useful, in order to both provide local authorities 

with efficient prediction/early warning and increase the resilience to manage emergencies. There is an 

extensive literature addressing the problem of computing landslide susceptibility maps (which is a 

classification problem exploiting a large range of static features) and only few on actual short terms 

predictions (spatial and temporal). The short-term prediction models are still empirical and obtain 

unsatisfactory results, also in the identification of the predictors. The new aspects addressed in this paper are: 

(i) a short-term prediction model (1 day in advance) of landslide based on machine learning, (ii) real time 

features as good predictors. The introduction of explainable artificial intelligence techniques allowed to 

understand global and local feature relevance. In order to find the best prediction model, a number of machine 

learning solutions have been implemented and assessed. The models obtained overcome those of the 

literature. The validation has been performed in the context of the Metropolitan City of Florence, data from 

2013 to 2019. The method based on XGBoost achieved best results, demonstrating that it is the most reliable 

and robust against false alarms. Finally, we applied explainable artificial intelligence techniques locally and 

globally to derive a deep understand of the predictive model’s outputs and features’ relevance, and 

relationships. The analysis allowed us to identify the best feature for short term predictions and their impact 

in the local cases and global prediction model. Solutions have been implemented on Snap4City.org 

infrastructure.  

INDEX TERMS landslide prediction, machine-learning, explainable artificial intelligence, snap4city

I. INTRODUCTION 

Landslides are increasingly frequent geologic events which 
may involve rural areas, as well as cities and impact on 
largely populated areas. These phenomena are responsible 
each year of several losses and casualties; according to [1], 
from 2004 to 2016, 55997 people were killed in 4862 non 
seismic landslide events worldwide, with a major incidence 
in Central America, Caribbean islands, South America, along 
the Andes mountain chain, Asia, East Africa, Turkey and the 
Alps in Europe. The same authors identified rainfall as the 
main the triggering factor of 79% of non-seismic landslides. 
Italy is the European country most affected by landslides, 
with about 2/3 of know landslide in Europe [2]; in fact, over 
620’000 known landslides, covering almost 24’000 km2 

(7.9% of the whole national territory), are present, according 
to the Italian landslide inventory [3]. From 1971 to 2020, 
1079 fatalities have been caused by landslides in Italy, along 
with 1416 casualties and over 146’000 evacuated and 
homeless [4]. Tuscany is an Italian region highly affected by 
landslides, since about 91700 landslides are present [5], 
covering 2107 km2 (9% of the territory). The province of 
Florence, due to its geological setting, mainly made of clay-
sandy deposits and its morphology, made of alternating valley 

and hills, is quite susceptible to landslide. These phenomena 
pose a real risk for the population and one of the possible 
solutions for its reduction is the setting up of early warning 
systems. Typically, "wake-up call" and early warning 
systems are setup to inform the population about the 
occurrence of landslides in quasi real time. Short term 
predictions, ranging from a few hours to one/two days, could 
save a relevant number of people. Thus, the short-term 
prediction of landslide events could be a very powerful tool 
in the hands of authorities to organize evacuations and 
manage an emergency since its inception, thus preventing 
human injuries due to such catastrophic events.  

The most common approaches rely on statistical or 
empirical approaches mixing static information describing 
the terrain with real time data computed on the basis of recent 
days. In particular, as to rainfall induced landslides, in [6] and 
[7] authors highlighted the correlation of the amount of 
rainfall in the days preceding the landslide event (from 3 to 
245 days), by means of statistical analysis [6], [7], while other 
scholars used the empirical method of rainfall thresholds to 
identify rain conditions associated with such landslide 
triggering [8], [9]. Machine learning approaches are widely 
used in landslide hazard mapping [10] which can be regarded 

https://www.disit.org/
https://www.snap4city.org/
https://www.dst.unifi.it/
mailto:paolo.nesi@unifi.it
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as a classification rather than a prediction tools. Those 
approaches produce landslide susceptibility maps – to 
identify areas that could experience a landslide in the future. 
This kind of maps can be useful for long term land usage 
planning, but not for early warning purposes, since they do 
not give any information about the possible time of 
occurrence of the event.  

At the state of the art, there are very few examples about 
the use of machine learning for short term forecast landslide 
occurrence [11]. In landslide events, the triggering is caused 
by the loss of cohesion in the soil, due to its saturation from 
rainwater or from the raising of groundwater level. This 
reduction of cohesion leads to the reduction of the shear stress 
of the slope, therefore restraining the factor of safety. In fact, 
in [11], the main factors analyzed were precipitation duration, 
mean intensity, and total volume (cumulated rainfall), 
obtaining with  machine learning a TSS (true skill statistic) of 
0.59. On such reasons the groundwater level (which is, in 
turn, influenced by rainfalls, in just previous days) is an 
important factor in the occurrence of landsides, as also 
remarked into the review of the state of the art reported [12].  

Other relevant factors in terrain slope stability are the type 
of vegetation and soil, the slope of the topographic surface, 
profile curvature, distance from rivers, altitude, and soil 
landslide critic level (as assessed by experts). They are 
factors, change slowly over time, and may influence the 
stagnation level of rainwater in the soil [13]. Therefore, they 
influence somehow the consistency of the soil, and thus the 
groundwater level is an important factor correlated with the 
land instability and the occurrence of landslide events [9]. In 
many research works, field data have been the starting point 
for computing predictions, taking into account databases of 
registered geological and natural events (e.g., earthquakes, 
landslides, floods, river or lakes overflows) as reference event 
values. In most cases, events have been catalogued by experts 
according to their severity, depth, size, and persistence over 
time, and they are typically collected from blogs (RSS, etc.) 
or web pages [14], [15], recommendation systems of alert 
(e.g., like the ones from Civil Protection, national institutes of 
geophysics, etc.), sensor networks, statistical data and annual 
reports, etc., [16]. Moreover, current studies on landslide 
identification are based on optical images using pixel-based 
or object-oriented methods, and the digital terrain model 
(DTM) is combined with optical images and digital elevation 
model (DEM) derivatives to identify translational landslide 
scars using object-oriented methods [17], [18]. 

The creation of accurate forecasting models useful for 
early warning activities may be grounded on a wide range of 
data provided by different (static and real time) sources. Thus, 
taking into account recent events and the short-term 
conditions. This is one of the major differences with respect 
to the solutions which are computing susceptibility maps. The 
data aggregation implies to manage a variety of: licenses, 
protocols, standards, tools and formats. Thus, a multitude of 
historical and real-time data must be analyzed, so the data size 
and their processing speed are considerable. When it comes 
to the combination of these aspects, we can consider to be in 
the context of Big Data, for volume, variety, velocity, 
veracity, and value of data. Moreover, with the aim of 
producing predictions in a data driven approach, many 

different machine learning and deep learning algorithms have 
been applied in a variety of use cases: Logistic regression 
(LR), Support Vector Machine (SVM), Random forest (RF), 
Boosting, Convolutional Neural Network (CNN), as stated in 
[14], [17], [19], [20] [21]. The SIGMA algorithm, which was 
firstly developed in Emilia Romagna Region [6] and then 
tested in India [22], is a landslide early warning model based 
on the analysis of the probability related to exceedance of 
defined rainfall amounts. The latter has been also used and 
calibrated in our study area, which is the Province of Florence 
and then compared with some machine learning algorithms. 

A. Related Words 

The problem of computing landslide susceptibility and risk 
maps, displacements, and short-term predictions has been 
addressed through different approaches and this section 
presents the state-of-the-art of Artificial Intelligence 
solutions, as summarized in Table I. The main goal of the 
paper is on short term prediction for early warning, while the 
related works addressing similar problems could be useful to 
identify the features and context. In the context of this paper, 
the keyword susceptibility is used to describe the production 
of maps providing the proneness of the terrain to sliding 
which can be regarded as long-term prediction, which is a 
different goal.  
 Nam and Wang in [23] used Stacked Autoencoders 
combined with RF for the landslide susceptibility assessment. 
The areas of study were in Oda and Gotsu Cities in the 
Shimane Prefecture, in Japan, where 90 landslides occurred 
due to extreme precipitation from May to October 2013. The 
data used refer to the Digital Elevation Model (DEM), remote 
sensing and geological factors, all static variables. 
Researchers compared SVM, Stacked AutoEncoders (St-
AE), Sparse Autoencoders (Sp-AE), and RF classifiers. As a 
result, they identified the best solution combining St-AE with 
RF, obtaining a True Positive Rate (TPR) of 0.93.  
 The Autoencoders have been also used by Huang et al., to 
predict the landslide susceptibility in the Sinan Country of 
Guizhou Province in China [24]. In that case, 306 landslide 
events were registered from the 1980s to 2010s. The data 
sources for the landslide predictions regarded 27 
environmental static factors considering: topographic, 
geological, hydrological, and land covers features. The tested 
solutions were: SVN, Backpropagation Neural Network 
(BPNN), and Fully Connected Sparse Autoencoder (FC-
SAE). The reported validation metrics have been the True 
Positives (TP), True Negatives (TN), False Positives (FP), 
False Negatives (FN), Positive Predictive (classification) 
Rate (PPR), Negative Predictive (classification) Rate (NPR), 
Accuracy. The FC-SAE architecture achieved its best results 
with an Accuracy of 85.2%, compared to 81.56% for the SVN 
and 80.86% for the BPNN. 
 Pham et al., in [25], used a Machine Learning (ML) 
technique for landslide susceptibility analysis, the CNN with 
a specific optimization algorithm for parameters selection. 
The study area of Lai Chau is a mountainous province of 
Vietnam, the dataset consisted in 2374 points of landslides 
and randomly selected non landslides with 12 area features 
(Elevation, Aspect, Slope, Stream   Power   Index (SPI),  
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TABLE I RELATED WORKS, DIFFERENT APPROACHES ANALYSING LANDSLIDES 

Authors Landslid

e Target 

Features Dataset Model Results 

Nam and 
Wang, 2020 

[23] 

susceptibi
lity 

Altitude, Slope, Plan curvature, Distance to stream, 
SPI (Stream Power Index), TWI (Topographic 

Wetness Index), NDVI (Normalized Difference 

Vegetation Index), NDWI (Normalized Difference 
Water Index), Rainfall, Distance to road, Geological 

age, Lithology 

Oda City and 
Gotsu City in 

Shimane 

Prefecture 
Japan 

Stacked AE 
combined with 

RF 

St-AE + RF 

TPR 93.2% 
 

Huang et 
al., 2020 

[24] 

susceptibi
lity 

Elevation, Aspect, Plan Curvature, Surface 
roughness, Surface cutting depth, Slope Form, 

Geomorphic map, Total surface radiation, Surface 

temperature, Average annual rainfall, Topographic 
wetness index, Distance to river, MNDWI (modified 

normalized difference water index), Population 

density, Land use types, Distance to road, BSI (bare 

land soil index), NDBI ( normalized difference 

building index )  

Sinan Country 
of Guizhou 

Province in 

China 

fully connected 
sparse AE  

FC-SAE 

True pos 6177 

True neg 5677 

False pos 1279 

False neg 780 

PPR  82.85% 

NPR  87.92% 

Accuracy 85.20% 
 

Pham et al., 
2020 [25] 

susceptibi
lity 

DEM, Aspect, Slope, CTI , SPI , Curvature, NDVI, 
NDWI, NDBI, Distance to river, River density, 

cumulative rain for 4 months, Historical landslides 

occurrences,  
  

Lai Chau 
province of 

Vietnam 

CNN  with 
Optim.Moth 

Flame 

Algorithm 

CNN-FMO 

RMSE 0.3685 

MAE 0.2888 

AUC 0.889 

OA 80.11% 
 

Pei, Meng 

and Zhu, 
2021 [26] 

displace

ment 

Water Level, Velocity of the water, Precipitation, 

Periodic Displacement 

Three Gorges 

Reservoir area 

CNN CNN 

RMSE/mm 9.97 

MAE/mm 8.29 
 

Karunanaya
ke et al., 

2019 [27] 

predictio
n of 

riskiness 

Overburden 
Land use 

Slope 

Rainfall 

Badulla and 
Nuwara Eliya 

districts, Sri 

Lanka 

RF  RF 

TPR 98.15% 
 

Cheng et 
al., 2021  

[28] 

susceptibi
lity 

LULC (land-use/land-cover) types, Recharge of 
ground water, Distance to the bank of rivers, 

Distance to old landslides, Distance to dip slope, 

Geological line density, Distance to roads, River 
density, Aspect, Slope, NDVI, Wetness 

Tsengwen 
River 

Watershed, 

Central 
Taiwan 

RF RF 

OA 99.7

% 

Kappa 
Coefficient 

0.99 

 

Wang et al., 

2021 [29] 

stability Slope, Elevation, Curvature, Aspect Santai County XGBoost  

Accuracy 0.89 

Recall 0.94 
 

Ngo et al., 

2021 [30] 

susceptibi

lity 

Altitude, slope degree, profile curvature, distance to 

river, aspect, plan curvature, distance to road, 

distance to fault, rainfall, geology and land-use 

Iran RNN, and  

(CNN) 
AUC 0.88 

MSE 0.007 

RMSE 0.083 
 

Thai Pham, 
Binh, et al., 

2019 [31] 

 

susceptibi
lity 

LCF (Landslide Conditioning Factors), Overburden 
Depth, Land Cover, Geomorphology, Distance to 

Rivers, Distance to Roads, Curvature, Aspect, 

Slope, Valley Depth, SFM (Slope Forming Material) 

Uttarakhand, 
India 

ADtree, 
BAADT, 

RSADT, 

RFADT 

Recall 0.717 

FPrate 0.285 

Precision 0.771 
Kappa 0.433 
RMSE 0.397 
AUC 0.931 

 

Tien Bui, 

Dieu, et al., 
2019 [32]  

Susceptib

ility 

LS (European Slope length and Steepness factor), 

SPI (Stream power index), TPI (topographic 
position index), TWI (topographic water index), TRI 

(topographic roughness index), Land use, Lithology, 

Average Annual precipitation, Altitude, Slope, 
Aspect, General curvature, Plan curvature, 

Longitudinal curvature, Tangential curvature, 
distance to stream, distance to road, distance to fault 

Sarkhoon 

watershed, 
Iran 

ABSGD, SGD, 

LR, LMT, FT 

ABSGD 

Accuracy 0.776 

Sensitivity 0.833 

Specificity 0.835 

RMSE 0.411 

RMSE 0.861 
 

Zhang, 

Tingyu, et 

al., 2018 
[33] 

susceptibi

lity 

Aspect, Slope, Altitude, Lithology, Mean Annual 

Precipitation, Distance to roads, Distance to rivers, 

Distance to faults, Land use, NDVI 

Fugu County 

of Shaanxi 

Province, 
China 

IOE (Index of 

Entropy 

method), (LR)-
IOE, (SVM)-

IOE 

(LR)-IOE 

AUC 0.8184 
 

Abraham et 
al., 2021 

[22] 

predictio
n 

Rainfall data Idukki, India SIGMA Accuracy 79.31% 

Sensitivity 0.88 

Specificity 0.79 

Likelihood 

Ratio 

5.62% 
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Compound Topographic Index (CTI), Curvature, NDWI, 
NDVI, Normalized difference build-up index NDBI, 
Distance to river, River Density, Precipitation in long term).  
 
The exploited assessment metrics have been the Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), Area 
under Receiver Operating Characteristics (AUC), Overall 
Accuracy (OA). The proposed CNN architecture achieved 
better results compared to Random Subspace, RF and CNN 
using conventional Adagrad optimizer, with OA of 80.105%. 
 The CNN architecture has been also used by Pei et al., in 
[26]. Their study focused on the influence between time-
varying trigger factors and the periodic landslide 
displacement. The specific area of this study is in Zigui, 
Hubei Province, China. In order to find the best solution for 
landslide displacement, researchers compared the 1-D CNN 
with the SVR. They stated that the 1-D CNN yields to more 
precise predictions, due to its feature extraction ability, and 
indeed the results in terms of RMSE/mm and MAE/mm are 
9.97 and 8.29, respectively, compared to the 15.35 and 11.14 
obtained by the SVR.  

In the case study of Karunanayake et al., [27], for the 
prediction of landslides riskiness, the implemented ensemble 
learning techniques (RF) achieved better results compared to 
deep learning techniques. The work is based on the Badulla 
and the Nuwara Eliya districts in Sri Lanka. The dataset is 
made up of 81 landslides registered in each district, including 
measurements of the current weather and most significant and 
dynamic geographical conditions of that particular area. As 
evaluation metric researchers chose the TPR. The RF 
technique achieved better results compared to the DNN (Deep 
neural network) with a TPR on the test set of Badulla district 
of 96.29%, compared to the 92.59% obtained by the DNN, 
and a TPR of 100% for the Nuwara Eliya district, whereas the 
DNN correctly classified 26 out of 27 landslides. According 
to the above summarized TPR percentages, decision tree 
models outperformed the neural network models. 

The ensemble learning techniques have been also used in 
the work of Chen et al., [28] for computing of landslide 
probability in long term (susceptibility map), for the area of 
Tsengwen River Watershed, Central Taiwan. Using optimal 
hydrological, geological, and topographical variables the RF 
technique achieved an overall Accuracy of 99,7%. 
Researchers stated that, despite different resolutions between 
ground reference and susceptibility maps that could 
determine an exaggeration in the landslide mapping accuracy, 
the used methods could provide reliable spatial and 
quantitative information on landslides. 
 Wang et al., in [29] compared the SVM Classifier, RF, 
and the XGBoost for the classification of landslide stability. 
Researchers used the topographic features extracted by the 
DEM elevation, slope, aspect, curvature and shape. The best 
classification technique turned out to be the XGBoost, 
providing an Accuracy of 89% and a Recall of 94%, 
outperforming the RF (which obtained an Accuracy of 88% 
and Recall of 91%) and the SVM (which achieved an 
Accuracy of 76% and Recall of 86%). 
 Thai Pham, Binh, et al., in their research study [31] 
assessed the problem of landslide susceptibility in 
Uttarakhand, India using a Hybrid Machine Learning 

Algorithm made of three meta-classifiers Bagging (BA), 
Random Subspace (RS) and RF combined with ADTree as a 
weak base classifier. The RF-ADtree was the best hybrid 
model based on the results of the paper achieving an AUC of 
0.931. 
 Also Tien Bui, Dieu, et al. in [32] used a hybrid machine 
learning approach but applied to the problem of Shallow 
Landslides Prediction (which is a susceptibility map 
estimation as claimed by the authors in the conclusions). The 
method developed was a combination of a functional 
algorithm, stochastic gradient descent (SGD) and an 
AdaBoost Meta classifier. The researcher used 20 landslide 
conditioning factors to produce a reliable landslide 
susceptibility map for the Sarkhoon watershed in Iran. 
 The objective of producing reliable susceptibility maps 
for the Fugu County of Shaanxi Province, China was 
assessed by Zhang, Tingyu, et al., in [33]. They also used a 
hybrid integration approach but with the Index of Entropy 
(IOE), Logistic Regression (LR) and SVM. The LR-IOE 
model is the one with the highest accuracy of precisely 
0.9011, it takes into account about rain by means of the 
annual average. 
 The SIGMA model has been used by Abraham et al., [22] 
in order to compute landslide predictions in the area of study 
of the Idukki district in India. Researchers used rainfall data 
and divided the district of study into 4 reference areas 
according to the topographic variability and location of rain 
gauges. The dataset used covers the years from 2009 to 2018 
and the last one has been used to validate the SIGMA model. 
The model obtained a 79.31% mean Accuracy over the four 
areas.   

B. Paper scope and structure 

There is a large literature on landslide for susceptibility 
analysis, displacement, risk and prediction assessment, and 
most recent solutions are adopting machine learning and deep 
learning approaches. Susceptibility maps can be regarded as 
long terms predictions (proneness) providing a spatial map 
about probability of sliding. The estimation of susceptibility 
maps is performed on the basis of a number of static and quasi 
static variables describing the soil, terrain etc., and in some 
cases annual average for rain, etc. The identified features have 
been weather, rain, slope, vegetation, temperature, humidity, 
wind, soil kind, altitude, etc. The addressed machine learning 
techniques are: RF, XGBoost, CNN, and AE. 

In this paper, the problem of computing short term 
predictions of landslide events has been addressed. The 
results can be used for immediate evacuation and early 
warning of population, rather than for planning, which is the 
main use of susceptibility map. The new aspects addressed in 
this paper are: (i) a short-term prediction model (1 day in 
advance) of landslides based on machine learning, which cab 
be used for early warning, (ii) a set of real time features as 
good predictors. Some of them have been also considered by 
the heuristics of the SIGMA predictive model [22]. The 
introduction of explainable artificial intelligence techniques 
allowed to understand and identify global and local feature 
relevance. In order to find the best prediction model a number 
of machine learning solutions has been implemented and 
assessed (e.g., RF as in [28] for susceptibility, XGBoost as in 
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[29] for susceptibility maps, CNN as in [25], [30] for 
susceptibility maps, and AE). These models have been 
trained, validated and compared one another and with the 
SIGMA approach from the literature. 

Solutions have been trained and validated by using data in 
the Metropolitan City of Florence from 2013 to 2019. The 
area is quite prone to landslide events. Thus, producing results 
to explain the approach and the phenomena. The research 
activity (named PC4City, civil protection for the city) has 
been partially funded by Foundation Cassa di Risparmio di 
Firenze and has been developed in collaboration with the 
Department of Earth Science of the University of Florence. 
The solution has been developed exploiting the data available 
in the area and the smart city infrastructure and living lab 
named Snap4City: https://www.snap4city.org  

 The structure of this paper is as follows. Section II 
describes the architecture of PC4City while stressing its 
relationships with the Snap4City framework adopted in the 
area. Section III describes the exploited data and the 
identified and computed features. In Section IV, both adopted 
machine learning techniques and SIGMA model have been 
presented along with their running parameters and metrics for 
result assessment. Section IV.B presents the results of the 
validation phase after training. Section V is focused on the 
local and global explanation of the best results obtained with 
the XGBoost method. Conclusions are drawn in Section VI.  

II. P4CITY ARCHITECTURE 

According to the above reported state of the art, some 
solutions aiming at computing some early warnings have 
been proposed. Early warning systems can be regarded as 24 
hours predictors or early pattern detectors.  
 

 

FIGURE 1. P4CITY Datasets and Solution in the context of Snap4City 
Architecture. 

The complexity in this case is mainly due to the heterogeneity 
of data and the amount of data to be processed in short time.  
The solution presented in this paper is called PC4City, and it 
has been set up by exploiting the Snap4City architecture and 
service, which is in place in the Florence/Tuscany area, as 
well as on other regions in Europe [34], [35]. The Snap4City 
framework (briefly exploited in Figure 1, with its application 
within PC4City project) allows to collect data of any kind, to 
save them into a big data store where they can be queried for 
recovering specific historical data segments. The same 

storage can be used to collect data in real time and to save 
data analytic results. 
 The general workflow included activities of: 

• Data ingestion, historical and real time data to be 

updated, for example rainfall, weather, data coming from 

satellites regarding vegetation, etc.  

• Dataset construction for predictive model training and 

validation. This activity is preparing the dataset for the 

next step where the predictive model is produced and 

validated.  

• Predictive Model training and validation. This activity 

is focused on producing the Predictive Model (Model 

Fit) (for example, based on machine learning or other 

solutions). The produced model is validated in other 

areas to assess its reliability, sensitivity and robustness.  

• Model execution, takes in input both real time data and 

Model Fit to produce predictions which could be 

estimated 24 hours in advance and may be used to inform 

civil protection authorities, municipality, etc. The 

resulting model assesses in real time the probability of 

landslide events as early warning/prediction. 

• Publication of results on specific Dashboards, Mobile 

Apps, etc.  
In PC4City, data ingestion processes, as well as activation of 
data analytics, are performed by using Node-RED processes 
on docker containers. Node-RED flows can exploit the 
platform MicroServices with a specific library of node.js [35]. 
In addition, Data Analytics processes have been developed by 
using Python and/or Rstudio. In the case of PC4City, some 
Node-RED IoT Applications have been developed for data 
ingestion and specific Python processes have been developed 
for implementing the Predictive Model Training and 
validation and for the Model Execution. The IoT App in 
Node-RED governing the Python for Model Fit Execution 
may also decide to send alerts via Telegram, SMS, email. 
Finally, resulting data, as well as previous data, are visually 
presented by using a Dashboard exploiting the Dashboard 
Builder.  
 
III. FEATURE AND DATA PREPARATION 

In order to test and validate our approach we have 
collected a large dataset in Tuscany, in the Florence province 
(also called Metropolitan City Area) from 2013 to the 2019, 
with the aim of developing and validating a solution for the 
early warning and 1-day ahead prediction of landslide events. 
In the observation and analysis area, historical data regarding 
landslide events have registered 341 landslides from 2013 to 
2019 [6]. To each and every landslide event we assigned an 
ID, the date when that landslide occurred, latitude and 
longitude expressed in EPSG:4326. Those points are located 
in their actual coordinates, and for each of them a given 
number of parameters is accessible such as: wideness, 
severity, duration, etc.   

A. Grid definition 

With the aim of computing a prediction / early warning in 
each point of the area, a dense grid of points was defined 
where the prediction could be estimated. The size of the grid 
is a critical aspect, since the prediction should be as much 

https://www.snap4city.org/
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precise as possible, while data would not be accessible with 
high precision and number of points would be prohibitive for 
computation.  

 

FIGURE 2. Grid and landslide events in the Florence Metro Area 
(Tuscany, Italy) from 2013 to 2019. An area in which live 1.5 M inhabitants. 

 
 So that a compromise is needed, the grid size has been 
defined according to the size of the landslide events, at least 
½ to be sure to sample the event. For these reasons, the grid 
has been defined as a compromise (points distance of 1000 
mt in both directions, obtaining 3582 areas, covering the 
whole Florence Metro area of 3514 Km^2, and a little more 
at the borders) as depicted in Figure 2, in which the RED dots 
are the events of landslide registered in 2013-2019. 

     The area presented a large number of landslide events 

having a relevant range of different features in terms of: 

criticism, altitude, slope, vegetation, cumulated rain, type of 

soil, etc. As a result, the set of points in the grid may have a 

set of associated data that would be taken from: sensors (for 

example: rain, temperature, humidity, etc.), geographical 

information systems of the territory, satellite services, and 

from the landslide occurred dataset, too. 

B. Feature selection 

The features in each area segment of the grid have been 

selected by analyzing the state of the art in studying 

landslides and from specific authoritative providers in the 

area. This allowed us to identify a number of possible 

features that may influence (and/or may be used as short-

term predictors of) landslide events, and also taking into 

account terrain features as identified by long terms 

susceptibility analysis. One of the most relevant features that 

influences the landslides is the soil water content. These 

aspects can be directly measured with sensors in the soil, 

which is unfeasible for large areas and usually rain sensors 

on ground are not adopted. The same information could be 

indirectly measured based on the rainfall received in past 

days. The value of rain in each area of the grid cannot be 

estimated due to the lack of dense sensors, whereas data 

coming from satellite are very heavy to be processed and not 

precise, since also clouds contain water while covering the 

view of the terrain. On these reasons we decided to indirectly 

measure the amount of rainfall which reaches the ground 

from a number of sensors (so called SIR Sensors in 

Tuscany). The values of sensors have been interpolated by 

using IDW (Inverse Distance Weighting) algorithm [36], 

which is also used in Snap4City to create Heatmaps. On the 

basis of such scattered data, we have estimated 4 derived 

features: Day1, Day3, Day5, Day30, which compute for each 

day the amount of rain in mm arriving on ground within a 

specific area in the last day, 3 days, 5 and 30 days, 

respectively, as performed in SIGMA model [22]. 

    A second parameter which may be related to the landslide 

proneness may be the geological nature and the terrain 

slope. Geology is known to be a controlling factor when it 

comes to large and deep landslides, while small and shallow 

landslides (depth < 2 m) are somehow independent from the 

bedrock’s geological nature, since they are usually located in 

more surficial layers of soil. On the other hand, the terrain 

slope, which is known as one of the main controlling factors 

of shallow landslides, may radically change in different parts 

of the same area. A Digital Terrain Model has been created 

by processing the Lidar survey carried out in 2017 and 

available among the Open Data of the Metropolitan City of 

Florence. The Slope feature has been associated to each area 

of the grid (as a percentage). Please note that these values 

change sporadically over time. Therefore, an update 

performed every month / year would be more than enough.  

    An additional aspect to consider is the land usage of the 

area. For this purpose, land use and land cover datasets of 

regional government, and in particular Tuscany Region 

geoserver, provided the data. This allowed to associate a 

value describing the type of Ground to each grid area in 

terms of identifiers referred to the CORINE Land Cover, 

CLC technical guidelines [37]. This work has been 

performed on a QGIS tool. Please note that these values 

change very slowly in time, and thus they have to be updated 

once a month or year. 

    A similar view but for a different purpose has been the 

identification of the vegetation which may also influence 

landslide events. Vegetation may keep the land connected to 

the ground. To this end, Copernicus satellite data have been 

collected exploiting the services of Snap4City Platform 

(https://www.snap4city.org/671 [38]) which automatically 

harvests, downloads and processes several different kinds of 

Copernicus data. The vegetation level may change over time, 

and thus the satellite data can give the precise, and almost 

real time information of the vegetation level. On the other 

hand, some processing has been made, since the satellite data 

may be influenced by clouds coverage, and they need also to 

be remapped from large to small grid areas.  

    Features have been enriched with some conditioning 

factors coming from the historical archives of the Regional 

Hydrological and Geological Sector (SIR). Tuscany region 

has a network in telemetry consisting of over 700 sensors for 

meteo-climatic data monitoring; such sensors are located in 

a homogeneous manner throughout the regional territory. 7 

conditioning factors were obtained from these sensors 

involving wind speed, temperature, precipitation, daily 

hydrometric level and data providing information related to 

groundwater resources (water table data). Another feature 

https://www.snap4city.org/671
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enrichment was made with data regarding temperature, 

moisture and average wind speed from the historical archive 

‘ilmeteo.it.’ Compared to SIR data, ilmeteo.it could provide 

information associated with larger areas, such as cities (in 

our case the municipality of Florence). 

    Regarding the insertion of landslide data, 341 registered 

landslide events have been mapped over time to the grid, 

based on their positions and date of occurrence, and they 

have been labeled with the following criteria: value of 1 has 

been assigned to all grid cells included in an area of 1.5 km 

radius, centered on the coordinates of each landslide, in the 

previous day of its occurrence (for a total of 2342 areas 

impacted by landslide events); the value of 0 has been 

assigned to all other cells. The haversine formula has been 

used for distance evaluation. Please note that 7 years, 

multiplied by 365 daily values on 3582 areas compose a 

dataset of 9.153010 million elements, among which 2342 

represent areas affected by landslide events.  

    At the end of the process, for each grid point, features 

composing the dataset have been the ones reported in Table 

II. Please note that most of them are new features that 

describe the short-term condition of the area, and thus they 

need to be actualized every day. 
TABLE II FEATURES DETAILS 

Feature Description Unit  Example 

Date Observation date, in the format 

YYYY-MM-DD 

Day 2013-01-

14 

Latitude Latitude of the area, EPSG:4326 

format 

Deg 43.86239 

Longitude Longitude of the are in the 

EPSG:4326 format 

Deg 11.51586 

Altitude Altitude of the area M 467.204 

Slope Acclivity of the area % 45.942 

Vegetation Vegetation of the area % 0.262 

Ground Soil type at the event site (class 

UCS) 

 223-

Oliveti 

Day1 Rainfall in the day before the 

observation 

mm 12.453 

Day3 Rainfall in the 3 days preceding 

the observation 

mm 15.072 

Day15 Rainfall in the 15 days preceding 

the observation 

mm 16.160 

Day30 Rainfall in the 30 days preceding 

the observation 

mm 51.515 

Temperature Mean Temperature on the 

observation day (IlMeteo.it) 

°C 6.965 

MinTemperat
ure 

Minimum temperature on the 
observation day (IlMeteo.it) 

°C 2.99 

MaxTemperat

ure 

Maximum temperature on the 

observation day (IlMeteo.it) 

°C 9.942 

Humidity Humidity (average) on the 
observation day (IlMeteo.it) 

% 92.96 

WindSpeed Average wind speed on the 

observation day (IlMeteo.it) 

Km/

h 

5.991 

VelMedSIR Average wind speed on the 
observation day (SIR) 

m/s 0.9 

VelMaxSIR Maximum wind speed on the day 

of observation (SIR) 

m/s 1.8 

LevelSIRFre phreatimetric data on the 
observation day (SIR) 

m -4.34 

LevelSIRIdr Water (river) level recorded on 

the observation day (SIR) 

m 0.8 

PrecipSIR Precipitation on the observation  
day (SIR) 

mm 0 

MinTempSIR Minimum temperature on the 

observation day (SIR) 

°C 0.5 

MaxTempSI

R 

Maximum temperature on the 

observation  day (SIR) 

°C 3.5 

 
IV. DATA ANALYTIC SOLUTIONS 

On the basis of the above-described dataset, a number of 

techniques to predict landslide events has been tested. 

Aiming at creating an early warning can be traced back to 

the estimation of areas presenting a high probability of 

landslide event occurrence in the next day, as in this case.     

Therefore, the dataset included several items representing 

non-slide events (referred hereafter as negative events) and 

items representing landslide cases (referred hereafter as 

positive events). As described in the previous section, the 

considered dataset is composed of about 9 million 

estimations, among which 2342 positive events (labeled with 

Value = 1). The input dataset was composed by the following 

variables: 

• X = independent variables = {Latitude, Longitude, 

Altitude, Slope, Vegetation, Day1, Day3, Day15, 

Day30, Ground, Temperature, MinTemperature, 

MaxTemperature, Humidity, WindSpeed, VelMedSIR, 

VelMaxSIR, LevelSIRFre, LevelSIRIdr, PrecipSIR, 

MinTempSIR, MaxTempSIR} 

• Y= dependent variable = {Value of the day after}, 0 no 

sliding, 1 land sliding.  

In order to build the model, we have divided the dataset into 

two groups: training set (80%) and test set (20%). The 

selection of the data belonging to the two sets has been 

performed randomly but considering the same ratio of 

distributions for both positive and negative cases in training 

and test sets.  

A. Machine Learning Models Adopted 

Most State-Of-The-Art works addressing the problem of 

landslide prediction are formulated as a classification 

problem. As a further development we investigated the 

possibility of predicting the occurrence of landslides 1-day 

in advance for this case study in the Florence Metropolitan 

Area. In this section, the considered machine learning 

techniques are compared with the aim of predicting landslide 

events. Therefore, each model is presented with a short 

overview and related information about how it has been used 

in this context.  

    Random Forest, RF, is a learning algorithm based on a 

set that includes n collections of uncorrelated decision trees. 

In our case, the model has been realized exploiting the 

RandomForestClassifier of the sklearn library. In order to 

classify the dataset, a high number of trees in the forest has 

been used (n_estimators = 100), each reaching a maximum 

depth given by: max_depth = 30. The criterion used to 

estimate the quality of each division is entropy. Since the 

input Dataset is unbalanced (in terms of negative and 

positive events), a weight to the classes in the dataset has 

been assigned, to give the right meaning to each value 

(through class_weight).  



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3158328, IEEE Access

 

VOLUME XX, 20xx 9 

    eXtreme Gradient Boosting, XGBoost, is a specific 

implementation of the Gradient Boosting method using more 

accurate approximations to find the best tree model. A high 

number of trees in the forest has been used for classification 

(n_estimators=180), each reaching a maximum depth 

denoted by max_depth=40. 

    Convolutional Neural Network, CNN, is useful for 

learning spatial local features from input. It is a feedforward 

neural network using convolution instead of general matrix 

multiplication in at least one of its layers. It can capture 

global and local features with the aim of improving 

efficiency and accuracy. The model architecture is composed 

of four pairs of 2-dimensional convolutional layer, Conv2D, 

followed by a MaxPooling2D layer that down-samples the 

input along its spatial dimensions (height and width) by 

taking the maximum value over an input window for each 

input channel. Then, we added a flatten layer and finally we 

added 2 Dense layers, the former with 64 neurons and Relu 

activation function and the latter with a single neuron and a 

sigmoid activation function. An automated hyperparameters 

optimization was performed through a Randomized Search 

Cross-Validation. The best model resulting from the whole 

parameter optimization process and its related cross-

validation is represented in Figure 3. The model is compiled 

to minimize the log loss (in our case, the binary_crossentropy 

metric) with an Adam optimizer. 

 

 

FIGURE 3. The adopted CNN model Architecture. 

 

Autoencoders, AE, represents an unsupervised model 

generating an output by compressing the input in a space of 

latent variables. The model architecture is composed of five 

Dense layers, the first 4 with Relu activation function and the 

last one with linear activation function. The best model 

resulting from the whole parameter optimization process and 

its related cross-validation is represented in Figure 4. The 

model is compiled to minimize the log loss (in our case, the 

mean_squared_error metric) with an Adam optimizer. The 

training process of the Autoencoder has been made only on 

non-landslide data, as it occurs in anomaly detection the 

typical process is learnt. Then, whenever a landslide event is 

given in input to the trained model, the reconstructed output 

is likely not to follow the pattern of a typical process, and 

therefore it should be classified as an anomaly.  

 

 

FIGURE 4. Autoencoder Architecture Model. 

The used Autoencoder reconstruction error has been the 

MSE and the threshold has been evaluated at 0.4 on the test 

set, based on the precision and recall curves reported in 

Figure 5a. If the reconstruction error is higher than the 

chosen threshold, it will be classified as landslide; this is 

visible in the reconstruction error for the validation set on 

Figure 5b. 

(a) 

(b) 

FIGURE 5. Autoencoder Model identified: (a) Precision and Recall Plot – 
(b) Reconstruction error plot for the validation set. 

 

The decisional algorithm SIGMA has been taken into 

account, too (see Figure 6). The Sigma model has been 

calibrated for the city of Florence area according to the 

procedure described in [6], [22]. Since it is based on 

statistical analysis of rainfall data, rain gauges with at least 

20 years of rainfall recordings have to be used and 9 rain 

gauges with the proper data series have been identified in the 
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study area. For each rain station, the cumulative rainfall from 

1 to n days is analyzed and the mean rain values and several 

standard deviation values (from 1 to 3, with steps of 0.5 

standard deviation) are calculated. Then several Sigma 

curves, i.e., curves with the same standard deviation value 

for several time intervals, are defined (Figure 6a). Figure 

6b reports the flow chart of the Sigma algorithm for early 

warning. Such scheme compares the cumulative rainfall in 

the days leading up to the event with a sigma coefficient. In 

order to make this sigma value more accurate, it was 

interpolated through the IDW algorithm (same methodology 

used previously to estimate Day_i cumulative rainfall and 

described in Section III), at each point in the dataset. In the 

schema reported in Figure 6b, values of C1, C2, C3, C4, and 

C5 correspond to the Day1, Day3, Day15, and Day30 values 

in the dataset, respectively, while the sigma symbols stand 

for standard deviation multiples (expressed in mm of 

rainfall) that must be exceeded to assign a level of criticality. 

(a) 

(b) 

FIGURE 6. Sigma: (a) example of Sigma curves for duration from 1 to 100 
days; from [1]; (b) flow chart of the algorithm: Cx represents the 
cumulative rainfall in x days, while the sigma symbol represents the 
standard deviation. 

B. Method for Results’ Assessment  

The comparison with the results obtained at the state of the 

art  works reported in Section 1.A, with respect to the 

solution proposed is discussed in this section. As stated 

above, most of the state of the art works for landslide analysis 

are focused on estimating susceptibility maps (which is a 

long term proneness of landslide), rather that computing 

predictions for early warning. For computing susceptibility 

map, mainly static or quasi static features metrics were used 

which do not depend on the specific short terms changes in 

land. On the contrary, predictive models such as that 

presented in [11] and SIGMA [6], [22] are based on rain fall 

data with some limited feature engineering, without the 

usage of explainable AI for features relevance assessment. 

For these reasons, in order  to identify a more precise 

prediction model with respect to those at the state of the art 

we have applied a large number of machine learning 

approaches and SIGMA on the same area and data. To this 

end, we started from the same machine learning models 

adopted for susceptibility map and for prediction, and 

SIGMA.  

      Therefore, the results have been evaluated by using a 

large set of metrics defined as follows: 

MAE,     𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑁
𝑖=1     (1) 

Mean Squared Error (MSE), 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1       (2) 

RMSE =  √𝑀𝑆𝐸     (3) 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝐹𝑃+𝐹𝑁+𝑇𝑃
   (4) 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (5) 

   Specificity  =
𝑇𝑁

𝑇𝑁+𝐹𝑃
         (6) 

  TSS = sensitivity + specificity - 1       (7) 

probability of false alarm, 𝑃. 𝑓. 𝐴 = 𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

F1 score, 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑧𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (8) 

Matthews correlation coefficient (MCC),  

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁 

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

      (9) 

Overall Accuracy (OA),  

OA =  Accuracy +  F1 +  MCC  (10) 

Kappa index, 𝑘 =
Pr(𝑎)−Pr (𝑒)

1−Pr (𝑒)
   (11) 

AUC: Area Under the Receiver Operating Characteristics 

(ROC) Curve.  

C. Assessment of Results and Best Model Selection 
In this work, we have compared the architectures used in the 

state of the art for susceptibility (RF as in [27], [28], CNN as 

in [26], XGBoost as in [29], etc.) with respect to their 

adoption for 1-day ahead landslide prediction in the area of 

Tuscany, Italy; with the adoption of different features since 

the feature used in susceptibility do not have short term 

predictive capabilities being in most cases static for the 

whole year or season. As a result, the XGBoost model 

achieved better results compared to the Autoencoders, CNN, 

RF, and SIGMA (which is a predictive model on [6], [22]) 

models. For SIGMA we assumed condition of early warning 

when the High Criticality is assessed.  

    Table III shows the obtained results for landslide event 

predictions using machine learning models: RF, XGBoost, 

CNN, Autoencoders, and the SIGMA. In the machine 

learning model the features have been those reported in 
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Table II. They include a mist of features for land description 

(e.g., acclivity, slope, vegetation), and dynamic contextual 

data  such as those describing rain fall, temperature, 

humidity, wind speed, water levels, etc. For the machine 

learning approaches, due to the unbalanced dataset, we have 

balanced the number of landslide cases in training dataset 

and test dataset in order to improve the RF, CNN and 

XGBoost performance. As to Autoencoder, all points located 

within a radius of less than 5 km of any landslide have been 

removed from dataset to prevent a non-landslide point 

located in the vicinity of a landslide, from presenting values 

of conditioning factors extremely similar to those associated 

with an actual landslide event. 
 

TABLE III COMPARISON OF RESULTS OBTAINED USING MODELS FOR 

SHORT TERMS PREDICTION OF LANDSLIDES, BEST RESULTS IN BOLD. 

Model XGBoost RF CNN Auto 
encoder 

SIGMA 

MAE 0.000173 0.000334 0.000600 0.009218 0.004169 

MSE 0.000173 0.000334 0.000259 0.009218 0.004169 

RMSE 0.0131 0.0182 0.0160 0.0960 0.064572 

Accuracy 0.99 0.99 0.99 0.99 0.99 

Sensitivity 0.79 0.36 0.24 0.19 0.06 

Specificity 0.99 0.99 0.99 0.99 0.99 

TSS 0.78 0.35 0.23 0.18 0.05 

PfA 0.01% 0.02% 0.01% 0.11% 0.39% 

Precision 0.63 0.35 0.33 0.64 0.003 

F1 score 0.70 0.36 0.27 0.29 0.007 

MCC 0.70 0.36 0.28 0.35 0.01 

OA 2.40 1.72 1.55 1.64 1.02 

Kappa  0.70 0.36 0.27 0.29 0.01 

AUC 0.89 0.68 0.99 0.92 0.53 

 

According to Table III, on the basis of MAE metric, the best 

model resulted the XGBoost with a MAE of 0.000173, 

compared to 0.000334 of the RF, 0.0006 of the CNN and 

0.009218 of the Autoencoder. According to the results 

obtained in [11] as TSS=0.59, the solution proposed is better 

ranked reaching a TSS of =0.78. Please note that SIGMA [6], 

[22], provided an MAE of 0.0041, and a TSS of 0.05. A 

different comparative assess can be obtained by analyzing 

the ROC curves as reported in Figure 7. In this case, the 

CNN resulted to be the best (see AUC); while it present an 

unsatisfactory sensitivity and TSS. As a conclusion the best 

model for short term prediction of landslides which is one 

day in advance early warning resulted to be XGBoost (in 

terms of MAE, TSS, and OA). 

 

 
(a)                                             (b) 

 
                       (c)                                              (d) 

FIGURE 7.  ROC Curves for the 1-day ahead landslide prediction, for (a) 
XGBoost, (b) RF, (c) CNN, and (d) AE. 

 
V. EXPLANATION OF THE PREDICTIVE MODEL 

In order to better understand the relevance of features and 

their dependencies and correlation, we have applied 

technique for explainable AI, and interpreted the values 

predicted by the XGBoost model via SHAP (SHapley 

Additive exPlanation), both globally and locally. SHAP 

allows to understand the predictive model outputs and to 

explore relationships among features [39]. Theoretically, it 

is an approach from game theory explaining the output of 

machine learning models with respect to the values of 

features which act as score players in a coalition. In this case, 

the SHAP analysis allowed us to understand which factors 

are the most influential in the prediction of a landslide or not. 

To this end, we trained the SHAP explainer with the entire 

training dataset to estimate both global and local 

explanations as described in the following subsections. 

A. Global XGBoost Model Explanation 

In Figure 8, the graph describes the overall impact of 

features on predictions. The relevance of features is 

calculated as the average of the absolute Shapley values of 

the entire dataset. For example, features contributing most to 

the prediction of a landslide event or its absence are Day3, 

MaxTempSIR, and LevelSIRIdr. Therefore, we discovered 

that precipitation, temperature, water level in rivers, 

humidity are the main aspects for the prediction of landslide 

events. Regarding temperature, localized temperatures such 

as MaxTempSIR (from Regione Toscana) resulted to be 

more relevant that the generic area temperature: 

MaxTemperature which can be revered from generic 

services such as https://www.ilmeteo.it/. As expected, 

meteorological phenomena play an important role in the 

short-term prediction rather than other land location-related 

features, which can be valid for susceptibility analysis as 

vegetation, slope, ground kind results less relevant. Among 

variables concerning location, the most influential one is 

Latitude for the geological aspects of the territory, while this 

would change in different area.    

Figure 9 shows the distribution of SHAP values for each 

feature, sorted by relevance. The x-axis represents the 

specific SHAP value while the y-axis represents features. 

Each dot/point represents the samples of our dataset, the 

color of the point stands for the value of a specific feature, 

with blue indicating a small value, while red large values for 

that feature. The horizontal position of the point denotes 

whether the feature value leads to a positive or negative 

https://www.ilmeteo.it/
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prediction. For example, as to feature LevelSIRIdr or 

Humidity or rain values (Day1, Day3, Day15, Day 30), high 

values (red dots) contribute positively to the prediction of a 

landslide. We can get a confirmation from the graph that high 

rainfall values associated with high temperatures and high 

levels of water within the soil have their main correlation 

with the prediction of landslide events. 

 

 

FIGURE 8. Global feature relevance as mean of the absolute SHAP global 
features importance for XGBoost (only the first 20). 

 

 

FIGURE 9.  SHAP summary plot for XGBoost. x-axis reports the SHAP 

value of the feature, while on y-axis the features. The color codes the 
magnitude of the value, and the size the density of values. 

B. Local XGBoost Model Interpretation 

In addition to the global interpretation of the entire dataset 

on the XGBoust model, each single point, and thus the  

eventual landslide prediction, can be interpreted locally 

using SHAP. The local explanation puts in evidence the 

features which provided major contribution to the prediction. 

Figure 10 illustrates 3 examples of the local interpretation of 

events: (a) and (b) as landslides, and (c) as a non-landslide. 

This SHAP plot decomposes final classification into the sum 

of contributions for input variables highlighting their 

contributions. The base value, in our case 0.4311, represents 

the value that would be predicted by the model if there were 

no knowledge of the features for current output. SHAP 

values are calculated in log odds. Features which increased 

prediction value towards a positive classification as landslide 

events are shown in red on the left, while features which 

lowered prediction value towards a negative classification 

are shown in blue. In our case, in Figure 10a the value of 

VelMaxSIR, MaxTempSIR, Day3 and Humidity contributed 

significantly to the classification of the observation as a 

landslide event. In Figure 10b, values related to rainfall in 

the last days, LevelSIRIdr and Humidity gave a relevant 

contribution to the landslide event prediction. While, in 

Figure 11c, values of features: Day3, MaxTempSIR, 

MaxTemperature, Temperature and LevelSIRdr have been 

determinant for the identification of the observation into a no 

landslide event. 

 

FIGURE 10.  Local feature relevance via SHAP, as interpretation of 

events in terms of feature values: (a) and (b) are events with predictions 

of landslide, (c) a no landslide event. 

 

FIGURE 11.  Time trend of SHAP values of most relevant features 

around the landslide event of 21-12-2019: values estimated by using 

data collected in the neighboring area of the event.  
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A more detailed analysis of the landslide event of 21-12-

2019 has been reported in Figure 11, where the trends of the 

SHAP values of the most relevant features according to 

Figure 8 have been plot with respect to the time/days. It can 

be noted that in coincidence of the day before the event, most 

of the SHAP values of the relevant features assumed a 

relevant value at the same time. And in particular for this 

event: LevelSIRIdr, Day3 and MaxTempSIR.   

C. Features Dependency 

In this section, some features that associate high SHAP 

values are furtherly analyzed. In order to understand the 

effect that a single feature has on the output of the model, the 

SHAP value of the features has been plot against the feature 

value for all instances of the dataset under consideration. The 

analysis reported in Figure 12 presents the graphs for the 

most relevant features with respect to feature that has major 

influence or dynamic with them. Each point of the graphs in 

Figure 12 represents an instance of the dataset. On the 

horizontal line we have the actual value of the selected 

feature, while the left Y axis presents the SHAP value 

associated with the feature. When a value along Y is positive 

the feature contributes positively to the occurrence of 

landslide event, if negative it favors the classification of the 

instance as a non-landslide event. The fact that the slope is 

upward, as in Figure 12a,b (where we have high values of 

variable with high value of SHAP), means that a higher value 

of the feature leads to a landslide event classification.     Thus, 

high Humidity values or high-water levels (LevelSIRIdr) are 

associated with high SHAP values in predicting landslide 

events. Regarding the colored bar on the right, this is a 

reference scale for the values of a correlated second feature, 

the MaxTemp. In Figure 12b, we can see that high 

temperatures are typically associated with low SHAP values, 

thus no landslide. While in Figure 12a, it can be seen that 

high temperature with high level of humidity may lead to 

landslide. These graphs lead to immediate interpretation of 

the model. For example, similar values for a feature, as 

shown in Figure 12c, can lead to both positive and negative 

SHAP values to predict a landslide value. This means that 

the mean value of Day30 associated with high temperatures 

leads to higher SHAP values.  

 

In Figure 12e, the high values of SHAP correspond to almost 

any kind of value for Day3. This means that having rain in 

the previous day is not enough to determine a landslide. 

While from Figure 12d we see high levels of SHAP with 

low levels of PrecipiSIR, which indicates the amount of rain 

of the day after. This may lead to confirm that the sliding 

may occur when the water had the time to penetrate and 

become stagnant.  

 

 

 

 

 

 

FIGURE 12.  Plots of SHAP value wrt to the feature value. Color of dots 

depends on MaxTemp feature: color legenda in (e) is valid for all the 

plots.  

 
VI. CONCLUSIONS 

In this paper, the problem of landslide event prediction has 

been addressed, for early warning. A careful review of 

related works and solutions proposed in literature has been 

performed, making a comparative analysis of their results, 

where possible. Most of the work in the literature focused on 

computing susceptibility maps which is a sort of long terms 

estimation of landslide proneness, which are mainly based 

on static feature of the land. State of the art approaches for 

early warning (short term prediction) are empirical 

algorithms as SIGMA, while most recent state of the art 

solutions are based on machine learning. Their main 

limitations are represented by the fact that these systems 

have a low reliability (unsatisfactory TSS, OA and F1), and 

they are based on a limited number of features that have been 

supposed relevant a priori.  

In this paper, we collected static and dynamic features 

addressing the land description but also the rain fall, 

temperature, wind, etc., in the previous days, in each point of  

a large territory and over several year. Then, a number of 

machine learning models have been tested to identify the best 

predictive model. To this purpose, this paper reports the 

implementation, tuning and testing of four machine learning 

methods, based on RF, XGBoost, CNN and AE. The models 

have been trained and validated by exploiting data collected 

(a) (b) 

(c) (d) 

 (e) 
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in the context of the Metropolitan City of Florence since 

2013 up to 2019; they have been compared with SIGMA 

decisional model, which is currently adopted in both Emilia 

Romagna and India. Comparative results showed that the 

method based on XGBoost achieved better results in terms 

of Sensitivity, MAE, MSE, TSS, OA and RMSE, with 

respect to SIGMA and to [6] which are the state of the art 

references on predictions. Moreover, a further analysis based 

on Shapley additive explanation (SHAP) has been carried 

out, globally and locally, for the XGBoost model which 

obtained best results. In this way, a deeper understanding of 

the predictive model outputs, as well as the relevance of 

features and their interdependency, has been provided. The 

results proved that features such as the amount of rain the 

last 3 days, the max temperature in the previous day, and the 

lever of water in the river are the most relevant predictors, 

and a number of other similar predictions may help, also on 

weather and water level of different kinds; also stressing that 

the land static feature are preconditions for landslide, while 

they are not efficient in creating an early warning system. 

From the computational point of view the short term 

prediction should be assess every day, while the 

susceptibility map usually are computed 1 or two times per 

year. On the other hand, the prediction models can prevent 

disaster while susceptibility map are mainly used for taking 

decision on planning.  
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