
Supporting Information for “Virtual

Double-System Single-Box for Absolute

Dissociation Free Energy Calculations in

GROMACS”

Marina Macchiagodena,∗,† Maurice Karrenbrock,†,‡ Marco Pagliai,† and Piero

Procacci∗,†

†Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della

Lastruccia 3, 50019 Sesto Fiorentino, Italy

‡Present address: Institut des Sciences Pharmaceutiques De Suisse Occidentale-Université

de Genève, CMU – Rue Michel Servet 1, CH-1211 Genève 4, Switzerland

E-mail: marina.macchiagodena@unifi.it; piero.procacci@unifi.it

This Supporting Information document is conceived as a tutorial for the calculation

of absolute dissociation free energy between PF-07321332 and 3CLpro. The methodology

is divided into six consecutive steps. For each step, we report the computational details.

The major massively parallel computational step consists in the HREM simulations (Step

3) and in fast switching alchemical simulations (Step 5). The Steps 1, 2 and 4 are fast

preparatory automatized procedures for running the two major computational jobs on the

HPC. The last Step 6 is the automatized post-processing of the vDSSB data. All files

necessary (filenames are indicated in blue bold) are in the compressed SI.zip archive. In

the archive are present also the output file/folder as a reference to verify the success of

1



the protocol application (filenames in the text are in red bold with OUT keyword). Full

output data for the application PF-07321332-3CLpro can be found on the Zenodo repository

(https://zenodo.org/record/5139374). The step-by-step tutorial can be also accessed at the

https://procacci.github.io/vdssb gromacs/ site.

Step 1: Docking (local)

Docking study between ligand (PF-07321332) ligand.pdb and receptor (3CLpro, domain

I+II), 3clc.pdb is performed using Autodock41 with the script docking.bash.

docking.bash -l ligand -r 3clc -x -10.55 -y 20.65 -z 66.75 -p 60

The calculation runs 50 docking experiments using the Lamarckian genetic algorithm

with the center of mass of the fully flexible ligand placed within a 22.5 Å (60 grid points, -p

60, spaced 0.375 Å) side-length cubic box centered at the receptor active site (-x -10.55 -y

20.65 -z 66.75). Up to 2.5 million energy evaluations are performed for each experiment.

The results are clustered using a tolerance of 2.0 Å. The lowest energy docked conformation

of the lowest energy cluster is the “best-docked” conformation. The complex structure of

ligand (“best-docked”) and protein, complex ligand.pdb OUT, is the starting structure

for HPC Drug.

For help about docking script, just issue the previous command without arguments

(docking.bash).

Step 2: HPC drug for HREM set-up (local)

All installation instructions are detailed in github repository https://github.com/MauriceKarrenbrock/HPC Drug

and reported at the end of this file. After installation, to use HPC Drug is necessary to ac-

tivate the environment with:

conda activate HPC Drug

2



Then to run HPC Drug just type the following command using the input file input correct

gromacs.txt

python /HPCDrug INSTALL DIRECTORY/main.py input correct gromacs.txt

where HPCDrug INSTALL DIRECTORY is the PATH where HPC Drug is installed. The

input correct gromacs.txt contains information about pdb file name (in our case com-

plex ligand.pdb), path, HREM options, box dimensions, water model, and so on.

HPC Drug takes some time, at the end in the work directory there will be intermedi-

ate GROMACS files due to optimization and equilibration runs, force field files of ligand

and receptor and two folders. The two folders, one for the bound and one for the un-

bound state, contain the files to run HREM on the HPC platform. In SI.zip we provide

the two reference folders obtained for the case study PF-07321332 in complex with 3CLpro

(3clp HREM OUT and LIG only ligand HREM OUT).

Step 3: HREM simulations (HPC)

In the two folders generated by HPC Drug in previous step (3clp HREM and LIG only

ligand HREM) there is a script file MAKE TPR FILES.sh. This script is useful to

generate all tpr files that are necessary to run the HREM simulations.

HPC Drug generates two tentative batch files for HPC submission in the 3clp HREM

and LIG only ligand HREM directories, based on the syntax of the SLURM workload

manager. These files must be hacked and adapted to the specific HPC platform job schedul-

ing system by the end-user. In the reference sub-directories bound OUT and unbound OUT

of the 3 hrem directory in the SI.zip archive, there are working SLURM submission files

to execute the HREM simulation for the bound and unbound relative to the complex PF-

07321332-3CLpro on the heterogeneous Marconi100 HPC platform (CINECA), equipped with

4 Nvidia VOLTA GPU per node. The job HREM input bound.slr and HREM input un

bound.slr requests 36 nodes (144 Nvidia VOLTA GPU) and 8 nodes (32 Nvidia VOLTA

3



GPU), respectively. The job relative to the bound state produces about 142 ns on the target

state in 24 wall clock hours, running six replicates of 24-replica exchange simulation involving

a “hot-zone” including the ligand and nearby residues.

Step 4: Selection of the (enhanced sampled) configura-

tions (HPC)

To extract the configurations from the target state of HREM we use common tools of the

GROMACS suite (trjconv) automatized in scripts specified for bound and unbound state.

These script are provided in the SI.zip archive and must be launched from the HPC Drug-

generated directories for the bound and unbound state after completion of the the HREM

simulations. Extraction of the HREM-generated configurations for the bound and unbound

state requires few seconds.

Bound state

Using the script file getconf.sh we extract configurations from the HREM-generated target

states to perform fast switching alchemical simulations.

Unbound state

Using the script file getconf.sh we extract configurations from target states to perform

fast switching alchemical simulations. Since the HREM simulation for unbound state is

performed on a single ligand molecule in gas phase using a big box, the coordinates are

recentered. Each gas phase configuration is combined with a well equilibrated box of water

molecules (only water tip3p.gro) using the script addwater.sh. The file only water tip3p.gro

is provided by HPC Drug in Step 2.

4



Step 5: Fast Switching Alchemical Simulations

Once the starting phase-points have been generated in Step 4, we are ready to launch the

second major computational and massively parallel stage in the vDSSB approach, namely

the swarm of the bound state annihilation trajectories and the swarm of the unbound state

growth trajectories.

Bound state

The annihilation trajectory are generated, in a sub-directory (“fsdam”, to be created by the

end-user) of the bound state directory containing the HREM data, by the application script

maketprQ.sh provided in the SI.zip archive. In the specific example of the the complex PF-

07321332-3CLpro, the script generates 384 folders (fsdam/bi) containing the GROMACS

tpr file to switch off the ligand atomic charges in 0.375 ns, starting from the configurations

generated in Step 4. The fast switching simulations are submitted on the HPC using the

batch submission script submit.slr (also provided in the SI.zip) which allows: (a) to switch

off the atomic charges in 384 parallel FS trajectories according to the tpr files generated

with maketprQ.sh; (b) to generate the new tpr files in each of fsdam/bi folders using

as starting point the confout.gro configuration file of previous run; (c) to turn off the LJ

ligand-environment interactions in 0.750 ns. maketprQ.sh and submit.slr use mdp files

transitionQ.mdp and transitionvdw.mdp provided in SI.zip. The bound state ligand

annihilation job required about two hours on the Marconi100 HPC platform.

Unbound state

Using the bash script maketprvdw.sh (provided in the SI.zip), tpr GROMACS files to

perform unbound fast switching alchemical simulations are generated in the “fsdam” user-

created subdirectory. The script creates 192 folders (fsdam/ui) containing the tpr files to

switch on LJ ligand-water interactions in 0.360 ns, starting from the configurations generated

in Step 4. The simulations are submitted using submit.slr which allows: (a) to switch on

5



the LJ ligand-water interactions using the tpr files generated with maketprvdw.sh; (b) to

generate the new tpr files using as starting point the confout.gro configuration file of previous

run; (c) to turn on ligand atomic charges in 0.160 ns. maketprvdw.sh and submit.slr use

the mdp files transitionvdw.mdp and transitionQ.mdp provided in SI.zip. The unbound

ligand growth required few wall clock minutes on the Marconi100 HPC cluster.

Step 6: Calculation of dissociation free energy

In each of the 384 bound folders (bound/fsdam/bi, with 1 < i < 384) and in each of

the 192 the unbound folders (unbound/fsdam/ui, with 1 < i < 192) two files dhdl.xvg

(dhdlQ.xvg and dhdlvdw.xvg, the first relative to electrostatic ligand-environment in-

teractions, and the second one to LJ potential) are generated in Step 5. These files are

combined to obtain the absolute dissociation free energy using the script works.bash which

returns 4 estimates: 3 Gaussian mixtures (one, two and three components) and the Jarzynski

estimate.

To calculate the volume correction, the script VOLcor.bash is used. It acts on pullx.xvg

files generated in target state replica of each BATTERY. In SI.zip is also provided the script

Qcor.sh for finite-size correction applying to charged ligand. For technical details on the

usage of this scripts see the README files in the 6 post directory of the SI.zip archive.

6



Figure S1: Graphical description of procedure. Upper panel: script and commands for each
steps. Lower panel: file and results obtained in each steps.

7



Figure S2: Graphical representation of the bound folder content.

Figure S3: Graphical representation of the unbound folder content.

8



Install and Setup of HPC Drug

To install the program you simply have to download it from the GitHub repository:

https://github.com/MauriceKarrenbrock/HPC Drug and, if you already had a setup envi-

ronment, you could already run the main.py program (or if you would like to use one of the

other scripts in the scripts/ directory remember to copy it in the root one first).

The environment setup is a little bit longer, in fact HPC Drug, being a middleware, has

a fair amount of dependencies. This numbered list below is one example to get the job done

fast and smooth, but you may need to do things differently:

1. download and install miniconda https://docs.conda.io/en/latest/miniconda.html

2. create a conda environment with this command: conda env create -f environment.yml

the environment.yml file can be found in the root directory and the newly created

environment will be called HPC Drug . As the dependencies of any package can change

at any time the environment.yml file might not be up to date, in case install the missing

packages manually. Of course if you prefer to have more control over the process you

can install everything manually (but it would take some time)

3. activate the environment: conda activate HPC Drug

4. install plumed:2 if you don’t need some of the advanced functionalities of plumed

(we won’t need them) you already installed it while creating the conda environment

(good job!), otherwise you can find all the needed information on the plumed website

https://www.plumed.org

5. install Orac3 (they are distributed together): download Orac from it’s website

http://www.chim.unifi.it/orac and follow the installation guide on the documentation.

(As it is a quite challenging task below you will find a little help paragraph for this

step)

9



6. install Gromacs:4 if you want to use Gromacs instead of Orac as MD program you can

install it by following the instructions on the Gromacs website http://www.gromacs.org,

in case you have some problems in the compilation process or you need to patch

it with plumed (necessary if you want to use a Replica Exchange Method (REM)

in older versions, optional in newer versions) I found this blog article very useful

https://sajeewasp.com/gromacs-plumed-gpu-linux/ (it is for an old version of Gromacs

but still useful).

Installing Orac

• Prerequisites:

– GNU Make

– GCC 4.3 or higher

– (possibly) other Fortran 90 compilers

• Prerequisites for building the parallel version:

– MPI (Message Passing Interface) libraries and implementation/environment:

MPICH2 [http://www.mcs.anl.gov/research/projects/mpich2/]

-or-

OPENMPI [http://www.open-mpi.org/]

– also see README PARALLEL in tests/*/

To build ORAC executable program:

1. change directory to src/

2. type ./configure [options]

3. make

10



This will create an executable orac in the target directory as specified in [options]. For

example, to generate a target for Intel/ifort with OpenMP and MPI support and fftw libraries

type:

./configure -Intel -FFTW -OMP -MPI

make

A target “orac” is created in the directory /INTEL-FFTW-OMP-MPI.

To list all configure options, type: ./configure -help.

If you want to use the fftw libraries, you must have these installed in your system. For

parallel execution, libfftw3, libfftw3 omp, libfftw3 threads are needed. In Debian/Ubuntu

systems these libraries are provided in the packages fftw3 and fftw3-dev. An alternative

path for fftw libraries can be specified in the -FFTW configure option [-FFTW[=alt path]].

The file src/config.H sets the dimensions for the program. The current settings work for the

attached tests; the user may have to change this setting for running her/his project.

The program has been tested on Linux and AIX platforms. On other platforms, the

configure and Makefile.in files may need some hacking. The package is known to compile and

run with gcc 4.8 and Intel Fortran Compiler (10.1 to 14) both in 32- and 64- bit architecture;

XL Fortran for AIX (V12.1-V14.1) and XL C/C++ for AIX (V10.1-V12.0); PGI Fortran

2003.

To install the code (locally and for the session):

• change directory to etc/

• type source ORACRC

the command, if successful, prints a list of the available orac commands.

N.B.: compile both the mpi and the non-mpi version of the code (see above) to have orac

and orac mpi in the list.

To run the program tests:

• To run the examples, cd to tests/ and read the README

11



• The non-mpi program is run from the command line as:

orac < input-file > output-file

• The mpi program is run from the command line as:

mpirun -n 9 orac mpi < input-file > output-file

where orac and orac mpi are soft-links to the executable in src and ”input-file” is provided

by the user; the input files in the ”test” sub-directory may be used as templates.

ORAC needs additional input files: for example, the files for the Force Field parameters

and the molecule topology; more files may be needed, depending on the problem. The files’

path must be specified in the main input file. See the manual section ”Input to ORAC” for

more info.

12



References

(1) Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking

with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput.

Chem. 2010, 31, 455–461.

(2) Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New

Feathers for an Old Bird. Comp. Phys. Commun. 2014, 185, 604 – 613.

(3) Procacci, P. Hybrid MPI/OpenMP Implementation of the ORAC Molecular Dynamics

Program for Generalized Ensemble and Fast Switching Alchemical Simulations. J. Chem.

Inf. Model. 2016, 56, 1117–1121.

(4) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for

Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory

Comput. 2008, 4, 435–447.

13


