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Abstract: This paper presents the performance analysis of a latest-generation hybrid vehicle (Toyota
Yaris 2020) with a testing campaign in real road conditions and a comparison with the previous
model (Toyota Yaris 2017). The study was conducted by applying the Real Drive Truth Test protocol,
developed by the research group, validated and spread to other full hybrid vehicles: Toyota Prius
IV (2016) and Toyota Yaris 2017 (2017). In the case of the 2020 tests, the co-presence on board—
deemed unsafe in the usual ways given the ongoing pandemic—was achieved through precise and
sophisticated remote control. An on-board diagnostic computer, video transmission and recording
equipment guarantee the virtual co-presence of a technical control room and a driver. Thus, several
engineers can follow and monitor each vehicle via a 4G modem (installed in each vehicle), analysing
data, route and driver behaviour in real-time, and therefore even in the presence of a single occupant
in the car under test. The utmost attention has also been paid to adopting anti-COVID behaviours
and safety standards: limited personal interactions, reduced co-presence in shared rooms (especially
in the control room), vehicle sanitising between different drivers, computers and technicians and
video technicians working once at a time. The comparison between the two subsequent vehicle
models shows a significant improvement in the performance of the new generation Yaris, both in
terms of operation in ZEV (zero-emission vehicle) mode (+15.3%) and in terms of consumption
(−35.1%) and overall efficiency of the hybrid powertrain (+8.2%).

Keywords: energy efficiency; regenerative braking; hybrid vehicle; real drive; sustainable mobility;
Zero Emission Vehicle

1. Introduction

Transport emissions account for around 25% of the European Commission (EU) total
greenhouse gas emissions and have increased recently. One of the EU goals is to be the
first climate-neutral continent by 2050, which requires ambitious changes in the transport
sector. According to the EU, a clear path is, therefore, needed to achieve a 90% reduction
in transport-related greenhouse gas emissions by 2050. The EU has adopted a series
of proposals to transform climate, energy, transport and taxation policies [1], with the
ambition to reduce net greenhouse gas emissions by at least 55% by 2030 compared to
1990 levels.

The EU proposes more ambitious targets for reducing the CO2 emissions of new cars
and vans: 55% reduction of emissions from cars by 2030, 50% reduction of emissions from
vans by 2030 and zero emissions from new cars by 2035 [2].
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In recent years, the scientific literature has produced several publications on hybrid
traction systems. The issues most addressed are those concerning the analysis and optimiza-
tion of energy flow management in hybrid systems [3–10], the analysis of the performance
of components in the hybrid drive system [11–17], sizing optimal components of the hybrid
drive system [18] and the analysis of consumption and greenhouse gas emissions [19–33].
Furthermore, specific models have been developed for the simulation of hybrid drive
systems [34], simulation of greenhouse gas emissions [35] and well to wheel (WTW) anal-
ysis [36], and other studies analyse how the reliability and reduction of environmental
pollution positively influence users in the choice of electrified vehicle [37].

This work aims to analyse the energy behaviour of the Toyota Yaris Hybrid Model
Year 2020 vehicle by evaluating the ZEV indicator. Such an indicator is the percentage
distribution of the total energy at the transmission between the electric motor (EM) and the
internal combustion engine (ICE) with a particular interest in distance travelled with the
ICE turned off (zero exhaust emissions).

The COVID-19 pandemic characterised the testing campaign, requiring a new mode
to conduct the tests, innovative at the international level.

The driving tests, according to the protocol RDTT—Real Drive Truth Test [32,37],
developed by the research group and validated—must be carried out with the co-presence
on board of a driver and a researcher (responsible for supervising the test from the point of
view of adherence to the planned route and correct driving style).

In the case of the 2020 tests, the co-presence on board–deemed unsafe in the usual
ways given the ongoing pandemic—was achieved through precise and sophisticated
remote control.

An on-board diagnostic computer, video transmission and recording equipment
guarantee the virtual co-presence of a technical control room and a driver. Thus, several
engineers can follow and monitor each vehicle via a 4G modem (installed in each vehicle),
analysing data, route and driver behaviour in real-time, so even in the presence of a single
occupant in the car under test.

The utmost attention has also been paid to adopting anti-COVID behaviours and
safety standards: limited personal interactions, reduced co-presence in shared rooms
(especially in the control room), vehicle sanitising between different drivers, computers
technicians and video technicians worked once a time.

This paper is structured as follows: Section 2 describes the RDTT protocol; Section 3
describes the parameters, the data acquisition, the energy analysis and the operation
in ZEV mode of the vehicles studied; Section 4 concerns the results of the analysis
and comparisons, and Section 5 reports the conclusions and future developments of
the work.

2. Real Drive Truth Test—RDTT Protocol

The Real Drive Truth Test protocol allows the standardisation of test methods and the
acquisition of significant parameters in analysing and studying the energy behaviour in
real conditions of hybrid vehicles used on the road [37].

These activities analyse, in particular, the operation in ZEV mode (zero-emission
vehicle, i.e., with the internal combustion engine turned off) and the energy flows of the
hybrid drive system.

The analysis of the operation in ZEV mode identifies the following parameters:

• ZEVt: percentage in the running time in ZEV:

o ZEVtv=0: percentage of running time in ZEV with a zero speed of the vehicle;
o ZEVtPT=0: percentage of running time in ZEV with zero or negative mechanical

power from the electric motor to the wheels;
o ZEVtEV: percentage of running time in ZEV with mechanical power required

for motion provided only by the electric motor.
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• ZEVS: percentage of the distance travelled in ZEV:

o ZEVSPT=0: percentage of distance travelled in ZEV with zero or negative
mechanical power from the electric motor to the wheels;

o ZEVSEV: percentage of the distance travelled in ZEV with mechanical
power required for motion provided only by the electric motor.

• EVt: time percentage of the electric-only powered motion phases;
• EVS: space percentage of the electric-only powered motion phases.

The analysis of the energy flows of the hybrid traction system identifies:

• Mileage [g/km];
• Equivalent mileage [g/km]
• Overall efficiency of the traction system [%];
• Change in state of charge of traction batteries [SOC];
• Referenced detail of the energy flows to transmission [kJ]:

o From Braking Energy Recovery;
o From ICE;

� direct;
� via Generator and Electric Motor;
� via Generator, Batteries and Electric Motor;

The RDTT protocol [37] defines the following phases for the analysis and study of
hybrid vehicles energy behaviour:

I. Test definition;
II. Data collection;
III. Processing of acquired data;
IV. Results report.

In phase I, the protocol defines the test methods: number and characteristics of the
drivers, the total number of tests and path characteristics (length, location, etc.). This
definition aims to have scientifically correct and comparable, and, as far as possible,
generalisable, results.

Phase II foresees a preliminary analysis of the available data from on-board diagnostics
and the definition of the data needed for the study.

The third phase concerns the data validation, then a division of acquisitions by tests,
drivers, road section, etc. Each division allows evaluating the parameters relating to
zero-emission (ZEV), energy analysis, kinematics and driving style indicators; therefore,
the evaluation of previous parameters can highlight potential correlations between a
few parameters.

The report phase (IV) describes the results obtained, highlighting the most rele-
vant aspects of the analysis regarding the vehicle ZEV, the electrical running and the
energy behavior.

2.1. Test Definition
2.1.1. Test and Driver Number and Clusters

According to the RDTT protocol, they were carried out by clustered drivers: males/
females, more or less 35 years, each driver follows the same route three times, in the same
time slots (traffic bands).

The three test bands are:

• Morning band (10:00–12:00);
• Lunch band (13:00–15:00);
• Afternoon band (15:00–17:00).

The acquisition campaign with:

• 20 drivers, of which:

o 10 females;
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o 10 males;

• 60 tests in total (three for each driver).

To make the tests carried out comparable, specific characterisations of the vehicles
used and the driving methods of the same have been imposed: eco mode, air conditioning
off, respect for speed limits, windows closed (except for July tests, in which it was left to
the driver the possibility of a partial opening only in the strictly urban part of the test).

2.1.2. Length, Characteristics and Journey Time

The planned route is the same as in previous tests [37]; it is in line with the average
daily distances travelled per capita in Italy indicated by the latest ISFORT reports on
mobility in Italy [38].

The route consists of a high-flow suburban and urban stretch and an urban stretch,
as displayed in the overall view in Figure 1, also contextualised to the environmental
protection strips of Rome.
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Figure 1. Trial route (dark line) referring to the environmental protection strips of Rome.

• 1st Section—Outward: high-speed suburban and urban route (Toyota Motor Italia
Headquarters—Via Generale Amedeo Mecozzi, Via Colonnello Tommaso Masala,
Complanare GRA, GRA, Via Aurelia, Via Baldo degli Ubaldi, Via Angelo Emo,
Via Candia, Viale Giulio Cesare):

o Length: 14.7 km

� 13.1 (89%) km outside the railway ring (Figure 2);
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• 2nd Section—Urban: urban route that develops over three laps of itinerary designed
ad hoc (Entrance to the urban circuit-corner V.le Giulio Cesare–Via Silla, Viale Ger-
manico, Piazza dei Quiriti, Via Attilio Regolo, Via Virgilio, Via Cassiodoro, Via Tacito,
Via Plinio, Via Catullus, Via Terenzio, Via dei Gracchi, Via Catone, Viale Germanico):

o Length: 6 km

� Everything inside the railway ring (Figure 3);
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• 3rd Section—Return: high-speed and extra-urban route (Urban circuit exit—corner
V.le Germanico–Via Fabio Massimo, Viale delle Milizie, Via Andra Doria, Via Ruggiero
di Lauria, Via Francesco Caracciolo, Via Vittor Pisani, Via Angelo Emo, Via Baldo degli
Ubaldi, Via Aurelia, GRA complanare, GRA, GRA Complanare, Via Generale Amedeo
Mecozzi, Via Colonnello Tommaso Masala):

o Length: 17.3 km

� 14.3 (88%) km outside the railway ring (Figure 4);
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Energies 2021, 14, x FOR PEER REVIEW 6 of 23 
 

 

 14.3 (88%) km outside the railway ring (Figure 4); 

 
Figure 4. Return: high-speed urban and extra-urban route. 

As described in Figure 5, the altimetric profile of the path highlights a symmetric 
measuring between the First Section-Outward and the Third Section-Return; the Second 
Urban Section has no gradients. The maximum elevation difference is 31 m, from the First 
section to the Second and from the Second to the Third. 

 
Figure 5. Altimetric profile of the test-path. 

2.2. Criteria for the Scenarios Evaluations 
The parameters necessary for the energy analysis are: the energy flow from and to 

the hybrid powertrain, distance travelled, speed and acceleration. A few parameters have 
to be calculated, e.g., the acceleration is the derivative of vehicle speed, the kinetic energy, 
the mechanical power of the motors. 

An on-board diagnostic system stores the data; it consists of an embedded PC that 
reads information through the car’s on-board diagnostic (OBD) socket using the Tech-
Stream software. 

Like the majority of the electric and hybrid vehicles, this vehicle has two dedicated 
CAN networks and two relative Electronic Control Units (ECU). The first ECU, called 
“Hybrid Control System”, provides data from the safety sensors, vehicle kinematics, elec-
tric powertrain; the second ECU, called “Engine”, uses the second CAN line. Both have 
two data lists with many parameters that can be monitored in real-time and stored on the 
PC. 

The Hybrid Control System provides 22 selected parameters and the Engine 7 has 
more: 

 
 

Figure 5. Altimetric profile of the test-path.

2.2. Criteria for the Scenarios Evaluations

The parameters necessary for the energy analysis are: the energy flow from and to the
hybrid powertrain, distance travelled, speed and acceleration. A few parameters have to
be calculated, e.g., the acceleration is the derivative of vehicle speed, the kinetic energy, the
mechanical power of the motors.
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An on-board diagnostic system stores the data; it consists of an embedded PC that
reads information through the car’s on-board diagnostic (OBD) socket using the Tech-
Stream software.

Like the majority of the electric and hybrid vehicles, this vehicle has two dedicated
CAN networks and two relative Electronic Control Units (ECU). The first ECU, called
“Hybrid Control System”, provides data from the safety sensors, vehicle kinematics,
electric powertrain; the second ECU, called “Engine”, uses the second CAN line. Both
have two data lists with many parameters that can be monitored in real-time and stored
on the PC.

The Hybrid Control System provides 22 selected parameters and the Engine 7
has more:

• Data List “Hybrid Control System”:

o Vehicle Speed
o Execute Engine Power
o Engine Speed
o Calculate Load
o Coolant Temperature
o Engine Start Request (Hybrid/EV Battery Charging)
o Engine Mode
o Accelerator Position
o Master Cylinder Control Torque
o FR Wheel Speed
o FL Wheel Speed
o Atmospheric Pressure
o Generator Revolution
o Generator Torque
o Motor Revolution
o Motor Torque
o Motor Regenerate Brake Execution Torque
o Hybrid/EV Battery SOC
o Hybrid/EV Battery Voltage
o Hybrid/EV Battery Current
o Auxiliary Battery Voltage
o Auxiliary Battery Current

• Data List “Engine”:

o Vehicle Speed
o Engine Speed
o Mass Air Flow Sensor
o Ambient Temperature
o Engine Fuel Rate
o A/F (O2) Lambda Sensor B1S1
o Actual Engine Torque

3. Parameters Calculation
3.1. Yaris Hybrid System

The traction system of the Toyota Yaris object of this study (Figure 6) is a full hybrid
consisting of a petrol-powered ICE, Atkinson cycle, two reversible electric machines MG
(Motor/Generator) of the brushless type in alternating current and batteries of traction
type nickel-metal hydride (Yaris 2017) or lithium-ion (Yaris 2020). The power divider is of
the double planetary type.

The two motor/generators MG1 and MG2 can work as motor or generator; their
working conditions depend on the kinematic constraint of the Power Split Device (PSD).

The Toyota hybrid powertrain has two separate functions:
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- MG1 is coupled through the PSD (not shown for simplicity in Figure 6) to the ICE and
not to the transmission;

- MG1 works as a motor exclusively for starting the ICE by absorbing electricity from
the batteries;

- In a typical operation, the ICE turns the MG1, which works as a generator. It can
recharge the batteries (or directly power MG2 in engine operation);

- MG2 is connected to the PSD and not to the ICE, so, in normal driving conditions,
it works as a motor and provide mechanical power to the wheels; or, it works as a
generator to charge the traction batteries (energy recovery) in case of batteries in a
low state of charge.
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Figure 6. Simplified mechanical diagram of the Toyota Yaris hybrid drive system.

3.2. Parameters Related to the Analysis of Zero-Emission Vehicle (ZEV) Mode

The percentage indices (in time and space) both of zero-emission operation and in
electric vehicle mode [9,32,37], have been defined as follows:

ZEVt =
tZEV
tTOT

(1)

ZEVS =
SZEV
STOT

(2)

ZEVtv=0 =
tZEVv=0

tZEV
(3)

ZEVtv=0 =
tZEVPT=0

tZEV
(4)

ZEVtv=0 =
tZEVPT>0

tZEV
(5)

ZEVSPT=0 =
SZEVPw=0

SZEV
(6)

ZEVSPT>0 =
SZEVPw>0

SZEV
(7)

From the definition of these indices given by Equations (1)–(7):

ZEVtv=0 + ZEVtPT=0 + ZEVtPT>0 = 1 (8)

ZEVSPT=0 + ZEVSPT>0 = 1 (9)
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EV value is equal to 0 for conventional ICE vehicles (also with stop and start system)
and 1 for a battery electric vehicle (BEV), between 0 and 1 for full-hybrid vehicles.

EVt =
tZEVPw>0

tTOTPw>0
(10)

EVS =
SZEVPw>0

STOTPw>0
(11)

3.3. Parameters Related to the Energy and Consumption Analysis

From the data acquired on fuel consumption (Cfuel), the mechanical energy delivered
by ICE (E_ICE_OUT) and the mechanical energy to the transmission (E_T_IN), and from
the value of the LHVfuel, it is possible to calculate the average efficiency of the ICE (ηICE)
and the hybrid system (ηHS) as follows:

ηICE =
E_ICE_OUT
C f uel ·LHVf uel

(12)

ηHS =
E_W_IN

C f uel ·LHVf uel
(13)

The equivalent fuel consumption considers the change in SOC (∆SOC positive or
negative) in each section analysed.

In this way, fuel consumption counts the amount of electricity delivered (or stored) by
the batteries. In the calculation of the equivalent consumption, the regeneration coefficient
(REG) is considered, defined as follows:

REG =
EE_MG2_OUT

EE_B_IN
(14)

When ∆SOC is positive, the battery is charged between starting and stopping; other-
wise, it discharges. The equivalent consumption is expressed as:

CEQ f uel = C f uel −
∆SOC·CB·REG

ηG·ηICE·LHVf uel
(15)

where CB is the traction battery capacity, REG is the regeneration coefficient, ηICE and ηG
are the average efficiency of ICE and generator respectively, and the value of LHVfuel.

The average efficiency of the generator (ηG) is calculated from the data acquired
(mechanical energy absorbed by MG1 in generator operation EM_MG1_IN and electricity
supplied by MG1 in generator operation EE_MG1_OUT) as follows:

ηG =
EE_MG1_OUT
EM_MG1_IN

(16)

Mileage M and equivalent mileage Meq [g/km] are calculated as follows:

M =
C f uel

STOT
106 (17)

Meq =
Ceq f uel

STOT
106 (18)

4. Results Analysis and Comparison between Yaris Hybrid 2020 and Yaris Hybrid 2017

Table 1 shows the main characteristics of the two Toyota Hybrid Yaris vehicles, 2017
and 2020.
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The 2020 version has a three-cylinder in-line engine, a compression ratio of 14 and
64 kW (at 5500 rpm) of the maximum power. It has an increase of 18.5% in engine power
(compared to the 2017 version).

Moreover, the 2020 version adopts a lithium-ion traction battery instead of the nickel-
metal hydride battery; such a choice allows increasing the power of the electric motors up
to 59 kW (an increase of 31.1% compared to the 45 kW of the 2017 version).

The vehicle’s maximum power for the 2020 version is 85 kW compared to 74 kW of
the 2017 version (an increase of 14.8%).

Table 1. Main features of the two Toyota hybrid Yaris vehicles.

Characteristic YARIS Hybrid 2017 YARIS Hybrid 2020

Mass

Empty mass [kg] 1090 1165
Total mass [kg] 1565 1615

Engine

Displacement [cm3] 1497 1490
Number of cylinders 4 in line 3 in line
Compression ratio 13.4 14.0
Maximum power [kW] 54 (6000 rpm) 64 (5500 rpm)
Maximum torque [Nm] 111 120

Electric motor

Type Permanent magnet synchronous
Maximum power [kW] 45 59
Maximum torque [Nm] 169 141

Battery HV

Type Nickel-Metal Hydride Lithium ion
Nominal voltage [V] 144 177.6
Capacity [Ah] 6.5 4.3
Energy capacity [Wh] 936 736

Powertrain

Maximum power [kW] 74 85

Figure 7 illustrates a driving cycle (diagram v-t) of the test path used, described in
Section 2.1.2; the distinction between the central urban section and the mixed outward and
return sections is evident from the speed trend.

4.1. ZEV Mode Operation Analysis and Comparison between Yaris Hybrid 2020 and Yaris
Hybrid 2017

Below are the results of the analysis of the operating parameters in ZEV mode.
The main results of the tests carried out are shown in Table 2. For all parameters

(ZEVt, ZEVS, EVt and EVS), for the two sections (urban and suburban) and the entire
test, the values found for the Yaris 2020 are significantly higher than those for the Yaris
2017. The highest values of the parameters analysed occur in the suburban section; it is
due to the greater power of the electric motor, which allows electric operation even for
higher speeds and power requirements: +19.2% ZEVt, +83.3% ZEVS, +71.6% EVt and
+195.9% ZEVS.

These increases are also significant in the entire test (+15.3% ZEVt, +64.3% ZEVS,
+64.8% EVt and +137.6% ZEVS), while in the urban section (low average speeds and
low power) the increases are lower: +9.5% ZEVt, +16.5% ZEVS, +48.6% EVt and
+16.0% ZEVS.
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Table 2. Summary of average percentage values ZEV mode parameters of Yaris Hybrid 2017 and 2020.

Parameter
YARIS 2020 YARIS 2017 Percentage Change

Urban Suburban Test Urban Suburban Test Urban Suburban Test

ZEVt 82.5% 75.8% 78.0% 75.4% 63.6% 67.7% 9.5% 19.2% 15.3%
ZEVt stationary vehicle 15.5% 19.2% 17.9% 15.3% 27.6% 22.8% 1.5% −30.3% −21.4%
ZEVt glide 32.6% 33.2% 33.0% 59.4% 43.1% 49.4% −45.1% −23.1% −33.3%
ZEVt electric-
only traction 51.8% 47.6% 49.1% 25.3% 29.3% 27.7% 105.2% 62.6% 77.0%

ZEVS 76.1% 64.8% 66.6% 65.3% 35.4% 40.5% 16.5% 83.3% 64.3%
ZEVS glide 43.0% 40.4% 40.9% 47.0% 58.1% 55.0% −8.5% −30.4% −25.6%
ZEVS electric-
only traction 57.0% 59.6% 59.1% 53.0% 41.9% 45.0% 7.5% 42.1% 31.3%

EVt 73.9% 62.4% 66.2% 49.7% 36.3% 40.1% 48.6% 71.6% 64.8%
EVS 65.7% 52.9% 54.7% 56.7% 17.9% 23.0% 16.0% 195.9% 137.6%

The statistical distribution of the values of the analysed parameters (Table 3) is very
consistent with variations in the standard deviation normalised around 10%. In both cases,
the parameters showing the smallest dispersions are the percentages over time (ZEVt,
lower value, and EVt), while the percentages in the distance (ZEVS and EVS higher value)
show higher dispersions.

Table 3. Maximum values, minimum values and normalised standard deviation of the parameter values for the analysis of
vehicle operation in zero-emission vehicle (ZEV) mode.

Parameter
ZEVt ZEVS EVt EVS

2020 2017 2020 2017 2020 2017 2020 2017

Maximum 83.2% 72.0% 74.9% 36.1% 73.9% 46.3% 66.8% 36.1%

Minimum 65.2% 60.9% 47.7% 16.1% 48.2% 32.7% 32.9% 16.1%

Normalized standard deviation 0.0459 0.0401 0.0943 0.1345 0.0870 0.0832 0.1614 0.1345
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Figure 8 shows the frequency distribution of the ZEVt values in the tests of the Toyota
Yaris 2017 and 2020.

The ZEVt values were less dispersed in 2017 tests than in 2020 (Table 3); 86% of the
tests had a ZEVt between 60% and 70%, and 14% of tests between 70% and 80%.

In 2020, the ZEVt values were higher with a greater dispersion; 62% of the tests had
the ZEVt between 70% and 80%, 35% between 80% and 90%, and only 3% of tests between
60% and 70%.
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In 2020, 40% of the tests had a ZEVS between 60% and 80%, 45% between 60% and 70%
and 45% between 70% and 80%, 13% were between 50% and 60%, and only 3% between
40% and 50%.

Similar considerations apply to the frequency distribution of the EVt and EVS values
(Figures 10 and 11). In both test campaigns (2017 and 2020), the EVS values show a greater
dispersion and the 2020 values are significantly higher than those of 2017.
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4.2. Energy Analysis and Comparison between Yaris Hybrid 2020 and Yaris Hybrid 2017
4.2.1. Mileage and Efficiency Analysis and Comparison

Table 4 shows the average values of the parameters calculated for the vehicle energy
analysis. The difference between mileage and equivalent mileage is negligible (about 1%).
Therefore, only the equivalent mileage will be considered. In 2020, it showed a reduction
of 35.2%, compared to 2017, with an increase in the overall hybrid system efficiency of 8.2%
(the ICE average efficiency remains steady).

Table 4. Summary energy analysis parameters value of Yaris Hybrid 2017 and 2020.

Parameter
YARIS 2020 YARIS 2017 Percentage Change

Urban Suburban Test Urban Suburban Test Urban Suburban Test

Mileage [g/km] 28.3 21.7 22.8 39.1 34.2 35.1 −27.7% −36.5% −35.1%
Equivalent mileage [g/km] 28.1 21.5 22.5 39.1 33.8 34.7 −28.1% −36.5% −35.2%
ICE efficiency 31.4% 36.2% 35.3% 32.7% 35.3% 34.8% −3.9% 2.5% 1.3%
Hybrid system efficiency 33.9% 43.0% 41.2% 31.3% 39.8% 38.1% 8.5% 8.1% 8.2%

The equivalent mileage decrease is due to better overall average efficiency of the
hybrid system and partly to the different traffic conditions that bring to a greater energy
demand from the transmission in 2017 (see Section 4.2.2). The July 2020 tests were affected
by the government-imposed travel restrictions in the COVID-19 pandemic.

Table 5 shows the maximum and minimum values and normalised standard deviation
of the parameters for the energy analysis of the vehicle. Driving style and traffic condi-
tions affect the equivalent mileage, which has a higher dispersion concerning the average
value [19,39–42]; indeed, they have a lower impact on the hybrid system efficiency.

Table 5. Maximum values, minimum values and normalized standard deviation of the parameter values for the energy
analysis of the vehicle.

Parameter
Equivalent Mileage [g/km] ICE Efficiency Hybrid System Efficiency

2020 2017 2020 2017 2020 2017

Maximum 31.97 42.37 37.2% 37.7% 45.8% 41.1%
Minimum 17.82 27.81 25.0% 29.5% 30.4% 31.3%
Normalized standard deviation 0.1469 0.0917 0.0463 0.0342 0.0513 0.0489

The driving style essentially affects the energy requirements of the wheels (and there-
fore, with the same efficiency, on consumption) and much less on the efficiency of the
hybrid drive system. The traffic conditions and driving style affect also the amount of
energy recoverable under braking.

The values of the average efficiency of the ICE have the lowest dispersion and are
constant between the two test campaigns; it is due to the presence of the electric motor
in the hybrid drive system, which allows the ICE to always work in the best conditions
of efficiency.

Figure 12 shows the frequency distribution of the equivalent mileage values. These
values present a quite relevant dispersion to the average value (Table 5); in fact, the
normalised standard deviation is equal to 0.1469 (2020) and 0.0917 (2017) as they are
greatly influenced by both driving style and traffic conditions. There is a similar trend,
but the 2020 version has lower mileage than 2017. The maximum frequency distribution
of the equivalent mileage for the 2020 version is 55% and refers to the range 20–25 g/km
compared to 48% referring to 30–35 g/km for the 2017 version.
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Figure 13 shows how the frequency distribution of the ICE efficiency values does not
present significant deviation values between the 2020 version and the 2017 version, either
in the statistical distribution or in the average values (see Table 5).
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Figure 14 shows how the frequency distribution of the hybrid system efficiency values
present similar trends between the two versions but with higher efficiency values for the
2020 version (see Table 5).
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4.2.2. Energy Flows Analysis and Comparison

Figure 15 shows the diagram of energy flows of the Yaris 2020 and 2017 estimated on
the average value.
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Figure 15. Energy flows of the traction system [kJ/km].

For Yaris 2020, the electric motor (MG2) provides about 60%, (about 271 kJ/km). For
Yaris 2017, the MG2 provides only 32% (just over half) of the transmission energy with
about 225 kJ/km of electric consumption.

The braking system recovers about 138 kJ/km of electricity (about 45% of the total
produced) for Yaris 2020 and about 156 kJ/km (about 60% of the total produced) for Yaris
2017. Thanks to energy recovery, the ICE produces about 94% for the energy transmission
(2017 Yaris), while in the 2020 Yaris, the percentage drops to 85% thanks to the system’s
improved efficiency.
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Figure 16 illustrates that 27% of the energy used by Yaris 2020 derives from regenera-
tive braking, a further 32% from electricity produced by ICE and 41% directly from ICE.
For Yaris 2017, 18% of the energy derives from regenerative braking, 14% from electricity
produced by ICE and 68% from ICE.

From the foregoing, it is evident that the operating modes of the traction system are
strongly linked to the possibility of recovering energy during braking.
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Figure 17 shows the energy flow diagrams; it is evident that the improvements in 2020
Yaris come from the contribution of the hybrid system. The 2020 Yaris engine produces
349.60 kJ/km; 51.5% (180.27 kJ/km) goes to the electrical part (through MG1), and 48.5%
(169.33 kJ/km) goes directly to the transmission. The 2017 Yaris ICE produces 537.81 kJ/km;
only 27.3% (146.82 kJ/km) goes to the electric part, and 72.7% (390.99 kJ/km) goes directly
to the transmission.

The hybrid system of the 2017 Yaris produces 767.35 kJ/km of total power, 29.9%
(229.54 kJ/km) are provided by energy recovery, and the same percentage can be measured
in Yaris 2020 (total power of 506.22 kJ/km, with 30.9% from regenerative braking equal to
156.22 kJ/km).

Such a difference in energy needs is probably due to the different traffic conditions
influenced by the restrictions due to the COVID 2019 pandemic in the tests of the Yaris
2020: 571.61 kJ/km for the 2017 Yaris and 408.38 kJ/km (−28.6%) for the 2020 Yaris.

4.2.3. Comparison of Test Conditions

As already mentioned, the traffic conditions during the tests of the Yaris 2020 were
conditioned by the travel restrictions imposed occurring during the COVID-19 pandemic.

Table 6 shows some data relating to the 2017 and 2020 tests. The difference between
the test conditions is evident: in 2017, the average duration of the tests was about 30%
higher, the stopping time was about 22%; in contrast, the average speed and the average
speed with the vehicle in motion were approximately 23% and 20% lower. As mentioned,
the energy requirement at the wheels in 2020 was 30% lower compared with 2017.

The influence of different traffic conditions can be considered with statistical analysis; a
methodology is developed and applied to estimate the variation of a few energy parameters
obtained. This statistical analysis is detailed in the paper under publication by the same
authors that compare results of different on-road vehicle performance testing in this Toyota
Yaris hybrid case study [43]. It compares some energy indicators of 2020 (influenced by
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the travel restrictions of the pandemic) with the same indicators calculated in acquisition
campaigns of 2017 (where there are typical traffic conditions).
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Table 6. Comparison between parameters of the 2017–2020 tests.

July 2020 October 2017 Variation

Urban Suburban Test Urban Suburban Test Urban Suburban Test

Time [s] 1577 3202 4779 2164 4070 6233 37.2% 27.1% 30.4%
Stationary time [%] 13.3% 14.7% 14.2% 13.4% 19.5% 17.3% 0.6% 32.4% 21.8%
Average speed [m/s] 3.8 10.0 8.0 3.0 7.8 6.1 −19.9% −22.1% −22.8%
Average speed with v > 0 4.4 11.7 9.3 3.5 9.7 7.4 −19.8% −17.6% −19.9%

The main results show that the different traffic conditions involve an increase of about
1% of the ZEVt and ZEVS and about 0.05% of mileage and hybrid system efficiency in the
Yaris 2020 campaign. Therefore, the performance improvements of Yaris 2020 compared
to Yaris 2017 (Tables 2 and 4) are substantially confirmed even in the face of different
traffic conditions.

5. Conclusions

The above research shows a significant performance improvement, both in terms of
ZEV operation and consumption and efficiency. These improvements came from optimising
the system: the technologies, apart from the traction batteries (nickel-metal hydride version
2017 and lithium-ion in the 2020 version). Despite the same efficiency levels, the average
motor/generator power (MG2, see Figure 6) increases; it allows better management of the
hybrid drive system and a better ability to recover energy during braking (Figure 16).

The application of the RDTT protocol shows a decrease in consumption of more than
35%; the Yaris 2017 achieved 35.1 g/km while Yaris 2020 achieved 22.8 g/km (Table 4).

The mileage saving based on the homologation data (using the NEDC cycle because,
in the Yaris 2017, the latest WLTP is not available) is just over 10%. The hybrid powertrain
overall efficiency increases by 8.2%, with practically unchanged ICE efficiency (Table 4).

As for the operation in ZEV (Table 2), ZEVt increases by 15.3% (67.7% for Yaris 2017,
78.0% for Yaris 2020), ZEVS by 64.3% (40.5% for Yaris 2017, 66.6% for Yaris 2020), EVt by
64.8% (40.1% for Yaris 2017, 66.2% for Yaris 2020) and EVS by 137.6% (23.0% for Yaris 2017,
54.7% for Yaris 2020).

It is noteworthy that the statistical distribution of the data is almost steady between
the 2017 and 2020 tests (Figures 8–14).

The values of the energy parameters obtained in a less congested traffic condition
(typical of the 2020 campaign) are influenced by the travel restrictions in the COVID-19 era.
These indicators are compared with those measured in 2017, where the traffic conditions
are normal.

The deviation of ZEVt and ZEVS are both about 1%, while the mileage and hybrid
system efficiency are quasi-steady (0.05%). Such results, reconfirmed by statistical analy-
ses [43] which show deviations of about 1% for ZEVt and ZEVS and 0.05% for mileage and
hybrid system efficiency.
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Nomenclature

ICE Internal Combustion Engine
MG Electric motor/generator
REG Regeneration coefficient
SOC State of charge of the traction battery pack
CB Traction battery pack capacity [J]
ZEVt Percentage of operating time in ZEV mode related to the total time
tZEV Operating time in ZEV mode [s]
tTOT Total time [s]
ZEVS Percentage of distance travelled in ZEV mode relative to the total distance
SZEV Distance travelled in ZEV mode [m]
STOT Total distance travelled [m]

ZEVtv=0
Percentage of operating time in ZEV mode with the stationary vehicle in relation
to the total operating time in ZEV

ZEVtPT>0
Percentage of in ZEV mode operation time with advancement with power delivery
to the transmission only by the electric motor relative to the total operating time in ZEV

ZEVtPT>0
Percentage of in ZEV mode operation time with advancement without power
delivery to the transmission relative to the total operating time in ZEV

tZEVv=0 Operating time in ZEV mode with stationary vehicle [s]

tZEVPT=0
Operating time in ZEV mode with vehicle advancement without power supply
to transmission [s]

tZEVPT>0
Operating time in ZEV mode with vehicle propulsion with power output to the
transmission only by the electric motor [s]

ZEVSPT=0
Percentage of the distance travelled in ZEV mode with feed without power delivery
to the transmission in relation to the total distance travelled in ZEV

ZEVtPT>0
Percentage of the path space in ZEV mode with feed with power delivery to the
transmission only by the electric motor relative to the total distance travelled in ZEV

SZEVPT=0
Space travel in ZEV mode with vehicle advancement without power to the
transmission [s]

SZEVPT>0
Space travel in ZEV mode with vehicle advancement without power to the
transmission [m]

EVt
Percentage of time with the power delivery to the wheels only by the electric
motor relative to the time of power delivery to the transmission

EVS
Percentage of space covered with power delivery to the transmission only by the
electric motor relative to the distance travelled with the power delivery to the wheels

tTOTPT>0 Travel time with power output to the transmission [s]
STOTPT>0 Space travel with power to the transmission [m]
E_B_IN Electricity input hybrid battery (J)
EE_MG1_OUT Electricity supplied by MG1 in generator operation [J]
EM_MG1_IN Mechanical energy absorbed by MG1 in generator operation [J]
EE_MG2_OUT Electricity supplied by MG2 in generator operation (J)
E_ICE_OUT Mechanical energy delivered by ICE (J)
E_T_IN Mechanical energy to the transmission (J)
ηG Average efficiency of MG1 and MG2 in generator operation
ηICE Average efficiency of ICE
CEQfuel Equivalent fuel consumption [kg]
Cfuel Fuel consumption [kg]
LHVfuel Lower heating value of fuel [kJ/kg]
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ηHS Average hybrid powertrain efficiency
M Mileage [g/km]: fuel consumption in kilometers
Meq Equivalent mileage [g/km]: equivalent fuel consumption in kilometers
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