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A B S T R A C T   

Maritime characteristics make the progress of automatic operations in ships slow, especially compared to other 
means of transportation. This caused a great progressive deal of attention for Autonomy Degree (AD) of ships by 
research centers where the aims are to create a well-structured roadmap through the phased functional matu
ration approach to autonomous operation. Application of Maritime Autonomous Surface Ship (MASS) requires 
industries and authorities to think about the trustworthiness of autonomous operation regardless of crew 
availability on board the ship. Accordingly, this paper aims to prognose the health state of the conventional 
ships, assuming that it gets through higher ADs. To this end, a comprehensive and structured Hierarchal Bayesian 
Inference (HBI)-based reliability framework using a machine learning application is proposed. A machinery plant 
operated in a merchant ship is selected as a case study to indicate the advantages of the developed methodology. 
Correspondingly, the given main engine in this study can operate for 3, 17, and 47 weeks without human 
intervention if the ship approaches the autonomy degree of four, three, and two, respectively. Given the dete
rioration ratio defined in this study, the acceptable transitions from different ADs are specified. The aggregated 
framework of this study can aid the researchers in gaining online knowledge on safe operational time and 
Remaining Useful Lifetime (RUL) of the conventional ship while the system is being left unattended with 
different degrees of autonomy.   

1. Introduction 

The innovative thinking of Maritime Autonomous Surface Ships 
(MASS), given all its challenges, has been a prerequisite, specially to 
secure safety and sustainability. According to Allianz’s safety and 
shipping review [24], human errors lead to 75% up to 96% of maritime 
accidents. This amount of human error contribution to maritime acci
dents has been recently challenged through a literature review by 
Wróbel [69] to be unsubstantiated. However, it is verified that human 
error constitutes a significant contribution to maritime accidents. 
Eliminating the crew members on board and introducing novel tech
nologies and state-of-the-art ship design will result in reducing opera
tional cost (up to 36% of total operational cost [23]), energy saving, 
environmental protection and striking reductions in greenhouse gas 
emissions, which are all crucial milestones towards sustainability [8]. 

A great deal of projects has recently been conducted to support the 
development of MASS such as Advanced Autonomous Waterborne Ap
plications (AAWA) [38], ReVolt [27], The Maritime Unmanned Navi
gation through Intelligence in Networks (MUNIN) [43], Kongsberg 
(Konsberg [42]), and most recently, AUTOSHIP [18]. The typical 
outcome derived from all these studies has been that the more the 
automation level increased, the more the new random failure with un
recognized failure pattern will be propagated [14]. Safety studies on 
MASS have been divided into two main categories: (i) risk-based design 
to recommend the design of safe autonomous ships [44,62]; what design 
feature of new tools can best mitigate risks? (ii) risk-based asset integrity 
management to identify the weak and sensitive components in the ship 
systems once it is operating [17,25]; what are the risks that the new 
design in MASS should focus on to eliminate/mitigate? Consequently, 
significant attention has been paid to detect [32,64], isolate [9], identify 
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the root causes [21,65,67], monitor [56], and predict the downtime of 
MASS [1–3,76]. 

Accordingly, system-based approaches such as system theoretic 
process analysis (STPA), have been applied to recommend the design 
and operation of safe autonomous ships ([20,35,70]). The considerable 
research activities based on STPA for such a complex system illustrates 
its pivotal contribution to the development of preliminary safety man
agement plan of the autonomous ships, e.g., in the recent virtual special 
issue on autonomous vessels safety [66], more than 25 percent of pub
lished articles were based on STPA. STPA as a control-based hazard 
identification approach proposed and developed based on System 
Theoretic Accident Model and Processes (STAMP) Leveson [50] and 
Leveson and Thomas [51]. In another study, Zhou et al. [75] investi
gated the applicability of 29 hazard analysis methods for autonomous 
ships and concluded that the traditional hazard analysis approaches 
could not provide an acceptable safety arrangement for designing 
autonomous vessels. On the contrary, STPA has been classified as a 
practical hazard analysis method that is recommended to be integrated 
with other hazard analysis methods. 

The motivation of these initiatives was mainly aimed to identify the 
hazards. Inevitably, toward securing a practical risk assessment, hazard 
identification is the baseline. Nevertheless, neither of these studies 
established a quantifiable approach. Consequently, a collection of 
ongoing efforts is made to analyze the operational risk and safety of the 
MASS, quantitatively [22,33,58]. Ellefsen et al. [31] documented four 
most-celebrated deep learning techniques to support innovation toward 
the intelligent prognostics and health management (PHM) in 
semi-autonomous ships. It concluded that deep learning techniques in 
complex systems deployed in dynamic environments such as MASS 
would be advantageous mainly due to unsupervised learning features. In 
another quantitative machine learning-based study, Abaei et al. [7] 
developed a multinomial process tree to model failures propagated in 
weak (failure-sensitive) components for evaluating the reliability of an 
autonomous system under the influence of uncertain disruptions. 
Bayesian inference was implemented to overcome data scarcity for 
predicting the number of disruptive events in the new advanced stage of 
MASS. 

The application of hierarchical Bayesian inference (HBI) has been 
vastly extended in different research areas, from econometrics [40] to 
phycology [68] and medicine [30]. This extension is principally thanks 
to two main reasons; first, the development of random-effect models 
(REM) and specially Markov Chain Monte Carlo (MCMC) simulation 
[12,46], and second, the capability of HBI in modeling the variability of 
non-stationary data and the correlation between nonlinear data [10,11, 
16]. Related literature also set sound examples of MCMC 
sampling-based HBI for failure modeling of maritime autonomous sys
tems [3,19,53,74]. 

Aside from qualitative and quantitative analysis of MASS, a signifi
cant number of studies have also been carried out on Human-Machine 
Interaction [26,73], legal and regulatory challenges [15,71], business 
model development for technological transition [54,59], and system 
dynamics based robot learning in autonomous systems [45,52,57,61]. 
Nonetheless, a longstanding gap continues to exist as there is still a lack 
of unified models to capture the effect of removing crew members on the 
reliability of ships given the complex time-dependent auto-correlation 
structure of the uncertainty associated with survival-time of components 
operating in ships. Satisfying various trustworthiness levels, relying less 
on the crew member is required upon a vessel moving through each 
autonomy level (Edge et al., [28]). Therefore, this paper aims to prog
nose the health state of the conventional ships, assuming that it gets 
through higher AD. To this end, a comprehensive HBI-based reliability 
framework using a machine learning application is proposed. There is 
still a lack of knowledge on the effectiveness of autonomous behaviors of 
MASS in the execution of risk control strategies such as self-maintenance 
and self-governing. Therefore, for the purpose of failure specification, 
these behaviors are not considered in this paper. 

As recommended by IMO [37], an autonomous ship should be as safe 
as a conventional ship regardless of the AD it is operating. As Colon [23] 
reviewed, the main focus of conducted studies on MASS is to investigate 
how advanced control systems, navigation software, and online com
munications could control an unmanned vessel. Although designing a 
completely unmanned ship arises more problems than navigation and 
communication, what is often neglected through these studies is the 
need for reliability estimation within the machinery plant. Therefore, 
the machinery plant operated in a merchant ship is selected as a case 
study to indicate the advantages of the developed methodology. The 
aggregated framework of this study can aid the researchers in gaining 
online knowledge on weak and failure-sensitive parts of the conven
tional ship if the system is being left unattended in different stages of its 
lifecycle and with different degrees of autonomy. These calculations 
address the involved and, most of the time, unconsidered risk to predict 
the safety conditions of the operation in the future. 

2. Model specification 

Given the prognostic aspect of this study, the selected model should 
be capable of reasoning under uncertainty. Although there are obser
vational data available for conventional ship performance, there is data 
scarcity on systems behavior in higher autonomy degree. Therefore, the 
proposed model should also be able to infer under scarcity of data. The 
nonlinear interactions among different ship systems and stochastic 
characteristics of the operating environment require both inductive and 
deductive methods to be integrated. This promising framework is 
introduced in the ensuing sub-sections. 

2.1. Model of the world; hierarchical Bayesian inference 

Data acquisition, information processing, knowledge gathering, and 
making actions based on concluded inference are four steps to estimate 
and predict the reliability of an autonomous system. Manipulating the 
information required a model of the world to be framed. Both deter
ministic and probabilistic models are available for this purpose [41]. 
Different types of uncertainties (epistemic; also known as 
state-of-knowledge uncertainty and aleatoric; stochastic) must be 
incorporated in the model. As an understandable, trusted model, 
Bayesian statistics can describe these uncertainties with the posterior 
distribution, π1(θ|x), [4,13,41] given by Eq. (1). 

π1(θ|x) =
f (x|θ)π0(θ)∫

θf (x|θ)π0(θ)dθ
(1)  

where θ is the unknown parameter of interest, and f(x|θ) is the likeli
hood function. 

The Bayes theorem utilizes multistage prior distribution to present 
the population variability through different hierarchy levels. Corre
spondingly, the first-stage prior denoted as π1(θ|φ) represents the vari
ability between the source of data for the parameter of interest indicated 
by π0(θ), as follow: 

π0(θ) =
∫

∅

π1(θ|φ) π2(φ)dφ (2)  

where, φ is a vector of hyper-parameters. Fig. 1 presents this hierar
chical structure of Bayesian inference through the parameter of interest, 
θ, and hyper-parameters. As it can be seen in this figure, two hyper- 
parameters, φ1, φ2, are governing the prior probability distribution of 
θ. Meanwhile, and through the second stage prior, the uncertainty in 
hyper-parameters can also be represented by π2(φ) as the hyper-prior 
distribution; (α1, α2) are describing φ1, and (α3,α4) are modeling, φ2. 

Implementation of Bayesian inference is theoretically simple if one 
can calculate its integrals. While the analytic solution is an option for 
solving the integrals, it is practical only for elementary models. As an 
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example of models that have unclean posterior distribution, let consider 
a one-parameter non-conjugate model. A prior distribution is defined as 
conjugate whenever its combination with the likelihood will result in a 
posterior distribution belonging to the same probability distribution of 
the prior [47]. Assume y = (y1, y2, y3, …, yn) as a sample of n inde
pendent and identically distributed (i.i.d.) observations following a 
normal distribution with known variance, σ2, but an unknown mean 
denoted by μ, i.e., yi∼ N(μ, σ2). As stated by [34], The conjugate prior for 
a normal distribution with random mean and fixed variance is normal 
distribution; however, it assumes that the prior beliefs about mean are 
better reflected using a standard t distribution, μ ∼ t(μ0,σ0,ν0), where μ0 
is location parameter, σ0 represents scale parameter and ν0 denotes the 
degree of freedom. As illustrated by Eq. (1), through the application of 
Bayes’ Theorem, the posterior distribution would be achieved by: 

P(μ|y1, y2, y3, …, yn)∝
∏n

i=1

[
1̅̅
̅̅̅

2π
√ exp

(

−
1
2
(yi − μ)2

)]
1

π(1 + μ2)

∝exp

[

−
1
2
∑n

i=1
(yi − μ)2

]
1

1 + μ2  

∝exp

[

−
1
2

(
∑n

i=1
yi

2 − 2μ
∑n

i=1
yi + nμ2

)]
1

1 + μ2  

∝
exp[n(yμ − μ2/2)]

1 + μ2  

which is almost proportional to the normal distribution (apart from the 
denominator (1 + μ2)), the form of this posterior distribution is not 
recognizable as a standard distribution, though. Therefore, the model 
does not have a close-form solution, and it is impossible to integrate or 
simulate its distribution. As a solution, the computations need to be 
broken into smaller pieces and transformed into computers through 
probabilistic programming platforms, including automated computation 
and inference. MCMC simulation and distributional approximation like 
Laplace, exaptational propagation, etc., are examples of these frame
works. The advent of computational methods revolutionized and cata
lyzed the calculations and have proliferated Bayesian inference resulted 
in its widespread use in probabilistic risk applications ([2], [13,46,48, 
49]). In this study, MCMC sampling has been incorporated with HBI via 
open-source simulation software packages, i.e., OpenBUGS [63] to solve 
the integrals and consequently simulate the likelihood function and 
prior distribution to obtain the posterior values. 

The next challenge is the computers’ limitations in terms of memory, 
speed, and accuracy of calculations. Accordingly, model diagnostics 
must prove the computations and check whether they are precise or not 
and whether the data is transformed correctly or not. The present study 
will establish different chains through MCMC simulation with over- 
dispersed initial values, providing the opportunity to diagnose the cal
culations and assess the simulations’ convergence. 

2.2. AD definition and failure specification 

Recently IMO [37] initiated a regulatory scoping exercise (RSE) for 
the use of MASS outlined in Table 1 [36]. As there is no better definition 
alternative exists yet in terms of autonomy degree, this RSE is consid
ered to conduct a failure specification for ships with different ADs. The 
necessity of human availability onboard a ship varies through these 
distinguished degrees of autonomy. The human can be present onboard 
a ship regardless of its AD, however, dependency on humans is not 
following the definition of autonomous ship initiated by RSE. This need 
for human availability along with observations gathered from the sys
tem have been taken into account to recognize the health state of the 
ship system through different AD (see Fig. 2). As illustrated by Fig. 2(a), 
observation is divided into two categories of failure and Risk Control 
Strategy (RCS) (Check (inspection), maintenance, and replacement 
(unplanned maintenance)). Correspondingly, four levels of health state 
(safe, reliable, degraded, and unsafe) were considered to describe the 
safety status of the system and, accordingly, to present the failure 
perception matrix of the ship system in each AD (Fig. 2(b)). 

As still there is not enough knowledge on the effectiveness of 
autonomous behaviors of MASS (specially for the execution of RCSs) 
through the operation, in this study, these behaviors have not been 
considered for failure specification. Accordingly, execution of RCSs is 

Fig. 1. A schematic directed acyclic graph of Bayesian inference with hierarchical structure.  

Table 1 
Specified degree of autonomy for Maritime Autonomous Surface Ship (MASS); 
IMO [37].  

ADs Description; human availability 

AD1 Ship with automated process and decision support: human intervention is 
required 

AD2 Remotely controlled ship: seafarers on board, human intervention is partially 
required 

AD3 Remotely controlled ship: no human on board; human intervention is 
partially required 

AD4 Fully autonomous ship: no human intervention is required  

A. BahooToroody et al.                                                                                                                                                                                                                        



Reliability Engineering and System Safety 221 (2022) 108355

4

genuinely subjected to the availability of humans, meaning that a 
necessary check or maintenance action cannot be carried out if there is 
no human on board. No matter how minor the required risk control 
action is, this dependency to humans availability may not be accepted 
for ships with specific AD; Refereeing to the IMO definition of AD, 
humans have the possibility of inspection (onboard or remotely) 
through the first three AD, maintenance through the first two AD, and 
Replacement in the first AD. As a result of the execution of these RCSs, 
the system will not have an unsafe health state through the aforemen
tioned AD. On the contrary, since the system should be able to operate 
without any need for the RCSs in all remaining conditions (i.e., in
spection in AD4, maintenance in AD3 and AD4, replacement in AD2, 
AD3, and AD4), an unsafe health state will be expected for the system in 
such cases. As illustrated in Fig. 2, a failure will lead the system to 
experience an unsafe health state regardless of the AD of the ship. Since 
the majority of systems inside the conventional ships are not supported 
by redundancy, it is not taken into account in this failure specification. 

As it can be seen in Fig. 2(a), a degraded state is assumed for a 
conventional ship (a ship with AD1) if any system, subsystem, or 
component requires to undergo unplanned maintenance (replacement) 

action. Given the acceptable level of human intervention in a ship with 
AD of two and three any required maintenance in AD2 and necessary 
check in AD3 will degrade the system through its life cycle. Finally, any 
required maintenance activities reported through AD1 and inspection in 
AD2 illustrate that the system’s health state lost its safe state. Although, 
thanks to the availability of humans and the possibility of intervention, 
the system will have a reliable health state. 

3. Methodology; prognostic health assessment 

The sequence of the developed model is outlined in Fig. 3. 
The preliminary step is to determine the scope of study via specifi

cation of the system to be involved in this PHM model. It is aimed to 
divide the given system into its most relevant components. Later, an 
operational limit should be considered to preserve the process in a safe 
condition. For this purpose, different acceptable health thresholds can 
be assigned for the system based on the proposed matrix (Fig. 2). This 
threshold will be determined according to the stakeholders’ risk man
agement strategies and priorities (one company may not operate while 
the ship system is degraded, contrary to the other company that accepts 

Fig. 2. Health state specification of ship system through different ADs based on observations (a) and the resulted failure perception matrix (b).  
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the risk of operating in a degraded condition). Upon specification of the 
health threshold, the interarrival time between observations (ones 
leading the system to exceed the recognized threshold) should be 
recorded as an input to predict the likelihood of health threshold ex
ceedance through the target AD. In this study, a threshold is set to accept 
all health states but unsafe conditions. Table 2 outlines the critical 
operational times (COT) for different ADs. 

Therefore, the prognostic health management of the ship system can 
be modeled through different ADs, given its associated COT, e.g., in 
AD3, the TTFRM should be captured. The interarrival times between 
RCSs and failures should be presented in time series to incorporate the 

Fig. 3. Sequence of proposed statistical-based PHM model for ships with different ADs.  

Table 2 
Description of critical operational times for different ADs.  

Autonomy Degree Critical operational times (COT) 

One (current 
situation) 

Time to Failure (TTF) 

Two Time to Failures and Replacement (TTFR) 
Three Time to Failures, Replacement, and Maintenance (TTFRM) 
Four Time to Failures, Replacement, Maintenance, and Check 

(TTFRMC)  
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uncertainties associated with data via indicating the correlation of 
monitoring data. Different statistical inferences and probability as
sumptions have been adopted to model the interarrival observation 
times. The division of modeling categories is made based on several 
factors, including whether the observation interarrival times are 
dependent over the asset operational time or not [13]. While as one of 
the two most utilized assumptions, Homogenous Poisson Process (HPP) 
presumes that the inter-arrival times of an observation data are inde
pendently and identically distributed (iid), the other widely used 
assumption, Nonhomogeneous Poisson Process (NHPP) assumes that ith 
time-step (ti) is dependent on the value in the previous time-step, ti− 1. As 
recognized by BahooToroody et al. [13], discounting the time de
pendency by HPP assumption often yields improper results and subjects 
to a significant level of uncertainty. Therefore, in this study, NHPP 
assumption is given to model the exceedance rate of safety limit, λ(t), 
through the specific time interval [tn, tn+1], as presented by Eq. (3) [13]; 

E(NE) =
∫tn+1

tn

λ(t)dt (3)  

where E(NE) denotes the expected number of exceedances. As an 
appropriate function for representing the exceedance rate of safety limit, 
Power-law, log-linear, and linear models are suggested in [5,41]. 
Compared to linear models, the power-law model can predict the 
nonlinearity of λ(t), as a stochastic trend, with reasonable precision, and 
therefore with the relationship expressed by Eq. (4) [60], this model is 
established herein; 

λ(t) =
α
β

(
t
β

)α− 1

(4) 

A two-parameter Weibull distribution, (t,β,α), with shape parameter, 
α, and scale parameter, β, is generated through modeling the inter- 
arrival times between successive observations by power-law ([11]b) 
given by Eq. (5); 

f (t, β, α) = α
β

(
t1

β

)α− 1

exp
[

−

(
t1

β

)α]

(5) 

A conditional probability must be defined in order not to relax the 
dependency of observational times, Ti, for each desired time interval 
[ti− 1, ti] as expressed by Eq. (6) [29]; 

f (ti|ti− 1) = f (ti|Ti > ti− 1) =
f (ti)

Pr(Ti > ti− 1)
(6) 

Accordingly, the Weibull distribution would be achieved by Eq. (7) 
as; 

f (ti|ti− 1) =
α
βα(ti)

α− 1exp
[

−

(
ti

β

)α

+

(
ti− 1

β

)α]

(7)  

where, i = 2, …, n. To quantify the uncertainty associated with the 
parameter of interest of formulated Weibull distribution, Bayesian 

inference is established. Contrary to frequentist approaches such as 
Maximum Likelihood Estimation (MLE) and Least Square Estimation 
(LSE), in estimating the parameters, Bayesian inference assumes that α, β 
are uncertain values following a distribution with a prior probability as 
stated by Eq. (2). Given this equation, a vector of hyperparameters 
should be sampled from a particular parametric form to model the un
certainty integrated with population variability existing in the data 
source of prior distribution of shape and scale parameters. To this end, a 
non-informative prior distribution is considered for the hyper-parameter 
to support MCMC simulation to generate data within any range without 
any primary preference. This model of prior distribution can also lead to 
a better reflection of the nature of data, including the uncertainties by 
the posterior distribution since there is no impact from prior probability 
distribution on posterior probability distribution through the Bayesian 
updating [12,72]. A typical choice of non-informative distribution for 
hyper-parameter is a gamma distribution with independent diffuse 
hyperpriors, assuming to be the prior distribution of hyperparameters in 
this study as suggested by Abaei et al. [6,41] to formulate the first-stage 
prior, π1(θ|φ); 
{

α ∼ Gamma(αα, βα)

β ∼ Gamma
(
αβ, ββ

) (8)  

where(αα, βα) and (αβ, ββ) are the vector of hyperprior employed to 
describe the uncertainty integrated in hyperparameters. The prior dis
tribution of shape and scale parameter would be expressed by Eqs. (9) 
and (10), respectively: 

π0(α) =
∫tn+1

tn

∫tn+1

tn

βα
αα tαα − 1e− βαt

Γ(αα)
π1(αα, βα)dαα, dβα (9)  

π0(β) =
∫tn+1

tn

∫tn+1

tn

ββ
αβ tαβ − 1e− ββt

Γ
(
αβ
) π1

(
αβ, ββ

)
dαβ, dββ (10) 

Accordingly, the likelihood function would be achieved by Eq. (11); 

f (T1, T2,…,Tn|α, β) = f (T1)
∏n

i− 2
f (ti|ti− 1)

=
αn

βnα

(
∏n

i=1
ti

α− 1

)

exp
[

−

(
tn

β

)α]

(11)  

where T1and Tn are the times of first and nth observation (RCS and 
failure) events. This function is required to perform the MCMC simula
tion from the joint posterior distribution of hyper-parameters via open- 
source simulation software packages, i.e., OpenBUGS [63]. Given Bayes’ 
Theorem, the posterior probability distribution of shape and scale pa
rameters can be expressed by Eqs. (12) and (13) as;   

π(α| T1, T2,…,Tn) =

αn

βnα

(
∏n

i=1
ti

α− 1

)

exp
[

−

(
tn

β

)α] ∫tn+1

tn

∫tn+1

tn

βα
αα tαα − 1e− βαt

Γ(αα)
π2(αα, βα)dαα, dβα

∫

α

∫tn+1

tn

∫tn+1

tn

αn

βnα

(
∏n

i=1
ti

α− 1

)

exp
[

−

(
tn

β

)α] βα
αα tαα − 1e− βαt

Γ(αα)
π2(αα, βα)dαα, dβα, dα

(12)   
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The derived directed acyclic graph (DAG) model for the developed 
Bayesian model is illustrated in Fig. 4, where P is the posterior Weibull 
function by which the exceedances time from the health threshold 
through different ADs in operation can be predicted. Since the likelihood 
function formulated in this study is not pre-programmed into Openbugs 
software, a vector of n array is created to assign a generic distribution 
with parameter Φ as Φ= log(likelihood), (recommended by Abaei et al. 
[5,11,41]) given by Eq. (14); 

φ = log(α) − α × log(β) + (α − 1)log(ti) − (tn/β)α
/n (14)  

where ti and tn are the last and ith observation of the exceedances event 

from health threshold in the simulation, respectively [6,11]. This will 
allow Openbugs to perform the simulation through Bayesian updating 
via likelihood function and specify the marginal posterior distribution as 
outlined by Eq. (15). 

π(α, β| T1,T2,…,Tn) =

∫tn+1

tn

∫tn+1

tn

∫tn+1

tn

∫tn+1

tn

π
(
α, β
⃒
⃒αα, βα, αβ, ββ

)

π
( (

αα, βα, αβ, ββ
)⃒
⃒T1,T2,…,Tn

)
dαα, dβα, dαβ, dββ

(15) 

Through the presented Bayesian network in Fig. 4, α and β as the 
hyper-parameters are independent before observing the data. Once an 

Fig. 4. Derived directed acyclic graph (DAG) for the developed Bayesian-based PHM model.  

π(β| T1,T2,…,Tn) =

αn

βnα

(
∏n

i=1
ti

α− 1

)

exp
[

−

(
tn

β

)α] ∫tn+1

tn

∫tn+1

tn

ββ
αβ tαβ − 1e− ββt

Γ
(
αβ
) π2

(
αβ, ββ

)
dαβ, dββ

∫

α

∫tn+1
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∫tn+1
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αn

βnα

(
∏n

i=1
ti

α− 1

)

exp
[

−

(
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β

)α] ββ
αβ tαβ − 1e− ββt

Γ
(
αβ
) π2

(
αβ, ββ

)
dαβ, dββ, dβ

(13)   
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RCS or a failure is observed, these parameters will be dependent. 

4. Application of methodology 

The presented framework in this study can be applied to different 
ship systems. As the machinery plant has been less studied compared to 
autonomous navigation and communication [3,7,23], a practical 
example of the machinery plant of three cargo RoRo (Roll-on/Roll-off) 
ships is considered to verify the presented framework. The following 
sub-sections deliver a comprehensive discussion on the application of 
the proposed methodology to the case study. 

4.1. Case study; setup of the machinery plant 

A machinery plant used in typical short sea merchant ships is offered 
to demonstrate the applicability of the developed methodology. A 
schematic arrangement of the machinery plant is illustrated in Fig. 5. As 
a prime mover of the ship, the main engine is either a two or four-stroke 
diesel engine connected to the propeller to produce the power necessary 
for the desired ship speed of advance. The engine output power is 
transmitted from the engine turning gear to the propeller shaft via the 
clutch and reduction gearbox. The clutch engages and disengages the 
engine from the propeller shaft, and the reduction gearbox reduces the 
rotation speed to the operating speed of the propeller. The control 
(maneuvering) system regulates engine speed by acting on the quantity 
of fuel injected into the cylinder for combustion. The cylinder cover 
holds the injection valve, the inlet valves, and the exhaust valves and 
connects the lubrication oil circuit and cooling water circuit to the 
cylinder. The piston is the central moving part inside the cylinder during 
the combustion cycle. The linear movement of all pistons generated the 
rotative movement of the engine crankshaft and turning wheel. The 
attached lube oil pump is necessary for circulating the lubrication oil 
under pressure through the moving parts of the engine to avoid wear and 
overheating. The tail shaft propeller is carried by the stern tube, which 
connects the shaft to the propeller out at sea and assures water tightness. 

The type of merchant ship considered in this study is cargo RoRo 
(Roll-on/Roll-off) ship. The data is collected from three ships with the 
same machinery set up, as shown in Fig. 5. The three ships are fitted with 
four-stroke diesel engines and have a close age ranging from 14 to 18 
years. The ships are also operating in the same sea region; the Medi
terranean Sea. The observational data outlined in Fig. 6 was adopted 
from ship alarm system records, maintenance records, and engine log
books. Survey analysis and interviews with the ship machinery crew 
were conducted to understand the data and structure it for this study. 
Failure times as well as the time intervals of the check, maintenance, and 
replacement operations, are touched upon through this data. The crew 
also provided the definition of different types of observations (RCSs and 
failure) in the context of the considered case study (see Table 3). 

Accordingly, the COT for all observations was pointed out based on 
instructions reported in Table 2. 

4.2. HBI; sampling the Weibull parameters with NHPP assumption 

Upon specifying the COT for different ADs, the Bayesian inference 
paradigm can be applied to simulate from likelihood function and prior 
distribution, and finally obtain the posterior values of Weibull param
eters, α, and β. As stated by Section 3, an independent diffusive Gamma 
distribution is applied for the prior distribution of hyper-parameters, α,
and β as; 
{

α ∼ Gamma(0.0001, 0.0001)
β ∼ Gamma(0.0001, 0.0001) (16) 

Accordingly, using MCMC simulation, 1000 burn-in iterations fol
lowed by 3 × 105 iterations have been sampled through three chains 
with an over-dispersed initial value of α and β for all ADs to estimate the 
posterior distribution of hyper-parameters and to check the conver
gence. As a model diagnosis, the convergence of applied chains 
(depicted by different colors) was checked by presenting the treatment 
of chains through the simulation via trace plot and history of iterations 
of hyper-parameters. The statistical summary of hyper-parameters is 

Fig. 5. General overview of Machinery Plant onboard.  
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outlined in Table 4, though due to limited space, the posterior proba
bility density function, and trace plot of α and β and history of iteration 
of α for only one AD (AD3) are illustrated in Fig. 7. 

This model diagnosis is followed by monitoring the correlation of 
simulated value of α and β through the sampling process. The resulting 
scatter plots (shown in Fig. 8) validate that the convergence has been 
well reached through the developed HBI script for all ADs. 

According to Table 4, the shape parameters of the probability model 
through all ADs are higher than 1, confirming that the number of ex
ceedance events is dependent upon time. The obtained posterior value of 
hyper-parameters can be incorporated in Weibull distribution to predict 
the System Health Index (SHI) and the cumulative number of exceed
ances from health threshold through the time for different ADs. SHI can 
be modeled according to survival function as expressed by Eq. (17) as; 

S(t) = 1 − F(t) = e− (βt)α
for t > 0 (17)  

where F(t) is the cumulative density function of a two-parameter Wei
bull distribution, (t, β, α) With shape parameter, α, and scale parameter, 
β. S(t) as SHI function represents the probability that the exceedance 
from a predefined health threshold has not yet occurred by a given time t 
if T denotes the lifetime of the system. Fig. 9 depicts the SHI function for 
a conventional ship, given that it would be left unattended at different 

stages and with different ADs. In this figure, the time was presented in 
logarithm. The SHI function will be elaborated more later in the dis
cussion section to establish the Reliability Centered Maintenance (RCM) 
strategy, predict Remaining Useful Lifetime (RUL), and model the 
degradation trend. 

The cumulative exceedance number, H(t), can also be achieved by 
Eq. (18) as; 

H(t) = − ln[1 − F(t)] = − lnS(t) = (βt)α (18) 

Fig. 10 presents the predicted cumulative exceedance number (CEN) 
for all ADs, with a confidence interval of 95 percent. Similar to the SHI 
function, the time is in logarithmic format. Given this prediction, the 
safe operational time of the ship through different ADs can be specified 
(see Table 5). Correspondingly, the given main engine in this study can 
operate for 3, 17, and 47 weeks if the ship gets through the phased 
functional maturation approach to autonomy levels of four, three, and 
two, respectively. 

5. Results and discussions 

According to the presented model, here in this study, two discussions 
of SHI-based and exceedance modeling-based applications are pre
sented. Later, the limitations of the framework as well as different types 
of uncertainties integrated with the proposed model are discussed. 

5.1. Exceedance modeling-based application 

5.1.1. Exceedance rate function 
In addition to the CEN, estimated Weibull parameters can be incor

porated into the functions explained in Section 3 to obtain exceedance 
models. As an applicable model for risk mitigation programs, the ex
ceedance rate function (ERF) within different ADs can be determined for 
the presented case study using Eq. (3). As illustrated by Fig. 11, the 
uncertainty quantification through shape and scale parameters with 
gamma distribution resulted in the integration of uncertainties with the 
ERF over time. The more time and ADs are progressing, the more the 

Table 4 
Statistical summary of predicted hyper-parameters for different ADs.  

hyper-parameters α  β  

ADs mean 2.5 percentile 97.5 percentile Mean 2.5 percentile 97.5 percentile 

AD1 1.573 0.122 5.519 262.5 0.4233 1142.0 
AD2 1.123 0.4492 2.093 50.07 2.634 126.8 
AD3 1.025 0.6169 1.536 17.46 2.168 44.6 
AD4 1.019 0.8406 1.212 3.071 1.052 6.165  

Fig. 6. Observational data as well as considered COT through different ADs.  

Table 3 
Definition of different types of observations in the context of the considered case 
study.  

Type of 
observation 

Explanation/Definition 

Check The principal components of the engine are inspected (visually 
or with a dedicated tool). 

Maintenance The maintenance is pre-scheduled actions according to the 
prescription given by the manufacturer. 

Replacement The replacement is an unplanned operation conducted due to an 
abnormal performance. 

Failure The operation is interrupted due to a failure of one of the engine 
components.  
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uncertainties are integrated. A subplot of ERF against density is pre
sented to describe the quality of association between ERF and un
certainties through different ADs. The time is in logarithmic format. As it 
can be viewed, the ERF intervals become wider as the ADs are growing 
in the system. 

5.2. SHI-based applications 

Here in this study, the predicted SHI function is employed for three 
main applications of Remaining Useful Lifetime (RUL) prediction, 
Reliability Centered Maintenance (RCM) strategy, and degradation 
modeling. 

5.2.1. RUL prediction 
RUL is the operational time in which a system can offer its func

tionality before it fails. Two thresholds of deterioration start-point and 
endpoint are considered by Okoh et al. [55] to determine the RUL. 
Fig. 12 depicts the SHI against time, including the RUL specification for 
different ADs of the main engine. As recommended by engineering 
knowledge and crew experts, an SHI threshold of 0.8 was assigned in this 
model-based RUL method as the starting point of deterioration. More
over, the predicted MTTF outlined in Table 5 was considered as the 
endpoint of deterioration for the main engine through different ADs. 

Based on the predicted RUL reported in Table 6, the RUL reduces 
dramatically when the ship approaches higher ADs; RUL of 134 weeks 
for the main engine in AD1 will decrease to 34 weeks in AD2, 13 weeks 
in AD3, and only two weeks in AD4. The proposed method can be 
exploited by maintenance engineers, asset managers, and policymakers 
to figure out the operability of the system in different ADs. 

5.2.2. RCM strategy 
RCM method has a primary objective of maintenance optimization 

(time and cost-wise) based on the system’s inherent reliability values 
[39]. The development of RCM in this study aims to identify the main
tainable operational time representing the time through which the sys
tem can operate safely and by which the crew’s intervention must be 
scheduled. Since crews are fully available on board a ship through AD1, 
this AD was excluded from this estimation. To this end, an SHI threshold 
needs to be incorporated to determine the intervention time. The SHI 
values of exceedance time, reported in Table 5, remarks that an SHI of at 
least 0.5 must be secured upon time. Fig. 13 presents how the SHI 
function for different ADs might change by potential interventions 
leading to an operational time extension. The type of intervention for 
different ADs varies based on the human availability on board the ship, 
e.g., in AD2, the intervention targets only the replacement of deterio
rated subsystems or components since, as stated in Section 2.2, the 

Fig. 7. (a) Posterior probability density function, and (b) trace plot of α and β, and (c) history of iteration of α for the third level of autonomy.  
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maintenance and check actions can already be taken by crews. 

5.2.3. Deterioration ratio 
A ratio of deterioration, νij, is proposed in this study for the desired 

time interval [tn, tn+1], as expressed by Eq. (19) to characterize the po
tential degradation progress when the system moves into higher AD, e. 
g., from AD1 to AD2. 

νij =

∫ tn+1
tn

Si(t) −
∫ tn+1

tn
Sj(t)

∫ tn+1
tn

Si(t)
; for i > j (19)  

where Si(t) and Sj(t) are the SHI functions of the system through the ith 

and jth AD, respectively. Three-time intervals of 3 weeks (500 h; the 
aimed operational time of unmanned vessel through MUNIN project), 13 
weeks (3 months), and 26 weeks (6 months) were accounted to model 
the deterioration ratio of the main engine. As outlined in Table 7, 
through the first 500 h of operational time, the transition to AD4 will 
significantly deteriorate the main engine, regardless of which AD the 
transition is making. Similarly, in three weeks, the system is predicted to 
experience a deterioration of 0.04 and 0.1509 if it approaches AD2 and 
AD3 from AD1, respectively. 

Furthermore, the estimation highlights that the growth of one AD, 
from AD1 to AD2 for three months, will lead to degradation of the main 
engine for 19.03 percent. The estimated deterioration ratio for six 
months depicts that the system cannot secure the least required func
tional capacity to continue operating if it moves to AD4. 

Reviewing the SHI threshold of 0.5 assigned in Section 5.1.2 for the 
development of RCM strategies, the acceptable transitions of ADs are 
those by which νij < 0.5 (the system would not experience a deteriora
tion ratio of more than 0.5). This will include the transitions from AD1 to 
AD2 for all given time intervals, to AD3 for only three weeks, and finally 
from AD2 to AD3 for three months. 

The proposed deterioration model can be applied by ship designers 
to determine to what extent the given system is ready to approach higher 
ADs. This outcome can later be employed to rank the systems, sub
systems, and components of a ship with respect to their maturation to be 
independent of human availability onboard the vessel. 

5.3. Limitations and uncertainties 

In prognostic studies, different types of uncertainties are encoun
tered. Therefore, to be verified and practically applied in real-world 

Fig. 8. Scatter plot of the individual simulated values of hyper-parameters for all ADs.  
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problems, these models are required to have sound uncertainty quanti
fication capabilities. The integrated uncertainties modeled in the pro
posed framework comprise; (i) uncertainties integrated with estimating 
the Weibull parameters, (ii) uncertainties associated with population 
variability existing in the data source of the prior distribution, (iii) un
certainties associated with the correlation of monitoring data, (iv) un
certainties associated with modeling the dependency of interarrival time 
between failure. Considering the limited available failure data, the 
precision of conducted estimation can be increased by establishing non- 
parametric approaches such as Kernel-based models, leading to 

increased data dimensionality. This will help to propagate better the 
uncertainty integrated with limited data. Checking the convergence of 
sampled MCMC for different ADs in this study proved that the fewer data 
fed into the model, the less effective sample size the MCMC produces. 
Therefore, more sampling iterations will be required for the chains to be 
converged. In such a situation, increasing the data points’ dimension 
will overcome this limitation and secure higher precision of calculations. 

6. Conclusion 

In this study, a Machine Learning-based model was proposed to 
deliver the PHM of the main engine operating in a merchant ship given 
that it is moving through the phased functional maturation approach to 
higher ADs. The priority of this study was to capture the effect of 
removing crew members on the reliability of ships from the current 
situation to fully autonomous. To this end, the COT was introduced. The 

Fig. 9. Estimated System Health Index of the main engine through different ADs.  

Fig. 10. Predicted cumulative number of exceedances from predefined health threshold for different ADs.  

Table 5 
Mean Time to Failure of main engine for different ADs (expressed in weeks).  

ADs/Time AD1 AD2 AD3 AD4 

Mean Time to Failure (MTTF) 235.7343 47.9940 17.2842 3.0214  
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NHPP assumption confirming that the number of exceedance events is 
dependent upon a time is established. The Bayesian inference with hi
erarchical structure was later employed to obtain a regulated prediction 
of interarrival time between exceedances, while both aletoric and 
epistemic uncertainties associated with observations were integrated. 
Weibull parameters were then sampled based on operational observa
tions by MCMC simulation to predict their posterior distribution. The 

Fig. 11. ERF of the main engine in AD1 (a), AD2 (b), AD3 (c), AD4 (d); red lines represent ERF while blue surrounded areas represent integrated uncertainties.  

Fig. 12. SHI against time, including the RUL specification for AD1 (a) AD2 (b) AD3 (c) AD4 (d) of the main engine.  

Table 6 
Predicted Remaining Useful Lifetime (RUL) of Main engine through different 
ADs.  

ADs/Time AD1 AD2 AD3 AD4 

RUL 134.59 34.82 13.24 2.32  
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obtained posterior distribution of these parameters was then considered 
as an input for two categories of applications; SHI-based and 
exceedance-based. Accordingly, Exceedance rate function (ERF) 
including the associated uncertainties, Cumulative exceedance number, 
posterior predictive probability of exceedances per week, System Health 
Index (SHI), Remaining Useful Life-time, deterioration modeling, Reli
ability Centered Maintenance (RCM), and its impact on safe operational 
time was presented for the given main engine through different Au
tonomy Degrees. Each of these estimations can deliver a road map to 
achieve a higher level of trustworthiness while the ship moves to higher 
ADs. Correspondingly, the given main engine in this study can operate 
safely for 3, 17, and 47 weeks if the ship approaches to autonomy degree 
of four, three, and two, respectively. Given the deterioration ratio 
defined in this study, the transitions from AD1 to AD2 for all considered 
time intervals, AD1 to AD3 for three weeks, and finally from AD2 to AD3 
for three months are highlighted as the acceptable transitions in which 
the system would not experience a deterioration ratio of more than 0.5. 

Further research is recommended to conduct an ML-based investi
gation of the resilience solutions aiming to increase the safe operational 
time. The proposed research path can be further developed by 
comparing the functional capacity with and without implementing 
resilience solutions through different ADs. 
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Gronau QF, Šmíra M, Epskamp S. Bayesian inference for psychology. part I: 
theoretical advantages and practical ramifications. Psychon Bull Rev 2018;25(1): 
35–57. 
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