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Application of big data analytics in remote sensing 179 

supporting sustainable forest management 180 

Abstract 181 

Sustainable forest management requires detailed forest information 182 

for planning accurate treatments. The information is expected to be 183 

accurate enough and preferably obtained at a low cost and with 184 

periodic updates. Such spatial scale information is nowadays 185 

provided by remote sensing data. On the one hand, the development 186 

and use of aerial laser scanning for estimating forest variables has 187 

been a game-changer in recent decades for forest management. On 188 

the other hand, satellite remote sensing technologies, generated a 189 

constant flow of data from different platforms, in different formats 190 

and with different purposes. Combined with this ongoing remote 191 

sensing data stream, the development of computer technology has 192 

provided forest management with many new tools for data capture, 193 

data representation, data visualization, and management planning 194 

applications. Today, new computing power makes it possible to 195 

tackle the complex problem of managing and processing big data 196 

from remote sensing with new strategies that have revolutionized the 197 

way of understanding the use of these data sources. 198 

This thesis is aimed at assessing big data analytics for practical cases 199 

of forest monitoring especially in the Italian context, where large-200 

scale aggregated forest remote sensing data have always been a 201 

structural lack. Four main studies were covered in the thesis. Study I 202 
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involved the review and aggregation of remotely sensed forestry data 203 

at the national scale. The available Italian airborne laser scanning 204 

data were aggregated to develop a consistent mosaic of canopy heigh 205 

model, while different local forest maps were used to develop for the 206 

first time a high-resolution forest mask of Italy which was validated 207 

against the official statistics of the Italian National Forest Inventory. 208 

An online geographic forest information system was implemented to 209 

store and facilitate the access and analysis of both spatial datasets. 210 

The two information layers were explored in operational cases, 211 

through the integration of remote sensing and inventory data in 212 

studies II and III. In the former, the forest mask produced mosaicking 213 

the Italian regional local forest maps was compared with four other 214 

forest masks available for the entire area of Italy to examine their 215 

effects on the estimation of growing stock volume and to clarify 216 

which product is best suited for this purpose. Non-forest pixels in 217 

each forest mask were removed from a national wall-to-wall growing 218 

stock volume map constructed using inventory and remote sensing 219 

data. The estimated Growing stock volume from each mask was 220 

compared with the official national forest inventory estimates. In the 221 

III study, airborne laser scanning coverage and the forest mask were 222 

used in combination with Landsat spectral data for large-scale 223 

volume estimation. Estimates were performed considering different 224 

proportions between airborne laser scanning and Landsat coverage. 225 

The integration between satellite spectral data and airborne laser 226 

scanning information is particularly critical in countries like Italy, 227 

where wall-to-wall airborne laser scanning coverage is still lacking. 228 
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In the last study (IV), Sentinel-2 multitemporal data were used to 229 

identify poplar plantations, which are the primary source of Italian 230 

industrial timber. The study area was the dynamic agricultural area 231 

of Pianura Padana where most of the Italian poplar plantations are 232 

concentrated. The capabilities of the Sentinel-2 data were integrated 233 

with a deep learning approach that provided better results compared 234 

to traditional logistic regression. The map we produced can allow the 235 

poplar plantation monitoring, which requires frequent updating, not 236 

feasible with traditional forest inventories. 237 

In so doing, these studies, aimed at enhancing knowledge about 238 

missing information layers at the national scale, attempting to close 239 

the gaps underlined by previous studies. 240 

241 
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1. Introduction 271 

Forests are complex environmental systems, characterized by high 272 

biological and genetic biodiversity (Dinerstein et al., 1995), 273 

generating multifunctional services to satisfy social, cultural, 274 

environmental, and economic demands (FOREST EUROPE, 2020; 275 

O’Farrell and Anderson, 2010). In this context of multifunctional 276 

services, forest management planning aims to produce timber, 277 

maintaining biodiversity, and developing other services required in 278 

specific situations, where all are of equal importance. To ensure this 279 

balance in strategic forest planning many influencing parameters 280 

must be considered. For this purpose, decision support systems, 281 

based on sustainable forest management (SFM) principles, have to 282 

be developed aiming at maintaining and preserving the capacity to 283 

generate ecosystem services for future generations. In particular, 284 

SFM aims to promote better practices over time and foster the 285 

development of healthier and more productive forests, taking into 286 

account the environmental, economic, social, cultural, and spiritual 287 

needs of the full range of stakeholder groups in the countries 288 

involved. Considering the difficulty of quantifying and monitoring 289 

these aspects at different local and temporal scales, specific criteria 290 

and indicators (C&I) have been developed. Among the various sets 291 

of C&I developed and used in the world (FOREST EUROPE, 2020; 292 

ITTO/FAO, 1995, Montreal Process 1995; FAO, 2020), the pan-293 

European C&I represents the consensus achieved by European 294 

countries on the most important aspects of SFM and provide 295 
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guidance for developing policies and help assess progress on SFM. 296 

It was internationally recognized that C&I are tools for describing, 297 

monitoring, and evaluating national trends in forest condition and 298 

management while also providing an implicit definition of what SFM 299 

means.  300 

The structure of the set is formed by an overarching policy 301 

framework of the set, named “Forest policy and governance” (5 302 

indicators), followed by the set of indicators under the six pan-303 

European criteria for SFM, comprising a qualitative part (6 304 

indicators), aligning the specific policies and instruments under each 305 

Criterion, and the related quantitative indicators (34 indicators) 306 

(Table 1). 307 

 308 

Table 1. Pan-European Sustainable Forest Management Criteria & 309 
Indicators (FOREST EUROPE, 2020) 310 

No. Indicator Full Text  

Forest policy and governance  

1 National Forest Programmes or equivalent  
2 Institutional frameworks  

3 

Legal/regulatory framework: National (and/or sub-national) and 

international commitments  

4 Financial and economic instruments  
5 Information and comunication  

C 1: Forest Resources and Contribution on Global Carbon Cycles  

1.1 Forest area 

Area of forest and other wooded land, classified 

by forest type and by availability for wood 

supply, and share of forest and other wooded 

land in total land area  

1.2 Growing stock 

Growing stock on forest and other wooded land, 

classified by forest type and by availability for 

wood supply  
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1.3 

Age structure 

and/or diameter 

distribution 

Age structure and/or diameter distribution of 

forest and other wooded land, classified by 

availability for wood supply  

1.4 Carbon stock 

Carbon stock and carbon stock changes in forest 

biomass, forest soils and in harvested wood 

products  
C 2: Maintenance of Forest Ecosystem Health and Vitality  

2.1 

Deposition and 

concentration of 

air pollutants 

Deposition and concentration of air pollutants 

on forest and other wooded land 
 

2.2 Soil condition 

Chemical soil properties (pH, CEC, C/N, 

organic C, base saturation) on forest and other 

wooded land related to soil acidity and 

eutrophication, classified by main soil types  

2.3 Defoliation 

Defoliation of one or more main tree species on 

forest and other wooded land in each of the 

defoliation classes  

2.4 Forest damage 

Forest and other wooded land with damage, 

classified by primary damaging agent (abiotic, 

biotic and human-induced)  

2.5 
Forest land 

degradation 
Trends in forest land degradation 

 
C 3: Productive Functions of Forests (Wood and Non-Wood)  

3.1 
Increment and 

fellings 

Balance between net annual increment and 

annual fellings of wood on forest available for 

wood supply  
3.2 Roundwood Quantity and market value of roundwood  

3.3 Non-wood goods 
Quantity and market value of non-wood goods 

from forest and other wooded land  

3.4 Services 
Value of marketed services on forest and other 

wooded land  
C 4: Biological Diversity in Forest Ecosystems  

4.1 
Diversity of tree 

species 

Area of forest and other wooded land, classified 

by number of tree species occurring  

4.2 Regeneration  
Total forest area by stand origin and area of 

annual forest regeneration and expansion  

4.3 Naturalness 
Area of forest and other wooded land by class of 

naturalness  

4.4 
Introduced tree 

species 

Area of forest and other wooded land dominated 

by introduced tree species  
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4.5 Deadwood 
Volume of standing deadwood and of lying 

deadwood on forest and other wooded land  

4.6 
Genetic 

resources 

Area managed for conservation and utilisation 

of forest tree genetic resources (in situ and ex 

situ genetic conservation) and area managed for 

seed production  

4.7 
Forest 

fragmentation 

Area of continuous forest and of patches of 

forest separated by non-forest lands  

4.8 
Threatened 

forest species 

Number of threatened forest species, classified 

according to IUCN Red List categories, in 

relation to total number of forest species  

4.9 Protected forests 

Area of forest and other wooded land protected 

to conserve biodiversity, landscapes and 

specific natural elements, according to MCPFE 

categories  

4.1 
Common forest 

bird species 

Occurrence of common breeding bird species 

related to forest ecosystems  
C 5: Protective Functions in Forest Management  

5 

Protective 

forests: 

5.1 soil, water 

and other 

ecosystem 

functions; 

5.2 infrastructure 

and managed 

natural resources 

Area of forest and other wooded land designated 

to prevent soil erosion, preserve water 

resources, maintain other protective functions, 

protect infrastructure and managed natural 

resources against natural hazards 

 
C 6: Socioeconomic functions and conditions  

6.1 Forest holdings 
Number of forest holdings, classified by 

ownership categories and size classes  

6.2 

Contribution of 

forest sector to 

GDP 

Contribution of forestry and manufacturing of 

wood and paper products to gross domestic 

product  
6.3 Net revenue Net revenue of forest enterprises  

6.4 

Investments in 

forest and 

forestry 

Total public and private investments in forest 

and forestry 
 

6.5 
Forest sector 

workforce 

Number of persons employed and labour input 

in the forest sector, classified by gender and age 

group, education and job characteristics  
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6.6 
Occupational 

safety and health 

Frequency of occupational accidents and 

occupational diseases in forestry  

6.7 
Wood 

consumption 

Consumption per head of wood and products 

derived from wood  

6.8 Trade in wood 
Imports and exports of wood and products 

derived from wood  

6.9 Wood energy 
Share of wood energy in total primary energy 

supply, classified by origin of wood  

6.1 
Recreation in 

forest 

The use of forests and other wooded land for 

recreation in terms of right of access, provision 

of facilities and intensity of use  

 311 

In support of SFM, a thorough understanding of forest and up-to-date 312 

forest data are required to assess the composition, structure, and 313 

distribution of forest vegetation that, in turn, can be used as base 314 

information for management decisions developing effective forest 315 

plans that span across a range of spatial and temporal scales (Wulder 316 

et al., 2008). 317 

Accordingly, forest information is essential for multiple purposes, 318 

including national and international forest monitoring programs, 319 

reporting activities such as in the context of international agreements 320 

on forest resource assessment (e.g., Kyoto Protocol) (Corona et al, 321 

2011; FAO, 2020), restoration programs (e.g., Reducing emissions 322 

from deforestation and forest degradation projects - REDD+) 323 

(UNCCD, 2015; Smith et al, 2016), biodiversity monitoring (Chirici 324 

et al., 2012), and the aforementioned local-scale management to 325 

improve decision-making, silvicultural measures, and harvesting and 326 

conservation activities. 327 

Typically, this type of data is collected using sample-based National 328 

Forest Inventories (NFIs) designed to provide aggregated estimates 329 
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of forest parameters for large areas such as countries or regions. The 330 

most common forest variables needed to assess SFM indicators, as 331 

required by national and international agreements at the national and 332 

regional levels, are the following: forest area, growing stock volume, 333 

biomass, and increments (Brosofske et al., 2014; Kangas et al., 334 

2018). These aggregated statistics are essential to evaluate the state 335 

of forests, but also to support decision making and to develop 336 

strategies at different scales and different time horizons. Recently, to 337 

increase efficiency and accuracy, both in terms of time and cost, 338 

remote sensing data have been an NFI crucial component. 339 

1.1. Remote sensing technologies in forestry 340 

The term “remote sensing”, introduced in the 1960s, describes the 341 

acquisition of information about an object or phenomenon without 342 

physical contact with the object and is thus in contrast to in situ 343 

observation. Remote sensing technologies, which nowadays provide 344 

high-quality geospatial information, are considered a key to improve 345 

repeatable measurements, actions, and processes in forestry 346 

(Holopainen et al., 2014; Kovácsová and Antalová, 2010). Many 347 

authors have already pointed out that remote sensing technologies 348 

are essential for monitoring, quantifying, and mapping forest 349 

variables (Hansen et al. 2013, Waser et al. 2017, Kangas et al. 2018, 350 

Chirici et al. 2020). 351 

In forestry applications, the availability of remotely sensed data has 352 

steadily increased. Spectral data are collected in many forms and 353 



23 

 

scales by satellite, aircraft, and drones, with a spatial resolution 354 

ranging from tens of meters to a few centimeters. Some data are 355 

collected daily or at regular intervals across the whole globe, while 356 

other data may be collected on an as-needed basis. In addition, 357 

structural or three-dimensional (3D) information is gathered from 358 

laser, radar, and optical data, allowing forests to be measured in ways 359 

that were not previously possible. Among these technologies, Light 360 

Detection And Ranging (LiDAR) data collected by airplane or 361 

helicopter platforms (i.e., Airborne Laser Scanning, ALS), is 362 

considered the most useful technology to map forest ecosystems 363 

(Figure 1). 364 

ALS data has the ability to collect highly detailed data of large areas, 365 

giving information on ground elevation and detailed characterization 366 

of forests (Holopainen et al., 2014; Hyyppä et al., 2008), on the basis 367 

of laser pulses, it is possible to model and detect the 3D structure of 368 

forests and to easily estimate biophysical forest variables (e.g. tree 369 

heights, vertical structure, growing stock volume, carbon stock) 370 

(Dubayah & Drake, 2000; Babcock et al., 2015). In the last decades, 371 

many studies demonstrated the utility of ALS to monitor forest 372 

resources (Nelson, 2013; Kangas et al., 2018), biodiversity (Corona 373 

et al., 2011; Lefsky et al., 2002; Lim et al., 2003; Mura et al., 2015; 374 

Valbuena et al., 2016, 2013; Wulder et al., 2008) to characterize 375 

wildlife habitats, and thoroughly in the context of local (Bottalico et 376 

al., 2017) and NFI (McRoberts et al., 2013; Næsset, 2007; Næsset et 377 

al., 2004). Given its proven capabilities in mapping forest variables, 378 

the use of ALS data is increasing rapidly worldwide (Zolkos et al., 379 
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2013), and in many countries, ALS data are specifically acquired to 380 

support forest inventory programs. 381 

 382 

Figure 1. Airborne laser scanning dataset of a spruce forest with high pulse 383 
density (source: McRoberts et al., 2010b). 384 
 385 

In traditional NFIs, remote sensing is initially used to stratify 386 

sampling units according to their land uses, commonly through the 387 

use of high-resolution imagery (McRoberts et al., 2009, McRoberts 388 

et al., 2010a,b; Corona, 2010). Countries with a long NFI tradition 389 

such as Sweden, Finland, Denmark (Næsset et al., 2004; Nord-390 

Larsen and Schumacher, 2012; Tomppo et al., 2008), Canada 391 

(Boudreau et al., 2008; Matasci et al., 2018), Austria (Hollaus et al., 392 

2009) and Switzerland (Waser et al., 2017, 2015), forest inventories 393 

are now integrated with remote sensing technology to construct wall-394 

to-wall spatial estimates of forest variables (McRoberts and Tomppo, 395 

2007). In operational wall-to-wall forest inventories, a two-stage 396 
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procedure using ALS data and field plots, i.e. an area-based approach 397 

(ABA, Næsset, 2002), has become particularly common and used to 398 

estimate forest variables such as growing stock volume (Nilsson et 399 

al., 2017; Nord-Larsen and Schumacher, 2012), biomass (Nord-400 

Larsen and Schumacher, 2012), forest cover (Waser et al., 2015), or 401 

forest changes (Næsset et al., 2013). Moreover, to support forest 402 

management, spatial data produced by NFIs are commonly 403 

implemented in geographic Forest Information Systems (FIS) which 404 

allow forest managers, forest owners, and government authorities to 405 

query forest data through online web-based systems. Examples are 406 

available for Norway (https://kilden.nibio.no/), Sweden 407 

(https://kartor.skogsstyrelsen.se/kartor/?startapp=skogligagrunddata408 

), Finland (https://kartta.paikkatietoikkuna.fi/), Spain 409 

(http://lidarrioja.agrestaweb.org/#!/map) or France 410 

(https://www.geoportail.gouv.fr/carte). 411 

Despite the significant need for wall-to-wall forest maps, especially 412 

in Mediterranean areas, where forests are considered more 413 

vulnerable to climate change scenarios and natural and 414 

anthropogenic disturbances (Giannetti et al., 2021; Ogaya & 415 

Peñuelas, 2021), several critical data needed to accurately estimate 416 

forest variables are still missing. The Italian case is emblematic, 417 

where the NFI program does not provide wall-to-wall maps as the 418 

Enhanced Forest Inventories do (White et al., 2016), but only 419 

aggregates estimates of forest variables over large geographic 420 

regions. Furthermore, a national overview of ALS datasets available 421 

in Italy, and an homogeneous national forest mapping process is still 422 

https://www.geoportail.gouv.fr/carte
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missing, although multiple mapping projects have been carried out at 423 

a local scale. Such information is crucial to integrate ALS data with 424 

other data, such as field surveys conducted by the NFI or to plan 425 

future ALS acquisitions. The availability of a forest mask is an 426 

essential prerequisite for spatial estimates of forest variables, both to 427 

limit the establishment of field plots and to determine the area where 428 

to apply models for forest variable estimations. Consequently, 429 

several countries developed independently their forest maps, such as 430 

Sweden (Nilsson et al. 2017), Norway (Naesset 2007), Finland 431 

(Maltamo et al. 2014), Switzerland (Waser et al. 2017), Spain 432 

(Alberdi et al. 2017), United Kingdom (Smith et al. 2010), USA 433 

(McRoberts et al. 2005), France (Garnier et al. 2019). 434 

In recent years, several improvements opened new prospects in 435 

remote sensing Earth observation. The main changes concern: i. new 436 

satellite mission, ii. more satellites in orbit per mission; iii. the 437 

increased spectral, spatial, and temporal resolution of satellites, and 438 

iv. the free-and-open data policy of Earth observation programs. 439 

Crucial in the increase of remote sensing data are the Sentinel 440 

missions in the framework of the Copernicus program, an initiative 441 

led by the European Commission (EC) in collaboration with the 442 

European Space Agency (ESA), previously known as Global 443 

Monitoring for Environment and Security programme GMES. 444 

Fundamental to forest monitoring is the Sentinel-2 (S2) mission 445 

given systematic global acquisitions of high-resolution multispectral 446 

imagery at high revisit rates. The S2 mission was developed to 447 

provide multispectral imagery in continuity with those of the USGS 448 
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Landsat Thematic Mapper instrument. At the same time, the Landsat 449 

program, which provides the longest continuous spatially based 450 

record of the Earth's landmass in existence (Landsat 1 launched in 451 

1972), since 2008 adopted an open data policy (Woodcock et al., 452 

2008). Additionally, the Landsat program continued its development, 453 

with the launch of the new Landsat 9 satellite on September 16th, 454 

2021. All these aspects guide big data availability and the need to 455 

develop new tools able to process such large datasets. 456 

1.2. Big data in remote sensing 457 

Big data refers to a collection of data sets so large and complex that 458 

it is difficult to employ traditional data processing algorithms and 459 

models (Manyika et al., 2011). Challenges include the acquisition, 460 

storage, searching, sharing, transfer, analysis, and visualization of the 461 

data. In short, big data can be reported as advanced analysis 462 

techniques on large volumes of data. However, as technology 463 

advances over time, the size of datasets that qualify as big data will 464 

grow, regardless of size in terms of terabits. 465 

Remote sensing big data computing is a challenging task due to the 466 

extensive nature of the analysis, combined with the large amount of 467 

data handled (Ma et al. 2015). Big Data Analytics in the earth 468 

observation field relies on processing, analyzing, and merging 469 

multiple images with other data sources, in order to create previously 470 

unavailable information that requires heavy computing power. In the 471 

meantime, supercomputers, and high-performance computing 472 
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systems, frequently provided by cloud platforms universally 473 

available, are becoming abundant (Gorelik et al., 2017). 474 

The unprecedented proliferation of data, together with high 475 

computing powers, allowed the development of numerous large-476 

scale forest information layers, as well as enabling new machine 477 

learning approaches. 478 

1.2.1. Large scale forest information layers 479 

The big data availability led to an exponential increase in the number 480 

of forest maps made available at different spatial scales for global or 481 

continental forest resources, produced independently by different 482 

agencies. For instance, Italian information about forest area can be 483 

estimated from any of several forest/non-forest maps (masks), that 484 

are all potentially referring to the FAO Forest Resource Assessment 485 

(FRA) forest definition (FAO, 2020), including i. the CORINE Land 486 

Cover project (Büttner et al., 2004), started in 1990 and updated in 487 

2000, 2006, 2012, and 2018 to monitor land‐use changes in the 39 488 

participating countries carried out by the European Environmental 489 

Agency (EEA, 2007); ii. in the framework of Copernicus Land 490 

Monitoring Service (CLMS) coordinated by ESA a forest/non-forest 491 

mask in grid format covering entire Europe for the years 2012 and 492 

2015 is achievable from the forest type, available among the so-493 

called High-Resolution Layers (HRL), in which the main input 494 

sources of the forest layers are S2 and Landsat 8 time series, 495 

complemented by SPOT-5 and Resource- Sat-2 satellite data 496 

(Langanke, 2017); iii. the International Institute for Applied Systems 497 
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Analysis (IIASA) constructed a global forest mask for 2000 by 498 

combining through a hybrid approach multiple data sets, calibrated 499 

with FAO FRA country statistics at the national level 500 

(Schepaschenko, 2015), and iv. the Japanese Aerospace Exploration 501 

Agency (JAXA), that for the years 2007, 2008, 2009, 2010, and 2015 502 

provides a forest/non-forest mask in a grid format with a 25 m 503 

resolution for the entire globe, by automatic processing of multi-504 

polarization backscatter signals acquired by the two Synthetic 505 

Aperture Radars (SAR), PALSAR and PALSAR 2 (Phased Array 506 

type L-band Synthetic Aperture Radar), which are mounted on the 507 

two satellites ALOS and ALOS-2 (Advanced Land Observing 508 

Satellite) (JAXA, 2016). 509 

The above maps, developed according to big data analysis 510 

approaches, were designed for different purposes. Therefore, each 511 

map has specific characteristics, useful for monitoring forest 512 

resources on a global or continental scale (Hansen et al. 2013). 513 

However, they can be affected by consistent errors at national or 514 

regional level (Giannetti et al. 2020). Indeed, despite individual 515 

weaknesses and strengths, spatial differences among these products 516 

are relevant at the national scale and can lead to substantial variations 517 

in their accuracies (Schepaschenko, 2015; Seebach, 2012). Creating 518 

doubts about which is best suited for multiple purposes such as to 519 

infer forest statistics in NFIs (Di Biase et al. 2018), to assess forest 520 

variables at national scale, and supporting forest owners in planning 521 

silvicultural interventions at local scale (Kangas et al. 2018), to 522 

quantify forest ecosystems services (Vizzarri et al. 2017) or to 523 
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support precision forestry (Corona et al. 2017). Anyway, only a few 524 

studies analyzed the effects of using different forest masks on the 525 

uncertainty of forest variables estimates. Furthermore, no study has 526 

examined in the Mediterranean environment the impacts of the 527 

accuracies of different forest masks on the estimation of growing 528 

stock volume (GSV). 529 

1.2.2. Deep learning approach 530 

The advent of more frequent and more detailed remotely sensed data 531 

acquisition, such as the S2 data, with high revisit time (5 days at the 532 

equator with two satellites under cloud-free conditions which 533 

resulted in 2-3 days at mid-latitudes), spectral (13 spectral bands) and 534 

spatial resolution (10 to 60 m depending on the wavelength), offers 535 

unprecedented perspectives for a wide range of applications in 536 

environment and agricultural field (Kussul et al., 2017), led also to 537 

the beneficial use of deep learning (DL) approaches (Zhu et al., 2017; 538 

Ma et al., 2019). 539 

DL is a powerful machine learning technique that obtains great 540 

success in several practical applications and attracted interest in 541 

academic and industrial communities (LeCun et al., 2015). The core 542 

idea behind DL is to simulate the human ability to deal with big data 543 

problems, using all data available to learn and process information to 544 

provide the output. In particular, DL represents the procedure of 545 

training the artificial neural networks (NN) that are inspired to 546 

biological ones where neurons connections and signals strength 547 

control all brain processes. 548 
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Three layers of “neurons” called nodes, the input, the hidden, and the 549 

output layers compose the NN basic structure. Information flows 550 

from the input layer, through the hidden layer (one or more than one) 551 

to the output layer and then out. The NN parameters are associated 552 

with connections and nodes. Each connection between nodes has a 553 

number associated with it called connection weight, each node has a 554 

number, and a formula associated called respectively threshold value 555 

and activation function. The NN learning process implicates 556 

reiterated adjustment of weights and threshold until the produced 557 

outputs are as close as possible than expected outputs. 558 

Many studies have explored DL for remote sensing tasks, using 559 

various NN architectures that have demonstrated good capabilities, 560 

mainly attributed to automatic extraction of meaningful features, 561 

eliminating the need to identify case-specific characteristics 562 

(Tsagkatakis, 2019). DL approaches, coupled with S2 data, allowed 563 

the identification of land uses previously difficult to separate 564 

spectrally. An example of this is the identification of poplar 565 

plantations, featured by short rotation, high spatial and temporal 566 

variability, as well as being localized, at least in Italy, in agricultural 567 

environments, with large interannual variations. 568 

Poplar plantations mapping appeared particularly important to 569 

support management and to increase knowledge about Italian poplar 570 

production, the primary domestic source of wood for industrial use. 571 

The information needed to support poplar plantations management is 572 

increasingly complex due to their specific features and to the 573 

expansion through the years due to the increased market value of 574 
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poplar timber (Corona et al., 2018). In these conditions, conventional 575 

national forest inventories, with a typical time frame of 10 years are 576 

not able to produce such rapid updates. Such limitations may be 577 

potentially overcome by adopting robust DL automatic classification 578 

methods of remotely sensed data, which at the same time are 579 

objective and cheaper than traditional approaches and can be 580 

repeated to produce near-real-time information due to the vast 581 

availability of imagery (Francini et al., 2020, Vaglio et al., 2021). 582 

2. Background motivation and aims 583 

The increased availability of remotely sensed data from multiple 584 

sources and the Italian lack of aggregate data and large-scale 585 

spatialized information inspired the research work of this thesis. This 586 

research addresses the synergistic integration of multiple remotely 587 

sensed data sources to develop and evaluate the accuracy of new 588 

forest information layers currently unavailable at a large scale and 589 

facilitate its use in supporting sustainable forest management 590 

planning. In this thesis, remote sensing big data analytics are used for 591 

the aim of reducing gaps in information layers needed to support 592 

sustainable forest management. In particular, attention was focused 593 

on developing new information layers and procedures based on big 594 

data. 595 

The specific objectives of the papers are: 596 
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• to develop two missing information layers at the national level 597 

such as the canopy height model (CHM) derived by ALS and the 598 

forest mask, making them freely available in a FIS (Paper I); 599 

• to assess the impacts of the accuracies of different national forest 600 

masks on the estimation of GSV based on the integration of field 601 

information and remotely sensed data (Paper II); 602 

• to assess the impact of multiple sources of information such as 603 

measured Forest Inventory data, LiDAR metrics, and Landsat 604 

indices, available in different proportions, for estimating GSV at 605 

the national scale (Paper III); 606 

• to assess a new DL approach based on S2 multitemporal images 607 

to identify and map poplar plantations in northern Italy (Paper 608 

IV). 609 

610 
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Abstract 637 

Forest planning, forest management, and forest policy require 638 

updated, reliable, and harmonized spatial datasets. In Italy a national 639 

geographic Forest Information System (FIS) designed to store and to 640 

facilitate accessing and analysis of spatial datasets is still missing. 641 

Within the different information layers which are useful to start 642 

populating a FIS, two of them are essential for their multiple use in 643 

the assessment of forest resources: i) forest mapping, and ii) data 644 

from Airborne Laser Scanning (ALS). Both of them are not available 645 

wall-to-wall in Italy even if different potentially useful sources of 646 

information for their implementation exist already. 647 

The objectives of this work are: (i) to review forest maps and ALS 648 

data availability in Italy; (ii) to develop for the first time in Italy a 649 

high resolution forest mask that was validated against the official 650 

statistics of the Italian National Forest Inventory; (iii) to develop the 651 

first mosaic of all the main ALS data available in Italy producing a 652 

consistent Canopy Height Model (CHM); (iv) we finally developed 653 

for demonstration scope an on-line geographic FIS where we provide 654 

free access to both the layers from (ii) and (iii). 655 

The total area of forest and other wooded lands computed from the 656 

forest mask we created was 102,608.82 km2 (34% of the Italian 657 

territory), 1.9% less than the NFI benchmark estimate, this map 658 

resulted for the moment the best forest mask available wall-to-wall 659 

in Italy. We also found that only the 63% of the Italian territory (the 660 

60% of the forest area) is covered by ALS data. These results 661 
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underline once more the urgent need for a national strategy to 662 

complete the availability of forest data in Italy. 663 

 664 

Keywords: National datasets, Forest inventory, Forest monitoring, 665 

Forest mask, Airborne Laser Scanning, LiDAR. 666 

 667 

1. Introduction 668 

Forest mapping is an important source of information for assessing 669 

woodland resources and needs to be a key issue for any National 670 

Forest Inventory (NFI) programme (Waser et al. 2017). Nowadays 671 

global and nationwide wall-to-wall raster-type forest resources maps, 672 

based on either satellite images, laser scanning, aerial ortomosaic and 673 

photogrammetric point cloud data are considered essential to monitor 674 

and to quantify forest variables (Hansen et al. 2013, Waser et al. 675 

2017, Kangas et al. 2018, Chirici et al. 2020). In fact, forest maps are 676 

produced on the basis of remote sensing technologies at different 677 

spatial scales for global or continental forest resources monitoring 678 

already. Here below we provide a short review of the most important 679 

and recent efforts for forest mapping at European or Global scale 680 

level. 681 

Copernicus, the European programme for Earth observation 682 

(https://www.copernicus.eu), developed several layers potentially 683 

useful for forest monitoring, in particular we refer to the European 684 

Forest High Resolution Layers (HRL), and more specifically: i) the 685 
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Tree cover density (TCD) expressed in percent of tree cover; ii) the 686 

Dominant leaf type (DLT) based on the domination of broadleaved 687 

or coniferous species, and iii) the Forest type products (FTY) a forest 688 

mask which mimic as close as possible the FAO forest definition. 689 

These layers, developed primarily with Sentinel-2 time series for the 690 

year 2018, and complemented for the years 2012 and 2015 by 691 

Landsat 8, SPOT-5 and ResourceSat-2 satellite data (Langanke 692 

2017), are available with resolutions ranging between 10 and 100 693 

meters. The Copernicus Global Land Service has also recently 694 

released the 2015 global land cover map at 100 m resolution 695 

(Buchhorn et al. 2019), updating the harmonized global land cover 696 

classification for the year 2000 based on SPOT4 images, originally 697 

produced by the Global Vegetation Monitoring unit of the Join 698 

Research Centre of the European Commission. 699 

The Japan Aerospace Exploration Agency (JAXA) produced for the 700 

reference years 2007 and 2009 a global forest/non forest map based 701 

on the classification of ALOS and ALOS-2 satellite radar images 702 

with a resolution of 10 meters and a declared accuracy of 84% 703 

compared to the ground base data set (JAXA 2016). 704 

The World Resources Institute, in the framework of Global Forest 705 

Watch developed an online forest monitoring data set based on the 706 

analysis of Landsat multitemporal series mapping global tree cover 707 

density for the reference year 2010 and a forest gain/loss map for the 708 

period 2001-2019 (Hansen et al. 2013).  709 

These maps are considered useful to monitor forest resources at 710 

global or continental scales (Hansen et al. 2013), however at local 711 
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level (i.e., national, regional) they can be affected by large errors 712 

(Giannetti et al. 2020). For this reason none of the existing forest 713 

maps implemented at continental or global level are considered 714 

reliable for operational purposes at National level. Consequentially 715 

several NFIs developed independently their maps. See for instance 716 

the examples for Sweden (Nilsson et al. 2017), Norway (Næsset 717 

2007), Finland (Maltamo et al. 2014), Switzerland (Waser et al. 718 

2017), Spain (Alberdi et al. 2017), United Kingdom (Smith et al. 719 

2010), USA (McRoberts et al. 2005), France (Garnier et al. 2019). 720 

These maps are considered essential to infer forest statistics in NFIs 721 

(Di Biase et al. 2018), to assess forest variables at national scale and 722 

at forest management scale supporting forest owners in their strategic 723 

planning and silvicultural measures (Kangas et al. 2018), to quantify 724 

forest ecosystems services (Vizzarri et al. 2017), or to support 725 

precision forestry (Corona et al. 2017). Usually, forest resources 726 

maps developed in the context of NFIs have a scale congruent with 727 

the size of the sampling units used to acquire the information in the 728 

field, in order to reduce the costs of management activities for forest 729 

owners (Kangas et al. 2018). 730 

The spatial data produced by modern NFIs are nowadays routinely 731 

developed in the framework of geographic Forest Information 732 

Systems (FIS) to query forest data through on-line web-based system 733 

that can be used by forest managers, forest owners and government 734 

authorities to support forest management or planning. Examples are 735 

available for e.g. Norway (https://kilden.nibio.no/), Sweden 736 

(https://kartor.skogsstyrelsen.se/kartor/?startapp=skogligagrunddata737 

https://kilden.nibio.no/
https://kartor.skogsstyrelsen.se/kartor/?startapp=skogligagrunddata
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), Finland (https://kartta.paikkatietoikkuna.fi/?lang=en), Spain 738 

(http://lidarrioja.agrestaweb.org/#!/map) or France 739 

(https://www.geoportail.gouv.fr/carte). 740 

In Italy the NFI program is still designed in a more traditional way, 741 

according to the classification from White et al. (2016), it is not yet 742 

an Enhanced Forest Inventory since it only provides estimates of 743 

forest variables aggregated for large geographical regions and not 744 

wall-to-wall maps. 745 

As a result, in Italy a forest mapping process within the NFI program 746 

is still missing, even if multiple projects were carried out locally. 747 

However, in 2018 a new National Forest law was adopted by the 748 

Italian Parliament stating clearly that to set up a national forest 749 

strategy a national high resolution forest map is essential. For this 750 

reason, it is very relevant to start a first recognition of existing forest 751 

maps in order to understand their consistency in terms of forest 752 

definitions used and nomenclature systems adopted. At least to 753 

understand if these maps can be useful to support the creation of a 754 

forest/non-forest map (forest mask) congruent with the official forest 755 

area estimations provided by the NFI.  756 

To create wall-to-wall maps and small area estimations of forest 757 

variables, Remotely Sensed (RS) data are essential (Chirici et al. 758 

2020). For example to estimate growing stock volume (Saarela et al. 759 

2016), biomass (Næsset et al. 2011), forest structural variables and 760 

diversity indices (Mura et al. 2016). 761 

Within the different types of RS technologies, Airborne Laser 762 

Scanner (ALS) emerged as the most viable to derive such maps and 763 

https://kartta.paikkatietoikkuna.fi/?lang=en
http://lidarrioja.agrestaweb.org/#!/map
https://www.geoportail.gouv.fr/carte
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to support the development and parameterization of models for a 764 

broad range of information needed to enhance NFIs (Maltamo et al. 765 

2014, White et al. 2016). The advantages of ALS in mapping forest 766 

variables is well documented, in the context of NFIs (Næsset 2007, 767 

McRoberts et al. 2013), local forest inventories (Mura et al. 2016, 768 

Bottalico et al. 2017), supporting biodiversity monitoring (Wulder et 769 

al. 2008, Valbuena et al. 2013), or for the characterization of wildlife 770 

habitats (Vogeler et al. 2014). ALS data have, in fact, the ability to 771 

capture highly detailed structural properties of forests (Hyyppä et al. 772 

2008, Holopainen et al. 2014). In operational wall-to-wall forest 773 

inventories, a two-stage procedure using ALS data and field plots, 774 

with the so called Area-Based Approach - ABA (Næsset 2002), has 775 

become particularly common, and several countries (e.g. Norway, 776 

Sweden, and Finland) already use this technology in the operational 777 

implementations of their NFIs (Maltamo et al. 2007, Næsset 2007, 778 

Nilsson et al. 2017).  779 

In Italy too, after the first studies in early years 2000 (Barilotti et al. 780 

2005), several investigations demonstrated that ALS is the most 781 

important data to calculate predictors for the estimation of forest 782 

variables. For an excursus on the first decade of ALS applications in 783 

Italy we refer to Montaghi et al. (2013). While more recently Mura 784 

et al. (2016), developed a methodological approach to map a multiple 785 

variation index of forest structural diversity with a statistically 786 

rigorous inference approach. Chirici et al. (2016) compared four 787 

model-assisted estimates of total forest aboveground biomass 788 

obtained using ALS echo-based and CHM metrics. Chirici et al. 789 
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(2018) assessed forest windthrow damaged in Tuscany after the 790 

storm of March 2015 using a post-event ALS data, while Giannetti 791 

et al. (2018) assessed single-tree attributes in a complex mixed 792 

Mediterranean forests by the integration of ALS and terrestrial laser 793 

scanner. 794 

However, despite a fairly rapid growth of these techniques, ALS data 795 

in Italy are not yet available wall-to-wall (Montaghi et al. 2013, 796 

Scrinzi et al. 2017) while several local acquisitions are instead 797 

available. A complete overview of all the ALS datasets available in 798 

Italy is still missing, this information is instead crucial to identify the 799 

best way to integrate ALS with other source of information such as 800 

those from field surveys conducted by the Italian NFI or to plan 801 

future ALS acquisitions (Corona et al. 2017). 802 

In such a framework the general objective of this work is to present 803 

the activities carried out to better understand the consistency of forest 804 

maps and ALS data in Italy, these activities can be considered 805 

preliminary to a future possible implementation of a National Forest 806 

Information System. 807 

More specifically this paper is aimed at: i) investigating if existing 808 

local maps can be aggregated to create an innovative national high 809 

resolution forest/non-forest map (forest mask) able to provide forest 810 

area figures consisting with official forest area estimates from the 811 

Italian NFI, for comparative purposes we assessed the quality of 812 

other two forest masks developed in the framework of international 813 

processes; ii) presenting the creation of an innovative CHM based on 814 

the aggregation of all the major ALS dataset available in Italy; and 815 
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iii) to develop for demonstration purposes an on-line geographic FIS 816 

to provide free access to these two layers. 817 

To do so in the paper we first provide an overview of the available 818 

forest maps (local, continental and global) and ALS data available in 819 

Italy, while in the second part we present the procedures used for 820 

preparing the forest mask and the CHM, finally in the last part we 821 

introduce the on-line geographic FIS. 822 

2. Materials 823 

2.1. Study area 824 

Italy covers 301,338 km2, centered at latitude 42° 30’ and longitude 825 

12° 30’, and it is divided into 21 local administrations called Regions 826 

and Autonomous Provinces (the Nomenclature of Territorial Units 827 

for Statistics (NUTS) level 2, following the European Statistical 828 

Office (Eurostat) classification). Italy has large climate and 829 

topographical variability with coastal flat areas, hills and two main 830 

mountain chains, the Apennines from North-West to South-East, and 831 

the Alps in the northern part of the country from West to East, with 832 

elevations ranging between 0 and 4800 m a.s.l. Based on the last 833 

available Italian NFI statistics (INFC 2007), forests and other 834 

wooded lands cover 34.7% of the national land territory, with 835 

104,675 Km2. Forests are dominated by broadleaved species (68% of 836 

total forest area), with the presence of 7 out the 14 European Forest 837 

Types (Barbati et al. 2014). 838 
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2.2. Forest mask of Italy 839 

In this paragraph we present the data used to create and validate a 840 

new high resolution forest mask of Italy from local maps, as well as 841 

the other two forest masks used to contrast the quality of this new 842 

map. 843 

2.2.1. Forest mask from local maps 844 

 845 

Figure 1. Acquisition year of local maps used to create the high resolution 846 
forest mask. 847 
 848 

To create a high resolution forest mask of Italy we mosaicked maps 849 

of different types. When available we used high resolution forest 850 

maps (for a total of 16 maps produced with a nominal reference scale 851 
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varying between 1:5,000 and 1:25,000), based on forest types 852 

classification systems. For five regions we used land use maps based 853 

on the Corine Land Cover classification system, and one map (i.e. 854 

Sardegna) based on the classification systems of the CORINE 855 

Biotopes. All the maps were produced on the basis of manual 856 

photointerpretation of aerial orthophotos between 2000 and 2016. 857 

The maps were downloaded from local on-line geoportals, when 858 

multiple versioning at different years were available, we used the 859 

version for the year closest to the year 2005, the reference year of the 860 

Italian NFI (Figure 1). The details of the local maps used to create 861 

the high resolution forest masks are in Table 1. 862 

2.2.2. Forest masks from international layers 863 

Even if a large number of global or continental forest maps are 864 

available we decided to use only two products provided by JAXA 865 

globally and by COPERNICUS for Europe since they are the only 866 

ones that declare to officially mimic the FAO definition of “forest 867 

and other wooded land”, which is adopted by the Italian NFI too. 868 

JAXA, for the years 2007, 2008, 2009, 2010, and 2015 provides a 869 

forest/non-forest mask in grid format with a 25 m resolution for the 870 

entire globe (JAXA 2016). The JAXA map is produced by automatic 871 

processing of multi polarization backscatter signals acquired by the 872 

two Synthetic Aperture Radars (SAR), PALSAR and PALSAR 2 873 

(Phased Array type L-band Synthetic Aperture Radar), which are 874 

mounted on the two satellites ALOS and ALOS-2 (Advanced Land 875 

Observing Satellite). The JAXA map, here-in-after named JAXA, 876 
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was downloaded for the year 2007 from 877 

https://developers.google.com/earth-878 

engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR. 879 

In the framework of Copernicus Land Monitoring Service (CLMS) 880 

coordinated by the European Space Agency (ESA) a forest/non-881 

forest mask in grid format covering the entire Europe for the years 882 

2012 and 2015 is derived from the FTY, available among the so-883 

called HRL, in which the mainly input sources of the forest layers 884 

are Sentinel-2 and Landsat 8 time series, complemented by SPOT-5 885 

and ResourceSat-2 satellite data. The FTY map for the year 2012 886 

derived through a spatial intersection of the two primary status layers 887 

TCD and DLT (Langanke 2017), was downloaded from: 888 

https://land.copernicus.eu/pan-european/high-resolution-889 

layers/forests/forest-type-1/status-maps/2012?tab=download. As 890 

reported in the metadata, the FTY allows to mimic as close as 891 

possible the FAO forest and other wooded land definition. In its 892 

original spatial resolution (20 m) it consists of two products: 1) a 893 

forest types product with a MMU of 0.5 ha, as well as a 10% tree 894 

cover density threshold applied, and 2) a support layer mapping trees 895 

under agricultural uses and in urban contexts on the basis of the land 896 

uses from the Corine Land Cover (CLC 2012) project, and the 2012 897 

degree of imperviousness product (available among the HRL). In the 898 

final 20 m spatial resolution product that we used, trees 899 

predominantly used for agricultural practices and trees in urban 900 

context that are distinguished in the forest additional support layer 901 

https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
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are excluded from the map (Langanke 2017). We referred to this final 902 

map as HRL-FM. 903 

Tab. 1. Main characteristics of local maps used to create the high resolution 904 
forest mask. Map type FM: forest mask, LUM: Land use map 905 
 906 

Administrative unit 
Map 

type 

Production 

year 
Scale 

Minimum 

Mapping 

Unit (ha) 

Abruzzo FM 2009 1:10000 0.5 

Basilicata FM 2015 1:10000 0.2 

Auton. Prov. of 

Bolzano 
FM 2011 1:25000 0.5 

Calabria LUM 2012 1:10000 0.2 

Campania LUM 2009 1:25000 0.5 

Emilia-Romagna LUM 2014 1:10000 0.2 

Friuli Venezia Giulia FM 2013 1:5000 0.2 

Lazio FM 2011 1:25000 0.5 

Liguria FM 2013 1:25000 0.5 

Lombardia FM 2015 1:10000 0.25 

Marche FM 2000 1:25000 0.5 

Molise FM 2004 1:10000 0.5 

Piemonte FM 2016 1:10000 0.2 

Puglia FM 2011 1:10000 0.25 

Sardegna LUM 2013 1:200000 0.5 

Sicilia FM 2010 1:10000 0.5 

Toscana LUM 2013 1:25000 0.2 

Auton. Prov. of 

Trento 
FM 2015 1:10000 0.2 

Umbria FM 2012 1:25000 0.5 

Valle d’Aosta FM 2011 1:10000 0.5 

Veneto FM 2006 1:10000 0.5 

2.3. Italian Airborne Laser Scanner surveys 907 

We searched for all the ALS datasets available in Italy collected from 908 

local, regional, and national authorities. In total, we found 29 ALS 909 
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datasets acquired in the period 2004-2017 by means of 12 local and 910 

national different authorities (Table 2, Figure 2). The data are 911 

available free of charge, or in some cases can be acquired upon 912 

request to the owner or after payment of storage fees. 913 

The largest dataset was collected by the Italian Ministry of 914 

Environment (MATTM), which acquired ALS data at national level 915 

along the Italian coast and rivers for hydraulic risk assessment. 916 

 917 

 918 

Fig. 2. ALS datasets and data provider (on the left side), and year of 919 
acquisition (on the right side). 920 
 921 

The remaining datasets were acquired by Regions and other local 922 

authorities (i.e., municipalities, provinces, catchment management 923 

authorities, and research institutions). In some areas multitemporal 924 

acquisitions are also available, mainly located in Regions with wide 925 

local ALS coverage where multiple MATTM surveys were carried 926 

out. The Regions with multitemporal dataset are Liguria (49% of the 927 
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Region), Valle d'Aosta (40%), Molise (36%), Piemonte (33%), 928 

Trentino Alto Adige (32%), Basilicata (26%) (Figure 2). In several 929 

Regions new ALS dataset are going to be acquired or have been 930 

acquired already but are not yet distributed. 931 

Table 2 reports the main characteristics of ALS data used in this 932 

study. It is important to note that in some cases we were able to 933 

collect point clouds as raw or classified data, while for some datasets 934 

we were able to collect only pre-processed data such as raster grid 935 

Digital Terrain Models (DTMs), which provide the elevation of the 936 

ground terrain above sea level, and Digital Surface Models (DSM), 937 

which provide the elevation above see level of Earth surface 938 

including trees, buildings, and other features above the ground. 939 

2.4. Italian National Forest Inventory reference data 940 

The 2nd Italian National Forest Inventory (INFC 2007) is based on a 941 

three-phase, non-aligned, systematic sampling design, results are 942 

referred to the year 2005. For more details on Italian NFI we refer to 943 

Fattorini et al. (2006) and Chirici et al. (2020). 944 

To assess the accuracy of the forest masks we used the official 945 

estimates of total forest area (i.e., forest + other wooded land) 946 

available on line at https://www.sian.it/inventarioforestale/ 947 

aggregated at national (NUTS1), regional (NUTS2), and province 948 

levels (NUTS3) (INFC 2007). 949 
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2.5. Italian national grids 950 

Resampling all the different layers (forest masks and ALS) to 951 

produce an harmonized spatial datasets with a common spatial 952 

extension and resolution is a standard procedure when maps have to 953 

be compared with the information collected in the NFIs (Kangas et 954 

al. 2018). 955 

For this study we generated for Italy two reference grids, both 956 

projected using the coordinate system WGS 84 / UTM zone 32 North 957 

(EPSG:32632), at two different resolutions: 1 m and 23 m. The 958 

tessellation at 23 m was chosen to mimic the size of the field plots 959 

measured in the framework of the Italian NFI (Chirici et al. 2020) 960 

and it generated 569,769,690 cells. Following this approach all the 961 

raster layers potentially included in the geographical FIS should be 962 

resampled to the same 23 m resolution. 963 

The 23 m cells were then subdivided to create the 1 m grid, consisting 964 

of 301,408,166,010 cells, used for the following harmonization 965 

process of local forest maps. 966 

  967 
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Tab. 2. Main characteristics of ALS surveys available in Italy. In spatial resolution column, “Raw data” refers to the 968 
availability of point clouds with or without ground/non-ground classification. 969 
 970 

ID Data provider 
Survey 

year 

Survey 

area 
Km2 

Flight 

altitude 

Density 

(pulse/m2) 

Spatial 

res. (m) 
Sensor 

1 Basilicata  2013 Basilicata 14382 900m 4 5x5 Riegl LMS Q680i 

2 Autonomous 

Province of 

Bolzano 

2004 -

2006 
South Tyrol 7411 

850-

1100m 
0.6 2,5x2,5 

TopoSys Falcon II and 

Optech Gemini ALTM 

3033 

3 
Bosco Fontana 2006 

Bosco 

Fontana 
3 - 5.6 

1x1 + 

raw data 
Optech ALTM 3100 

4 Municipality 

of Firenze 
2017 Florence  102 915m 4 1x1 Riegl LMS-Q680i 

5 Autonomous 

Region of Fruli 

Venezia-

Giulia 

2006 -

2010 

Fruli 

Venezia-

Giulia 

10420 
180-

3000m 
4 

1x1 + 

classifie

d raw 

data 

Optech Gemini ALTM 

3033 

6 

LaMMA 2015 

Tuscany 

forest 

windthrows 

4-5/03/15 

436 1100m 4.4 

1x1 + 

classifie

d raw 

data 

Riegl LMS-Q680i 

7 MATTM 

Contracts: 140, 

145, 155, 172, 

204, 208 

2007 -

2016 

National 

Rivers 
24154339 - - 

1x1 + 

raw data 

ALTM Gemini, 

ALTM 3100, Pegasus 
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ID Data provider 
Survey 

year 

Survey 

area 
Km2 

Flight 

altitude 

Density 

(pulse/m2) 

Spatial 

res. (m) 
Sensor 

8 MATTM 

Contracts: 140, 

176 

2008 - 

2012 
Coast line 1926671 - - 

2x2 + 

raw data 

ALTM Gemini, 

ALTM 3100, Pegasus 

9 

Piemonte 
2009 -

2011 
Piemonte 291792692 4500m 0.5 

5x5 + 

raw data 

LEICA ALS50-II 

(Leica Geosystems 

2006) 

10 Autonomous 

Region of 

Sardegna 

2008 Alghero 666 800m 1 5x5 Riegl LMS-Q560 

11 Autonomous 

Region of 

Sardegna 

2008 Coast 5579 1400m 1 1x1 Optech Gemini ALTM 

12 Autonomous 

Region of 

Sardegna 

2009 Ogliastra 318 800m 5 
1x1 + 

raw data 
Riegl LMS-Q560 

13 Autonomous 

Region of 

Sardegna 

2013 
Urban 

centers 
15415 700m 4 1x1 Riegl LMS Q680i 

14 
Toscana, 

Province of 

Arezzo 

2004 
Arno, 

Tevere. 
89 1200m 0.5-1.5 2x2 

Optech Gemini ALTM 

3033 
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ID Data provider 
Survey 

year 

Survey 

area 
Km2 

Flight 

altitude 

Density 

(pulse/m2) 

Spatial 

res. (m) 
Sensor 

15 Toscana 

Serchio basin 

authority 

2005 

Canale 

Ozzeri, Rio 

Guappero 

31 1200m 1 1x1 
Optech Gemini ALTM 

3032 

16 Toscana 

Serchio basin 

authority 

2006 

Serchio and 

main 

tributaries 

12435 1200m 1 1x1 
Optech Gemini ALTM 

3033 

17 
Toscana 

2006-

2007 

Mugello, 

Sieve 
305 1200m 1 1x1 

Optech Gemini ALTM 

3033 

18 Toscana, 

Province of 

Siena 

2007 
Ombrone, 

Arbia 
35 1500m 1 1x1 Optech Gemini 

19 

Toscana, Arno 

basin authority 
2008 

Elsa, 

Ombrone, 

Bisenzio, 

Sieve  

913 1200m 1.50 1x1 ALTM Gemini 

20 Toscana, Arno 

basin authority 
2008 

Monti della 

Calvana 
314 2300m 0.40 3x3 ALTM Gemini 

21 Toscana, Arno 

basin authority 
2009 

Monti della 

Calvana 
314 2300m 0.40 2x2 ALTM Gemini 

22 

Toscana 2010 

Lunigiana, 

Pistoia, 

Lucca, 

Scarlino 

1923 - 0.50 1x1 

Optech Gemini ALTM 

and Optech Pegasus 

ALTM 
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ID Data provider 
Survey 

year 

Survey 

area 
Km2 

Flight 

altitude 

Density 

(pulse/m2) 

Spatial 

res. (m) 
Sensor 

23 
Toscana 2011 Aulla 85 

1800-

1900m 
0.5 1x1 Optech Gemini 

24 

Toscana 2012 

Carrara, 

Pienza, 

Minucciano

, Vagli 

101 1600m 1.7 1x1 

Optech Gemini ALTM 

and Optech Pegasus 

ALTM 

25 Toscana 2012 Magra 54 1400m 1.5 1x1 Optech Pegasus 

26 

Toscana 2012 

Teglia, 

Osca, 

Mangiola 

26 1050m 1.5 1x1 Optech Gemini 

27 Autonomous 

Province of 

Trento 

2006 

Trentino 

excluded 

Adige river 

6702 
1000- 

1800m 
1.8 

1x1 + 

raw data 
Optech ALTM 3100 

28 Autonomous 

Province of 

Trento 

2009 Adige river 636 1500m 0.5 
1x1 + 

raw data 
TopoSys 

29 Autonomous 

Region of 

Valle d'Aosta 

2008 
Valle 

d'Aosta 
3620 

2700- 

4700m 
2 

2x2 + 

raw data 
Optech Gemini ALTM 

971 



3. Methods 972 

3.1. Forest mask 973 

3.1.1. Harmonization of local forest maps 974 

The local forest maps were all reprojected in the same coordinate 975 

system (WGS 84 / UTM zone 32 North, EPSG:32632), merged and 976 

rasterized as grid layers using the national grid with 1 m x 1 m spatial 977 

resolution, and reclassified into Boolean masks using the code 1 for 978 

pixels classified as “forest”, and the code 0 for pixels classified as 979 

“non-forest”. Please note that hereinafter with the term “forest” we 980 

intend the FAO definition of “forest and other wooded areas”. 981 

Since the different local maps were developed on the basis of different 982 

resolutions we decided to apply a simple procedure to harmonize all 983 

the maps to the FAO forest definition based on the minimum tree 984 

cover of 5%. 985 

For each 23 x 23 m cell we then calculated the forest cover ratio (𝐹i) 986 

as:  987 

𝐹𝑖 =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
 𝑥100      (1) 988 

where 𝑦i is the number of forest pixels resulting from the 1x1 m forest 989 

mask, and n = 529, that is the total number of 1 x 1 m pixels in the 23 990 

x 23 m pixels.  991 

All the 23 x 23 m cells with Fi ≥ 5% were classified as “forests” and 992 

labelled with code 1, and the remaining cells were classified as “non-993 
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forest” and labelled with code 0. After the merging process we 994 

obtained a national layer hereinafter identified as REG-FM (REGional 995 

Forest Mask). 996 

For comparison the JAXA and HRL maps were resampled from their 997 

original resolution (25 and 20 meters respectively) to the 23 m national 998 

grid creating Boolean maps as well. 999 

The results are three national raster forest masks REG-FM, JAXA-1000 

FM, and HRL-FM with the spatial resolution of the national grid at 23 1001 

x 23 m. 1002 

3.1.2. Accuracy assessment of the forest masks 1003 

To assess the accuracy of the three forest masks (REG-FM, JAXA-1004 

FM, and HRL-FM) we used as benchmark the forest area reported by 1005 

the official statistics of the 2nd Italian NFI (INFC 2007). 1006 

For each national forest mask, we computed the forest area for all Italy 1007 

(NUTS1), for 20 Regions (administrative units at NUTS2 level, 1008 

considering the Autonomous Provinces of Trento and Bolzano as a 1009 

unique Region) and 103 Provinces (administrative units at NUTS3 1010 

level).  1011 

For each administrative unit we computed the percentage difference 1012 

(diff%) between the official NFI forest area estimate, and the resulting 1013 

forest area from the different forest masks as: 1014 

𝑑𝑖𝑓𝑓% =
(𝐴𝑚𝑎𝑠𝑘−𝐴𝑁𝐹𝐼)

𝐴𝑁𝐹𝐼
      (2) 1015 
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where Amask is the forest area calculated on the basis of the forest masks 1016 

(REG-FM, JAXA-FM, HRL-FM), and ANFI is the forest area provided 1017 

by official NFI statistics. 1018 

We also calculated the coefficient of determination (R2), and the root 1019 

mean square error, both in absolute (RMSE) and relative values 1020 

(RMSE%) against the ANFI, between NFI statistics and the forest area 1021 

from the different forest masks as: 1022 

𝑅𝑀𝑆𝐸 =  √
∑ (A𝑚𝑎𝑠𝑘𝑖

−A𝑁𝐹𝐼𝑖
)2𝑛

𝑖=1

𝑛
      (3) 1023 

𝑅𝑀𝑆𝐸% =  
𝑅𝑀𝑆𝐸

𝐴𝑁𝐹𝐼
       (4) 1024 

where Amaski is the forest area calculated on the basis of the forest 1025 

masks in the i-th administrative unit, ANFIi is the forest area provided 1026 

by official NFI statistics for the i-th administrative unit, n is the 1027 

number of administrative units. 1028 

In the results section we reported the forest area estimates from the 1029 

NFI for the same administrative units together with their estimated 1030 

standard error. 1031 

3.2. Italian National CHM 1032 

The available ALS datasets were derived from several flight 1033 

campaigns and were provided with different specifications and 1034 

formats. Therefore, the generation of a homogeneous CHM required 1035 

specific pre-processing steps depending of data characteristics. 1036 
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For those ALS datasets where raw data were available (IDs 3, 5, 9, 12, 1037 

27, 28 of Table 2) we firstly classified the ALS point clouds and then 1038 

we produced DTMs and DSMs. In LasTools (Isenburg 2017) we 1039 

eliminated errors in returns with the "lasnoise" algorithm, we 1040 

classified the pulses corresponding to ground and non-ground with 1041 

“lasground” and “lasclassify” and then we generated the 1 meter 1042 

resolution DTM from ground pulses and the DSM from non-ground 1043 

pulses with the adaptive TIN model algorithm using “las2dem” in 1044 

LasTools. For those datasets (IDs 1, 2, 8, 10, 14, 20, 21, 29) where 1045 

point clouds were not available, and DTM and DSM were at a 1046 

resolution different from 1 m, the datasets were resampled using a 1047 

cubic convolution. 1048 

For the remaining dataset (IDs 4, 6, 7, 11, 13, 15, 16, 17, 18, 19, 22, 1049 

23, 24, 25, 26) the layers were used as they are since provided already 1050 

at 1 m resolution. 1051 

We then computed a 1 m resolution CHM subtracting the DTM from 1052 

the DSM in the coordinate reference system WGS 84 / UTM zone 32 1053 

North (EPSG:32632), and lastly, for each 23 x 23 m cell of the national 1054 

grid we calculated the mean value from the 1 m resolution CHM. 1055 

4. Results 1056 

4.1. Forest mask 1057 

On the basis of the forest mask resulting from the aggregation of local 1058 

forest maps (REG-FM) the total area of forest and other wood lands 1059 
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resulted of 102,610.9 km2, the 34% of land area of Italy, the 1.9% less 1060 

than the estimated official statistics of the NFI (104,675.33 km2 with 1061 

an estimated standard error of 0.3%). Both the other two forest masks 1062 

were less congruent with NFI estimates. With JAXA-FM we resulted 1063 

a total of 100,177.8 km2 (33.2% of land area), with an underestimation 1064 

of almost the 4% compared to NFI estimates; with HRL-FM we 1065 

obtained a total of 112,133.1 km2 (37.2% of land area), with an 1066 

overestimation of approximately the 16% if compared to NFI 1067 

estimates (Table 3). 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

Tab. 3. Accuracy assessment of national forest masks (REG-FM, JAXA-FM, 1074 
HRL-FM) at NUTS1 (Italy) and NUTS2 (Region) levels. The forest and other 1075 
wooded land area and the percentage difference (Diff%) are reported for 1076 
forest masks; the forest area and its standard error (ES%) are reported for NFI 1077 
estimates.  1078 



NUTS 
Forest owl area (km2) Diff% (%) Forest area (km2)  

REG JAXA HRL REG JAXA HRL  

1 Italy  102610.9 100177.8 112133.1 -2 -4 7 104675.3 (0.3) 

2 

Abruzzo 4556.0 3913.8 5118.1 4 -11 17 4385.9 (1.3) 

Basilicata 3239.5 2402.2 3216.8 -9 -33 -10 3564.27 (1.5) 

Calabria 7841.4 6211.4 6715.5 28 1 10 6129.31 (1.1) 

Campania 4460.5 4644.4 5942.5 0 4 33 4452.75 (1.5) 

Emilia-Romagna 6202.7 6026.1 6915.4 2 -1 14 6088.17 (1.2) 

Friuli Venezia Giulia 3244.7 3473.4 3531.8 -9 -3 -1 3572.24 (1.3) 

Lazio 6200.5 6624.5 6849.3 2 9 13 6058.59 (1.2) 

Liguria 3925.8 4692.9 3963.5 5 25 6 3751.34 (1.1) 

Lombardia 6203.0 8487.4 7029.5 -7 27 6 6657.01 (1.2) 

Marche 2618.6 2452.5 3305.0 -15 -20 7 3080.76 (1.6) 

Molise 1583.4 1038.3 1847.1 7 -30 24 1486.4 (2.3) 

Piemonte 9326.8 11266.3 10165.4 -1 20 8 9401.15 (1) 

Puglia 1735.3 1749.3 4390.0 -3 -2 145 1790.4 (2.6) 

Sardegna 8943.8 5636.2 9115.8 -26 -54 -25 12132.51 (0.8) 

Sicilia 5134.5 2082.7 3941.2 52 -38 17 3381.71 (1.9) 

Toscana 11687.8 11645.2 12626.2 1 1 10 11515.38 (0.7) 

Trentino-Alto Adige 7503.8 7958.6 7311.3 -4 2 -6 7797.05 (1.2) 

Umbria 3411.2 3400.3 4160.8 -13 -13 7 3902.55 (1.2) 

Valle d’Aosta 981.1 1435.6 966.3 -7 36 -9 1059.28 (2.7) 

Veneto 4131.2 5036.9 5021.7 -8 13 12 4468.56 (1.4) 

1079 
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The REG-FM forest mask resulted the most accurate also at Regional 1080 

(NUTS2) and Province (NUTS3) level. For NUTS2 we found that 1081 

REG-FM matches the NFI estimates better than other masks in 11 out 1082 

of 20 Regions, against the 6 of HRL-FM, and the 3 of the JAXA-FM 1083 

(Table 3). With REG-FM the greatest underestimations were for 1084 

Marche (-15%) and Sardegna (-26%), while the greatest 1085 

overestimations were for Sicilia (+52%) and Calabria (+28%). For 1086 

NUTS3, the REG-FM was the best one in 50 Provinces out of 103, 28 1087 

with HRL-FM and 25 with JAXA-FM. At the REG-FM at Province 1088 

level demonstrated similar behaviour registered at Regional level, 1089 

with a stronger overestimation in Puglia, Sicilia, and Calabria, and 1090 

underestimation in Lombardia, Veneto, Basilicata, and Sardegna. 1091 

Tab. 4. RMSE, RMSE%, and R2 for the three forest masks (REG-FM, JAXA-1092 
FM, HRL-FM), both at NUTS3 (Province) and NUTS2 (Region) levels. The 1093 
RMSE values are expressed in hectars. 1094 
 1095 

Mask 
RMSE RMSE% R2 

Province Region Province Region Province Region 

HRL 24943 112940 24% 21% 0.93 0.90 

JAXA 41340 154774 40% 29% 0.82 0.80 

REG 23254 103133 23% 19% 0.95 0.91 

 1096 

The R2 and RMSE results confirmed these findings since both for 1097 

Regions (NUTS2) and Provinces (NUTS3) the REG-FM appeared the 1098 

best forest masks between those analyzed with R2 = 0.91 and RMSE 1099 

= 19% and R2 = 0.95 and RMSE = 23% for NUTS2 and NUTS3 1100 

respectively, while HRL-FM and JAXA-FM  ranged between 0.80 and 1101 
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0.90 in terms of R2, and between 21% and 40% in terms of RMSE 1102 

(Table 4 and Figure 3). 1103 

 1104 

Fig. 3. Correlation between the forest masks (REG-FM, JAXA-FM, HRL-1105 
FM) area and the NFI estimates at NUTS2 (Region) and NUTS3 (Province) 1106 
level. The dotted blue line is the 𝑦 = 𝑥 line. 1107 

4.2. Italian National CHM 1108 

As a result of the mosaicking activity of ALS we produced a 23 m 1109 

resolution CHM which covers an area of 191,076.52 km2, which 1110 
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represents the 63% of the territory of Italy, and the 59% of the Italian 1111 

forest area (based on the REG-FM) (Figure 4). 1112 

 1113 

Fig. 4. On the left side the CHM we generated, in the middle the forest area 1114 
covered by CHM, on the right side the high resolution forest mask. 1115 
 1116 

 1117 
Fig.5. Area distribution per year of ALS surveys. 1118 
 1119 
Most of ALS data were acquired between the years 2008 and 2011 1120 

(the 68% of the total area covered by ALS) (Figure 5). 1121 

At Regional level (NUTS2) we found that the CHM fully covers the 1122 

forest area of 4 Regions: Trentino-Alto Adige, Friuli Venezia Giulia, 1123 
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Basilicata, and Valle d’Aosta. In three more Regions, Piemonte, 1124 

Calabria and Liguria, the forest area is almost fully covered with 99%, 1125 

91% and 86% coverage respectively. Emilia-Romagna was the region 1126 

with the lowest percentage (only the 7% of the forest area), followed 1127 

by Lombardia (21%), Lazio (23%), and Marche (37%) (Figure 6). 1128 

 1129 

Fig.6. ALS cover for each Region in Italy. 1130 
 1131 

4.3. Forest Information System Web-GIS infrastructure 1132 

To give open-access to the harmonized geographic layers, we 1133 

developed a first demonstrating web-GIS service, which could be 1134 

considered as a possible example for the future development of a 1135 

geographic Forest Information System. The platform is an easy 1136 

infrastructure which permits to view and query the Italian National 1137 

Forest Mask and the National CHM we developed. The infrastructure 1138 



65 

 

is designed to be scalable and updated constantly. The first version of 1139 

the Web-GIS platform (v. 1.0) is available at www.forestinfo.it 1140 

(Figure 7). 1141 

 1142 

Fig. 7. Forest Information System Web-GIS interface. 1143 
 1144 

Through the Web-GIS, the users can interact in form of GIS-layers 1145 

with the two datasets which at the moment are not downloadable. The 1146 

infrastructure was developed using free-open source geospatial 1147 

libraries. At present the Web-GIS is based on GeoServer (Java) and 1148 

Lizmap®, with data stored on a PostgreSQL database, implemented 1149 

with the extension PostGIS, which allows to select data by query and 1150 

to create maps. The Web-GIS was structured as a system where the 1151 

data management and the data processing are separated. The 1152 

infrastructure was designed to collect both raster and vector layers. 1153 
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5. Discussion 1154 

In this study we presented: (i) the creation of a new high resolution 1155 

Italian National Forest Mask developed on the basis of the aggregation 1156 

of local forest maps, the mask was evaluated against the aggregated 1157 

forest area estimates from the Italian NFI and in comparison of two 1158 

other forest masks created on the basis of radar remotely sensed data 1159 

available globally by JAXA (JAXA-FM) and for Europe by the 1160 

COPERNICUS services on the basis of optical imagery (HRL-FM); 1161 

(ii) a new National high resolution CHM generated as aggregation of 1162 

harmonized datasets available locally in Italy; and (iii) the first 1163 

National forest Web-GIS, a platform designed to store and navigate 1164 

through geographic forest layers. 1165 

Three years were necessary to collect the data used in this project, for 1166 

a total of approximately 24.7 Tera Byte. 1167 

To create the Italian National Forest Mask from local forest maps the 1168 

major problems we encountered were related to the different forest 1169 

definitions and classification systems used by the different Authorities 1170 

(Table 1). In fact, the Italian National Forest Mask (REG-FM) was 1171 

obtained by merging 20 local forest maps (considering the 1172 

Autonomous Provinces of Trento and Bolzano as a unique Region) 1173 

created by photointerpretation. Among these, 12 used the FAO forest 1174 

definitions, and 8 the regional forest definitions. For these reasons, the 1175 

first phase of our work was the harmonization of the different forest 1176 

maps deleting forest areas that did not respect the FAO forest and other 1177 
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wooded land definition. In general, the study revealed that the REG-1178 

FM we produced, is more congruent with NFI forest area estimates 1179 

than JAXA-FM and HRL-FM, for all the considered spatial scales 1180 

(i.e., NUTS1, NUTS2 and NUTS3). This was true especially for north 1181 

and central Italy since REG-FM showed more consistent deviations 1182 

from NFI figures in the islands (i.e., Sardegna and Sicilia) and in the 1183 

southern regions (i.e., Calabria, Basilicata, and Puglia). This tendency 1184 

can be due to the large presence in these Regions of olive groves, 1185 

orchards, and abandoned pastures or crops with sparse tree coverage 1186 

that can be easily confused with other forest types or shrubby 1187 

formations typical of the Mediterranean “macchia”. 1188 

The mean area difference with the NFI estimates across the different 1189 

Regions was 0.6%, with area differences ≥10% for Sicilia (+52%), 1190 

Calabria (+28%), Sardinia (-26%), Marche (-15%) and Umbria (-1191 

13%). Moreover, it is important to note that we found larger 1192 

differences between REG-FM and NFI official statistics in those 1193 

Italian regions where NFI had larger standard errors too (i.e., between 1194 

1.1% and 1.9%) (INFC 2007). 1195 

For Sardegna, such discrepancies may be due to the classification 1196 

system used to develop the local map based on habitats and not 1197 

specifically for forests. In addition, such map was produced with a 1198 

very small nominal scale (1:200,000), which is not consistent with a 1199 

minimum mapping unit of 0.5 ha that should be adopted to be 1200 

consistent with the FAO forest definition. Finally in this region forests 1201 
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and other wooded lands are frequently characterized by different types 1202 

of Mediterranean macchia that is complex to classify through remotely 1203 

sensing data, even by manual photointerpretation (Hüttich et al. 2014). 1204 

After all we observed in Sardegna large discrepancies for JAXA-FM 1205 

and HRL-FM maps too. In the northern Regions, the forest area from 1206 

the HRL-FM map was typically underestimated when compared to 1207 

NFI figures (from -0.8% of Piemonte to -9% of Friuli Venezia Giulia) 1208 

(Table 3), probably for the presence of numerous high-altitude forest 1209 

edges, with tree cover between 5 and 10% where the transition 1210 

between shrublands, bushlands or other wooded lands is difficulty to 1211 

assess by photo interpretation. It should be noted that many northern 1212 

regions do not use a specific class for other wooded land in their 1213 

nomenclature systems, making the harmonization of these maps 1214 

difficult. 1215 

The satellite-derived forest masks (i.e., JAXA-FM and HRL-FM) 1216 

were less accurate than the REG-FM, especially in the southern 1217 

Regions, but with different behaviors. The JAXA-FM underestimated 1218 

the forest area in the southern Regions where the forest is 1219 

characterized by low vegetation and a limited accumulation of 1220 

growing stock volume. Most probably because the sensibility of SAR 1221 

backscatter in HV-polarization (JAXA 2016) is relatively poor in 1222 

these types of vegetation (Hüttich et al. 2014, Bartsch et al. 2020). The 1223 

HRL-FM overestimated the forest area for all the considered spatial 1224 

scales, even if the vegetation in urban and agricultural contests was 1225 
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masked out with the Copernicus Forest Additional Support Layer. 1226 

This procedure may be a possible source of error since it is based on 1227 

two other maps: i) the 2012 Imperviousness Degree layer, available 1228 

among the HRL, and the CLC 2012. Both these maps may be source 1229 

of errors. Especially if we consider the MMU of 25 ha adopted by the 1230 

Corine Land Cover map, probably too coarse to capture the 1231 

fragmented mosaic of the Italian landscape. For more details on the 1232 

Imperviousness Degree layer and the Forest Additional Support Layer 1233 

please refer to Langanke (2017). Consequently, for example, we found 1234 

that in Puglia the HRL-FM classified as forest most of the olive 1235 

groves, leading to a discrepancy of 145% between HRL-FM and NFI 1236 

data in Puglia.  1237 

Our results show that REG-FM is the national forest mask most 1238 

congruent with the estimates of the Italian NFI, despite the limitations 1239 

found in some of the Regions. The Italian National Forest Mask in the 1240 

future could be useful for several applications, for example to create 1241 

wall-to-wall spatial estimates of forest variables (Chirici et al. 2020), 1242 

to mask out non-forest areas when monitoring forest disturbances 1243 

from clear-cuts (Giannetti et al. 2020, Francini et al. 2020) or 1244 

windthrow damages, as well as for studying forest fragmentation and 1245 

ecological networks at national scale level. 1246 

As mentioned already Italy does not have an ALS wall-to-wall 1247 

coverage yet (Chirici et al. 2020) and, before this study, the exact area 1248 

of the Italian land covered by ALS data, as well as a state of the art of 1249 
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all the main ALS data acquisition, was unknown. To the best of our 1250 

knowledge, this is the first study reporting an exhaustive description 1251 

of the ALS data available in Italy. Moreover, ALS datasets collected 1252 

by different authorities resulted to have some common characteristics 1253 

which are considered by other authors suitable for forestry 1254 

applications (Goodwin et al. 2006, Wulder et al. 2008): flight altitudes 1255 

of the acquisition between 500 m and 3000 m, spatial resolution of 1256 

derived DTM and DSM raster ranging between 1 m and 5 m, pulse 1257 

density is between 0.4 and 5 (pulses per m2). Low-pulse ALS (0.4 - 1 1258 

pulses per m2), usually aimed at the creation of digital elevation 1259 

models (i.e. DTM or DSM), still allow a reliable estimation of 1260 

typically forest structure metrics at the plot level (~23 m pixel size) 1261 

(Jakubowski et al. 2013). 1262 

Most of the ALS data available in forest area were acquired in three 1263 

years, i.e., 2008 (18.4%), 2009 (17.6%), and 2010 (21.9%). Several 1264 

studies demonstrated that a gap larger than 5 years between field 1265 

measures and ALS data is problematic when ABA approach is used to 1266 

estimate forest variables (Wulder et al. 2008, Tompalski et al. 2019). 1267 

These means that when the new NFI data for 2015 will be available, 1268 

most of the existing ALS data will be useless. 1269 

In addition to new ALS surveys, new data from NASA's Global 1270 

Ecosystem Dynamics Investigation (GEDI) mission, which is a 1271 

waveform LiDAR sensor mounted on the International Space Station 1272 

that is designed to provide a sample of ground-based and canopy 1273 
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LiDAR metrics for large-scale analysis in the Mediterranean forest as 1274 

well (Dubayah et al. 2020), should be considered for future 1275 

applications and implementations nationwide. 1276 

In the near future, the availability of these two national geographic 1277 

layers will allow the possibility of producing others national forest 1278 

layers. For example, it will be possible to derive spatial estimation of 1279 

NFI forest variables using model-assisted estimators, which require 1280 

the availability of a forest mask (McRoberts et al. 2014, Mura et al. 1281 

2016, Bottalico et al. 2017, Chirici et al. 2020) or hierarchical models, 1282 

which are specifically designed to use partial CHM coverage (Saarela 1283 

et al. 2016). Moreover, the two geographic layers can be used to study 1284 

forest structure (Wulder et al. 2008, Valbuena et al. 2013, Mura et al. 1285 

2016, Bottalico et al. 2017), species characterization (Maltamo et al. 1286 

2015), habitat modeling (Vihervaara et al. 2015), or mapping forest 1287 

disturbances using optical remote sensing data (Giannetti et al. 2020, 1288 

Francini et al. 2020). 1289 

To ensure a wide use of the two national layers, and of other national 1290 

forest layers that will be released in the future, a FIS Web-GIS 1291 

platform was developed. The platform has a free-access and allows 1292 

users to perform query on specific areas of interest using map products 1293 

consistent and aligned with a national grid with cell size of 23 x 23 m. 1294 

Expected future improvement of the FIS Web-GIS are: to implement 1295 

additional tools specifically designed for forest applications to 1296 

overcame the limitation of the regional geo-portal, which are usually 1297 
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designed just for cartographic purposes; to release other national forest 1298 

geographic layers, such as the growing stock volume map based on 1299 

NFI data (Chirici et al. 2020). 1300 

Finally, it is important to note that national spatial forest datasets such 1301 

as forest/non-forest mask, forest types, forest roads, and growing stock 1302 

volume are basic requirements to develop precision forestry 1303 

applications (Corona et al. 2017) and forest decision support systems 1304 

at national level, similar to the ones already tested at regional scale in 1305 

Italy to support forest planning and forest management (Puletti et al. 1306 

2017), and to map and value forest ecosystem services (Vizzarri et al. 1307 

2017). 1308 

6. Conclusion 1309 

Four main conclusions can be drawn by this work: 1310 

We generated a first high resolution forest mask for Italy (REG-FM) 1311 

based on the aggregation of local forest and land use maps. Even if 1312 

the input original dataset were created with different forest 1313 

definitions and at different dates, the resulting forest mask 1314 

undestimated for less than 2% the official estimation of the total 1315 

forest area from the Italian NFI. 1316 

Even if the REG-FM resulted more congruent with NFI figures than 1317 

the forest masks based on radar (JAXA-FM) and optical (HRL-FM) 1318 

imagery at National level, in some Regions and Provinces the REG-1319 

FM was affected by strong underestimations and overestimations, 1320 
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most probably for a mix of different causes (differences in forest 1321 

definitions, characteristics of the vegetation especially in 1322 

Mediterranean macchia and on forest edges). This indicates that the 1323 

REG-FM, even if it represents the best forest mask currently 1324 

available in Italy, cannot yet be adopted as an official layer for 1325 

reporting purposes and an operational revision of REG-FM by 1326 

manual photointerpretation should start as soon as possible. 1327 

The harmonized CHM we produced aggregating all the ALS data 1328 

currently available in Italy covers only the 59% of Italian forests and 1329 

start to be quite old already. These data are essential for forest 1330 

monitoring and should be routinely acquired together with aerial 1331 

images. 1332 

Through the development of a demonstration FIS Web-GIS online 1333 

we demonstrated how this information can be widely distributed to 1334 

all the potential stakeholders (i.e., forest owners, managers, and 1335 

technicians of local and national authorities). It is important that an 1336 

operational project for the implementation of a National Geographic 1337 

Forest Information System on-line can start as soon as possible in 1338 

Italy. 1339 

Moreover, we hope that the different forest mapping and monitoring 1340 

programs currently active in Italy will converge on a common 1341 

nomenclature system in order to produce harmonized maps 1342 

(Chiavetta et al. 2016). For this purpose, we suggest to adopt the 1343 
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European Forest Types nomenclature systems (Barbati et al. 2014), 1344 

which covers all the forest types in Italy. 1345 

It is also important to remember that to develop future forest layers 1346 

(such as maps of growing stock volume or biomass) with ABA 1347 

approach using NFI data and remote sensing data (i.e., CHM and 1348 

optical remote sensing data) it is necessary to have the correct 1349 

coordinate of field plots. For this reason, we hope that the Italian NFI 1350 

in the framework of the 3rd National Forest Inventory will release, at 1351 

least for research purposes, both NFI data and the exact coordinates 1352 

of plots measured in the field by the crews with GNSS. 1353 

Finally, we strongly suggest the evolution of the Italian NFI program 1354 

into a permanent monitoring system, in order to update the ground 1355 

data over a period of 5-10 years by visiting a sub-sample of the field 1356 

plots each year, as it is done in other EU and non-EU NFI programs. 1357 

  1358 
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Abstract  1658 

Information about forest cover and its characteristics are essential in 1659 

national and international forest inventories, monitoring programs, 1660 

and reporting activities. Two of the most common forest variables 1661 

needed to support sustainable forest management practices are forest 1662 

cover area and growing stock volume (GSV m3 ha−1). Nowadays, 1663 

national forest inventories (NFI) are complemented by wall-to-wall 1664 

maps of forest variables which rely on models and auxiliary data. The 1665 

spatially explicit prediction of GSV is useful for small-scale 1666 

estimation by aggregating individual pixel predictions in a model-1667 

assisted framework. Spatial knowledge of the area of forest land is an 1668 

essential prerequisite. This information is contained in a forest mask 1669 

(FM). The number of FMs is increasing exponentially thanks to the 1670 

wide availability of free auxiliary data, creating doubts about which is 1671 

best-suited for specific purposes such as forest area and GSV 1672 

estimation. We compared five FMs available for the entire area of Italy 1673 

to examine their effects on the estimation of GSV and to clarify which 1674 

product is best-suited for this purpose. The FMs considered were a 1675 

mosaic of local forest maps produced by the Italian regional forest 1676 

authorities; the FM produced from the Copernicus Land Monitoring 1677 

System; the JAXA global FM; the hybrid global FM produced by 1678 

Schepaschencko et al., and the FM estimated from the Corine Land 1679 

Cover 2006. We used the five FMs to mask out non-forest pixels from 1680 

a national wall-to-wall GSV map constructed using inventory and 1681 
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remotely sensed data. The accuracies of the FMs were first evaluated 1682 

against an independent dataset of 1,202,818 NFI plots using four 1683 

accuracy metrics. For each of the five masked GSV maps, the pixel-1684 

level predictions for the masked GSV map were used to calculate 1685 

national and regional-level model-assisted estimates. The masked 1686 

GSV maps were compared with respect to the coefficient of 1687 

correlation (ρ) between the estimates of GSV they produced (both in 1688 

terms of mean and total of GSV predictions within the national and 1689 

regional boundaries) and the official NFI estimates. At the national 1690 

and regional levels, the model-assisted GSV estimates based on the 1691 

GSV map masked by the FM constructed as a mosaic of local forest 1692 

maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 1693 

0.972, for total and mean GSV, respectively. We found a negative 1694 

correlation between the accuracies of the FMs and the differences 1695 

between the model-assisted GSV estimates and the NFI estimate, 1696 

demonstrating that the choice of the FM plays an important role in 1697 

GSV estimation when using the model-assisted estimator. 1698 

 1699 

Keywords: forest mask; spatial estimation; growing stock volume; 1700 

Italy  1701 
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1. Introduction 1702 

Information about forest cover and its characteristics are essential in 1703 

national and international forest inventories, monitoring programs, 1704 

and reporting activities (Schepaschenko et al., 2015; FAO, 2010) such 1705 

as in the context of international agreements (e.g., Kyoto protocol), 1706 

and restoration programs (e.g., Reducing emissions from deforestation 1707 

and forest degradation projects (REDD+))(FAO UNCCD, 2015). Two 1708 

of the most common forest variables needed to estimate sustainable 1709 

forest management indicators as required by the national and 1710 

international framework and agreements relate to forest cover area 1711 

(generally according to the international definition adopted by the 1712 

Food and agriculture organization (FAO) and the total growing stock 1713 

volume (GSV, m3) (McRoberts et al., 2013; Witke et al., 2019). These 1714 

data are usually provided by national forest inventory (NFI) programs 1715 

which use probability-based approaches to infer the estimates for large 1716 

areas such as countries and regions within countries. (McRoberts et 1717 

al., 2013; Hansen et al., 1983; McRoberts et al., 2006). In several 1718 

countries with long NFI histories such as Norway (Næsset et al., 1719 

2004), Finland (Tomppo et al., 2008), Austria (Hollaus et al., 2010), 1720 

and Switzerland (Waser et al., 2006; 2015), the typical NFI ground 1721 

survey is nowadays complemented by continuous spatial predictions, 1722 

characterized as wall-to-wall maps of forest variables which rely on 1723 

models and wall-to-wall auxiliary data such as remotely sensed data 1724 

(Kangas  et al., 2018; White et al., 2016; Næsset, 2014). 1725 
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Wall-to-wall GSV data are useful because they can be integrated into 1726 

decision support systems to assess wood production and harvesting 1727 

activities at small scales (i.e., in forest properties) (Puletti et al., 2017; 1728 

Chirici et al., 2020; Giannetti et al., 2020; D’Amico et al., 2021) and 1729 

to produce small-scale estimates by aggregating individual pixel 1730 

predictions (Särndal et al., 1992; 2003; Breidt et al., 2009; McRobetrs 1731 

et al., 2016). In the probability-based framework, multiple estimators 1732 

including the stratified, post-stratified, and model-assisted estimators 1733 

can be used. The latter is considered asymptotically unbiased in the 1734 

sense that the mean of estimates obtained using the estimator for all 1735 

possible samples approaches the true value as the sample size 1736 

increases (McRobetrs et al., 2016). 1737 

GSV and above-ground biomass are known to be strongly correlated 1738 

with three-dimensional (3D) data such as those acquired through 1739 

airborne laser scanning (ALS) or photogrammetric techniques (Wittke 1740 

et al., 2019; White et al., 2016; Næsset  et al., 2008; McRoberts et al., 1741 

2010; Giannetti et al., 2018; Goodbody  et al., 2018). However, 1742 

acquiring these data is still expensive, and some countries such as Italy 1743 

still do not have wall-to-wall ALS coverage (D’Amico et al., 2021). 1744 

Multispectral satellite data are often used instead of or with 3D data to 1745 

predict GSV, thanks to their free availability over large areas (Barrett 1746 

et al., 2016; Saarela et al., 2016; Holm et al., 2017; Nilsson et al., 1747 

2017). 1748 
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Several types of models can be used to produce wall-to-wall 1749 

predictions of forest attributes in a model-assisted approach. These 1750 

models include both parametric and non-parametric techniques (White 1751 

et al., 2016; Chirici et al., 2020; Goodbody et al., 2019; Barrett et al., 1752 

2016; Immitzer et al., 2016), with the recent prevalence of multiple 1753 

linear regression and random forests (White et al., 2016; Karlson  et 1754 

al., 2015; Belgiu et al., 2016). Regardless of the estimation approach, 1755 

spatial knowledge of the area covered by forest land is an essential 1756 

prerequisite, both to restrict the establishment of field plots and to 1757 

restrict the application of the models. A forest mask (FM) indicates 1758 

the location of forest land and is often in a raster or a spatial polygon 1759 

database format. FMs are conventionally obtained by manual 1760 

delineation of aerial images, or by supervised or unsupervised 1761 

classification of satellite imagery, from both optical or radar imagery 1762 

(Stankiewicz  et al., 2003; Hansen et al., 2013; Dostálová  et al., 2016), 1763 

and more recently ALS data (Eysn et al., 2012; Dalponte et al., 2014; 1764 

Rudjord et al., 2016; Øivind  et al., 2018). Remotely sensed data 1765 

suitable for forest mapping are nowadays frequently and freely 1766 

available( Woodcock et al., 2008; Wulder et al., 2019; Olofsson et al., 1767 

2020). For this reason, the number of FMs has increased 1768 

exponentially, creating doubts about which is best-suited for specific 1769 

purposes such as forest area and GSV estimation. National 1770 

information about forest extent can be estimated from any of several 1771 

FMs produced independently by different research agencies globally 1772 
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or for large areas, including the European Environmental Agency 1773 

(EEA) (European Enviromental Agency, 2007), the European Space 1774 

Agency (ESA) (Langanke, 2017), the International Institute for 1775 

Applied Systems Analysis (IIASA) (Schepaschenko et al., 2015), and 1776 

the Japanese Aerospace Exploration Agency (JAXA) (JAXA, 2016). 1777 

Despite individual weaknesses and strengths, spatial differences 1778 

among these products are evident and can lead to substantial variation 1779 

in their accuracies (Schepaschenko et al., 2015; Seebach et al., 2012). 1780 

Furthermore, these FMs were developed for different aims and thus 1781 

have different characteristics in terms of minimum mapping unit 1782 

(MMU) and minimum mapping width (MMW), reference forest 1783 

definition, and year of production. 1784 

Multiple studies have compared land cover maps at global and local 1785 

levels. Fritz and See (2005) and Giri et al. (2005) compared the Global 1786 

Land Cover 2000 data set and the MODIS global land cover product 1787 

and highlighted areas with strong disagreements. Hoyos et al. (2017) 1788 

compared four global satellite-based land cover maps and showed a 1789 

worsening of area agreements as the spatial scale increases. Neumann 1790 

et al. (2007) provided an assessment of compatibilities and differences 1791 

between the CORINE2000 and GLC2000 datasets and reported 1792 

general disagreement due to the combination of thematic similarities, 1793 

spatial heterogeneity, and classification accuracy. Seebach et al. 1794 

(2011) compared the advantages and limitations of four pan-European 1795 

forest cover maps for the reference years 2000, demonstrating that the 1796 
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spatial agreement between the maps ranged between 50% to 70% 1797 

within a large study area in Europe. The authors found the greatest 1798 

spatial differences among all maps in the Alpine and Mediterranean 1799 

regions. Here, the vulnerability to climate change and anthropogenic 1800 

disturbance is extremely large and will cause an increased demand for 1801 

accurate wall-to-wall maps (Chirici et al., 2020). Only a few studies 1802 

have analyzed the effects of using different FMs on the uncertainty of 1803 

forest parameter estimates. Rodríguez-Veiga et al. (2016) reported a 1804 

large impact on estimates of national carbon stocks in Mexico caused 1805 

by discrepancies in forest extent estimated from different FMs. In their 1806 

study, Li et al. (2017) considered the uncertainty of the MODIS land 1807 

cover products, finding substantial differences in the regional climate 1808 

modeling outputs when the uncertainty was not considered. Esteban et 1809 

al. (2020) estimated the effects of the uncertainty of forest species 1810 

maps used in the sampling and forest parameter estimation processes 1811 

in a Spanish study area. Their study revealed that the effects of map 1812 

uncertainty are not negligible, especially for less common 1813 

Mediterranean forest species. 1814 

The choice of FM can heavily impact the estimation of forest 1815 

parameters in two different manners: i) it affects the number of plots 1816 

selected for the construction of the predictive model and ii) it affects 1817 

the total area to which the model is applied (Esteban et al., 2020). 1818 

The aim of this paper is to evaluate the impacts of the accuracies of 1819 

different FMs on the estimation of GSV based on the integration of 1820 
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field information and remotely sensed data. We constructed a national 1821 

wall-to-wall GSV map with an optimized procedure based on a 1822 

random forests model with remotely sensed imagery and auxiliary 1823 

data as predictors (Chirici et al., 2020). We used five different FMs to 1824 

mask out non-forest areas from the GSV map and then used the model-1825 

assisted regression estimator to estimate total and mean GSV (m3 1826 

ha−1) for the forest portion of the GSV map. We then investigated the 1827 

relationship between mask accuracy and agreement between the 1828 

model-assisted total GSV estimates and the official NFI estimates. The 1829 

test was carried out for the entire area of Italy. Finally, we clarified 1830 

which product was best-suited for total and mean GSV estimation, 1831 

both at national and regional levels. 1832 

2. Materials and Methods 1833 

2.1. Study area 1834 

The study was carried out in Italy which covers 301,408 km2 (Figure 1835 

1). Italy has extreme variations in climatic conditions due to proximity 1836 

to the sea and elevation ranges between coastal areas and the Alpine 1837 

region with elevations as great as 4000 m asl. 1838 

The territory falls within the temperate zone of a Mediterranean 1839 

climatic region (Pinna, 1970). On the coasts of the main islands, the 1840 

average annual rainfall is 250 mm but reaches more than 3000 mm in 1841 

the Alpine and pre-Alpine belts. Average yearly temperatures vary 1842 

between 16 °C in the southern coastal areas to 10 °C in the inner 1843 



92 

 

central regions and the pre-Alps, with temperatures less than 5 °C in 1844 

the mountain ranges and on the highest peaks. 1845 

 1846 

Figure 1. The study area with the distribution of the national forest inventories 1847 
(NFI) plots colored by growing stock volume (GSV) expressed in m3 ha−1. 1848 
On the right, a detail of the distribution of sample points used in the study 1849 
within the NFI 1 x 1 km grid where the third-phase NFI plots (Section 2.2.2) 1850 
are depicted in blue and the Inventario dell’Uso delle Terre in Italia (IUTI) 1851 
points (Section 2.2.2) in white. 1852 
 1853 

According to the last Italian NFI (INFC, 2007), forest vegetation and 1854 

other wooded lands occupy 10,467,533 ha, about 34% of the national 1855 

territory. Forests are dominated by deciduous trees (68%), mainly 1856 

Quercus oak (Q. petrea (M.) L., Q. pubescens W., Q. robur L., Q. 1857 

cerris L.), and European beech (Fagus sylvatica L.). The dominant 1858 

conifers are Norway spruce (Picea abies K.) and pines (Pinus 1859 
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sylvestris L., P. nigra A., P. pinae L., P. pinaster A.), which are mainly 1860 

artificial plantations located in mountain areas or near the coast 1861 

(Figure 1). Seven of the 14 European forest types occur in Italy, of 1862 

which the most common is the thermophilous deciduous forest (White 1863 

et al., 2016, Barbati et al., 2014). 1864 

Italy is divided into 20 administrative regions (NUTS2) for each of 1865 

which the NFI produces estimates of forest area, total and mean GSV, 1866 

and their standard errors (SEs). The average GSV is 144 m3 ha−1 1867 

(Gasparini et al., 2009). 1868 

2.2. Field Data 1869 

2.2.1. Second Italian National Forest Inventory  1870 

The field reference data for the wall-to-wall spatial prediction of GSV 1871 

were acquired in the framework of the second Italian NFI (INFC, 1872 

2007) based on a three-phase, systematic, unaligned sampling design 1873 

with 1 x 1 km grid cells (Fattorini et al., 2006). In the first phase, N = 1874 

301,300 points were selected and classified with respect to 10 coarse 1875 

land-use strata using aerial orthophotos. In the second phase, for an n 1876 

< N sub-sample of the points in the “forest” stratum of the first-phase 1877 

points, qualitative information such as forest type, management, and 1878 

property were collected during a field survey. In the third phase, for a 1879 

sub-sample of 6782 points extracted from the second-phase points, a 1880 

quantitative survey was carried out for circular plots of 13 m radius 1881 

(530 m2). All tree stems with a DBH of at least 2.5 cm were callipered, 1882 
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and for a subsample, height was measured. For all 6782 third-phase 1883 

plots, allometric models (Tabacchi et al., 2011) were used to predict 1884 

GSV (m3) which was then aggregated at plot-level and scaled to a per 1885 

unit area basis. For this study, allometric model prediction uncertainty 1886 

and uncertainty due to Global Navigation Satellite System (GNSS) 1887 

position error were expected to be negligible for the spatial resolution 1888 

adopted (McRobetrs et al., 2015; Chirici et al., 2020; McRoberts et al., 1889 

2016; McRoberts et al., 2018). The third-phase plots have a mean GSV 1890 

of 145.75 m3 ha−1, with a median value of 102.82 m3 ha−1. 1891 

Official design-based NFI estimates of total forest area and mean and 1892 

total GSV at national and regional NUTS2 levels were acquired online 1893 

at https://www.sian.it/inventarioforestale/ (accessed on: 02-10-2020) 1894 

(McRoberts et al., 2018), for the reference year 2005. 1895 

The study area was tessellated into a 23 x 23 m national grid whose 1896 

pixel area matched the area of the NFI ground plots, for a total of 1897 

569,769,690 pixels (D’Amico et al., 2021). The national grid was used 1898 

as a spatial reference grid for resampling the predictor variables and 1899 

the FM to 23 x 23 m resolution. 1900 

2.2.2. Inventory of Land Use in Italy 1901 

To evaluate the accuracy of the FMs, we used the sample points from 1902 

the Italian land use inventory (Inventario dell’Uso delle Terre in Italia, 1903 

IUTI). The IUTI has adopted the methodology of approach number 1904 

three of the Good Practices Guidance for Land Use, Land Use Change, 1905 

and Forestry (GPG-LULUCF) of the Intergovernmental Panel on 1906 



95 

 

climate change (Penman et al., 2003; Romano et al., 2011; Corona et 1907 

al., 2012). IUTI is a permanent monitoring system that estimates the 1908 

extent of six land use categories identified in the GPG-LULUCF. The 1909 

IUTI is based on a systematic unaligned sampling design with 0.5 x 1910 

0.5 km grid cells which is an intensification of the NFI sample grid, 1911 

for a total of 1,202,828 points of which 301,300 are the first-phase 1912 

points of the NFI. The six categories reported by IUTI are urban, 1913 

agriculture, forest land, grassland, wetland, other (Masek et al., 2006). 1914 

Each point is photo-interpreted in three time periods (1990, 2008, 1915 

2012) for estimating land-use change using aerial orthophotos with 1916 

spatial resolution ranging between 1 x 1 m for 1990 and 0.5 x 0.5 m 1917 

for 2008. We combined the six land use categories into forest and non-1918 

forest and assigned the value 1 to all the points classified as forest 1919 

(class 1.1, 1.2) and 0 to all other categories. Subsequently, the forest 1920 

class included 32% of the total observations with 387,085 of 1921 

1,202,818 points. 1922 

For this study, we used the IUTI points as an independent dataset to 1923 

evaluate the accuracies of the FMs. We used the 2008 1924 

photointerpretation to be as consistent as possible with the 2005 NFI 1925 

ground surveys. 1926 

2.2.3. Predictor Variables 1927 

To predict GSV as described in section 3.1, we used predictors 1928 

obtained from multiple sources including remotely sensed variables 1929 

from multiple sensors, climate, and soil characteristics (Table 1). The 1930 
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variables were selected based on their availability throughout the 1931 

national territory as reported by (Chirici et al., 2020). All variables 1932 

were resampled from the original resolution to the 23 x 23 m pixel size 1933 

of the national grid. A more detailed description of the database is 1934 

provided by (Chirici et al., 2020). 1935 

Table 1. Predictor variables based on remotely sensed and auxiliary data. 1936 

Database Band/information Predictor variables 

Original 

spatial 

resolution 

Landsat 7 

ETM+  

3 years median of Band 1 Landsat_B1 30 m 

3 years median of Band 2 Landsat_B2 30 m 

3 years median of Band 3 Landsat_B3 30 m 

3 years median of Band 4 Landsat_B4 30 m 

3 years median of Band 5 Landsat_B5 30 m 

3 years median of Band 6 Landsat_B6 30 m 

3 years median of Band 7 Landsat_B7 30 m 

Global 

PALSAR/ 

PALSAR-3 

HH polarization SAR_HH 25 m 

HV polarization SAR_HV 25 m 

Climate data 

Total annual precipitation Prec 1 km 

Mean annual temperature temp_mean 1 km 

Maximum annual 

temperature 
temp_max 1 km 

Minimum annual 

temperature 
temp_min 1 km 

European Soil 

Database v2.0 

Subsoil available water 

capacity 
AWC_SUB 1 km 

European Soil 

Database v2.1 

Topsoil available water 

capacity 
AWC_TOP 1 km 
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2.2.4. Landsat Composite Image 1937 

We constructed a cloud-free composite image across Italy based on 1938 

848 Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images 1939 

acquired in the same year as the field survey (2005) +/- 1 year (Figure 1940 

2). 1941 

We used Landsat 7 Surface Reflectance Tier 1 imagery from the Earth 1942 

Engine Data Catalog, acquired in the vegetation period (1st April– 1943 

30th September), atmospherically corrected using Landsat Ecosystem 1944 

Disturbance Adaptive Processing System LEDAPS (Masek et al., 1945 

2006). We masked out cloud pixels based on the quality assessment 1946 

(QA) band provided with the Landsat 7 database, using the C function 1947 

of mask algorithm (CFMask) (Foga et al., 2017). Finally, for each 23 1948 

x 23 m national grid pixel, we calculated the median values for each 1949 

Landsat band (Kennedy et al., 2018). 1950 

 1951 

Figure 2. Distribution of Landsat 7 ETM+ images per month, divided by 1952 
acquisition years. 1953 
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2.2.5. SAR Variables 1954 

We used SAR data from PALSAR-2/PALSAR from the Advanced 1955 

Land Observing Satellite (ALOS) and Advanced Land Observing 1956 

Satellite-2 (ALOS-2) freely available at the global level online from 1957 

the Japan Aerospace Exploration Agency (JAXA) at 25 x 25 m 1958 

resolution. We rescaled the raw backscattering coefficients for each 1959 

polarization HH and HV for the year 2007 to the 23 x 23 m pixel of 1960 

the national grid. For more information on this data we refer to 1961 

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm 1962 

(accessed on: 05-11-2019) 1963 

2.2.6. Climate and Soil Variables 1964 

We derived climate data from the 1 x 1 km downscaled climatological 1965 

maps obtained by Maselli et al. (2012) which is representative of the 1966 

period 1981–2010. The dataset includes the following variables: total 1967 

annual precipitation, mean annual temperature, maximum annual 1968 

temperature, minimum annual temperature. For more details on these 1969 

climate data, we refer to Chirici et al. (2020). 1970 

Soil variables were from the harmonized soil geodatabase of Europe 1971 

(European Soil Database v2.0 - 2004) (Penagis et al., 2004). The 1972 

subsoil available water capacity and topsoil available water capacity 1973 

soil variables used for this study were selected using the optimization 1974 

phase described in Chirici et al. (2020). 1975 

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
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2.3. Forest Masks 1976 

We obtained five FMs available for the entire Italian territory that 1977 

potentially reflect the forest FAO FRA definition (FAO, 2010). These 1978 

masks can be divided into two main categories: i) FMs obtained by 1979 

semi-automated classification of remotely sensed data; ii) FMs 1980 

obtained by manual delineation and classification of fine-resolution 1981 

images. All the FMs were first reprojected in the WGS 84 / UTM zone 1982 

32 North (EPSG:32632) reference system to make them comparable 1983 

and then resampled at the 23 x 23 m resolution of the national grid 1984 

resulting to produce five comparable FMs. 1985 

2.3.1. National Forest Mask (NFM) 1986 

We used the national forest mask (NFM) which is based on the mosaic 1987 

of local forest maps produced by manual photointerpretation by the 1988 

Italian regional forest authorities (D’Amico et al., 2021). The mosaic 1989 

was constructed by merging 16 fine resolution forest maps with 1990 

nominal reference scales varying between 1:5,000 and 1:25,000 and 1991 

five land use maps specifically filtered to produce forest cover maps. 1992 

All the maps were based on manual photointerpretation of aerial 1993 

orthophotos. The local forest maps were reclassified into Boolean 1994 

masks using code 1 for pixels classified as “forest”, and code 0 for 1995 

pixels classified as “non-forest”. The NFM is a mosaic of 20 fine-1996 

resolution regional forest maps resampled at the 23 x 23 m national 1997 

grid resolution. The mask is also available on-line at www.forestinfo.it 1998 
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2.3.2. Copernicus Land Monitoring System (CLMS) 1999 

Forest Mask 2000 

To construct the Copernicus FM, we first used the 2012 Forest Type 2001 

map (https://land.copernicus.eu/pan-european/high-resolution-2002 

layers/forests/forest-type-1/status-maps/2012?tab=download) that 2003 

uses the Tree Cover Density layer (https://land.copernicus.eu/pan-2004 

european/high-resolution-layers/forests/tree-cover-density/status-2005 

maps/2012?tab=download) (accessed on: 05-11-2020) to classify all 2006 

20 x 20 m pixels of European lands as forest when the tree cover 2007 

density is at least 10% and when such pixels are aggregated into a 2008 

continuous patch of at least 0.52 hectares (Langanke et al., 2017). We 2009 

excluded pixels in agricultural and urban contexts from the Forest 2010 

Type map, using the Forest Additional Support Layer also available 2011 

from Copernicus at https://land.copernicus.eu/pan-european/high-2012 

resolution-layers/forests/forest-type-1/status-2013 

maps/2012?tab=download (accessed on: 05-11-2020). The resulting 2014 

map reflects as closely as possible the international forest definition in 2015 

a raster layer having 23 x 23 m resolution  2016 

2.3.3. JAXA Forest Mask 2017 

JAXA constructed an FM for the reference years 2007±1 with a spatial 2018 

resolution of 25 x 25 m based on the HV-polarization backscatter 2019 

images acquired by the PALSAR and PALSAR 2 sensors carried by 2020 

the ALOS and ALOS2 satellites. The JAXA declares to adopt the FAO 2021 

forest definition (JAXA, 2016) and is available online at 2022 

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
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https://developers.google.com/earthengine/datasets/catalog/JAXA_A2023 

LOS_PALSAR_YEARLY_SAR (accessed on: 05-11-2020).  2024 

2.3.4. Hybrid Global Forest Mask 2000 (FM00) 2025 

Schepaschenko et al. (2015) constructed a global FM using a hybrid 2026 

approach combining multiple local, national, and global datasets into 2027 

a single product. This map was constructed by converting the global 2028 

forest probability map into a forest/non-forest map using a threshold 2029 

calculated for each country. The threshold selected for this study 2030 

produced area estimates that matched as closely as possible the official 2031 

FAO forest area statistics. We characterized this map as “FM00”. The 2032 

map has a spatial resolution of 1 x 1 km, was produced for the 2033 

reference year 2000, and is available online at https://application.geo-2034 

wiki.org/branches/biomass/ (accessed on: 05-11-2020).  2035 

2.3.5. Corine Land Cover 2006 (CLC06) 2036 

The CORINE Land Cover (CLC) project was initiated in 1990 by the 2037 

European Environmental Agency (EEA) (Büttner et al., 2004) and has 2038 

been updated in 2000, 2006, 2012, and 2018 to monitor land-use 2039 

changes in the 39 participating countries (EEA, 2007). It consists of 2040 

land cover maps based on a nomenclature system of 44 classes 2041 

produced by photointerpretation of fine-resolution satellite imagery. 2042 

CLC uses a MMU of 25 hectares and a MMW of 100 m. For this study, 2043 

we acquired the CLC map for the reference year 2006±1 (referred to 2044 

as “CLC06”) obtained by photo-interpretation of SPOT-4/5 and IRS 2045 

https://developers.google.com/earthengine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://developers.google.com/earthengine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://application.geo-wiki.org/branches/biomass/
https://application.geo-wiki.org/branches/biomass/
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P6 LISS III dual data images (EEA, 2007) and available online in 2046 

vector format at https://land.copernicus.eu/pan-european/corine-land-2047 

cover/clc-2006?tab=download (accessed on: 05-11-2020). To derive 2048 

the CLC mask, we first rasterized the vector product to the 23 x 23 m 2049 

spatial resolution of the national grid, and then we assigned the 2050 

categories 2.4.4, 3.1.1, 3.1.2, 3.1.3, 3.2.3, 3.2.4 to the “forest” class 2051 

and all the remaining categories to the “non-forest” class. 2052 

2.4. Overview of the Method 2053 

A concise overview of the methodology followed is presented: i) a 2054 

wall-to-wall GSV map was constructed using a random forests model 2055 

with the NFI plot GSV data and the predictor variables; ii) the 2056 

accuracies of the five FMs were assessed; iii) the wall-to-wall GSV 2057 

map was masked in turn with each of the five FMs, obtaining five 2058 

masked GSV maps; iv) for each masked GSV maps we estimated the 2059 

mean and total GSV with the model-assisted regression estimator, at 2060 

the national and regional level; v) we compared model-assisted 2061 

estimations for each FM with the official estimation from the Italian 2062 

NFI, in terms of correlation coefficient; vi) we assessed the 2063 

relationship between FMs accuracy and GSV estimates in terms of the 2064 

correlation coefficient. 2065 

2.5. Wall-to-Wall National GSV Map 2066 

To estimate the effects of FM accuracy on the model-assisted GSV 2067 

estimates, we constructed a GSV map consisting of GSV predictions 2068 

https://land.copernicus.eu/pan-european/corine-land-cover/clc-2006?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2006?tab=download
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for all 23 x 23 m pixels of the national grid (569,769,690 pixels) using 2069 

the random forests (RF) prediction technique with the NFI plot GSV 2070 

data and the predictor variables described in Table 1. RF was 2071 

optimized following Chirici et al. (2020) by selecting the combination 2072 

of predictor variables and parameter values (ntree and mtry) that 2073 

minimized the root mean square error (RMSE) calculated using the 2074 

leave one out cross-validation (LOOCV) technique (McRoberts et al., 2075 

2015). RMSE was calculated as: 2076 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦�̂�)2𝑛

𝑖=1

𝑛
      (1) 2077 

where n is the number of third-phase NFI plots (i.e., 6782), 𝑦𝑖 is the i-2078 

th GSV associated with the plots and 𝑦�̂� is the i-th GSV predicted by 2079 

the random forests model. The most accurate combination resulting 2080 

from LOOCV was used to predict the GSV for all N pixels of the study 2081 

area to produce a 23 x 23 m resolution GSV map. The model fitting 2082 

and optimization phase was performed using the randomForest 2083 

package within the statistical software package R 3.6.3 (Devarriva et 2084 

al., 2020) (https://www.r-project.org, accessed on: 05-11-2020). For 2085 

the 6,782 NFI plots, the pixel-level GSV predictions ranged between 2086 

0 and 690 m3 ha−1 with a standard deviation of 68.5 m3 ha−1 while 2087 

the original NFI values ranged between 0.3 and 701 m3 ha−1 with a 2088 

standard deviation of 147 m3 ha−1. The map was found to have a 2089 

mean deviation of −4.3 m3 ha−1. 2090 

https://www.r-project.org/
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2.6. Accuracy Assessment of FMs 2091 

We first assessed the five FMs with respect to thematic accuracy using 2092 

the IUTI dataset as reference data. For each of the 1,202,828 points of 2093 

the IUTI database, we extracted the forest/non-forest classification 2094 

from the five FMs and constructed the respective five confusion 2095 

matrices. For each matrix we calculated four metrics: 2096 

Overall Accuracy =
∑𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  (2) 2097 

κ =  
𝑝0−𝑝𝑒

1−𝑝𝑒
       (3) 2098 

Where: 2099 

𝑝0 = Overall Accuracy        2100 

𝑝𝑒 =
1

𝑁2
∑ ∑𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∗ ∑𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑘    (4) 2101 

for k categories and N observations. 2102 

Precision =
∑𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   (5) 2103 

Recall =
∑𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (6) 2104 

These metrics need to be used together to correctly describe the quality 2105 

of classification in the case of unbalanced datasets. This is the case for 2106 

forest masks when the forest and non-forest classes cover the land area 2107 

with very different proportions. In such cases, many classification 2108 

performance indicators including overall accuracy may provide 2109 

misleading information (Devarriva et al., 2020; Jaafor et al., 2012). 2110 

For this reason, the model accuracy comparison should focus on recall 2111 
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as per Equation (6) and, most importantly, precision as per Equation 2112 

(5).  2113 

2.7. Impact of FMs Accuracy on Model-Assisted GSV 2114 

Estimation 2115 

The five FMs were used to mask out all non-forest pixels in the 2116 

national GSV map. The pixel-level predictions for the resulting five 2117 

masked GSV maps were used with a model-assisted, generalized 2118 

regression estimator to infer mean and total GSV at both national 2119 

(NUTS1) and regional levels (NUTS2) (Särndal et al., 1992; 2003;  2120 

Breidt et al., 2009). An initial estimate of GSV can be calculated from 2121 

the masked GSV maps as, 2122 

μ̂initial  =
1

n
∑ ŷi

N
i=1       (7) 2123 

where N is the number of forest pixels within the masked GSV map 2124 

and 𝑦�̂� is the GSV prediction obtained using the RF model for the i-th 2125 

pixel. However, this estimator may be biased because of systematic 2126 

prediction error. The bias can be estimated as, 2127 

Biaŝ(μ̂initial) =
1

𝑛
∑ (�̂�𝑗−𝑦𝑗)𝑛

𝑗=1      (8) 2128 

where n is the NFI sample size, i.e., the number of plots used for 2129 

constructing the model, �̂�𝑗 is the GSV model prediction for the j-th 2130 

plot and 𝑦𝑗 the observed value of GSV for the j-th plot. Subtracting 2131 

the estimated bias from the initial estimate yields the model-assisted 2132 

estimator as, 2133 

µ̂𝑚𝑎 = μ̂initial − Biaŝ(μ̂initial) =
1

N
∑ yi −

1

n
∑ (ŷj−yj)

n
j=1

N
i=1  (9) 2134 
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where ma denotes model-assisted, µ̂𝑚𝑎 is the estimate of mean GSV 2135 

for the given masked GSV map, N is the number of forest pixels within 2136 

the masked GSV map, 𝑦�̂� is the GSV prediction obtained using the RF 2137 

model for the i-th pixel. The standard error (SE) for the estimator is: 2138 

   𝑆𝐸(µ̂𝑚𝑎) = √
1

𝑛(𝑛−1)
∑ (𝑒𝑗 − 𝑒�̂�)2𝑛

𝑗=1               (10) 2139 

where n is the NFI sample size, 𝑒𝑗 = 𝑦�̂� − 𝑦𝑗 and 𝑒�̂� =
1

𝑛
∑ 𝑒𝑗

𝑛
𝑗=1 .  2140 

Similarly, the model-assisted estimator for the GSV total was: 2141 

�̂�𝑚𝑎 = ∑ 𝑦𝑖
𝑁
𝑖=1 −

N

n
∑ (ŷ𝑗 − y𝑗)n

j=1               (11) 2142 

where �̂�𝑚𝑎 is the estimate of total GSV for the given GSV-masked 2143 

map, N the number of pixels within the masked GSV map, 𝑦𝑖 the GSV 2144 

prediction obtained using the RF model for i-th pixel. The SE for the 2145 

τ̂𝑚𝑎 is given by d’Oliviero et al. (2012): 2146 

𝑆𝐸(τ̂𝑚𝑎) = √𝑁2 (
1

𝑛
−

1

𝑁
) ∑

(𝑒𝑗−𝑒�̂�)2

𝑛−1
𝑛
𝑗=1              (12) 2147 

where N is the population size, n is the NFI sample size, 𝑒𝑗 = 𝑦�̂� − 𝑦𝑗  2148 

and 𝑒�̂� =
1

𝑛
∑ 𝑒𝑗

𝑛
𝑗=1 . 2149 

It is important to note that correction for estimated bias compensates 2150 

for GSV map inaccuracy and makes the model-assisted estimator 2151 

asymptotically unbiased. 2152 

Using the SEs, it was possible to construct confidence intervals for 2153 

both estimates of mean and total GSV for the entire study area. These 2154 

intervals are expressed as 2155 

   �̂�𝑚𝑎  ±  𝑡𝑛 ∗ 𝑆𝐸(�̂�𝑚𝑎)                (13) 2156 
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where �̂�𝑚𝑎  denotes either the model-assisted estimate of mean GSV 2157 

or total GSV, 𝑆𝐸(�̂�𝑚) is the SE of �̂�𝑚𝑎, and the factor tn depends on 2158 

the desired significance level and the distribution of the response 2159 

variable. For most distributions and applications, tn = 2 produces an 2160 

approximate 95% confidence interval (McRoberts et al., 2008). For 2161 

purposes of constructing confidence intervals, the focus of the study 2162 

was the estimation of mean and total GSV and the SEs using the 2163 

model-assisted regression estimators. To compare the GSV estimates 2164 

produced with the five masked GSV maps and the NFI estimates at 2165 

national and regional levels, we used the t statistic calculated as 2166 

follows: 2167 

𝑡 =
�̂�𝑚𝑎−�̂�𝑁𝐹𝐼

√𝑆𝐸2(�̂�𝑚𝑎)+𝑆𝐸2(�̂�𝑁𝐹𝐼)
                (14) 2168 

where �̂�𝑚𝑎 denotes either the model-assisted estimate of mean GSV 2169 

or total GSV for the masked GSV maps, �̂�𝑁𝐹𝐼 denotes either the NFI 2170 

estimate of mean GSV or total GSV, and 𝑆𝐸2(�̂�𝑚𝑎) and 𝑆𝐸2(�̂�𝑁𝐹𝐼) 2171 

are the squares of the SEs of the estimates. Values of |𝑡|  >2 indicates 2172 

that the two estimates are statistically significantly different. 2173 

Correlations for estimates of both mean and total estimates and the 2174 

corresponding NFI estimates in terms of Pearson correlation 2175 

coefficient (ρ̂𝑀𝑒𝑎𝑛, ρ̂𝑇𝑜𝑡𝑎𝑙) were also calculated. 2176 

In addition, we calculated relative efficiency (RE) to assess the quality 2177 

of the model-assisted estimators, compared to the SE obtained by the 2178 

NFI (Chirici et al., 2020), both at national and regional scales. RE was 2179 

calculated as: 2180 
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    𝑅𝐸 =
𝑉𝑎�̂�(�̂� 𝑁𝐹𝐼) 

𝑉𝑎�̂�(�̂� 𝑚𝑎) 
                (15) 2181 

where 𝑉𝑎�̂�(�̂� 𝑁𝐹𝐼) and 𝑉𝑎�̂�(�̂� 𝑚𝑎) are the estimated variances of the 2182 

NFI estimates and the model-assisted estimates, respectively. 2183 

Values of RE greater than 1.0 are evidence of greater precision in the 2184 

model-assisted estimates (Moser et al., 2016). RE could be interpreted 2185 

as the factor by which the original sample size would have to be 2186 

increased to achieve the same precision as that achieved using the 2187 

remotely sensed auxiliary data (Chirici et al., 2020). 2188 

Finally, we evaluated the relationship between the accuracies of the 2189 

FMs (in terms of overall accuracy, κ, precision and recall) and the SEs 2190 

of the model-assisted estimates for the NUTS2 administrative level 2191 

using the Pearson correlation coefficient (�̂�).  2192 

3. Results 2193 

3.1. Forest Masks Accuracy Assessment 2194 

At the national level, the most accurate FM was the NFM with an 2195 

underestimation against the NFI estimates of only −2%, followed by 2196 

the CLC06 with −3%, JAXA with −4%, CLMS with +16%, and FM00 2197 

with +51% . The same ranking was obtained from the comparison with 2198 

IUTI in terms of OA, k, and precision (Table 2). For 17 of the 20 2199 

regions, the NFM was the most accurate, followed by the CLMS FM 2200 

in two regions, and CLC06 in the remaining region. The confusion 2201 

matrices for each one of the five FMs are shown in Figure 3. 2202 
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 2203 

Figure 3. Confusion matrices of each forest mask. 2204 
 2205 

Table 2. Accuracy assessment for the five forest masks (FMs) based on the 2206 
confusion matrices with the IUTI. 2207 

Mask 
Accuracy  

OA  κ  Precision Recall  

CLMS 0.88 0.73 0.73 0.92 

JAXA 0.85 0.61 0.71 0.74 

FM00 0.76 0.51 0.55 0.91 

CLC06 0.87 0.70 0.77 0.81 

NFM 0.91 0.79 0.84 0.90 

 2208 

We also noted that regardless of the FM used, the islands (Sicilia and 2209 

Sardegna) and some of the southern regions (Calabria, Campania, 2210 

Puglia) were characterized by small precision and recall (sensitivity), 2211 
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leading to numerous misclassifications of non-forest as forest 2212 

(commission errors) (Figure 4). 2213 

 2214 

Figure 4. Comparison of four accuracy metrics among the FMs, calculated at 2215 
regional level (NUTS2). 2216 
 2217 

3.2. GSV Model-Assisted Estimations 2218 

In Figure 5, the GSV map of Italy produced with the random forests 2219 

model is reported. 2220 
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 2221 

Figure 5. Growing stock map of Italy generated with random forests model. 2222 
GSV in m3 ha−1. On the right, a detail of the GSV map masked with the five 2223 
forest masks. 2224 
 2225 

For the five masked GSV maps, �̂�𝑚𝑎 ranged between 125 (CLMS) 2226 

and 135 (NFM), m3 ha−1 with a 𝑆𝐸(�̂�𝑚𝑎) between 1.1 and 1.3 m3 2227 

ha−1. For comparison, the design-based estimation of mean GSV from 2228 

the NFI was 131 m3 ha−1 with a SE of 1.6 m3 ha−1. Three of the five 2229 

GSV-masked maps (NFM, CLC06, JAXA) produced estimates that 2230 

were not statistically significantly different from the NFI estimate. The 2231 

value of �̂�𝑚𝑎 ranged between 1321 (JAXA) and 1525 (CLMS) 2232 

millions m3, with 𝑆𝐸(�̂�𝑚𝑎) between 13 (NFM) and 17 (JAXA) 2233 

million m3, while the official estimate from the NFI was 1366 million 2234 

m3 with SE of 14 million m3, demonstrating a general trend towards 2235 
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overestimation of total volume (Table 3). The differences between the 2236 

total GSV estimate for two of the five masked GSV maps (NFM, 2237 

CLC06) and the NFI estimate were not statistically significantly 2238 

different from 0. 2239 

 2240 

Table 3. Model-assisted regression estimates for the five maps. The last row 2241 
has the Italian NFI estimates. 2242 
 2243 

Forest mask Model-assisted and NFI estimates (m3) 

 µ̂𝒎𝒂  𝑺𝑬(µ̂𝒎𝒂) 𝒕(�̂�) �̂�𝒎𝒂  𝑺𝑬(�̂�𝒎𝒂) 𝒕(�̂�) RE 

CLMS 125  1.2 −3 1,525,000,000 14,487,500 7.9 1.17 

JAXA 131 1.3 0 1,321,000,000 13,342,100 −2.3 1.09 

FM00 113 1.1 −9.5 1,791,000,000 17,014,500 19.3 1.15 

CLC06 135 1.3 1.94 1,387,000,000 13,572,900 1.0 1.12 

NFM 134 1.2 1.5 1,371,000,000 13,037,800 0.26 1.16 

INFC 

(NFI) 
131 1.6 0 1,366,000,000 13,959,000 0 1 

 2244 

For the 20 NUTS2 administrative regions, the greatest correlation with 2245 

the NFI estimates was achieved by the GSV map masked with the 2246 

NFM mask with ρ̂ = 0.972 and ρ̂ = 0.986 for the mean and total GSV, 2247 

respectively (Table 4). The GSV maps masked with the CLMS and 2248 

FM00 masks, despite their large values of ρ̂, show a systematic 2249 

overestimation of the �̂�𝑚𝑎. 2250 
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Table 4. Coefficient of correlation between the mean and total model-assisted 2251 
estimate and NFI estimates for administrative NUTS2 regions (*p-value=0; 2252 
**p-value < 0.001). 2253 
 2254 

Forest mask �̂�𝑻𝒐𝒕𝒂𝒍 �̂�𝑴𝒆𝒂𝒏 

CLMS 0.978* 0.963** 

JAXA 0.968** 0.971** 

FM00 0.979* 0.949** 

CLC 0.977** 0.970** 

NFM 0.986* 0.972* 

 2255 

Regarding �̂�𝑚𝑎, for 16 of 20 regions, the differences between the 2256 

model-assisted estimates and the NFI estimate were not statistically 2257 

significantly different from 0 for the NFM masked GSV map, for 15 2258 

regions for CLMS and JAXA, for 14 regions for CLC06, and for 10 2259 

regions for FM00. Similar results were obtained for �̂�𝑚𝑎 for which the 2260 

differences for 16 of 20 regions were not statistically significantly 2261 

different from 0 for the NFM masked GSV map, 15 for CLC06 and 2262 

JAXA, six for CLMS, and two for FM00. The regions that always 2263 

showed a statistically significant difference between the model-2264 

assisted estimates and the official NFI turned out to be the islands 2265 

(Sardegna, Sicilia) and two regions (Puglia, Umbria), while those 2266 

which never did were seven, distributed in northern and central Italy. 2267 

RE exceeded 1 for most regions, regardless of the FM used. RE < 1 2268 

was observed in one region for the CLMS and FM00 masks (Toscana), 2269 

two regions for the CLC06 mask (Toscana, Emilia Romagna), and 2270 

four regions for the JAXA mask (Toscana, Emilia Romagna, 2271 
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Sardegna, Umbria). The only masked GSV map that leads to RE 2272 

coefficient always >1 was the NFM.  2273 

3.3. Relationship Between FMs Accuracy and GSV Estimates 2274 

The relationship between the accuracies of the FMs and the SEs of the 2275 

estimates with the model-assisted estimator is presented in Table 5. 2276 

The correlation was calculated for the 20 administrative regions. 2277 

 2278 

Table 5. Correlation coefficient between the accuracy metrics and the SEs of 2279 
estimates for each FM. The overall values were calculated based on all five 2280 
FMs together. 2281 
 2282 

4. Discussion 2283 

The aim of this study was to assess the effects of using different FMs 2284 

available for Italy for the area-based estimation of GSV. We first 2285 

constructed a pixel-level GSV map for the entirety of Italy based on 2286 

the procedure recently proposed by Chirici et al. (2020). We then 2287 

acquired five different FMs and, after evaluating their accuracies 2288 

Forest mask 
�̂� 

Overall Accuracy κ Precision Recall 

CLMS −0.26 −0.43 −0.48 −0.25 

JAXA 0.26 −0.27 −0.36 −0.62 

FM00 0.12 −0.24 −0.57 −0.68 

CLC 0.09 −0.20 −0.39 −0.29 

NFM 0.09 −0.26 −0.26 −0.58 

Overall 0.03 −0.20 −0.32 −0.42 
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against an independent dataset (IUTI), we used them to mask out non-2289 

forest areas from the national GSV map produced with the random 2290 

forest model. We then compared the five resulting model-assisted 2291 

GSV estimates aggregated at regional levels with the official design-2292 

based NFI estimates. 2293 

Four of the five FMs achieved overall accuracies > 85%, based on the 2294 

2008 land use classification of IUTI points, with the CLC06 and NFM 2295 

outperforming the other products. At the national level, the FM that 2296 

achieved the greatest overall accuracy, κ and precision was the NFM, 2297 

followed by the CLC06. Despite the greatest recall (0.91) achieved, 2298 

the FM00 was affected by systematic overestimation of the regional 2299 

forest area due to the original coarse resolution (Schepaschenko et al., 2300 

2015) which made this FM unsuitable for GSV estimation. 2301 

In contrast, the JAXA FM produced the smallest recall (0.74), most 2302 

probably because the SAR backscatter in the HV polarization is 2303 

relatively insensitive to Mediterranean vegetation (D’Amico et al., 2304 

2021; Bartsch et al., 2020) which probably caused an underestimation 2305 

of the forest area. The photointerpreted FMs, CLC06 and NFM, had 2306 

the greatest precision. This is an expected result because forest land 2307 

use identification is typically done by local experts. However, CLC06 2308 

produced less precision than the NFM because it was implemented for 2309 

monitoring land cover, not land uses, adopting a MMU and a crown 2310 

cover threshold greater than that adopted by the INFC 2005 (Seebach 2311 

et al., 2011;Vizzarri et al., 2015). In fact, the CLC project did not map 2312 
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forest clear-cuts and other natural or anthropic disturbances as forest 2313 

land use, but rather as bare soil or other non-forest classes, affecting 2314 

the estimation of forest area. Conversely, the NFM, as a mosaic of 2315 

local forest maps, is designed to monitor forest land use, such as the 2316 

NFI. However, the small precision of the accuracy showed that false 2317 

positives were the majority of classification errors. 2318 

At the regional level, OA was greater than 85% for 18 regions for the 2319 

NFM mask, followed by the CLMS mask (14 regions), the CLC06 2320 

mask (12 regions), the JAXA mask (3 regions), and the FM00 mask 2321 

(1 region). Regardless of the FM used, the greatest uncertainty was 2322 

found in the southern regions and the islands (Campania, Calabria, 2323 

Abruzzo, Basilicata, Sardegna, Sicilia), most probably because of the 2324 

complex Mediterranean formations and complex agroforestry 2325 

landscape tiles that characterized these regions where the NFI 2326 

estimates also have larger associated SEs. 2327 

The greatest accuracies were achieved for regions characterized by 2328 

greater forest cover (Liguria, Trentino-Alto Adige, Friuli-Venezia 2329 

Giulia, Umbria, Toscana). These regions are characterized by 2330 

extensive forests with continuous coverage and greater accumulation 2331 

of GSV, as in the Apennine and Alpine Mountains, which probably 2332 

reduces the probability of forest misclassifications, regardless of the 2333 

FM considered. 2334 

Conversely, the forests bordering other land uses, along rivers, and in 2335 

the coastal and rural contexts are typically characterized by a sparse 2336 
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canopy, which makes them more difficult to correctly classify, even 2337 

by manual photointerpretation. 2338 

In conclusion, regarding the qualities of the FMs, the most accurate 2339 

was the NFM, which was comparable with the CLC06, but with the 2340 

advantage of a finer MMU which makes it more suitable for regional 2341 

and local scale applications.  2342 

Regarding the model-assisted GSV estimates, although all the masked 2343 

GSV maps overestimated total GSV, the NFM masked GSV map was 2344 

most accurate as a trade-off between the national and regional GSV 2345 

and the SE of estimates. The general overestimation was caused by the 2346 

trend of the prediction model to overpredict GSV for pixels with small 2347 

observed GSV values. (i.e., GSV < 250 m3 ha−1). This evidence, 2348 

along with the limited GSV that characterizes Italian forests, caused 2349 

the general overestimation at the national level. One possible solution 2350 

is to increase the performance of the model, for example, by 2351 

integrating ALS metrics which is a well-established data source for 2352 

enhancing GSV predictions (Næsset et al., 2004; Kangas et al., 2018; 2353 

Næsset et al., 2014). Both the CLMS and FM00 masked GSV maps 2354 

suffered from systematic prediction error which caused the 2355 

overestimation of �̂�𝑚𝑎, both nationally and regionally. For the CLMS 2356 

masked GSV map, this can be caused by the inclusion of many 2357 

agricultural and rural areas that occur in Italy (Langanke, 2017), and 2358 

for FM00 because of the original coarse spatial resolution (1 x 1 km). 2359 

The differences between the total GSV model-assisted estimates and 2360 
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the official NFI estimate for two of the five masked GSV maps (NFM, 2361 

CLC06) were statistically significantly different from 0. At the 2362 

national level, the mean GSV estimates were comparable for all maps, 2363 

except for the GSV map masked with the FM00 mask. The JAXA 2364 

masked GSV map produced the same value as the NFI for mean GSV 2365 

but underestimated the total due to the underestimation of forest area. 2366 

However, the SEs were almost comparable for all the GSV-masked 2367 

maps considered. The SE is mainly affected by the number of NFI 2368 

plots used for building the model and calculation of the correction 2369 

term in the estimator. Despite the differences among the FMs, the NFI 2370 

plots falling within the forested portions of the FMs were similar, 2371 

ranging between 6100 (CLMS) and 5800 (JAXA). Differences in the 2372 

number of plots selected by each FM are likely to be concentrated at 2373 

the forest edge, where maps are more prone to classification errors. 2374 

These results confirm the findings of Esteban et al. (2020), suggesting 2375 

that the FM effects on area estimates are more important than the 2376 

effects of field plot sampling variability on the uncertainty of the mean 2377 

and total estimates. 2378 

At the regional level, the NFM produced the greatest �̂� relative to the 2379 

NFI estimates, both for �̂�𝑚𝑎and �̂�𝑚𝑎, with the largest number of 2380 

regional estimates in accordance with the NFI (16 regions out of 20). 2381 

The NFM was also the only FM that led consistently to RE > 1. The 2382 

CLC06 achieved similar results, with the major exception of Sardegna 2383 

and in general in the southern regions, where, as we reported before, 2384 
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the MMU of the CLC project is not fine enough to discern the complex 2385 

patchwork in the landscape of a rural region. 2386 

𝑆𝐸(�̂�𝑚𝑎) was smaller than 𝑆𝐸(�̂�𝑁𝐹𝐼) for 16 regions, which represent 2387 

70% of the Italian territory. The regions with the greatest 𝑆𝐸(�̂�𝑚𝑎) 2388 

were Puglia, Valle d’Aosta, Molise, Basilicata, and Marche 2389 

(𝑆𝐸(�̂�𝑚𝑎)> 5%) probably because of the small number of NFI plots in 2390 

these regions. Nevertheless, with the use of the model-assisted 2391 

estimation approach, it was possible to decrease the error of the 2392 

estimates with respect to the NFI estimates, both at the national 2393 

(NUTS1), and regional levels (NUTS2). 2394 

Regarding the relationship between the FM accuracy and the SEs of 2395 

the estimates, we found small correlation coefficients, in particular 2396 

with the overall accuracy. The SE depends primarily on the sample 2397 

size, which is less affected by the accuracy of the FMs, as reported by 2398 

Esteban et al. (2020). The accuracy metric was more correlated with 2399 

the SE of the estimates than was the recall, followed by the precision. 2400 

This is an expected result because these metrics are strictly related to 2401 

the area classified as forest which, in turn, affects the number of NFI 2402 

plots included in the FMs. Of interest, the FM with the greatest recall 2403 

(CLMS) was also the FM that included the greatest number of NFI 2404 

plots. 2405 

However, the negative correlation with the other accuracy metrics 2406 

demonstrated that a more accurate FM leads to a smaller 𝑆𝐸(�̂�𝑚𝑎). 2407 
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It would be interesting to combine the available maps by aggregating 2408 

their beneficial features to overcome the problems associated with 2409 

each FM as per McRoberts et al. (2016). Another option would be to 2410 

calibrate the FMs using the NFI data as per Næsset et al. (2007). 2411 

In conclusion, the differences in the accuracies of the FMs led to 2412 

different GSV estimates, although the SEs were almost comparable. 2413 

The smallest GSV difference against the official NFI estimate was 2414 

obtained by the most accurate FMs, i.e., the NFM. This is likely due 2415 

to the correct classification of the main, dense forests, which have the 2416 

largest amount of volume and subsequently make the greatest 2417 

contribution in the model-assisted estimation. Presumably, forest 2418 

misclassification occurs mainly along the margins and in boundary 2419 

areas between different land uses. 2420 

5. Conclusions 2421 

This paper presents a comparative analysis of the impacts of different 2422 

forest masks on the model-assisted estimation of GSV. Several 2423 

conclusions can be drawn from this study. 2424 

At national and regional levels, the masked GSV map constructed 2425 

using the NFM mask produced GSV estimates that were most similar 2426 

to the official NFI estimates. Regardless of the forest mask, the major 2427 

disagreement with the official estimate was found in the southern 2428 

regions and islands, most probably because of the presence of the 2429 

Mediterranean macchia, which is difficult to classify correctly, even 2430 
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by manual photointerpretation of fine-resolution images. These were 2431 

the regions with the least classification accuracies. Regions with 2432 

abundant forest components (central and northern regions) produced 2433 

the most accurate masks and the most accurate and most precise GSV 2434 

estimates. 2435 

Despite the small correlation coefficients, we found a negative 2436 

relationship between forest mask accuracy and the standard error of 2437 

the GSV estimate, demonstrating that the accuracy of the FM must be 2438 

considered in the GSV estimation through the model-assisted 2439 

estimator. 2440 

The quality of the model-assisted estimation mostly depends on the 2441 

performance of the prediction model. A more accurate FM can 2442 

compensate for systematic model prediction errors, leading to a 2443 

greater agreement with official NFI GSV estimates, both at national 2444 

and regional levels. 2445 

In conclusion, we recommend using the NFM, both at regional and 2446 

national levels, for studies aimed at estimating forest parameters 2447 

related to variables such as forest area, GSV, AGB, and carbon stock. 2448 

However, it is plausible to assume that as the accuracy of the model 2449 

predictions increases thanks to the growing availability of 3D data, the 2450 

NFM will always produce more accurate and precise estimates of total 2451 

GSV. In this regard, we hope that in the future, wall-to-wall ALS 2452 

coverage will be finally available in Italy, to enhance the prediction of 2453 

forest variables with even greater accuracy. 2454 
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Finally, we strongly recommended that the different forest mapping 2455 

and monitoring programs currently active in Italy converge on a 2456 

common method and lead to harmonized, multiscale systems in line 2457 

with the international forest definition. 2458 

  2459 
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Abstract 2829 

Forest parameter estimation is required to support the sustainable 2830 

management of forest ecosystems, especially in the climate change 2831 

context. Currently, forest resource assessment is increasingly linked 2832 

to auxiliary information obtained from active or passive remote 2833 

sensing (RS) technologies. In forest parameter estimation, airborne 2834 

laser scanning (ALS) data have been demonstrated to be an invaluable 2835 

source of information. However, ALS data are often not available for 2836 

the entire forest area, whereas images from multiple satellite systems 2837 

that are available free of charge offer new opportunities for large-scale 2838 

forest surveys. This study aims to assess and estimate the contribution 2839 

of field plot data and ALS data along with Landsat data to the precision 2840 

of growing stock volume (GSV) estimates. We compared different 2841 

approaches for model-assisted estimation of mean forest GSV per unit 2842 

area using different proportions of the field sample data, ALS cover 2843 

data, and wall-to-wall Landsat data. Model-assisted estimators were 2844 

used with NFI sample data in a study area in Italy using 10 remote 2845 

sensing predictors, specifically the seven Landsat 7 ETM+ bands and 2846 

three fine-resolution metrics based on ALS-derived canopy height. 2847 

We found that relative to the standard simple expansion estimator, the 2848 

model-assisted estimators produced relative efficiency of 1.16 when 2849 

using only Landsat data and relative efficiencies as great as 1.33 when 2850 

using increasing levels of ALS coverage. 2851 
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Keywords: Airborne Laser Scanning, Growing stock volume, 2852 

Landsat 7 ETM+, National Forest Inventory. 2853 

 2854 

1. Introduction 2855 

Forests play an important role in mitigating the effect of climate 2856 

change and making recreation and economic contributions to our 2857 

society. Worldwide, there is an increasing demand to improve forest 2858 

parameter estimation in support of monitoring the state of these 2859 

ecosystems. Usually, forest parameter estimates are provided by a 2860 

design-based approach with field data collected in the frameworks of 2861 

traditional national forest inventories (NFIs) (Chirici et al., 2020; 2862 

McRoberts et al., 2014; White et al., 2016). Estimates aggregated for 2863 

large geographic areas are requested by national and international 2864 

reporting frameworks such as Forest Europe and FAO (FAO, 2020; 2865 

FOREST EUROPE, 2015). However, NFI data are expensive, since 2866 

they require long and costly field campaigns, so a major scientific 2867 

challenge is to develop new methods to produce useful forest 2868 

information in a more cost-efficient way (White et al., 2016, Saarela 2869 

et al., 2018). In recent decades, advancements in earth observation 2870 

technologies have opened the possibilities for using remotely sensed 2871 

(RS) data to support forest inventories, so that the strategies to collect 2872 

information and produce forest inventory estimates have changed 2873 

consequentially (Waser et al., 2017; White et al., 2016; Saarela et al., 2874 
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2016; Chirici et al., 2020; Kangas et al., 2018). The exploitation of RS 2875 

imagery became mandatory in deforestation and forest degradation 2876 

surveys (REDD) because of the large cost of field surveys and forest 2877 

inaccessibility in tropical and subtropical countries and remote areas 2878 

(e.g., Corona et al., 2014, Pagliarella et al., 2016). RS data in 2879 

combination with field data can be used to increase the precision of 2880 

large-scale forest inventory estimates in two different stages: the 2881 

design stage and the estimation stage or both (Saarela et al., 2018). At 2882 

the design stage, RS data can be used for stratification (McRoberts et 2883 

al., 2002) or probability sampling (Saarela et al., 2015; Lisańczuk et 2884 

al., 2020). In the estimation stage, RS data can be used with either 2885 

model-based inference (Gregoire, 1998; McRoberts et al., 2011) or 2886 

design-based inference via stratified, post-stratified or model-assisted 2887 

estimation (Särndal et al., 1992). 2888 

RS data can be acquired by different platforms, with different sensors, 2889 

and at different resolutions, opening a vast array of methods useful for 2890 

increasing the efficiency of forest parameter estimation (White et al., 2891 

2016; Saarela et al., 2018; Holm et al., 2017; Puliti et al., 2018). At 2892 

the national inventory scale, methods based on satellite images are still 2893 

the most widely used because of the small cost and temporally high 2894 

frequency associated with acquisition of satellite imagery. The main 2895 

disadvantages of using satellite imagery compared to airborne laser 2896 

scanning (ALS) data, a form of light detection and ranging (lidar) data 2897 

collected by airplane or helicopter platforms, are spatial accuracy and 2898 
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resolution, both of which are substantially greater for ALS. In fact, in 2899 

recent years, many studies have successfully used ALS data to assist 2900 

in the estimation of forest biophysical parameters, as well as to provide 2901 

accurate and precise estimates of growing stock volume (GSV) 2902 

(Montaghi et al. 2013, Kotivuori et al. 2016, White et al. 2016). ALS 2903 

has particularly revolutionized forest inventories with its great 2904 

potential to produce three-dimensional (3D) forest vertical structure 2905 

data for prediction of a variety of forest attributes (Næsset 2002, 2906 

Næsset et al. 2004, Hyyppä et al. 2008, Nilsson et al. 2017, Tompalski 2907 

et al. 2019). Furthermore, high-performance computer servers 2908 

represent a shift toward the possibility of detailed forest mapping, 2909 

which can accurately identify individual tree crowns useful in support 2910 

of forest management (Yun et al., 2021). However, ALS data are often 2911 

limited by the cost of acquisition, processing, and data volume. As a 2912 

result, complete ALS (or unmanned aerial vehicles) coverage is often 2913 

impossible for large areas. Therefore, widespread and ready 2914 

availability of such data is inhibited (Li et al. 2019, Puliti et al., 2018), 2915 

in contrast to some RS data that are freely available wall-to-wall (e.g., 2916 

satellite data). 2917 

Despite the well-documented use of wall-to-wall auxiliary data with 2918 

model-assisted (Corona et al., 2014), the use of one wall-to-wall 2919 

auxiliary dataset in conjunction with another auxiliary dataset with 2920 

only partial coverage in a rigorous uncertainty assessment framework 2921 

has been investigated in only a small number of recent papers 2922 
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(Gregoire et al., 2016; Puliti et al., 2018; Saarela et al., 2016; Saarela 2923 

et al., 2018). Holm et al. (2017) demonstrated how the hybrid 3-phase 2924 

estimators can be used in situations where ALS data are used to relate 2925 

ground plot measurements to lidar satellite observations (i.e., GLAS). 2926 

Holm et al. (2017) further demonstrated that hybrid 3-phase estimators 2927 

facilitate the assessment of mean biomass density and variance that 2928 

account for sampling variability and the model prediction uncertainty 2929 

associated with two predictive models (i.e., ground plot-ALS models 2930 

and ALS-GLAS models). Saarela et al. (2016) illustrate a novel and 2931 

design-based, model-assisted attempt to exploit wall-to-wall satellite 2932 

information together with partial ALS information in the estimation of 2933 

forest parameters from ground sample surveys. 2934 

The objective of this study is to assess the impact of partially available, 2935 

fine resolution ALS data for model-assisted estimation of GSV. In 2936 

particular, two main research questions are investigated: 2937 

What is the effect of varying the ALS data forest coverage on GSV 2938 

estimates? 2939 

What is the effect of pseudo-plots constructed in the ALS stratum used 2940 

to construct a GSV-RS model that is then applied to the entire study 2941 

area? 2942 

To address these questions, we used an Italian dataset representing by 2943 

forests with ALS data, covering the Alpine, and Mediterranean 2944 

ecological regions, Landsat 7 ETM+ data, Canopy Height Model 2945 
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(CHM) derived ALS data, and NFI plots for which GSV was measured 2946 

in the field. 2947 

2. Materials 2948 

2.1. Study area 2949 

The study was conducted in Italy (centered at 42° 30' N and 12° 30' E) 2950 

in the forests for which ALS data are available, totaling 60,700 km2 2951 

(D’Amico et al., 2021). The country is characterized by large 2952 

vegetation variability due to its specific geographical and 2953 

topographical conditions. The Italian peninsula has a typically flat 2954 

coastal strip, a hilly part in the hinterland, and two main mountain 2955 

ranges, the Alps in the north with peaks over 4800 m above sea level 2956 

and the Apennines along the peninsula length. 2957 

Italian forests and other wooded lands are mainly distributed in hilly 2958 

and mountainous areas covering 104,675 km2, corresponding to 34% 2959 

of the land area (INFC 2004, Tabacchi et al. 2007). Italian forests 2960 

consist mainly of broadleaf species (about 68% of the total). The most 2961 

dominant tree species are Downy oak (Quercus pubescens), 2962 

Pedunculated oak (Q. robur), Turkey oak (Q. cerris), Sessile oak (Q. 2963 

petraea), European beech (Fagus sylvatica), each exceeding area of 2964 

one million hectares. The most common coniferous forests, especially 2965 

in the Alps, are those dominated by Norway spruce (Picea abies). 2966 
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The Italian study area was tessellated into N= 97,116,385 square grid 2967 

cells each with area of 530 m2, equal to the NFI plot size (see section 2968 

2.2.). The N grid cells constitute our target population U. 2969 

2.2. National Forest Inventory data 2970 

The Italian field reference data were measured in 2005 as part of the 2971 

2nd Italian NFI (Figure 1 A) (INFC 2004, Chirici et al. 2020). Data for 2972 

2618 circular, 530 m2 NFI field plots for which ALS data were 2973 

acquired within five years of field measurement were available 2974 

(Figure 1A). For each NFI plot, GSV (m3 ha-1) for each callipered tree 2975 

was predicted using species-specific allometric models developed by 2976 

the NFI using tree DBH and tree height as independent variables 2977 

(Tabacchi et al. 2011). The uncertainty of the allometric model 2978 

predictions was considered negligible and ignored following previous 2979 

results (McRoberts et al., 2016a, 2016b). The GSV of each NFI plot 2980 

was predicted by aggregating volume predictions for all the trees 2981 

callipered in the plot. Chirici et al. (2020) provides a complete 2982 

description of GSV prediction for Italian NFI plots. The field plots 2983 

selected are denoted as n elements of the population (U) (Figure 2). 2984 

2.3. Remotely sensed data 2985 

2.3.1. Landsat predictors 2986 

A composite of Landsat 7 ETM+ images was computed using the 2987 

Google Earth Engine (GEE) platform (Gorelick et al. 2017) which 2988 
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provides the complete, pre-processed archive of Landsat data. 2989 

Specifically, we used the Landsat 7 Surface Reflectance Tier 1 images, 2990 

i.e. atmospherically corrected and with the surface reflectance values 2991 

calculated using the LEDAPS algorithm (Masek et al. 2013). We 2992 

selected late-spring and summer images with less than 70% cloud 2993 

cover (i.e. between April 1st and September 30th) acquired in 2005, the 2994 

same period as the NFI field campaign. The image collection resulted 2995 

in a total of 106 images. To avoid noise values in the images, pixels 2996 

covered by clouds, shadow, water, and snow were masked using the 2997 

CFMask algorithm implemented in GEE (Foga et al. 2017) and were 2998 

not used to calculate the composite image. The composite image was 2999 

constructed to obtain a unique image in specific time windows using 3000 

all available satellite images (Wulder et al. 2019). The pixel values of 3001 

the composite image are calculated as a function of the corresponding 3002 

pixels of the acquired images in the time windows. In our case, the 3003 

median function was used to calculate pixel values for each Landsat 7 3004 

band of the composite image (Figure 1 B). 3005 

Based on the Italian composite image, seven Landsat predictors were 3006 

calculated, one for each Landsat band, specifically, the mean value of 3007 

the composite image pixels within the plot area (Table 1). Moreover, 3008 

the same Landsat predictors were calculated for all N grid cells of the 3009 

Italian study area population. 3010 
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2.3.2 Canopy Height Model predictors 3011 

In Italy, a national raster grid CHM at 1×1m resolution derived from 3012 

available ALS data is available (D’Amico et al., 2021). Based on the 3013 

national CHM (Figure 1C), three standard CHM variables were 3014 

calculated for all available NFI plots and for the N study area grid 3015 

cells. The CHM predictor variables were computed using the R-3016 

CRAN package “raster” (Hijmans et al., 2012) and were the three 3017 

height standard metrics: (i) the mean (CHM_Mean), (ii) the 90th 3018 

percentile of the canopy height distribution (CHM_Prc90), and (iii) 3019 

the standard deviation (CHM_Std), of the 1×1m pixel values that were 3020 

inside or intersected by the boundary of the 23×23m pixels (Table 1).  3021 

Table 1: Landsat and CHM predictors 3022 
 3023 
Data 

source 

Variable 

name 
Information 

NFI GSV Field measured growing stock volume 

Landsat 7 

ETM+ 

  Wavelength  Resolution 

Band 1  Blue 0.45-0.52 µm 30 m 

Band 2 Green 0.52-0.60 µm 30 m 

Band 3 Red 0.63-0.69 µm 30 m 

Band 4 Near-infrared 0.77-0.90 µm 30 m 

Band 5 
Short-wave 

infrared 
1.55-1.75 µm 30 m 

Band 6 
Thermal 

infrared 
10.40-12.50 µm 60 m 

Band 7 
Short-wave 

infrared 
2.09-2.35 µm 30 m 

CHM 

CHM_Mean Mean of 1 m × 1 m CHM pixels 
CHM_Prc90 90 percentile of 1 m × 1 m CHM pixels 
CHM_Std Standard deviation of 1 m × 1 m CHM pixels 

 3024 
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We used CHM because in Italy ALS point cloud data are not always 3025 

available and because Chirici et al. (2016) has already demonstrated 3026 

that GSV prediction accuracies are comparable for CHM metrics and 3027 

point-based metrics. The CHM was derived from ALS datasets 3028 

collected by different authorities between 2004 and 2017.  3029 

 3030 

Figure 1. A: Italian field plots; B: RGB Landsat composite image captured to 3031 
create annual images with a median value for each pixel in ALS cover; C: 3032 
Italian CHM cover. 3033 
 3034 
The ALS datasets shared some common characteristics considered 3035 

suitable for forestry applications (Goodwin et al. 2006, Wulder et al. 3036 

2008): acquisition flight altitudes between 500 m and 3000 m; spatial 3037 

resolution of derived CHM ranging between 1 m and 5 m; pulse 3038 

density between 0.4 and 5 pulses per m2, which even at small values 3039 

(0.4-1.0 pulses per m2) facilitate generation of reliable digital elevation 3040 

models for plot-level forest estimates (~23 m pixel size - Jakubowski 3041 

et al. 2013). However, several studies have demonstrated that a lag 3042 

time greater than five years between field measurements and ALS data 3043 

can be problematic when predicting forest variables (Wulder et al. 3044 

2008, Tompalski et al. 2019), especially when the area-based approach 3045 
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is used (Næsset, 2002). Thus, we selected CHM metrics derived from 3046 

ALS acquired within five years of the NFI field survey. The grid cells 3047 

for which the CHM metrics are available were denoted as the stratum2 3048 

elements of the population (U) (Figure 2).  3049 

3. Methods 3050 

3.1. Methods overview 3051 

Full Landsat and CHM coverage, including for all NFI plots, were 3052 

available for the study area. Our goal was to estimate the effects of 3053 

varying the CHM and Landsat coverage proportions when estimating 3054 

GSV. To evaluate the effects of varying CHM and Landsat coverages, 3055 

we used a stratified estimation approach for which the strata were the 3056 

Landsat coverage (stratum1) and the CHM coverage (stratum2), with 3057 

proportions respectively denoted as w1 and w2 with w1+w2=1. 3058 

Estimates obtained using the simple expansion estimator, which is 3059 

based exclusively on the NFI plot data within strata (Approach 0), 3060 

were used for comparisons with estimates based on two additional 3061 

approaches: (Approach 1) the model-assisted estimator within strata, 3062 

and (Approach 2) the model-assisted estimator within strata using 3063 

additional CHM-based pseudo-plots for model construction. 3064 

We progressively varied the amount of CHM and Landsat coverage 3065 

using different w1 and w2 proportions (i.e., w1 = 10% and w2 = 90%; 3066 

w1 = 20% and w2 = 80%; …; w1 = 90% and w2 = 10%). Based on the 3067 

proportion, the CHM stratum was constructed by randomly selecting 3068 
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pixels until the correct proportion w2 was achieved. All remaining 3069 

pixels were then designated as the Landsat stratum. NFI plots were 3070 

distributed between the two strata according to their locations. For 3071 

each proportion, we repeated the three approaches iteratively, 3072 

selecting randomly the strata 50 times. Finally, the average values over 3073 

all iterations were used to estimate the effects of CHM coverage 3074 

change among approaches (Tables A1, A2, A3). 3075 

 3076 

Figure 2. Predictors overview. The w1 and w2 proportions varied 3077 
progressively. 3078 
 3079 

For Approach 0 data for all plots were used with the simple expansion 3080 

estimator. For Approach 1, the stratified estimators were used with the 3081 

within-strata means and variances estimated using the model-assisted 3082 

regression estimators. For Approach 2 we constructed pseudo-plots by 3083 

using the CHM variable to predict GSV for some selected plot-size 3084 

areas in the CHM stratum. The intent was to determine if the 3085 



146 

 

combination of the NFI plot data and the pseudo-plot predictions 3086 

would produce a more accurate GSV-Landsat model. We then used 3087 

stratified estimation for which within-strata means and variances were 3088 

estimated using the model-assisted estimators using data for only the 3089 

within-strata NFI plots but no pseudo-plots. 3090 

3.2. NFI plot selection 3091 

In the temporal lag between NFI field plot measurement (2005) and 3092 

ALS acquisition (D’Amico et al., 2021), some plots were harvested or 3093 

otherwise substantially disturbed between the two dates. To alleviate 3094 

this discrepancy, we selected ALS data acquired in a range of five 3095 

years of the NFI field survey. Moreover, plots disturbed in the period 3096 

between the laser scanning and the field inventory or incorrectly 3097 

linked to the ALS data due to poor plot locations were identified and 3098 

removed in the following way. A residuals analysis was performed 3099 

with a weighted estimation of heteroscedastic residual variances 3100 

(section 3.3). Specifically, plots for which the ratio of the residual 3101 

calculated as the difference between the observation and prediction 3102 

and the corresponding residual standard deviation estimated through 3103 

the weighted method were greater than 2.0 were considered outliers. 3104 

In total, 3% of the NFI plots were identified as outliers and removed 3105 

from the final dataset (2534 NFI plots). 3106 
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3.3. Nonlinear power model 3107 

A nonlinear power regression model was used to describe the 3108 

relationship between GSV for NFI plots and associated CHM metrics. 3109 

The simple correlation coefficient between CHM metrics and GSV for 3110 

stratum2 (CHM) was performed to select the CHM metric that 3111 

produced the most accurate predictions. The model has the 3112 

mathematical form, 3113 

𝑦𝑖 = 𝛽1 ∗ 𝑥𝑖
𝛽2+ 𝜀𝑖       (1) 3114 

where i index plots, 𝑦𝑖 is GSV, 𝑥𝑖is the ALS metric, 𝜀𝑖 is a random 3115 

residual, and the βs are parameters to be estimated. An advantage of 3116 

this model is that when the ALS metrics are zero, as is the case for 3117 

many non-forest plots, the prediction will also be zero. Preliminary 3118 

analyses indicated that the individual ALS metric that produced the 3119 

most accurate predictions was CHM_mean (Eq. (1)). All possible 3120 

combinations of one, two, and three additional independent variables 3121 

together with CHM_mean were considered for the model. However, 3122 

none contributed to statistically significantly increasing the quality of 3123 

model fit to the data. 3124 

As with most biological data, residual heteroscedasticity in the form 3125 

of greater residual variances for larger observations was evident. 3126 

Although the mathematical form of Eq. (1) readily lends itself to a log 3127 

transformation for either linearization or reduction of 3128 

heteroscedasticity, weighted nonlinear least squares were used for 3129 

these analyses. The heterogeneous model residual variance, 𝜎𝑖
2, was 3130 
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characterized using a 5-step procedure (McRoberts et al., 2016b, 3131 

Section 3.2.2): (i) calculate the model prediction residuals as 𝜀𝑖 =3132 

𝑦𝑖 −  �̂� where �̂�𝑖 =  �̂�1 ∗ 𝑥1
�̂�2; (ii) order the pairs (𝑥𝑖, 𝜀𝑖) to 𝑥𝑖; (iii) 3133 

aggregate the ordered pairs into groups of size 25; (iv) for each group, 3134 

g, calculate the mean, 𝑥𝑔̅̅ ̅, of the predictor variable and the standard 3135 

deviation, 𝜎�̂�, of the grouped residuals; and (v) model the relationship 3136 

between �̂�𝑔 and �̅�𝑔 as,  3137 

𝜎�̂� =  𝜆 ∗  �̅�𝑔 + 𝜀𝑔,      (2) 3138 

where 𝜆 is a model parameter estimated using ordinary least squares 3139 

techniques. For the weighted nonlinear least squares technique, each 3140 

observation was weighted inversely to its residual variance estimated 3141 

by substituting the CHM mean for �̅�𝑔 in Eq. (2) (McRoberts et al., 3142 

2018). 3143 

As for the CHM metric, in stratum1 (non-CHM), a nonlinear power 3144 

regression model was used to describe the relationship between GSV 3145 

from NFI plots and associated Landsat metrics. To select the 3146 

combination of independent variables that produced the greatest 3147 

prediction accuracy, in addition to the seven Landsat predictors, we 3148 

calculated the normalized difference for all the predictor combinations 3149 

(21 new indices). A subset of the three Landsat predictors, with the 3150 

greatest correlations to GSV observations, were selected to develop 3151 

the model: 3152 

𝑦𝑖 = 𝛽3 ∗ 𝑥𝑖𝑗
𝛽4 ∗ 𝑒𝛽5∗𝑥𝑖𝑗+𝛽6∗𝑥𝑖𝑗 +  𝜀     (3) 3153 
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where i indicates plots or population units, 𝑥𝑖𝑗is the jth Landsat metric, 3154 

𝛽𝑠 are parameters to be estimated. 3155 

3.4. Stratified estimator (Approach 0) 3156 

The essence of stratified estimation is to assign population units to 3157 

groups or strata, where for this study the strata are the CHM coverage 3158 

and the non-CHM (Landsat) coverage, estimate the within-strata 3159 

sample plot means and variances using the simple expansion 3160 

estimators, and then calculate the population estimate as a weighted 3161 

average of the within-strata estimates where the weights are 3162 

proportional to the stratum sizes. With stratified estimation, (1) the 3163 

strata weights are calculated as the relative proportions of the 3164 

population area corresponding to strata, and (2) the sample unit is 3165 

assigned to a single stratum. For this study, we varied the strata 3166 

proportions and consequently the strata weights. At the same time, we 3167 

assigned NFI plots to strata based on the stratum assignment of the 3168 

population units containing the plot centers. 3169 

Stratified estimates of means and variances are calculated using 3170 

estimators provided by Cochran (1977): 3171 

�̂�𝑆𝑇𝑅 = ∑ 𝑤ℎ�̂�ℎ
𝐻
ℎ=1 ,      (4) 3172 

and 3173 

𝑉𝑎�̂�(�̂�𝑆𝑇𝑅) = ∑ 𝑤ℎ
2 �̂�ℎ

2

𝑛ℎ

𝐻
ℎ=1 ,     (5) 3174 
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where �̂�𝑆𝑇𝑅 denotes the stratified estimator of the mean; h=1, …, H 3175 

denote strata; 𝑤ℎ denotes the hth stratum weight; and 𝑛ℎdenotes the 3176 

number of plots assigned to the hth stratum; 3177 

�̂�ℎ =
1

𝑛ℎ
∑ 𝑦ℎ𝑖

𝑛ℎ
𝑖=1 ,      (6) 3178 

denotes the sample mean for the hth stratum; 𝑦ℎ𝑖is the ith sample 3179 

observation of GSV in the hth stratum; and 3180 

�̂�ℎ
2 =

1

𝑛ℎ−1
∑ (𝑦ℎ𝑖 − �̂�ℎ)

𝑛ℎ
𝑖=1 ,     (7) 3181 

denotes the sample variance for the hth stratum. 3182 

The simple expansion estimator, used here within strata and 3183 

sometimes referred to as "simple random sample" or "direct" 3184 

estimator, has some advantages: (i) simplicity, using only the sample 3185 

data, without fitting a model or some other statistical procedure, (ii) 3186 

intuitiveness, using common arithmetic mean and the Central Limit 3187 

Theorem to determine its variance; and (iii) unbiasedness under 3188 

simple random and systematic sampling designs (Moser et al., 2017). 3189 

The disadvantage of the simple expansion estimator is the possibly 3190 

large variances, mainly when the sample size is small and/or the 3191 

population is highly variable (McRoberts et al., 2013). Nevertheless, 3192 

because it is unbiased, this approach was used to compare the different 3193 

model-assisted estimators used with the different predictors and strata 3194 

proportions. 3195 

javascript:;
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3.5. Stratified estimation with model-assisted 3196 

estimation within strata (Approach 1) 3197 

Model-assisted estimators use models based on auxiliary data to 3198 

enhance inferences but rely on probability samples for validity. For 3199 

this study, within each stratum, we used the model-assisted regression 3200 

estimators of means and variances provided by Särndal et al. (1992). 3201 

The population and the corresponding plots are divided into two strata, 3202 

sequentially changing their proportions (w1 and w2). 3203 

�̂�1 =
1

𝑁1
∑ �̂�𝑖

𝐿𝑎𝑛𝑑𝑠𝑎𝑡 −
1

𝑛1
∑ (�̂�𝑖

𝐿𝑎𝑛𝑑𝑠𝑎𝑡 − 𝑦𝑖
𝐿𝑎𝑛𝑑𝑠𝑎𝑡)

𝑛1
𝑖=1

𝑁1
𝑖=1   (8) 3204 

�̂�2 =
1

𝑁2
∑ �̂�𝑖

𝐶𝐻𝑀 −
1

𝑛2
∑ (�̂�𝑖

𝐶𝐻𝑀 − 𝑦𝑖
𝐶𝐻𝑀)

𝑛2
𝑖=1

𝑁2
𝑖=1    (9) 3205 

where: N1 is the number of Landsat pixels in the non-CHM stratum; 3206 

N2 is the number of CHM cells in the CHM stratum; 𝑦𝑖
𝐿𝑎𝑛𝑑𝑠𝑎𝑡 is an 3207 

inventory plot observation from the non-CHM stratum; �̂�𝑖
𝐿𝑎𝑛𝑑𝑠𝑎𝑡 is a 3208 

prediction from the GSV-Landsat model; 𝑦𝑖
𝐶𝐻𝑀 is an inventory plot 3209 

observation from the CHM stratum; �̂�𝑖
𝐶𝐻𝑀 is a prediction from the 3210 

GSV-CHM model. The estimate of the overall mean and standard 3211 

error are: 3212 

�̂� = ∑ 𝑤ℎ ∙ �̂�ℎ
2
ℎ=1                   (10) 3213 

and 3214 

𝑆𝐸(�̂�) = √𝑉𝑎�̂�(�̂�) = √∑ 𝑤ℎ
2 ∙

�̂�ℎ
2

𝑛ℎ

2
ℎ=1                 (11) 3215 

where 3216 

�̂�1
2 =

1

(𝑛1−1)
∑ (�̂�𝑖

𝐿𝑎𝑛𝑑𝑠𝑎𝑡 − 𝑦𝑖
𝐿𝑎𝑛𝑑𝑠𝑎𝑡)

2𝑛1
𝑖=1                (12) 3217 
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and 3218 

�̂�2
2 =

1

(𝑛2−1)
∑ (�̂�𝑖

𝐶𝐻𝑀 − 𝑦𝑖
𝐶𝐻𝑀)

2𝑛2
𝑖=1                  (13) 3219 

The primary advantage of the model-assisted estimators is that they 3220 

capitalize on the relationship between the sample observations and 3221 

their model predictions to reduce the variance of the estimate of the 3222 

within strata means and, by extension, the population mean 3223 

(McRoberts et al., 2014). 3224 

3.6. Stratified estimation with model-assisted 3225 

estimation within strata using pseudo-plots for model 3226 

construction (Approach 2) 3227 

In the second approach, we added pseudo-plots to investigate the 3228 

possibility of constructing a more accurate GSV-Landsat model. We 3229 

first tessellated the study area into 8x8 km grid cells. In grid cells that 3230 

had pixels selected for the CHM stratum, we randomly selected one 3231 

pixel that was not already associated with an NFI plot. Pseudo-plots 3232 

were constructed at the selected locations by using the power model 3233 

(Eq. (1)) and the CHM variables to predict GSV. Based on the 3234 

selection of pseudo-plot locations, the intensity of pseudo-plot 3235 

sampling was proportional to the sampling intensity of NFI plots in 3236 

the CHM stratum.   3237 

Based on the two strata sizes, and thus the number of NFI plots (n2) in 3238 

the CHM stratum, the GSV for the pseudo-plots was estimated. The 3239 

inventory plots (n1 + n2) and the CHM-based pseudo-plots were used 3240 

to construct a GSV-Landsat model which was applied to the entire 3241 



153 

 

study area. Next, the model-assisted estimator with NFI plots in the 3242 

Landsat stratum (n1), was used to estimate the mean GSV within it 3243 

(stratum1) (Eq. (8)). While for computing GSV estimates in the CHM 3244 

stratum (stratum2), presented NFI plots (n2) are used. Thus, although 3245 

pseudo-plots are also included in the CHM stratum, we used this same 3246 

model to predict GSV for the entire CHM stratum for the model-3247 

assisted estimator. Consequently, pseudo-plot data do not affect 3248 

model-assisted estimation so only NFI plots (n2), were used to estimate 3249 

the mean GSV within CHM stratum (stratum2) (Eq. (9)). The same 3250 

effect occurred in calculating the variance and, consequently, the 3251 

standard errors, which for the two strata were calculated as Eq. (11). 3252 

Also, in this approach, we varied the strata proportions and weights of 3253 

population units in strata. While in the non-CHM stratum (stratum1) 3254 

there were the corresponding NFI plots, in the CHM one (stratum2) 3255 

there were NFI plots and pseudo-plots, both increased progressively, 3256 

simulating greater CHM coverage. Particularly, the number of pseudo-3257 

plots increased as the size of the CHM stratum increased, up to a 3258 

maximum of 567 pseudo-plots selected in the 23x23 grid (Table A3). 3259 

3.7. Relative efficiency  3260 

To assess the efficiency of the model-assisted estimators, we 3261 

compared variance estimates obtained with each approach with 3262 

variance estimates obtained with the simple expansion estimator, 3263 
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taken as reference, and calculated the relative efficiency coefficient 3264 

(RE) as: 3265 

𝑅𝐸 =
𝑉𝑎�̂�(�̂�𝑆𝐸𝐸) 

𝑉𝑎�̂�(�̂�𝑠) 
                   (14) 3266 

where 𝑉𝑎�̂�(�̂�𝑆𝐸𝐸) is the simple expansion estimator variance (Eq. (6)), 3267 

and 𝑉𝑎�̂�(�̂�𝑠) is the variance for Approaches 1 and 2 with model-3268 

assisted estimation within strata. 3269 

Because RE is the ratio between the values of the variance of 3270 

𝑉𝑎�̂�(�̂�𝑆𝐸𝐸) and 𝑉𝑎�̂�(�̂�𝑠), values greater than 1 are evidence of greater 3271 

precision for the model-assisted estimates (Moser et al., 2017). The 3272 

RE coefficient can be interpreted as the factor by which the original 3273 

sample size would have to be increased to achieve the same precision 3274 

without using the remotely sensed auxiliary data as that achieved using 3275 

the remotely sensed auxiliary data (Chirici et al., 2020; Francini et al., 3276 

2020; Francini et l., 2021). 3277 

4. Results and discussion 3278 

4.1. Nonlinear power model 3279 

The analysis of the simple correlation coefficient of Landsat metrics 3280 

used as independent variables for predicting GSV in stratum1 (non-3281 

CHM) and the simple correlation coefficient between the CHM metric 3282 

and GSV for stratum2 (CHM) are reported in Table 2. The final models 3283 

for stratum1 (Eq. (3)) and stratum2 (Eq. (1)) reported R2 of 0.26 and 3284 

0.44, respectively (Figure 3). 3285 
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 3286 

Figure 3. GSV (m3 ha-1) observation vs prediction scatters plot and residuals. 3287 

On the top: CHM model prediction, on the bottom: Landsat model prediction. 3288 

Darker dots are average of aggregations of 25 observations. 3289 

 3290 

Table 2 Indices with the greatest correlation coefficients between the GSV 3291 

and Landsat and CHM metrics 3292 

 3293 

Metric RMSE R2 MAE 

B5_B6 128.03 0.224 94.37 

SWIRI (Band5) 128.81 0.214 95.26  

B6_B7 129.02 0.212 95.53 

CHM mean 109.19 0.435 75.94 



156 

 

4.2. Stratified estimator with the simple expansion 3294 

estimator within strata (Approach 0) 3295 

The stratified estimator of the mean with the simple expansion 3296 

estimator within strata yielded overall estimates of �̂� = 159.58 m3 ha-1 3297 

with 𝑆𝐸(�̂�) = 2.89 m3 ha-1. Considering each stratum, the estimates of 3298 

the mean ranged from �̂�1=157.6 m3 ha-1 to �̂�1=160.4 m3 ha-1, for 3299 

stratum1 and between �̂�2 = 158.2 m3 ha-1 and �̂�2= 160.67 m3 ha-1 for 3300 

stratum2. These differences are attributed to differences between strata 3301 

weights and the proportions of plots assigned to strata (Table A1, 3302 

Figure 5). In particular, stratum1 standard errors, SE(�̂�1), ranged 3303 

approximately from 3.0 m3 ha-1 to 9.1 m3 ha-1 while stratum2 standard 3304 

errors, SE(�̂�2), from 3.0 m3 ha-1 to 9.1 m3 ha-1 with the greatest 3305 

estimates for small stratum proportions and the greatest estimates for 3306 

large stratum proportions and numbers of plots. 3307 

4.3. Stratified estimation with model-assisted 3308 

estimation within strata (Approach 1) 3309 

The model-assisted estimates of the mean for the entire population and 3310 

for the individual strata based on different stratum proportions were 3311 

similar to the corresponding simple expansion estimates obtained for 3312 

Approach 0 with greater similarity for increasing stratum2 (CHM) 3313 

proportions (Table A2, Figure 5). The standard errors for estimates of 3314 

the means were smaller with increasing stratum proportions, with 3315 

values from 𝑆𝐸(�̂�1) = 2.5 m3 ha-1 to 𝑆𝐸(�̂�1) = 7.8 m3 ha-1 for stratum1 3316 



157 

 

and form 𝑆𝐸(�̂�2) = 2.2 m3 ha-1 to 𝑆𝐸(�̂�2) = 7.0 m3 ha-1 for stratum2. 3317 

(Figure 4). 3318 

 3319 

Figure 4. Standard error of the GSV estimate in Approach 1 overall and for 3320 

both CHM and Landsat strata. 3321 

 3322 

Similarly, the bias estimates for the MA estimator in both strata were 3323 

smaller with increasing stratum proportions from 𝐵𝑖𝑎�̂�1 = -1.7 m3 ha-3324 

1 to 𝐵𝑖𝑎�̂�1 = -1.9 m3 ha-1 for stratum1 and from 𝐵𝑖𝑎�̂�2 = -0.4 m3 ha-1 to 3325 

𝐵𝑖𝑎�̂�2 = -5.4 m3 ha-1 for stratum2. Small bias estimates reflect the 3326 

means of differences between GSV observations and model 3327 

predictions, and small variance estimates can be attributed to the good 3328 

quality of fit of the power model to the data. However, even with small 3329 

bias estimates, �̂�1 was underestimated for all stratum proportions. This 3330 
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spectral saturation effect with underpredictions for plots with GSV 3331 

greater than 500 m3 ha−1 is well-documented in the literature (Chirici 3332 

et al., 2020). Indeed, Landsat spectral reflectance values are not 3333 

sensitive to multilayer canopy forests or dense forests (Zhao et al., 3334 

2016). Moreover, complex topographic features, such as for most of 3335 

the Italian forest area, may affect the spectral signature and the data 3336 

saturation values of forest aboveground biomass and GSV (Lu et al., 3337 

2016; Nichol and Sarker, 2011). The saturation effect, although less 3338 

severe, has also been reported in the literature for ALS data (Nilsson 3339 

et al., 2017; Giannetti et al., 2018; Lefsky et al., 2005). 3340 

4.4 Stratified estimation with model-assisted 3341 

estimation within strata using pseudo-plots for model 3342 

construction (Approach 2) 3343 

To construct a more accurate model for predicting GSV from the 3344 

Landsat auxiliary data, we generated pseudo-plots using the CHM 3345 

variable to predict GSV for selected areas in the CHM stratum. The 3346 

model-assisted estimates of the means for the entire population and for 3347 

the individual stratum based on different stratum proportions were 3348 

similar to the means estimates for the preceding Approach 1 (Table 3349 

A3, Figure 5). For the Landsat stratum1, the bias estimates for the 3350 

model-assisted estimator in the Landsat stratum were smaller than the 3351 

estimates for Approach 1 for almost all proportions, with values from 3352 

𝐵𝑖𝑎�̂�1 = 1.61 m3 ha-1 to 𝐵𝑖𝑎�̂�1 = -2.8 m3 ha-1. The smaller values of 3353 

𝐵𝑖𝑎�̂�1 for Approach 2 relative to those for Approach 1 reflect the 3354 
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positive influence of the pseudo-plots which neutralized the saturation 3355 

effect of Landsat data. However, as the Landsat stratum size decreases 3356 

and, therefore, with fewer NFI plots (n1), 𝐵𝑖𝑎�̂�1 tends to increase in 3357 

absolute value. This inconsistent bias trend depends on the decreasing 3358 

numbers of NFI plots, and also on the positive effect of increasing the 3359 

numbers of pseudo-plots.  3360 

 3361 

Figure 5. GSV and standard error of the estimated GSV distributions, for 3362 

approaches 1 and 2 over 50 iterations for each strata proportion. The green 3363 

dashed line represents the mean value of the simple expansion estimator 3364 

(Approach 0). 3365 
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For the Landsat stratum1, the strata standard errors for estimates of the 3366 

means were smaller for increasing stratum proportions with values 3367 

ranging from 𝑆𝐸(�̂�1) = 2.6 m3 ha-1 to 𝑆𝐸(�̂�1) = 7.9 m3 ha-1 for 3368 

stratum1. In addition, the standard errors for estimates of the means 3369 

were smaller with increasing numbers of pseudo-plots with values 3370 

from 𝑆𝐸(�̂�) = 2.5 m3 ha-1 to 𝑆𝐸(�̂�)= 2.2 m3 ha-1. For stratum2, bias 3371 

𝐵𝑖𝑎�̂�2 and 𝑆𝐸(�̂�2) were the same as for Approach 1. 3372 

4.5. Relative Efficiency 3373 

Relative efficiency was calculated for each approach with estimates 3374 

obtained with the simple expansion estimator as reference (Eq. (14)) 3375 

(Tables A1, A2, A3). RE (Eq. (14)) for the stratified estimation with 3376 

model -assisted estimation within strata ranged between 1.17 to 1.31. 3377 

For situations with 100% Landsat and 100% CHM, RE were 3378 

respectively 1.16 and 1.33.  For Approach 2, REs were between 1.17 3379 

and 1.31, with relevant implications for inventory applications. 3380 

Indeed, given the considerable current expense associated with ground 3381 

sampling, large REs have the potential to greatly enhance NFI 3382 

estimation. However, the RE values obtained using pseudo-plots to 3383 

construct a more accurate model-assisted estimator using the Landsat 3384 

auxiliary data are comparable to those for Approach 1. 3385 

RE values for w2=0.5 are especially relevant for the various 3386 

approaches examined, because with the release of data from the 3rd 3387 

NFI in coming months, approximately 50% of Italian forests will have 3388 
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ALS coverage. The 3rd NFI field surveys have been carried out since 3389 

2017. So, unless a nationwide ALS survey is conducted in the short 3390 

term to ensure the temporal consistency with the measured field plots, 3391 

CHM coverage will continue to be characterized by only partial and 3392 

fragmentary coverage. The method presented in this work may be 3393 

applied operationally. It is worth noting that completion and updating 3394 

of the national ALS data cover are planned for the following National 3395 

Recovery and Resilience Plan (NRRP) (MITE, 2021). 3396 

RE for stratified estimation with model-assisted estimation within 3397 

strata with equal strata proportions for Approach 1 produced RE=1.23. 3398 

In Approach 2, with equal strata proportions, RE=1.23.  3399 

For both approaches, RE values were greater for greater CHM stratum 3400 

proportions. Nevertheless, even with limited ALS cover, cost 3401 

efficiency should not be ignored. For example, RE = 1.234 (equal to 3402 

50% ALS coverage in Approach 1) means that to achieve the same 3403 

precision levels without the use of the auxiliary information, sample 3404 

sizes would have to be increased by a factor of 0.234, i.e., for this 3405 

study, the sample size of 2534 would have to be increased by 0.234 × 3406 

2534= 593 plots. For a 2021 measurement cost of approximately 3407 

500€/plot, the cost savings from using the auxiliary information and 3408 

stratified estimation is a non-negligible amount of 296,500€. 3409 
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4.6. Summary 3410 

The reasons that led to the development of this methodology are 3411 

related to the historical Italian situation and the upcoming release of 3412 

the 3rd NFI data. Field surveys of the 3rd inventory were performed 3413 

between 2017 and 2020 (De Laurentis et al., 2021), and the time-3414 

consistent, available ALS data are fragmented and distributed over the 3415 

whole territory. The approaches developed in this work are geared 3416 

toward considering the availability of non-wall-to-wall ALS data and 3417 

how their availability affects large-scale volume estimation (Figure 6). 3418 

The simple expansion estimator was used as a reference and then 3419 

calculated for each stratum proportion, although, as expected, these 3420 

changes provided comparable values for both strata (Table A1). 3421 

The stratified estimator with model-assisted estimation within strata 3422 

produced more precise estimates (decrease in 𝑆�̂�(�̂�)), as the CHM 3423 

coverage increased (Table A2). Indeed, the use of ALS data confirms 3424 

the potential to improve GSV estimation performance because of its 3425 

well-known ability to capture canopy information (Lu et al., 2012). Of 3426 

note was the underestimation for stratum1 (Landsat). The Landsat 3427 

estimation model (Eq. (3)) produced small estimated model-assisted 3428 

bias (𝐵𝑖𝑎�̂�1= -2 m3 ha-1), although the average GSV for the study area 3429 

was μ̂1154.9 m3 ha-1, substantially less than the average observed plot 3430 

GSV of 159.6 m3 ha-1. This difference is ascribed to the saturation 3431 

effect of the Landsat predictors in the GSV estimation. Uncertainties 3432 

can be attributed to both typical coppices for complex forest structures 3433 
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and mature forests with volumes greater than 500 m3 ha-1 that cannot 3434 

be accurately predicted using data from passive optical sensors 3435 

(Chirici et al., 2020; Lu et al., 2012). More accurate image composite 3436 

methods such as the Best Available Pixel (BAP) (White et al. 2014) 3437 

can improve composite image generation with more homogeneous 3438 

band values. In addition, other available wall-to-wall satellite optical 3439 

data will need to be evaluated (Sentinel-2 (S2), Landsat 8 and Landsat 3440 

9). For example, Mura et al. (2018) demonstrated a comparable 3441 

capability between S2 and Landsat 8 in estimating GSV, while Astola 3442 

et al. (2019) found that models based on S2 were more accurate than 3443 

Landsat 8 models for estimating multiple forest variables.  3444 

In Approach 2, we tried to increase the sample size and precision by 3445 

adding more plots. Because no more NFI plots were available, we 3446 

constructed pseudo-plots by using the CHM variable to predict GSV 3447 

for some selected plot-size areas in the CHM stratum. The CHM data 3448 

are distributed in nationwide ALS surveys from 2004 through 2017 3449 

(D'Amico et al., 2021). Pseudo-plots were constructed using ALS data 3450 

distributed throughout Italy acquired before 2010. We used data for 3451 

the combination of the measured plots and the pseudo-plots to 3452 

construct a more accurate GSV-Landsat model, which, in turn, may 3453 

produce greater precision for the model-assisted estimator using the 3454 

Landsat auxiliary data. However, considering CHM stratum, pseudo-3455 

plots have no effects on the model-assisted estimation of the mean and 3456 

variance because predictions equal the simulated observations. 3457 
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Indeed, we used the NFI plots (n2) in the CHM stratum, to construct a 3458 

GSV-CHM model to predict GSV for the entire stratum2 (including 3459 

pseudo-plots). The results for stratum1 showed more accurate �̂�1 3460 

estimation by reducing 𝐵𝑖𝑎�̂�1, while for stratum2 the results were the 3461 

same as those for Approach 1. The SEs for the entire population for 3462 

the two approaches showed no appreciable differences. 3463 

 3464 

Figure 6. Study area Growing Stock Volume prediction map generated with 3465 
Approach 1 (w1 =0.5, w2 = 0.5). 3466 
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5. Conclusion 3467 

GSV for Italian forest land covered by ALS was estimated with three 3468 

approaches using existing ALS, Landsat, and NFI data. Three primary 3469 

conclusions were drawn from the study. Firstly, CHM and Landsat 3470 

data are confirmed as a reliable and efficient sources of information 3471 

for predicting GSV, even in large and complex Mediterranean forest 3472 

areas. Moreover, the power model facilitates accurate estimation of 3473 

biological variables such as GSV. Secondly, remotely sensed auxiliary 3474 

data may contribute to increasing the precision of GSV estimates. 3475 

Thirdly, ALS data, although fragmentary and acquired in different 3476 

years, contributes to improved GSV estimates. CHM and Landsat 3477 

data, increased the efficiency of GSV estimation compared with the 3478 

standard stratified estimate with the simple expansion estimator within 3479 

strata for the two approaches, (i) stratified estimation with model-3480 

assisted estimation within strata and (ii) stratified estimation with 3481 

model-assisted estimation within strata and CHM-based pseudo-plots. 3482 

The total ALS coverage provided the greatest improvement in 3483 

accuracy with a relative efficiency of 1.33. However, only a portion of 3484 

forests are covered by ALS currently. Even in a realistic scenario for 3485 

Italy, with CHM data in only 50% of forests, their contribution 3486 

increases the accuracy (variance) by a factor of 1.24. 3487 

From this perspective, we encourage the Italian NFI to publicly release 3488 

both NFI plot data, including the exact plot coordinates, for the 3rd 3489 

National Forest Inventory for purposes of supporting construction of 3490 
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future RS-based forest maps of GSV or biomass. Lastly, in the future 3491 

we anticipate that ALS will finally be available wall-to-wall in Italy to 3492 

facilitate prediction of forest variables with even greater accuracy.  3493 
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6. Annex 3494 

Table A1. Average results of Approach 0 for each different strata portion, after 50 iterations. 3495 
 3496 

 

Landsat stratum CHM stratum Population 

w1 𝒏𝟏 �̂�𝟏 SE(�̂�𝟏) w2 𝒏𝟐 �̂�𝟐 SE(�̂�𝟐) �̂� 𝐒𝐄(�̂�) 

0 1 2534 159.58 2.89 0 0 0 0 159.58 2.89 

1 0.9 2278 159.73 3.05 0.1 256 158.28 9.05 159.58 2.89 

2 0.8 2023 159.30 3.23 0.2 511 160.72 6.48 159.59 2.89 

3 0.7 1779 159.65 3.45 0.3 755 159.42 5.27 159.58 2.89 

4 0.6 1521 160.17 3.72 0.4 1013 158.69 4.58 159.58 2.89 

5 0.5 1272 158.89 4.07 0.5 1262 160.30 4.10 159.59 2.89 

6 0.4 1014 160.29 4.58 0.6 1520 159.11 3.72 159.58 2.89 

7 0.3 760 159.00 5.25 0.7 1774 159.82 3.46 159.57 2.89 

8 0.2 512 157.58 6.36 0.8 2022 160.07 3.24 159.57 2.89 

9 0.1 254 160.41 9.11 0.9 2280 159.50 3.04 159.59 2.89 

10 0 0 0 0 1 2534 159.58 2.89 159,58 2,89 

  3497 
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Table A2. Average results of Approach 1 for each different strata portions, after 50 iterations. 3498 
 3499 

 Landsat stratum CHM stratum Population 

 w1 𝒏𝟏 
∑ �̂�𝒊

𝑳𝒂𝒏𝒅𝒔𝑵𝟏
𝒊=𝟏

𝑵𝟏
 𝑩𝒊𝒂�̂�𝟏 �̂�𝟏 SE(�̂�𝟏) w2 𝒏𝟐 

∑ �̂�𝒊
𝑪𝑯𝑴𝑵𝟐

𝒊=𝟏

𝑵𝟐
 𝑩𝒊𝒂�̂�𝟐 �̂�𝟐 SE(�̂�𝟐) �̂� 𝑺�̂�(�̂�) RE 

0 1 2534 154.31 -1.77 156.09 2.49 0 0 0 0 0 0 156.09 2.49 1.16 

1 0.9 2278 154.35 -1.77 156.13 2.63 0.1 256 153.79 -5.40 158.86 6.91 156.41 2.47 1.17 

2 0.8 2023 154.15 -1.77 155.92 2.78 0.2 511 156.31 -2.44 158.75 4.94 156.48 2.44 1.19 

3 0.7 1779 154.50 -1.72 156.23 2.99 0.3 755 157.38 -0.86 158.24 3.96 156.83 2.41 1.20 

4 0.6 1521 154.87 -1.79 156.66 3.22 0.4 1013 157.74 -0.71 158.45 3.44 157.38 2.37 1.22 

5 0.5 1272 153.80 -1.73 155.52 3.52 0.5 1262 159.01 -0.40 159.41 3.09 157.47 2.34 1.23 

6 0.4 1014 154.66 -1.89 156.55 3.94 0.6 1520 158.04 -0.59 158.63 2.79 157.80 2.30 1.26 

7 0.3 760 154.19 -1.81 156.01 4.53 0.7 1774 158.28 -0.63 158.91 2.61 158.04 2.28 1.27 

8 0.2 512 152.82 -1.76 154.57 5.46 0.8 2022 158.68 -0.42 159.10 2.44 158.19 2.24 1.29 

9 0.1 254 155.61 -1.80 157.41 7.84 0.9 2280 158.36 -0.47 158.83 2.29 158.69 2.20 1.31 

10 0 0 0 0 0 0 1 2534 158.49 -0.49 158.98 2.17 158.98 2.17 1.33 

  3500 
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Table A3. Average results of Approach 2 for each different strata portions, after 50 iterations. The Pp header 3501 
indicates pseudo-plots amount. 3502 

 3503 
 Landsat stratum CHM stratum Population 

 w1 𝒏𝟏 
∑ �̂�𝒊

𝑳𝒂𝒏𝒅𝒔𝑵𝟏
𝒊=𝟏

𝑵𝟏
 𝑩𝒊𝒂�̂�𝟏 �̂�𝟏 SE(�̂�𝟏) w2 𝒏𝟐 

Pp ∑ �̂�𝒊
𝑪𝑯𝑴𝑵𝟐

𝒊=𝟏

𝑵𝟐
 𝑩𝒊𝒂�̂�𝟐 �̂�𝟐 SE(�̂�𝟐) �̂� 𝑺�̂�(�̂�) RE 

1 0.9 2279 155.14 -0.94 156.08 2.63 0.1 255 62 153.46 -5.40 158.86 6.91 156.36 2.5 1.17 

2 0.8 2023 156.64 0.89 155.75 2.78 0.2 511 127 156.31 -2.44 158.75 4.94 156.35 2.4 1.19 

3 0.7 1779 157.62 1.61 156.01 2.99 0.3 755 189 157.38 -0.86 158.24 3.96 156.68 2.4 1.20 

4 0.6 1521 157.44 0.90 156.54 3.22 0.4 1013 253 157.74 -0.71 158.45 3.44 157.30 2.4 1.22 

5 0.5 1272 156.63 1.21 155.43 3.52 0.5 1262 314 159.01 -0.40 159.41 3.09 157.42 2.3 1.23 

6 0.4 1014 156.16 -0.48 156.64 3.95 0.6 1520 379 158.04 -0.59 158.63 2.79 157.83 2.3 1.25 

7 0.3 760 154.17 -1.78 155.94 4.55 0.7 1774 443 158.28 -0.63 158.91 2.61 158.02 2.3 1.27 

8 0.2 512 154.60 0.01 154.59 5.49 0.8 2022 504 158.68 -0.42 159.10 2.44 158.20 2.2 1.29 

9 0.1 254 154.16 -2.80 156.96 7.94 0.9 2280 567 158.36 -0.47 158.83 2.29 158.65 2.2 1.31 

3504 
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Abstract 3780 

Poplars are one of the most widespread fast-growing tree species used 3781 

for forest plantations. Owing to their distinct features (fast growth and 3782 

short rotation) and the dependency on the timber price market, poplar 3783 

plantations are characterized by large inter-annual fluctuations in their 3784 

extent and distribution. Therefore, monitoring poplar plantations 3785 

require a frequent update of information - not feasible by National 3786 

Forest Inventories due to their periodicity - achievable by remote 3787 

sensing systems applications. In particular, the new Sentinel-2 mission 3788 

with a revisiting period of five days represents a potentially efficient 3789 

tool for meeting this need. 3790 

In this paper, we present a deep learning approach for mapping poplar 3791 

plantations using Sentinel-2 time series. A reference dataset of poplar 3792 

plantations was available for a large study area of more than 46,000 3793 

km2 in Northern Italy and served as training and testing data. Two 3794 

classification methods were compared: (1) a fully connected neural 3795 

network (also called multilayer perceptron), and (2) a traditional 3796 

logistic regression. The performance of the two approaches was 3797 

estimated through bootstrapping procedure with a confidence interval 3798 

of 99%. Results indicated for deep learning an omission error rate of 3799 

2.77%±2.76%, showing improvements compared to logistic 3800 

regression, omission error rate = 8.91%±4.79%. 3801 
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Keywords: big data; multitemporal classification; Fully Connected 3802 

Neural Networks; forest tree crops; tree species mapping, deep 3803 

learning 3804 

 3805 

1. Introduction 3806 

Poplar (Populus spp.) plantations for timber production are globally 3807 

widespread (Ball et al., 2005) (FAO/IPC, 2018). The genus Populus is 3808 

well suited for biomass production due to its fast-growing 3809 

performance and wood quality. Poplar cultivation provides 3810 

environmental benefits too, such as the prevention of erosion and 3811 

protection of soil, water quality, habitat for many species (Corona et 3812 

al., 2020), and it is also directly used for phytoremediation and climate 3813 

change mitigation. Since conventional National Forest Inventories are 3814 

typically updated every 10 years, they are not able to produce suitable 3815 

information to support the management of poplar plantations, that are 3816 

instead cultivated with very short rotations: 2 years for bioenergy 3817 

production, and 10-12 years for plywood production. 3818 

Traditional specific inventories of poplar plantations both based on 3819 

photointerpretation or on field surveys are expensive and time-3820 

consuming (Chiarabaglio et al., 2018; Mattioli et al., 2019; Corona et 3821 

al. 2020; Marcelli et al. 2020). When, to reduce their cost, data are 3822 

acquired on the basis of a sampling design they fail in producing 3823 

spatially explicit maps (White et al., 2016) that, on the contrary, are 3824 



180 

 

even more required for reliable forest plantation management (Di 3825 

Biase et al., 2018). 3826 

Such limitations may be potentially overcome by adopting robust 3827 

automatic classification methods of remotely sensed data, which at the 3828 

same time are objective and cheaper than traditional approaches and 3829 

can be repeated to produce near-real-time information due to the vast 3830 

availability of imagery (Francini et al., 2020, Vaglio et al., 2021). 3831 

In the last few years, the increasing availability of open-access optical 3832 

satellite data and the increased big data analysis capabilities led to a 3833 

significant advancement in mapping performance of such methods (Li 3834 

et al., 2015).  3835 

The advent of more frequent and more detailed imageries (such as 3836 

those from Sentinel-2 -S2- constellation) has led to the beneficial use 3837 

of deep learning (DL) approaches (Zhu et al., 2017; Ma et al., 2019). 3838 

Many studies explored DL for RS tasks, using several NN 3839 

architectures. Relevant studies for the performance achieved in land 3840 

cover classification were conducted by Tong et al. (2020) and 3841 

Alhassan et al. (2020). They used, respectively, high-resolution RS 3842 

imagery in China and Landsat imagery in Canada. Despite good 3843 

results, both approaches had limitations. The use of high-resolution 3844 

images involves long revisit times. While the lower spatial resolution 3845 

of Landsat imagery is a limiting factor for detailed mapping of highly 3846 

heterogeneous areas where poplar plantations are located. 3847 
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Differently, the short revisit time and high spatial resolution of S2, 3848 

allowed the analysis of vegetative cycles, obtaining good performance 3849 

using machine learning approaches for crop classification in test sites 3850 

spread all over the globe (Inglada et al., 2015; Belgiu and Csillik, 3851 

2018; Vuolo et al., 2018). Furtherore, in tree crop (eucalyptus and oil 3852 

palm) mapping studies, some DL approaches, guaranteed high overall 3853 

accuracy (> 90%) in most diverse environmental conditions, such as 3854 

the Iberian Peninsula (Forstmaier et al., 2020) and Malaysia (Liu et 3855 

al., 2021; Zheng et al., 2018). 3856 

Although RS imagery has been widely used for land use and crop 3857 

classification, only a few studies focused in detail on mapping poplar 3858 

plantations. The first agroforestry area mapping and estimation study 3859 

was carried out in Punjab using LISS IV data (Ahmad et al., 2016). S2 3860 

data facilitated new studies, such as the analysis of poplar spectral 3861 

reflectance at different ages and map poplar agroforestry in two Indian 3862 

States (Rizvi et al., 2020), or in the northwest of Turkey, with a single 3863 

S2 image (Tonbul et al., 2020). Hamrouni et al. (2020) combined S2 3864 

and SAR imagery (i.e., S1), respectively to map and differentiate into 3865 

two main stand ages poplar plantations in three French sites. These 3866 

studies, although S2-based, focused on single tiles, with limited 3867 

datasets, without exploring the potential of highly frequent satellite 3868 

imagery in a big data approach to mapping poplar plantations. 3869 

This study was inspired by the idea that the spectral signature of poplar 3870 

plantations changes in time in a way that is different from that of other 3871 
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crops in the same agricultural areas. Such temporal dynamic is related 3872 

to phenological changes of poplar trees as well as with the 3873 

accumulation of biomass during the growing season.  3874 

To validate our hypothesis, we developed a DL classification 3875 

algorithm using multitemporal S2 imagery and tested it to map poplar 3876 

plantations in the large and dynamic Padan Plain where Italian poplar 3877 

plantations are concentrated. Three main findings supported the 3878 

development of our approach: (i) traditional machine learning 3879 

algorithms are not efficient enough to extract the complex and 3880 

nonlinear patterns generally observed in large datasets (Najafabadi et 3881 

al., 2015); (ii) in big data analysis, DL results generally exceed those 3882 

of machine learning (Chollet et al., 2017), (iii) DL models provide 3883 

high performance in classification, ensuring an immediately 3884 

understandable structure. The DL model we developed, was compared 3885 

in terms of accuracy with a traditional logistic regression (LR) model 3886 

based on the same predictors. The analysis was carried out for two 3887 

study years: 2017 for training and validation and 2018 to demonstrate 3888 

the replicability of the procedure. 3889 

2. Materials and Methods 3890 

2.1. Survey area 3891 

The survey area coincides with the Padan plain in Northern Italy, 3892 

where most of the Italian poplar plantations are concentrated (Mattioli 3893 

et al., 2019; Corona et al. 2020), for more than 46,000 km2 covering 3894 
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five administrative Regions (Figure 1). Using local land use maps 3895 

(D’Amico et al., 2021) we masked out forests and urban areas. The 3896 

remaining agricultural areas are characterized by different crops, 3897 

horticultural cultivation, and various forest tree crops (Azar et al., 3898 

2016), for a total of 330,000 ha. Among forest tree crops, the 3899 

specialized poplar plantations, object of our study, are predominant. 3900 

Among others, tree plantations of other broadleaf trees, generally 3901 

polycyclic plantations, represent 30% of total plantations. More 3902 

sporadic are coppice plantations of broadleaf trees, largely consisting 3903 

of willows and poplars, while coniferous wood plantations are almost 3904 

absent (Mattioli et al., 2019). 3905 

 3906 

Figure 1. Study area: Sentinel-2 summer cloud-free composite image. 3907 

 3908 

In this area, poplar plantations are intensively managed and primarily 3909 

targeted to plywood production, with rotations usually about 10-12 3910 
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years and tree spacing between 36 m2 (6 x 6 m) and 49 m2 (7 x 7 m) 3911 

(Corona et al., 2018b, Puletti et al., 2019). In about three-fourth of the 3912 

poplar plantations, the ‘I-214’ (Populus × euroamericana) hybrid 3913 

clone is used (Chianucci et al. 2020a, 2020b). 3914 

2.2. Sentinel-2 imagery 3915 

2.2.1. Pre-processing 3916 

The two twin S2 satellites feature an innovative wide-swath width 3917 

(290 km), high-resolution, MSI sensor with 13 spectral bands, and a 3918 

spatial resolution ranging between 10 and 60 m depending on the 3919 

bands (Drusch et al., 2012).  3920 

The 10 m resolution bands (three in the visible wavelengths, and one 3921 

in the Near Infrared, NIR) are highly suitable for application in 3922 

vegetation mapping with object-based image analysis (OBIA) 3923 

approaches (Chirici et al., 2016; Garcia et al. 2018; Mura et al., 2018). 3924 

S2 satellite images are available in tiles with a fixed size of 100 x 100 3925 

km. The study area is covered by 13 S2 tiles (Figure 3). We 3926 

downloaded from the ESA Copernicus Open Access Hub all the 3927 

available Level 1C images (i.e., Top-Of-Atmosphere (TOA) 3928 

reflectance values), acquired between October 2016 and March 2019, 3929 

with cloud cover less than 80% and 70% for the years 2017 and 2018 3930 

respectively, for a total of 3,716 images, of which 2,075 were used for 3931 

the 2017 analysis and the remaining 1,641 for the 2018 map update 3932 

(Figure 2). 3933 
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 3934 

Figure 2. Sentinel-2 image acquisition date for each tile. 3935 

2.2.2. Sentinel-2 multitemporal predictors calculation 3936 

The S2 Level 1C TOA images were first corrected to Bottom of 3937 

Atmosphere Level 2A reflectance, removing pixels covered by clouds 3938 

and shadows using sen2cor software v2.5.5 (Müller-Wilm et al., 3939 

2013), available in sen2r RStudio package (Ranghetti et al., 2019). All 3940 

the bands were resampled at 10 m resolution using the GDAL 3941 

‘gdalwarp’ function (Greenberg and Mattiuzzi, 2020). 3942 
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Then, we calculated a total of 68 indices to be used as predictors 3943 

during the classification, computed on the basis of multiple S2 bands 3944 

(Table 1). The study area is characteristically cloudy, given the 3945 

frequent presence of fog and proximity to mountains. Therefore, we 3946 

tested different time windows to generate a cloud-free composite with 3947 

suitable observations in almost every pixel (White et al., 2014; 3948 

Francini et al., in review). Although large, we selected a four-month 3949 

time window that ensured for each pixel the availability of cloud-free 3950 

observations. Furthermore, the cloud-free composite was computed 3951 

using time-distance-weighted averaging which guaranteed accurate 3952 

estimates of monthly pixels (Eq. 1), even if calculated using a four-3953 

month time window. 3954 

  3955 
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Table 1. Description of the predictors used in the image classification. 3956 

 3957 

Name Predictors 

Monthly NDVI (mNDVI) 12 

 
𝑚𝑁𝐷𝑉𝐼 =  

𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
 (1) 

where 𝜌𝑅𝐸𝐷 and 𝜌𝑁𝐼𝑅 are the reflectance values of each pixel in the red 

and near-infrared bands, calculated by averaging the values that the pixel 

has assumed over a temporal window of four months, weighted over time 

distance between image acquisition date and the 15th of each target month 

(i.e. between December, first month available with images downloaded 

from October and following December; Figure 2).  

Summer Spectral Bands (SSB) 

For each S2 band, we calculated the median value of the images acquired 

in the period 1st May – 30th September. These 11 spectral bands are not 

predictors but were used to calculate summer spectral indices as 

described below. 

Summer Spectral indices (SSI) 55 

Using SSB we calculated a set of 55 normalized differential indices based 

on the 55 pairs of bands available combining the 11 bands. 

Mathematically, the S2 normalized differential indices, defined as: 

 
𝐼𝑛𝑑𝑒𝑥𝑘 =

𝑆2 𝑏𝑖 −  𝑆2 𝑏𝑗

𝑆2 𝑏𝑖 +  𝑆2 𝑏𝑗
; (2) 

where i ≠ j, correspond to k-combinations (S2bi, S2bj) of the set composed 

of S2 bands. The number of k-combinations is equal to 55. It corresponds 

to the binomial coefficient calculated using the factorials according to: 

 
(

𝑛

𝑘
) =  

𝑛!

𝑘! (𝑛 − 𝑘)!
 (3) 

where n = 11 and k = 2. After that, we standardized data of different S2 

combinations as (Enwright et al., 2019): 

 𝐼𝑛𝑑𝑒𝑥𝑆𝑡_𝑖

=  
(𝐼𝑛𝑑𝑒𝑥𝑖 − 𝐼𝑛𝑑𝑒𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅)
𝐷𝑆𝐼𝑛𝑑𝑒𝑥𝑖

⁄  
(4) 
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2.3. Reference Dataset 3958 

A reference dataset is useful both to find the best classification 3959 

procedure (optimization) and to calculate the final performance of the 3960 

classification (accuracy assessment). 3961 

To create the reference dataset, we first segmented the 10 m resolution 3962 

bands of the S2 imagery acquired in the period 1st May – 30th 3963 

September (summer spectral bands, SSB, Table 1). We used the Mean 3964 

Shift (MS) segmentation algorithm which produces a labelled image 3965 

based on the spectral distance of neighboring pixels. Specifically, if 3966 

this range distance is below the range radius, the pixels are grouped 3967 

into the same cluster. The MS algorithm does not require prior 3968 

knowledge of the number and shape of the clusters (Boukir et al., 3969 

2012), so the best segmentation parameters (i.e. Spatial Radius (hs) 3970 

equal to 4 pixels, Range Radius (hr) of 500 and 15 pixels as Minimum 3971 

size (ms)) were selected by visual evaluation using a trial-and-error 3972 

approach of the alignment between the shape of the polygons 3973 

generated by segmentation and the boundaries identified in the image 3974 

(Mathieu et al., 2007). 3975 

Each of 242,893 polygons generated by the segmentation process, for 3976 

a total of 328,492.5 ha (equal to 32,849,250 S2 pixels), was assigned 3977 

to (1) poplar class (i.e., 10,189 polygons covering 31,329.3 hectares) 3978 

or (2) non-poplar class. First, the class assignment was based on data 3979 

provided by the INARBO (Inventory of forest farming tree crops in 3980 

Italy) project (Mattioli et al., 2019) and then refined by 3981 
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photointerpretation of high-resolution aerial orthophotos acquired in 3982 

the years 2014 and 2015, where it was straightforward to discriminate 3983 

the simple, typical layout of poplar plantations from other agronomic 3984 

crops. We found that poplar plantations younger than 3 years old do 3985 

not exhibit a canopy cover enough to discriminate their spectral 3986 

responses from ground vegetation and soil. For this reason, such 3987 

young plantations were not considered in this study. All the doubt 3988 

cases (0.02% of the reference dataset) were checked in the field 3989 

without finding any misclassification so that the established polygons 3990 

set can be considered as an error-free field truth. 3991 

 3992 

Figure 3. Sentinel-2 tiles processed with the reference poplar polygons 3993 

dataset. 3994 
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2.4. Moving Window approach 3995 

We implemented a window locally calibrated approach, i.e., our 3996 

algorithm divided the large survey area into 25 km x 25 km 3997 

“windows”, resulting in 208 windows among which just 79 included 3998 

poplar plantation polygons in the reference data to be used for 3999 

developing the classification models. We calibrated a different model 4000 

for each window because such 79 window areas, compared to the 4001 

entire survey area, are expected to have more homogeneous (i) 4002 

environmental conditions, (ii) weather conditions, (iii) land use and 4003 

land cover, (iv) amount of available cloud -free images, and 4004 

consequently monthly composites. 4005 

2.5. Fully Connected Neural Network 4006 

DL models consist of N stacked layers composed of M nodes that 4007 

facilitate learning through successive representations of the input data 4008 

(Heaton et al., 2018). We developed a fully connected neural network, 4009 

also called Multilayer Perceptron (MLP) where all nodes or neurons 4010 

in one layer are connected to the nodes in the next layer. The data are 4011 

transformed in each layer using weights, which are specific parameters 4012 

that link the nodes of subsequent layers (Hawryło et al., 2020). The 4013 

MLP is applied to the pixels of the 2017 segmented polygons to 4014 

classify poplar plantations using data derived by multitemporal 4015 

satellite imagery (i.e., a total of 68 predictors described in Table 1). 4016 
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The MLP method was implemented and optimized by TensorFlow, an 4017 

open-source platform for Machine Learning (Abadi et al., 2017).  4018 

We configured the MLP using a trial-and-error approach based on a 4019 

small subsample (2K polygons) of the reference dataset (i.e., 1K 4020 

poplar polygons and 1K non-poplar polygons). The MLP model 4021 

configuration that achieved larger accuracy consists of 17 layers, with 4022 

different nodes and activation functions, which are functions used in 4023 

neural networks (NN) to compute the weighted sum of input and 4024 

biases to decide if a neuron can be fired or not (Nwankpa et al., 2018). 4025 

The MLP is structured as five consecutive sequences of hidden layers 4026 

with the same activation functions but a different number of neurons 4027 

per layer. For each of the consecutive sequence, the MLP uses a 4028 

Rectified Linear Unit (ReLU) function (Eq. 5) for the first layers, 4029 

which performs a threshold operation to each input element where 4030 

negative values are set to zero, 4031 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) = {
𝑥𝑖, 𝑖𝑓 𝑥𝑖 ≥ 0
0, 𝑖𝑓 𝑥𝑖 <  0

  (5) 4032 

Then, in the second hidden layer, a Hyperbolic Tangent (Tanh) 4033 

function (Eq. 6) is applied. Tanh is an S-shaped curve passing through 4034 

the origin that, in this case, modifies the positive values produced by 4035 

Relu, returning a rapid increase for small values and an asymptotic 4036 

flattening to 1 for large ones. 4037 

𝑓(𝑥) = (
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥)    (6) 4038 
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To prevent overfitting and to ensure model generalizability, the MLP 4039 

applies the dropout layers function that serves to discard randomly 4040 

some nodes from the network during each training session, with 4041 

different probability for each sequence (i.e., respectively 20% for the 4042 

1st sequence and 10% for other four). Because each training sub-4043 

network is different, it is possible to prevent the MLP from overfitting 4044 

the training data, to improve the generalization and its ability 4045 

(Srivastava et al., 2014). For loss function optimization, we used a 4046 

Sigmoid (Eq. 7), 4047 

𝑓(𝑥) = (
1

(1+ 𝑒−𝑥)
)    (7) 4048 

that rescale the input in a fuzzy value (Benz et al., 2004) between 0 4049 

and 1, which, in our case, can be interpreted as the probability of a 4050 

pixel to be a poplar plantation. Then, we calculated the median value 4051 

of the probability to be poplar of the pixels included in each 4052 

segmented polygon to attribute it a unique probability value. Finally, 4053 

by applying a cutoff of 0.1 to the probability to be poplar value, the 4054 

polygons are assigned to the poplar or non-poplar class. This cutoff 4055 

value was chosen after several tests, to limit omission errors since it 4056 

excludes only polygons with a probability of representing poplar less 4057 

than 10% (Figure 5).  4058 

In total the proposed NN has 3,576 neurons and 1,108,295 weights 4059 

arranged in 15 fully connected hidden layers: (68 / 500 / 500 / 400 / 4060 

400 / 400 / 360 / 200 / 200 / 180 / 100 / 100 / 90 / 50 / 50 / 45 / 1) 4061 

(Figure 4). The NN was trained with the Adam gradient-based 4062 
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algorithm and categorical cross entropy as a loss function, over 150 4063 

epochs using a batch dimension equal to the size of the training 4064 

dataset. 4065 

 4066 

Figure 4. MLP model architecture. Down: the number of nodes for each layer. 4067 

Up: the activation functions used and the percentage of per-layer dropped out 4068 

nodes. 4069 

2.6. Logistic Regression 4070 

For comparison on the same dataset, we tested also the well-known 4071 

parametric approach based on logistic regression (LR).  4072 

The relationship between a categorical dichotomous variable Y, 4073 

representing the poplar or non-poplar classes, and the independent 4074 

variables X from the 68 predictors (Table 1) can be expressed in the 4075 

form: 4076 
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𝑝𝑖 = 𝑓(𝑋𝑖; 𝛽) + 𝜀𝑖    (8) 4077 

Where 𝑝𝑖 is the probability that the ith y = 1, 𝛽 is the vector parameters 4078 

to be estimated and 𝜀𝑖 is a vector of residual assumed to be distributed 4079 

with 0 mean (Agresti, 2007; McRoberts et al., 2013). 4080 

The statistical expectation of Y can be formulated by the logistic 4081 

model: 4082 

𝑝𝑖 =
𝑒𝑥𝑝(∑ 𝛽𝑗𝑥𝑖𝑗

𝐽
𝑗=1 )

1+𝑒𝑥𝑝(∑ 𝛽𝑗𝑥𝑖𝑗
𝐽
𝑗=1 )

+ 𝜀𝑖   (9) 4083 

where j indices the independent variables and 𝛽 can be estimated by 4084 

maximizing the log-likelihood L: 4085 

𝑙𝑛(𝐿) = ∑ 𝑓(𝑋𝑖; 𝛽)𝑦𝑖𝑛
𝑖=1 [1 − 𝑓(𝑋𝑖; 𝛽)](1−𝑦𝑖) (10) 4086 

As for the MLP model, the LR model provided the fuzzy probability 4087 

to be poplar of each pixel. At the polygon level, the probability value 4088 

was then attributed by the median value of the included pixels, 4089 

applying the same cutoff of MLP equal to 0.1 (Figure 5). 4090 

2.7. Moving Window calibration and performance 4091 

assessment 4092 

We performed a moving window calibration approach, so, for each ith 4093 

window (windowi), a different model was calibrated and assessed in 4094 

terms of performance. To calibrate the MLP model, the polygons 4095 

included in the windowi were split into three sets: (1) trainingi (60%), 4096 

(2) validationi (30%) and (3) testi (10%), maintaining the real, albeit 4097 

unbalanced proportion of poplar plantation and non-poplar plantation 4098 

polygons present in the windowi. For each ith window, the ith model 4099 
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uses (1) the trainingi to adjust nodes weights, (2) the validationi to 4100 

avoid overfitting, thus to evaluate the loss function during training and 4101 

(3) the testi to assess the accuracy of the model (Laurin et al., 2021). 4102 

In this way, the performance of the method is evaluated using never-4103 

seen-before data.  4104 

In contrast to the MLP, the LR calibration is not iterative, and a 4105 

validation set is not required. For this reason, the LR model was 4106 

trained using both the trainingi and the validationi while its 4107 

performance, for the sake of comparability, was assessed using the 4108 

same data (testi) used for the MLP. 4109 

The performance of models was assessed using a bootstrapping 4110 

procedure (Bradleyel and Tibshirani, 1993; Hawryło et al., 2020). For 4111 

one hundred thousand iterations we selected the 20% of the test data - 4112 

obtained aggregating the 79 testi - to calculate three parameters of 4113 

performance: the overall accuracy (eq. 11), the omission error rate (eq. 4114 

12) and the commission error rate (eq. 13).  4115 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (11) 4116 

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝐹𝑁

𝑇𝑃+𝐹𝑁
  (12) 4117 

𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝐹𝑃

𝑇𝑃+𝐹𝑃
  (13) 4118 

where TP = true positives count, corresponding to pixels correctly 4119 

classified as poplar plantation; TN = true negative count, 4120 

corresponding to pixels correctly classified as non-poplar plantation; 4121 

FP = false positive count (or commission errors), corresponding to 4122 

pixels incorrectly classified as poplar plantation; and FN = false 4123 
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negative count (or omission errors), corresponding to pixels 4124 

incorrectly classified as non-poplar plantation (Francini et al., 2021).  4125 

 4126 

Figure 5. Model flow chart. Each window is selected to locally calibrate the 4127 

model using local polygons. For each window, each local polygon’s pixel is 4128 

classified independently by MLP or LR. The polygon probability of being 4129 

poplar is evaluated from the median of the probability of being poplar for 4130 

each own pixel. 4131 
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The Overall Accuracy represents the ratio between the sum of 4132 

correctly classified polygons and the total number of polygons, 4133 

Omission Error rate refers to poplar polygons erroneously predicted 4134 

as non-poplar plantation and Commission Error rate are calculated by 4135 

reviewing the classified sites for incorrect classifications. 4136 

2.8. 2018 mapping update 4137 

Since the RS data we used as input (Table 1) can be calculated for each 4138 

year, our procedure is repeatable. Moreover, using the pre-trained 4139 

models developed for 2017, our algorithm can be applied do not 4140 

requiring a reference dataset. To prove this, we used our algorithm to 4141 

map poplar plantations in 2018, using as a dataset the 242,255 4142 

polygons obtained from the segmentation of the S2 imagery acquired 4143 

in the period 1st May – 30th September 2018 (as described in section 4144 

2.3.). We finally compared the differences between 2017 and 2018 4145 

poplar plantations predicted maps, in terms of area and changes.  4146 

3. Results 4147 

In Table 2 we reported the confusion matrices of both the MLP and 4148 

the LR models calculated considering just the test-sets, i.e., 10% of the 4149 

reference data kept as an independent dataset. 4150 

 4151 
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Table 2. Models confusion matrices. For both MLP (A) and LR (B) we report 4152 

the number of TP,TN, FP and FN. 4153 

 4154 

A Predicted MLP  

poplar 

plantation 

non-poplar 

plantation 
 

R
ef

er
en

ce
 

poplar 

plantation 

TP 

1124 

FN 

32 
1156 

non-poplar 

plantation 

FP 

2307 

TN 

22375 
24682 

  
3431 22407  

 

B Predicted LR 
 poplar 

plantation 

non-poplar 

plantation 

R
ef

er
en

ce
 

poplar 

plantation 

TP 

1053 

FN 

103 
1156 

non-poplar 

plantation 

FP 

1701 

TN 

22981 
24682 

  2754 23084  

 4155 

The results showed that out of 25,838 test polygons, the amount of 4156 

poplar plantations correctly classified (i.e., TP) was greater for MLP 4157 

predictions than for LR predictions. Furthermore, in MLP prediction 4158 

very few poplar plantation polygons were missed (i.e., FN), 4159 

representing only 0.1% of the total test-set, while LR miss three times 4160 

as many polygons compared to MLP. The amount of commission 4161 

errors rate (i.e., FP) was 8.9% for MLP and 6.6% for LR. 4162 

Models accuracy and relative confidence intervals of the three 4163 

parameters of performance were evaluated with a confidence interval 4164 
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of 99% using one hundred thousand bootstrap iterations in the same 4165 

test-set for both models. The MLP results showed an omission error 4166 

rate of 2.8% ± 2.8%, a commission errors rate of 67.2% ± 4.6% and 4167 

an overall accuracy of 91.0% ± 1.0%. LR provided an omission error 4168 

rate of 8.9% ± 4.8%, a commission errors rate of 61.8% ± 5.3% and 4169 

an overall accuracy of 93.0% ± 0.9% (Figure 6). 4170 

 4171 

Figure 6. Density distributions by overall accuracy, omission error rate and 4172 

commission error rate in one hundred thousand bootstrapping iterations for 4173 

MLP (above) and LR (bottom). 4174 

 4175 
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Figure 7 shows the number of poplar polygons in test-sets and the 4176 

performance parameters results of the models for each window 4177 

derived by the moving window calibration approach.  4178 

 4179 

Figure 7. On the top, the number of poplar plantations in test-set per window. 4180 

On the bottom, overall accuracy, omission error rate and commission error 4181 

rate for each window with respect to MLP (above) and LR (bottom). 4182 

 4183 

Where, the MLP omission errors rate remained below 10% in 87% of 4184 

the cases (i.e., 69 windows), exceeding over 50% only in four cases 4185 

due to the low presence of poplar polygons in the test-set, the 4186 

commission errors rate were less than 75% in 80% of the cases (i.e., 4187 

63 windows), and the overall accuracy was higher than 90% in 60% 4188 
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of the cases (i.e., 48 windows). The LR results per window showed an 4189 

omission errors rate that were less than 10% in 53% of cases (i.e., 42 4190 

windows), a commission errors rate that were less than 75% in 85% 4191 

of cases (i.e., 67 windows) and an overall accuracy of more than 90% 4192 

in 72% of cases (i.e., 57 windows). 4193 

After the optimization procedure and the selection of the best model, 4194 

we applied the algorithm to map poplar plantations in the subsequent 4195 

year (2018). While for 2017 the total coverage of predicted poplar 4196 

plantations was 48,638.98 ha, the update to 2018 presents a predicted 4197 

poplar plantations area of 51,846.14 ha (Table 3, Figure 8).  4198 

 4199 

Figure 8. Map of poplar plantation dynamics, with plantation added and lost 4200 

between 2017 and 2018 resulting from MLP model. 4201 

 4202 

At Regional (European Union NUTS2) level (Table 3), the area of 4203 

poplar plantations for the year 2018 increased sensibly in Veneto 4204 
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(+16%) and Emilia-Romagna (+13%), while for Friuli Venezia Giulia 4205 

there was a loss of 15% of area. Lombardy and Piedmont with over 4206 

76% of poplar plantations area show an increase in area of 9% and 6% 4207 

respectively. In absolute terms, the change in area in Lombardy 4208 

(+2131 ha) represents 46% of the total, followed by Piedmont (16%), 4209 

Friuli Venezia Giulia (15%), Emilia-Romagna (12%) and Veneto 4210 

(11%) (Figure 1). 4211 

Table 3. 2017 and 2018 poplar and non-poplar cover per administrative 4212 

Region (European Union NUTS2). 4213 

 4214 

NUTS2 

2017 2018  

Poplar 

(ha) 

Non-

poplar 

(ha) 

Poplar 

(ha) 

Non-

poplar 

(ha) 

Gain 

(ha) 

Loss 

(ha) 

Emilia-

Romagna 
4133 32076 4662 31607 1545 1016 

Friuli 

Venezia 

Giulia 

4504 37348 3812 37774 902 1594 

Lombardy 24062 65283 26193 62981 5300 3169 

Piedmont 12986 53225 13742 52345 5019 4263 

Veneto 2954 91920 3436 91417 1568 1085 

Total 48639 279854 51846 276124 14334 11127 
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4. Discussion 4215 

4.1. Summary and aim of the research 4216 

In this work we presented a classification algorithm based on a DL 4217 

approach to map poplar plantations in Northern Italy, using S2 4218 

multitemporal data. The work aims to evaluate the distribution of 4219 

poplar plantations, which are the first source of wood products for 4220 

industrial use in Italy. Despite the importance of plantations, there is a 4221 

lack of spatialized information needed for management and planning. 4222 

The S2 multitemporal data and indices proved to be effective 4223 

predictors to overcome this issue, allowing to efficiently differentiate 4224 

between poplar plantations and different land cover classes. The DL 4225 

classification algorithm was tested and compared with a traditional LR 4226 

classifier, showing better accuracy, and minimizing omission errors 4227 

(2.77%±2.76%). Our work confirms that S2 allows mapping land 4228 

cover categories (Bruzzone et al., 2017; Belgiu and Csillik, 2018; 4229 

Vuolo et al., 2018), such as poplar plantations, mapped here in a large 4230 

and dynamic study area. The herein proposed MLP algorithm 4231 

represents an efficient tool, able to provide annual statistics that are 4232 

not obtainable by traditional inventory approaches. 4233 

4.2. Sentinel-2 pre-processing 4234 

The temporal resolution of S2 satellite imagery allows increasing the 4235 

number of available cloud-free images compared to Landsat (Belgiu 4236 
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and Csillik, 2018; Gómez et al., 2016), overcoming the limitations of 4237 

missing data-pixels with no observations due to clouds or cloud 4238 

shadows (White et al., 2014). Temporal NDVI patterns represent the 4239 

most widely used tool to track phenological changes and vegetation 4240 

signatures (D’Odorico et al., 2013; Hagolle et al., 2015). Accordingly, 4241 

we produced monthly cloud-free NDVI composites using, for each 4242 

month, a temporal window of four months. It is important to note that 4243 

with the launch of the twin S2 satellite (July 2017) the number of 4244 

images doubled, consequently the revisitation time of the mission 4245 

went from 10 days to 5 days. This is the reason why we used two 4246 

different clouds thresholds for 2017 and 2018, respectively 70% and 4247 

80%. However, for future investigations, narrower temporal windows 4248 

(e.g., two months) could be tested. This aspect may convey an increase 4249 

in the classification accuracy of cultivated tree species (Vrieling et al., 4250 

2018). Another aspect that could contribute to increasing the accuracy 4251 

of the classification model in the future is the availability of longer S2 4252 

time series: Vuolo et al. (2018) demonstrated that the accuracy of 4253 

crops classification in Austria by random forest (RF) increased with 4254 

time frame of the analysis (using imagery from January to May, the 4255 

overall accuracy was about 50% while with imagery over two years 4256 

the overall accuracy reached the 95%). 4257 
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4.3. Classification algorithm 4258 

The MLP is confirmed as a “universal approximator” capable of 4259 

learning any function, such as poplar plantation classification, on the 4260 

condition that the dataset is large enough to train and validate a high-4261 

performed DL algorithm. Attention must be paid to overfitting as each 4262 

fully connected layer requires many parameters or weights. To avoid 4263 

this, the dropout layers used in each block of the MLP have proven to 4264 

be effective and no additional regularization strategies were needed. 4265 

We tested several activation functions and we obtained the best 4266 

performances using two consecutive activation functions: (i) Relu, 4267 

which set to 0 the negative input values, and (ii) Tanh, an S-shaped 4268 

function. In particular, Tanh is a zero-center function whose range lies 4269 

between -1 to 1. It is smoother than the traditional sigmoid activation 4270 

function (Eq. 7), giving a rapid increase for small positive values and 4271 

a flattening for large ones (Nwankpa et al., 2018), enhancing Relu 4272 

outputs. Among the infinite structures and activation functions that 4273 

can be developed, ours guaranteed better results than traditional (LR) 4274 

systems. However, there are many other activation functions, and their 4275 

combinations should also be investigated for these classification 4276 

purposes in future research. 4277 

Our dataset, as commonly in data-based modeling, was unbalanced. 4278 

We tried several approaches to balance the poplar and non-poplar 4279 

classes size. However, each one had some cons. The under-sampling 4280 

of the non-poplar class causes information lost for the NN while 4281 



206 

 

oversampling the poplar class increases the database size (465,408 4282 

polygons) which led to a longer computation time while do not 4283 

introduce any additional information. Although there were many other 4284 

approaches to managing dataset unbalance, in our work we did not 4285 

focus on this but tried to develop a model that would work with the 4286 

available data. Particularly, we aimed to optimize the right 4287 

performance parameter. This is because, with unbalanced dataset, 4288 

most classification performance indicators, including overall 4289 

accuracy, may provide misleading information (Devarriya et al., 2020; 4290 

Jaafor and Birregah, 2020). Consequently, we made the greatest effort 4291 

to minimize omission errors (i.e., poplar plantation polygons wrongly 4292 

classified as non-poplar plantations). While commission errors could 4293 

be removed in post-process, omission errors represent undetected 4294 

poplar plantations that would not be mapped. Thus, making the 4295 

classification algorithm and the predicted map useless.  4296 

Moreover, we developed a Moving Window Calibration approach 4297 

which locally preserving the proportion between classes. Therefore, 4298 

the proposed methodology allowed the capture of local environmental 4299 

and meteorological differences by calibrating the model for each 4300 

window. On the other hand, to replicate this methodology, the 4301 

reference dataset must be well distributed throughout the study area 4302 

and training polygons may be available for each window. Based on 4303 

local models, we classified the individual pixels of each polygon in 4304 

the window, aggregating the values by the median. This approach, 4305 
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although computationally intensive, allowed us to achieve higher 4306 

accuracies by limiting the effect of the rare misclassified pixels within 4307 

a polygon. Moreover, this object-based approach results in a vector 4308 

file, which is easier to use from an operational point of view. 4309 

Regarding the S2 bands normalization, we adopted a procedure that to 4310 

our knowledge was never applied before. Specifically, we calculated 4311 

55 standardized spectral indices SSI based on the 55 normalization 4312 

differences calculable through a pairwise combination of the 11 S2 4313 

bands. The SSI robustly represented the spectral properties of pixels, 4314 

properly helping the DL model to capture more comprehensive data 4315 

and satisfying the demand for artificial NN training data (Hu et al., 4316 

2018). While this normalization process produces some indices 4317 

common in RS applications (among which the NDVI, the NBR, etc.) 4318 

some of the SSI were never reported in the literature before and future 4319 

research should further explore their potential and limitations such as 4320 

their autocorrelation.  4321 

Finally, an advantage of DL models compared to other machine 4322 

learning methods is their greater ability to characterize the diversity in 4323 

big data and the fact that a variable selection is not required (Yu et al., 4324 

2017). For these reasons we did not analyze predictors' importance but 4325 

further investigations should be performed in future research. 4326 
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4.4. Models accuracy  4327 

The whole procedure was tested using MLP and LR (Figure 5) and 4328 

major differences were reported. The MLP had an overall accuracy of 4329 

91.0% ± 1.0%, a commission errors rate of 67.2% ± 4.6% and an 4330 

omission errors rate of 2.8% ± 2.8%. The LR results showed a 4331 

commission errors rate of 61.8% ± 5.3% and an omission errors rate 4332 

of 8.9% ± 4.8%. The overall accuracy reached by the LR was slightly 4333 

larger than that obtained by the MLP (i.e., 93.0% ± 0.9%). 4334 

Due to unbalanced class sample sizes, the model accuracy comparison 4335 

focused on commission and, most importantly, omission errors. 4336 

Therefore, the fact that the LR omission errors rate (8.9% ± 4.8%) was 4337 

three times higher than that obtained by MLP (2.8%± 2.8%) is a 4338 

critical issue that highlights the superiority of the MLP model, also 4339 

evident from the analysis of the accuracy per window, where the 4340 

omission error rate of MLP was always smaller than that of LR. At the 4341 

edges of the survey area, where fewer poplar plantations were located 4342 

(Figure 7), the omission error rate values were over 50% in four 4343 

windows for MLP models and 16 for LR models. On the other hand, 4344 

maintaining the omission errors low implies more commission errors. 4345 

As mentioned, by optimizing the omission error rate, the commission 4346 

error rate showed, even under per-window analysis, MLP values 4347 

larger than LR, especially in the western part of the survey area. 4348 

Commission errors are more abundant than omission errors because, 4349 

although the S2 data led to an increase in performance, several non-4350 
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poplar plantation polygons still appear to be identical in spectral 4351 

behaviour to that of poplar plantations (Figure 6). Similarly, it is not 4352 

possible to discriminate young plantations' spectral responses from 4353 

ground vegetation and soil by remote sensing, due to the limited 4354 

canopy structure for the first three years after planting. On the other 4355 

hand, commission error polygons can be easily removed by photo-4356 

interpretation but, to make the process completely automatic, 4357 

additional data should be tested in the future. In particular, for future 4358 

research, we suggest testing hyperspectral and/or three-dimensional 4359 

data as additional predictors. In this sense, the two polar-orbiting 4360 

Sentinel-1 satellites, performing synthetic aperture radar imaging, 4361 

may represent a crucial game-changer. 4362 

4.5. Procedure replicability 4363 

The procedure we developed for the year 2017 allowed to map the 4364 

cover of poplar plantations for a total of 48,638.98 ha. To update the 4365 

map at the following year, we applied the same pre-trained model used 4366 

for 2017 but inputting the S2 predictors assessed at the year 2018. The 4367 

predicted area of poplar plantations in 2018 was 51,846.14 ha, about 4368 

6.6% greater than that of 2017. Such remarkable variations for the two 4369 

years were registered also at regional scale (Table 3) with the greatest 4370 

increase reported in Veneto (+16%): those changes are due to the 4371 

increasing market value of poplar wood in the last decade, which has 4372 
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boosted new investments in poplar plantations (Coaloa and 4373 

Chiarabaglio, 2019). 4374 

5. Conclusions 4375 

Forest tree monitoring and assessment are rapidly evolving as new 4376 

information needs arise and new techniques and tools become 4377 

available. Among these, the most widely applied and promising 4378 

approaches today are ensemble methods and DL (Mazzia et al., 2020; 4379 

Vuolo et al., 2018). However, the exploitation of these tools, as well 4380 

as their implementation within operative management processes, 4381 

should be evidence-based (Corona, 2018a). The major contribution of 4382 

this study is the set-up of an efficient automatic approach to map forest 4383 

tree plantations on farmland using S2 multitemporal imagery. Poplar 4384 

plantations in Northern Italy have been considered as a key case study. 4385 

As a result of the study, three primary conclusions can be drawn: 4386 

• the S2 mission proved to be an efficient tool to classify forest tree 4387 

crops on farmland; the revisitation time of 5 days and the spectral 4388 

range are two key aspects for efficiently pinpointing both the 4389 

temporal and the spectral behaviors of poplar plantations: to this 4390 

end we used monthly NDVI cloud free composites, creating 55 4391 

spectral indices; 4392 

• the classification method that incorporates MLP provides accurate 4393 

classification prediction of poplar plantations: the method is 4394 

reliable and efficient, ensuring the near absence of omission 4395 
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errors; accordingly, compared with logistic regression, the MLP 4396 

allowed to reduce the omission errors from 8.9% ± 4.8% to 2.8% 4397 

± 2.8%; 4398 

• the procedure here developed and tested provide automatically 4399 

good results and can be applied to different reference datasets; to 4400 

prove this, we applied the algorithm over the year 2018, 4401 

identifying an increase in poplar plantation area of about 6.6% 4402 

compared to 2017. 4403 
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4. Conclusion 4700 

Forest monitoring and assessment are rapidly evolving as new 4701 

information needs arise and new techniques and tools become 4702 

available. The continuous stream of remotely sensed data, acquired by 4703 

any type of sensor: satellite, airborne, or drone, allowing the 4704 

acquisition of new information even in areas historically lacking in 4705 

forest maps. This scenario of big data availability was the basis of my 4706 

Ph.D., in which, the main objectives of my research were addressed in 4707 

four scientific papers. In each paper, I focused on specific preliminary 4708 

questions, attempting to answer and contribute to the increase of 4709 

scientific community knowledge. Specifically, the aims of my Ph.D. 4710 

involved the improvement of the Italian forest resources 4711 

understanding, through the availability of remote sensing data and 4712 

techniques.  Indeed, spatialized data, homogeneously available at 4713 

large scales, are increasingly critical to support sustainable forest 4714 

management. Furthermore, no less important is the simple sharing of 4715 

homogenized information layers, even at a large scale, through 4716 

modern web GIS, as done for the national FIS. 4717 

The first high-resolution forest mask of Italy (NFM) produced by 4718 

combining local forest and land use maps, resulted more congruent 4719 

with NFI statistics than forest masks based on radar (JAXA) and 4720 

optical (HRL) imagery, underestimating for less than 2% of the 4721 

official NFI estimation of the total forest area. At national and regional 4722 

levels, the masked GSV map constructed using the NFM produced 4723 
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GSV estimates that were most in line with the official NFI estimates. 4724 

A major disagreement with the official NFI estimates was found in the 4725 

southern regions and islands, most probably because of the presence 4726 

of the Mediterranean macchia, which is more difficult to accurately 4727 

map. The negative relationship between forest mask accuracy and the 4728 

standard error of the GSV estimate demonstrated that the accuracy of 4729 

the forest mask must be considered in the GSV estimation through the 4730 

model-assisted estimator. Indeed, a more accurate forest mask can 4731 

compensate for systematic model prediction errors, leading to greater 4732 

agreement with official NFI GSV estimates at both the national and 4733 

regional levels. Despite these results, due to the non-homogeneous 4734 

origin, the NFM developed cannot be currently adopted as an official 4735 

layer for reporting purposes. Therefore, an operational review of the 4736 

mask using remote sensing data and manual photointerpretation is 4737 

necessary. 4738 

The harmonized CHM produced by combining all the ALS data sets 4739 

currently available in Italy covers 59% of Italian forests. These kinds 4740 

of data are essential for forest monitoring and should be routinely 4741 

acquired together with aerial images. In the future, wall-to-wall ALS 4742 

coverage in Italy would improve the prediction of forest variables. To 4743 

date, the most effective way to employ ALS national coverage for 4744 

forest GSV estimation resulted from integration with Landsat spectral 4745 

data, in conjunction with NFI 2005 field measurements. Among the 4746 

different approaches of estimates, we tested a stratified model-assisted 4747 
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within strata, represented respectively by Landsat and ALS coverage, 4748 

and a stratified model-assisted approach which involve LiDAR-based 4749 

pseudo-plots to create a more accurate GSV-Landsat model for the 4750 

Landsat stratum. The study confirmed that LiDAR and Landsat data 4751 

are a reliable and efficient source of information to enhance GSV 4752 

estimates, even in large and complex Mediterranean forest areas. 4753 

LiDAR data, although fragmentary and acquired in different years, 4754 

allowed to improve GSV estimates. However, to improve forest 4755 

variable predictions it is strongly recommended that in the future the 4756 

Italian NFI evolves into a permanent monitoring system, where a 4757 

sample of the total number of plots is visited in the field every year to 4758 

complete the revisit of all plots in 5-10 years. In addition, achieve the 4759 

wall-to-wall lidar coverage with surveys planned simultaneously with 4760 

NFI surveys would facilitate the prediction of forest variable estimates 4761 

with even greater precision. 4762 

Based on S2 multitemporal imagery, an efficient automatic approach 4763 

to map and update forest tree plantations on farmland was set up in the 4764 

Padan Plain, the most suitable area for poplar production in Italy. The 4765 

results highlighted the great potential of S2 data in agricultural and 4766 

forest species identification, and how the use of large data sets with a 4767 

DL approach leads to more accurate mapping results than traditional 4768 

methods, reducing errors of omission by approximately two-thirds. 4769 

 4770 
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A common thread throughout the studies included in this thesis was 4771 

the use of remote sensing big data: i. for their identification and 4772 

homogenization of information layers at a national scale (Paper I); ii. 4773 

for large-scale evaluation of the effect of different forest masks in 4774 

volume estimation (Paper II); iii. in the GSV estimation with different 4775 

sources of information such as CHM and Landsat metrics at a national 4776 

scale (Paper III), or iv. through a DL approach for the classification of 4777 

poplar plantations in the Padan Plain (Paper IV). 4778 

In this thesis, the main aim was to create and to increase knowledge 4779 

about new information layers, augmenting the Italian forestry 4780 

availability of consistent and reliable forest spatial data, potentially 4781 

useful to support sustainable forest management. Crucial to clarify 4782 

some of the aims of the thesis was the period spent at the Swedish 4783 

University of Agricultural Sciences (SLU) in Umeå. The economic 4784 

and social importance of Sweden's forests appeared from the 4785 

numerous forest monitoring programs based on remote sensing data. 4786 

Moreover, information on the distribution and status of forests are 4787 

periodically updated with freely available data in the framework of 4788 

NFI. In the context of research and knowledge development, it is 4789 

critical to have consistent up-to-date data and a well-structured NFI, 4790 

with raw data shared with researchers, technicians, and stakeholders.  4791 

In the future, more consistent integration of remote sensing 4792 

applications for forest mapping of different forest variables in the 4793 

framework of the NFI should be promoted in Italy.  4794 
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