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Abstract We introduce a class of local likelihood circular density estimators, which
includes the kernel density estimator as a special case. The idea lies in optimizing a
spatially weighted version of the log-likelihood function, where the logarithm of the
density is locally approximated by a periodic polynomial. The use of vonMises density
functions as weights reduces the computational burden. Also, we propose closed-
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the performance and illustrate the results.
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1 Introduction

A circular observation can be represented by a point on the unit circle and measured
by an angle θ ∈ [−π, π), after both an origin and an orientation have been chosen. Its
real-line representation is provided by the equivalence class {2mπ + θ,m ∈ Z}, and
therefore standard linear methods are not suitable for circular data analysis.

Classic examples include flight direction of birds, wind and ocean current direction.
Time of day, or time of year are also obvious candidates for directional modelling.
When, along with a direction, we report also the time of the day when it has been
recorded, we are collecting two-dimensional circular data. In zoology many multi-
dimensional instances arise. For example, Fisher (1993) considers the orientations
of the nests of noisy scrub birds along the bank of a creek bed, together with the
corresponding directions of creek flow at the nearest point to the nest: here the joint
behaviour of these random variables is of interest. Multidimensional circular data
are also commonly found in the analysis of protein structure (Lovell et al. 2003). In
political science, Gill and Hangartner (2010) study directional party preferences in a
two-dimensional ideological space for the German Bundestag elections.

Maximum likelihood estimation is a common approach in many statistical prob-
lems, although it requires an assumption that the unknown target belongs to a restricted
class of functions. To obtain more general models, Tibshirani and Hastie (1987) intro-
duced the concept of local likelihood. They proposed to fit a regression function using
only the observations falling within a certain window around the estimation point.
In the context of density estimation, local likelihood requires spatially weighting the
log-densities. Depending on the smoothing degree, the methodology can be viewed,
in practice, as basically parametric or nonparametric.

The log-densities can be modelled in various ways corresponding to various
techniques. Hjort and Jones (1996) have established a general framework, where a
parametric family is locallymodelled, by allowing its parameters change along the sup-
port. Loader (1996a) focused on the use of log-polynomials. Eguchi and Copas (1998)
proposed an alternative construction and focus on properties related to asymptotics
when the smoothing degree is fixed. Delicado (2006) proposed a unified formulation
of these local likelihood approaches based on the concept of sample truncation.

In the present paper, we discuss local polynomial likelihood in order to intro-
duce small-biased circular density estimation. The current literature on nonparametric
circular density estimation is substantially limited to the classical kernel estimator
introduced byHall et al. (1987), and contributions introducingmore sophisticated non-
parametric methods, able to arbitrarily reduce the asymptotic bias without asymptotic
variance inflation, have, until now, never been systematically studied. Our proposed
methods make it possible to employ a priori knowledge about the smoothness of the
target density. It seems that in the current literature there is no specific focus on local
methods which allow for this. A strong, technical motivation could be that in the
circular setting there is no exact counterpart for the concept of kernel order, as in
the Euclidean setting. On the other hand, the absence of boundaries in the support of
directional distributions (circle, sphere or torus) could make nonparametric estimation
less challenging. Therefore, the serious problem of boundary bias is unknown for non-
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Euclidean data. However, small bias estimation in nonparametric circular regression
has been introduced by Di Marzio et al. (2009, 2013).

Recently Di Marzio et al. (2016) have presented a computational study where den-
sity estimation based on local polynomial likelihood is investigated for two practical
issues not treated in this paper: the impact of the density normalization step when the
sample size is moderate; and the effectiveness in identifying the number of population
modes.

In Sect. 2 we present the model together with some major features of the esti-
mators, while Sect. 3 is devoted to asymptotic accuracy. In Sect. 4 we show
how some numerical aspects can be greatly simplified if the d-fold product
(d ≥ 1) of von Mises densities is used as the weight function. After some
asymptotic approximations and interpretations, two new estimators are proposed,
which could inspire similar counterparts in the multidimensional Euclidean set-
ting. Section 5 is devoted to numerical experiments where the main theoretical
properties are confirmed in small to moderate sample sizes. Finally, Sect. 6
contains a real data example related to the three-dimensional structure of pro-
teins.

2 The model

Let f be a circular population density, i.e. a non-negative, 2π -periodic function with∫
[−π,π)d

f = 1, d ≥ 1. We want to estimate f at θ ∈ [−π, π)d , using a realization
θ1, . . . , θn of a random sample Θ1, . . . ,Θn drawn from f .

Once the domain of f has been partitioned into S equal cells, say C1, . . . ,CS ,
let ns and Ps denote the cell counts and probabilities, respectively. Due to the mean
value theorem we can write Ps = f (θ s)(2π)d/S for some θ s ∈ Cs . The likelihood
is c

∏S
s=1 P

ns
s subject to

∑S
s=1 Ps = 1, where c is a multinomial coefficient. Using

Lagrange multipliers, this leads to a penalized log-likelihood

L( f ) = log c +
S∑

s=1

{ns log Ps − nPs} .

Assuming that the number of cells is sufficiently large so that not more that one
observation falls in each one, the sum can be taken over the n observations, ns =
1, and Ps can be replaced by Pi , the probability for the cell containing the i th
observation.

For β ∈ [−π, π)d with j th entry denoted by β( j), we define the kernel function

Kκ1,...,κd (β) = ∏d
j=1 Kκ j

(
β( j)

)
, where Kκ j is a circular kernel with zero mean

direction and concentration parameter κ j ≥ 0; see Definition 1 given by Di Marzio
et al. (2011). The weight function Kκ j is usually chosen to be a continuous density
function whose support is the circle with the property that as κ j → ∞ the density
tends to concentrate at the mode. If we spatially weight each summand of L( f ) by
Kκ1,...,κd , and approximate the second sumwith an integral, ignoring the constant term,
we obtain the following definition of a local log-likelihood at θ ∈ [−π, π)d ,

123



M. Di Marzio et al.

Lθ ( f ) =
n∑

i=1

Kκ1,...,κd (θ i − θ) log f (θ i ) − n
∫

[−π,π)d

Kκ1,...,κd (α − θ) f (α)dα.

The number of observations contributing to the estimate in the j th direction is related
to the magnitude of the concentration κ j .

The main motivation for defining an estimator of f (θ) as the maximizer of Lθ ( f )
over f lies in the property E f [Lθ ( f )] ≥ E f [Lθ (g)] for all non-negative functions g,
with equality holding when f (u) = g(u), for any u ∈ [−π, π)d . This is shown by
noting that x ≥ log x + 1 if x > 0. The condition x > 0 extends our methodology
also to non-negative regression function estimation.

As amodel for log f consider a (2π -periodic) pth degree sin-polynomial (DiMarzio
et al. 2009)

Pp(λ) = a0 +
p∑

s=1

(S′
λ)

⊗s as
s! ,

with λ ∈ R
d , a0 ∈ R, as ∈ R

ds , s ∈ (1, . . . , p), Sλ = (
sin
(
λ(1)

)
, . . . , sin

(
λ(d)

))′
,

and S⊗s
λ denoting the sth order Kronecker power of Sλ. We call Pp a sin-polynomial

because the functions sins are reminiscent of the monomial bases for ordinary polyno-
mials. Likewise, we associate the terms linear and quadratic, respectively, to P1 and
P2. We use sin functions since the absolute value of the sine of a difference depends
only on the magnitude of the smallest arc between the two respective points. The use
of a simple difference, as for standard local polynomial modelling, would not be suited
to angles because it depends on whether the origin belongs to above the smallest arc
or not. In both cases, the sign depends on the orientation choice, that is also arbitrary,
but this is not relevant due to the symmetry of our weight functions.

Since f is determined by a = (a0, a1, . . . , a p)
′, we get

Lθ (a) =
n∑

i=1

Kκ1,...,κd (θ i − θ)Pp(θ i − θ)

− n
∫

[−π,π)d

Kκ1,...,κd (α − θ) exp(Pp(α − θ))dα.

Differentiating Lθ (a) with respect to the elements of a, and setting these partial
derivatives equal to 0, leads to

∑p
s=0 d

s equations:

1

n

n∑

i=1

A(θ i − θ)Kκ1,...,κd (θ i − θ)

=
∫

[−π,π)d

A(α − θ)Kκ1,...,κd (α − θ) exp
(Pp(α − θ)

)
dα, (1)

where A(λ) = vec
(
1, S′

λ, . . . ,
(
S′

λ

)⊗p
/p!

)
.
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Fig. 1 (Normalized) density estimates for samples of size 100 from a von Mises distribution with concen-
tration parameter 1 (left) and 5 (right), for P0 (dashed), P1 (dotted), and P2, (dash-dot) with smoothing
parameter κ = 0. True density is continuous line

If log f is smooth enough at θ , the sin-polynomialPp represents a series expansion
of log f up to order p, and solving the system of Eq. (1) for a gives the estimates â =
(â0, â1, . . . , â p)

′ of ã = (ã0, ã1, . . . , ã p)
′, where, for θ ∈ [−π, π)d , ã0 = log f (θ)

and ãs is the vector of the mixed partial derivatives of total order s of log f at θ . For
example, ã1 is the gradient vector, and ã2 = vec(H), where H denotes the Hessian
matrix. Arguments in Loader (1996a) assure the existence and uniqueness of â since
cartesian products of circles are compact. Setting g = log f , and ĝ(θ) = â0 the
density estimate at θ ∈ [−π, π)d is then given by

f̂ (θ) = exp(ĝ(θ))
∫
[−π,π)d

exp(ĝ(θ))dθ
. (2)

When p = 0, formula (2) simplifies to the standard kernel estimator (Di Marzio
et al. 2011), whereas for p > 0 it generally becomes nonlinear and the denominator is
required tomake it a bona fide density. It is rotationally invariant, that is â = â∗, where
â∗ is the estimate using translated data θ1 + ω, θ2 + ω, . . . , θn + ω,ω ∈ [−π, π)d .
Thus, if we rotate the initial direction byω the estimate is not affected. This, in circular
statistics, is an important property as the choice of the origin is arbitrary.

Maximum smoothing (κ = 0) yields non-uniform estimates when p > 0, whereas,
if p = 0, it gives 1/(2π) for any data.When κ = 0 the contribution of one observation
to the estimate does not depend on its location, and this makes the inferential problem
fully parametric. Therefore, the use of a constant weight function in the estimate
amounts to selecting an element within the parametric family of sin-polynomials we
are modelling as a global estimate. When p = 0 this family contains only the element
1/(2π), while p > 0 produces a sinusoidal estimate. Figure 1 shows an example using
von Mises data, in which the amplitude of the sinusoidal behaviour depends on the
population.
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3 Accuracy

As a starting point, we establish that asymptotic properties of estimator (2) can be
conveniently expressed by referring to those of the estimators of log-densities. This
can be seen by a very general argument that requires consistency of the estimator and
smoothness of both the population and the estimate. To simplify notation, we initially
consider the one-dimensional case.

Using again g = log f , in virtue of Corollary 1, we have that, for large n, Rn =
ĝ−g ≈ 0 and so exp(g+Rn) ≈ f ×(1+Rn). This shows that the rate of convergence
of the log-density estimator at θ ∈ [−π, π) does not change when we exponentiate
it, whereas its magnitude varies due to the multiplicative factor f (θ). Clearly, this
transformation improves the estimation at the tails, and, more generally, over the
regions where f (θ) < 1. Such regions are generally a large part of the support when
we note that our densities are continuous functions over [−π, π). Concerning the
convergence rate of the normalized estimator, we see that

f × (1 + Rn)

(

1 −
∫

f × Rn

)

= f × (1 + O(Rn)),

so the rate of convergence does not change even after normalization. Coming to the
magnitude of the mean integrated squared error (MISE), it is interesting to note that
above expression makes it possible to invoke Theorem 1 of Glad et al. (2003). They
prove that, when the un-normalized area is bigger than one, then it does not worsen
if we add to it a fixed quantity that makes its integral equal to one. This result can be
considered very strong because it holds for any sample size. Obviously, if the area of
our estimate is smaller than one, this theorem will not apply; however, we can still be
confident that severe, often negative, bias at the peaks has been reduced. Comparisons
of normalized and un-normalized estimators can be found in Di Marzio et al. (2016).

In general system (1) has only numerical roots when p > 0, and direct accuracy
calculations are impossible, and so we expand (1) to obtain an expression for the
estimation error. We consider un-normalized estimators throughout this section.

3.1 Asymptotics

The starting point for obtaining asymptotic properties is the expansion of system (1),
for â around ã,

1

n

n∑

i=1

A(θ i − θ)Kκ1,...,κd (θ i − θ)

−
∫

[−π,π)d

A(α − θ)Kκ1,...,κd (α − θ) exp
(
P̃p(α − θ)

)
dα

−J̃(â − ã) + o(â − ã) = 0,

123



Circular local likelihood

where P̃p(λ) = ã0 + ∑p
s=1(S

′
λ)

⊗s ãs/s!, and J̃ = ∫
[−π,π)d

A(α − θ)A(α −
θ)′Kκ1,...,κd (α − θ) exp

(
P̃p(α − θ)

)
dα is the Jacobian matrix of the local likelihood

system at a = ã. It follows that

â − ã ≈ J̃−1

(
1

n

n∑

i=1

A(θ i − θ)Kκ1,...,κd (θ i − θ)

−
∫

[−π,π)d

A(α − θ)Kκ1,...,κd (α − θ) exp
(
P̃p(α − θ)

)
dα

⎞

⎟
⎠ . (3)

Starting from Eq. (3), asymptotic bias and variance, for the case of order p ≥ 1 of the
approximating sin-polynomial, are provided by

Theorem 1 Define as ei the (i, i)th entry of
∫
[−π,π)d

K 2
κ1,...,κd

(α)A(α)A(α)′dα, and
assume that

(a) limn→∞ κ j = ∞ for j ∈ (1, . . . , d);
(b) limn→∞ n−1ei = 0 for i ∈ (1, . . . ,

∑p
s=0 d

s).

Moreover, assume that, for odd p, all the mixed derivatives of total order p + 1 of
the log-likelihood function exist and are continuous in [−π, π)d , and, for even p, this
also holds for all the mixed derivatives of total order p + 2, then, we have

(i) for odd p

E[â] − ã ≈ J̃−1
∫

[−π,π)d

A(α)Kκ1,...,κd (α)(S′
α)⊗p+1 ã p+1

(p + 1)!dα f (θ)

(ii) for even p > 0

E[â] − ã ≈ J̃−1
∫

[−π,π)d

A(α)Kκ1,...,κd (α)

{

f (θ)(S′
α)⊗p+2 ã p+2

(p + 2)!

+S′
α D f (θ)(S′

α)⊗p+1 ã p+1

(p + 1)!
}

dα,

where D f (θ) denotes the gradient of f at θ , and 1 is a vector of ones of length d p+1

for odd p, and d p+2 for even p > 0.
Moreover, for both (i) and (ii)

Var[â] ≈ 1

n
f (θ)J̃−1

∫

[−π,π)d

A(α)A(α)′K 2
κ1,...,κd

(α)dα J̃−1

Proof See “Appendix”. 
�
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Using results in Theorem 1, component-wise consistency of (â0, â1, . . . , â p)
′

comes from a direct application of Chebychev’s inequality, as stated in

Corollary 1 If assumptions (a)and (b)of Theorem1hold, then â0
p→ ã0 and âs

p→ ãs
for any s ∈ (1, . . . , p).

Remark 1 If we focus on â0, the results in Theorem 1 can be simplified as follows.
For a multiindex j = ( j1, . . . , jd), and a kernel Kκ1,...,κd , set

η j (Kκ1,...,κd ) =
∫

[−π,π)d

Kκ1,...,κd (α)

d∏

i=1

sin ji
(
α(i)

)
dα,

and notice that, due to the symmetry of Kκ1,...,κd , η j (Kκ1,...,κd ) = 0 if ji is odd for at
least one i ∈ (1, . . . , d). Now, denote as v( j)(θ) the mixed partial derivative of total
order | j | = ∑d

i=1 ji of a function v at θ , and set i = (i1, . . . , id) and g = log f .
Then, using the results in Theorem 1, along with the approximation

J̃ ≈ f (θ)

∫

[−π,π)d

A(α)A(α)′Kκ1,...κd (α)dα,

the leading term of the bias of â0 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

| j |=(p+1)/2
η2 j (Kκ1,...,κd )

g(2 j)(θ)

(2 j)! for odd p,

∑

| j |=(p+2)/2
η2 j (Kκ1,...,κd )

1

f (θ)

{
g(2 j)(θ) f (θ)

(2 j)!
+ ∑

|i |=1:i≤ j

g(2 j−i)(θ) f (i)(θ)

(2 j − i)!
}

for even p > 0,

where j ! = ∏d
i=1 ji !, and i ≤ j means that is ≤ js for each s ∈ (1, . . . , d), while, in

either case, the leading term of the variance is

1

n f (θ)

∫

[−π,π)d

K 2
κ1,...,κd

(α)dα.

Remark 2 The above results can be further simplified if Kκ1,...,κd is the d-fold product
of von Mises kernels with κi = κ > 0 for each i ∈ (1, . . . , d), i.e. Kκ1,...,κd (θ) =
[2π I0(κ)]−d exp

(
κ
∑d

j=1 cos
(
θ ( j)

))
, where Is(·) is the modified Bessel function of

the first kind and order s. Then, for j ≥ 0, it holds that

η2 j (Kκ1,...,κd ) =
d∏

i=1

OF(2 ji )I ji (κ)

κ ji I0(κ)
, and
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∫

[−π,π)d

K 2
κ1,...,κd

(α)dα =
[

I0(2κ)

2π I 20 (κ)

]d

,

where OF(z) stands for the odd factorial of z ∈ Z
+, with OF(0) = 1.

For large enough κ, I d0 (2κ)/I 2d0 (κ) ≈ (πκ)d/2 and I j (κ)/I0(κ), j ∈ (1, . . . , d),
can be approximated by 1 with an error of magnitude O(1/κ). These approximations,
along with the assumptions in Theorem 1, give an asymptotic bias of O

(
κ−(p+1)/2

)

for odd p and O
(
κ−(p+2)/2

)
for even p, while, in both cases, the asymptotic variance

is O
(
n−1κd/2

)
. As a consequence, the value of κ which minimizes the asymptotic

mean squared error of â0 is O
(
n2/(2(p+1)+d)

)
for odd p, and O

(
n2/(2(p+2)+d)

)

for even p, which lead to rates of convergence of orders n−2(p+1)/(2(p+1)+d) and
n−2(p+2)/(2(p+2)+d), respectively.

As previously noted, when p = 0 system (1) has a closed form solution.
This allows direct calculations, without using Theorem 1. For d = 1, the lead-
ing terms of bias and variance are, respectively, 1/2 f ′′(θ)/ f (θ)

∫
sin2 Kκ , and

1/(n f (θ))
∫
K 2

κ . Because the local linear fit has the bias leading term equal to
1/2

(
f ′′(θ)/ f (θ) − f ′(θ)2/ f (θ)2

) ∫
sin2 Kκ and the same variance, the respective

convergence rates are the same. Therefore, apart from the stationary points, the P0 fit
is asymptotically superior to the (un-normalized)P1 one where the population density
is concave, as is usually the case around the modes.

The previous results can be formulated for f̂ instead of â0.When d = 1, the leading
terms of the biases of the un-normalized estimates, up to order two, are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f ′′(θ)
2

∫ π

−π

sin2(u)Kκ(u)du if p = 0

1
2

(
f ′′(θ) − f ′(θ)2

f (θ)

) ∫ π

−π

sin2(u)Kκ(u)du if p = 1

2 f ′(θ)4−3( f (θ) f ′′(θ))2+ f (θ)3 f (4)(θ)

4! f (θ)3

∫ π

−π

sin4(u)Kκ(u)du if p = 2,

whereas the asymptotic variances are all equal to f (θ)/n
∫
K 2

κ .

3.2 Smoothing degree selection

In order to select the smoothing degree, we prefer likelihood cross-validation since
it does not require explicit estimation of higher order derivatives, as happens for any
plug-in approach, and explicitly takes account of the risk function we use for our sin-
polynomialmodelling.We start with a caveat as follows. The local likelihood estimator
is nonlinear in nature when p > 0. Consequently, when the smoothing parameter(s)
is (are) fixed, if f̂i are the normalized estimates from N samples of size ni , then the
(normalized) estimate using all the data from the combined samples is not the same
as
∑N

i=1 ni f̂i/
∑

ni , as would be the case for p = 0. This anomaly, which leads to an
increased computational burden when cross-validation is used, is also apparent in the
Euclidean setting.
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We could use a normalized estimate, or just penalize the un-normalized one. Under
the first perspective, the likelihood cross-validation criterion for density estimation
suggests maximizing the leave-one-out log-likelihood

n∑

i=1

{

log f̂−i (θ i ) − log
∫

f̂−i (α)dα

}

over {κ1, . . . , κd}, where f̂−i indicates an estimate obtained after removing the i th
observation. The second approach leads to a penalized likelihood given by the target

function
∑n

i=1 log f̂−i (θ i ) − λ
(∫

f̂ (α)dα − 1
)
, where λ is some penalty; here, the

difficulty lies in choosing an appropriate λ.
The first approach appears more direct, but turns out to be very computationally

intensive; this is a consequence of the caveat explained above. However, passing to
the logarithm we can approximate the second term by n log

∫
f̂ (α)dα. Noting that

∫
f̂ ≈ 1, a Taylor series approximation of the logarithm leads to

n∑

i=1

log f̂−i (θ i ) − n

⎛

⎜
⎝

∫

[−π,π)d

f̂ (α)dα − 1

⎞

⎟
⎠ . (4)

This can be seen as the same as a penalized likelihood when λ = n. Formula (4)
has been presented by Loader (1996b, p. 90) as a direct application of standard cross-
validation to his log-likelihoodmodel

∑
log f (Xi )−n

(∫
f (u)du − 1

)
, that is slightly

different from our L( f ).

4 Computational aspects and interpretation

System (1) is nonlinear and contains a number of integrals; hence, closed-form solu-
tions are in general unavailable. Nevertheless, when products of von Mises densities
are used as kernels, it is possible to alleviate this issue.

In Sect. 4.1 we indicate a way to avoid numerical integration based on the properties
of Bessel functions when P1 is used. This strategy does not apply for higher order
sin-polynomials (p > 1) because cross-terms do not allow us to obtain separable
integrals. Even avoiding cross-terms would not work since the resulting integrals do
not have any explicit expression. In Sect. 4.2, based on asymptotic arguments, we
present, for P1 and P2 fits, a simple way to obtain closed-form solutions without
resorting to numerical integration.

4.1 Local linear fit

A local linear fit for f at θ ∈ [−π, π)d can be obtained starting from the solution for
a0, of d + 1 equations
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1

n

n∑

i=1

A(θ i − θ)Kκ1,...,κd (θ i − θ) =
∫

[−π,π)d

A(α − θ)Kκ1,...,κd (α − θ)

× exp

⎛

⎝a0 +
d∑

j=1

a( j)
1 sin

(
α( j) − θ ( j)

)
⎞

⎠ dα.

(5)

We will denote the quantities on the LHS by the statistics

M0 = 1

n

n∑

i=1

Kκ1,...,κd (θ i − θ) (6)

and, for j ∈ (1, . . . , d),

M( j)
p = 1

n

n∑

i=1

sinp
(
θ

( j)
i − θ ( j)

)
Kκ1,...,κd (θ i − θ). (7)

Using a vonMises kernel, and denoting {(2π)d
∏d

j=1 I0(κ j )}−1 byB, the quantities
in the RHS of system (5), respectively, become

exp (a0)B
d∏

j=1

∫ π

−π

exp
(
κ j cos

(
α( j) − θ ( j)

))
exp

(
a( j)
1 sin

(
α( j) − θ ( j)

))
dα( j),

and

exp (a0)B
∫ π

−π

exp
(
κi cos

(
α(i) − θ (i)

))
exp

(
a(i)
1 sin

(
α(i) − θ (i)

))

× sin
(
α(i) − θ (i)

)
dα(i)

d∏

j 
=i

∫ π

−π

exp
(
κ j cos

(
α( j) − θ ( j)

))

× exp
(
a( j)
1 sin

(
α( j) − θ ( j)

))
dα( j),

for i ∈ (1, . . . , d). Hence, expressing the integrals as Bessel functions, the above
quantities can be, respectively, rewritten as

exp (a0)B(2π)d
d∏

j=1

I0
(∥
∥
∥
(
κ j a( j)

1

)∥
∥
∥
)

,
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and

exp (a0)B(2π)d I1
(∥∥
∥
(
κi a(i)

1

)∥∥
∥
)
sin
(
atan2

(
a(i)
1 , κi

)) d∏

j 
=i

I0
(∥∥
∥
(
κ j a( j)

1

)∥∥
∥
)

,

where atan2(y, x) gives the angle (in radians) between the x-axis and the vector from
the origin to (x, y). Then, taking the ratio gives

M( j)
1

M0
=

I1
(∥∥
∥
(
κ j a( j)

1

)∥∥
∥
)
sin
(
atan2

(
a( j)
1 , κ j

))

I0
(∥∥
∥
(
κ j a( j)

1

)∥∥
∥
) .

As for the existence conditions, due to the circular kernel definition, M0 > 0. This
quantity has to be solved in order to obtain â( j)

1 . Such an approach gives the numerical
solutions for all the partial derivatives ( j ∈ (1, . . . , d)). Finally, substituting these into
the first equation of system (5), we obtain

exp (â0) =
1
n

∑n
i=1

[∏d
j=1 exp

(
κ j cos

(
θ

( j)
i − θ ( j)

))]

(2π)d
∏d

j=1 I0
(∥∥
∥
(
κ j â( j)

1

)∥∥
∥
) . (8)

This expression suggests that P1 modelling can be seen as a correction of the kernel
density estimator which basically reduces the estimate where the density gradient has
nonzero norm, and leaves it unchanged at the maxima and minima. Thus, if κ j are the
same both for p = 1 and p = 0, the un-normalized area of the case p = 1 is strictly
smaller than one. Hence, normalization would result in bias reduction (increase) near
the mode (along the valleys) and in variance inflation, drastically contrasting with the
un-normalized fit that has same bias as case p = 0 at stationary points.

4.2 Asymptotic approach

Closed-form solutions for system (1) do not exist for usual circular kernels if p > 0.
This is in contrast with the Euclidean setting, where the use of the Gaussian kernel
makes them available if we implement P1 and d ∈ (1, 2), or p = 2 and d = 1. Hjort
and Jones (1996) report them; see their formulas (5.1), (5.2) and (7.3). In this section
we obtain closed-form approximate solutions when the von Mises kernel is used by
appealing to some asymptotic arguments.

Like any Euclidean kernel, as n increases circular kernels also concentrate, giving
significant weight only to those observations which are close to the estimation point.
For large sample sizes, this allows these approximations

⎧
⎨

⎩

cos(u) ≈ 1 − 1
2 atan2(sin(u), cos(u))2

I0(κ) ≈ (2πκ)−1/2 exp(κ)

sin(u) ≈ atan2(sin(u), cos(u)).

(9)
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The resulting functions lead to closed forms for both integrals and estimators when
P1 or P2 are modelled. We use periodic functions since the difference between two
angles can fall outside the interval [−π, π). Numerically, it could be convenient to
rescale the kernel in order to avoid the weight values diverging too much which would
affect stability. For this reason, we have nevertheless included a scale factor, although∫
Kκ j 
= 1.

Result 1 Consider the log-likelihood system (1) with p = 1, d ≥ 1, and a d-fold
product of von Mises densities as the weight function. The use of approximations (9)
within the integrands in the RHSs of the system leads to the following closed form
solutions:

â0 = logM0 − 1

2

d∑

j=1

κ j

(
M( j)

1

M0

)2

, (10)

â( j)
1 = κ j

M( j)
1

M0
, for j ∈ (1, . . . , d), (11)

with M0 and M( j)
1 defined in Eqs. (6) and (7).

Since the â0 and â
( j)
1 formulations do not have an intuitive nature, it is of interest to

further examine their structure. They are consistent for ã0 and ã( j)
1 , respectively, after

observing the limits M0
p→ f (θ) and M( j)

1
p→ ∂ f (θ)/∂θ ( j) ∫ sin2

(
α( j)

)
Kκ j

(
α( j)

)

dα( j). This latter integral, for large κ j , is approximately equal to 1/κ j , which is
consistent with the rate of convergence in the linear case.

Result 2 Consider the log-likelihood system (1) with p = 2, d ≥ 1, and a d-fold
product of von Mises densities as the weight function. Using the approximations (9)
leads to these expressions for the RHS of this system:

∫

[−π,π)d

Kκ1,...,κd (α − θ) exp
(Pp(α − θ)

)
dα ≈ D,

∫

[−π,π)d

(
S′

α−θ

)⊗1
Kκ1,...,κd (α − θ) exp

(Pp(α − θ)
)
dα ≈ DC−1a1,

∫

[−π,π)d

(
S′

α−θ

)⊗2
Kκ1,...,κd (α − θ) exp

(Pp(α − θ)
)
dα

≈ Dvec
(
C−1 + C−1a1a′

1C
−1
)

,

where D indicates the following quantity

exp

(

a0 − a′
1θ − 1

2

(
θ ′Cθ + (a1 + Cθ)′ C−1 (a1 + Cθ)

))

det(C)−1/2
d∏

j=1

κ
1/2
j ,
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and C = diag(κ1, . . . , κd) − A, with

A =
⎛

⎜
⎝

a(1)
2 · · · a(d)

2
...

. . .
...

a(d(d−1)+1)
2 · · · a(d×d)

2

⎞

⎟
⎠ .

If d = 1 then the above RHSs give these closed-form solutions:

â0 = 1

2

{
M2

1

M2
1 − M0M2

+ log

(
M4

0

κ(M0M2 − M2
1 )

)}

, (12)

â1 = M0M1

M0M2 − M2
1

, (13)

â2 = κ + M2
0

M2
1 − M0M2

,

with Mp = 1/n
∑n

i=1 sin
p(θi − θ)Kκ(θi − θ) for p ∈ (0, 1, 2).

The existence condition M2
1 − M0M2 < 0 is asymptotically satisfied since M2

1 =
O(1/κ2) and M0M2 = O(1/κ). A check of their consistency requires to additionally

know that M2
p→ f (θ)

∫
sin2 Kκ . A brief examination also reveals that estimator (13)

has first-order approximation exactly equal to d log f (θ)/dθ , differently from that
seen for (11), where this is only asymptotically true. Substituting Eq. (11) into (10)
we can write

â0 = logM0 − 1

2

â21
κ

,

and then model P1 can be described as the kernel estimator plus a correction based
on slope. Similarly, model P2 can be written as

â0 = logM0 − 1

2

â21
κ

+ log

√

1 − â2
κ

, (14)

where â21 , which is a different quantity from â21 , denotes a consistent estimator (via
Slutsky’s theorem) of ã21 given by the product of the derivative estimators (11) and (13).
This formulation suggests that the quadratic estimator can be seen as a correction of a
“linear” estimator where the bias introduced both at the minima and peaks is reduced
by a logarithmic term involving second derivative estimation. Specifically, slope and
curvature corrections have the same magnitude for big κ , and their relative impact on
the estimate is described by the ratio â21/â2.Also,P2 fits tend to have bigger area than
linear ones when f is convex nearby the maxima, as often happens.

The above considerations lead to a couple of new estimators of ã0 which do not
have Euclidean counterparts. A promising competitor of the linear fit (10), based on
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the fact that estimator (13) is more efficient than its counterpart (11), could be:

L0 = logM0 − 1

2

d∑

j=1

M( j)
1

2

M0M
( j)
2 − M( j)

1

2 .

A multidimensional, quadratic estimator can be conceived as a direct generalization
of the one-dimensional case:

Q0 = L0 + 1

2
log

d∑

j=1

M2
0

κ j

(

M0M
( j)
2 − M( j)

1

2
) .

5 Simulations

Firstly, we examine the efficiency of our (normalized) estimators on 200 samples of n
observations drawn from a vonMises population with null mean direction and concen-
tration parameter equal to five (vM(0, 5)). Figure 2 shows the estimated log(MISE)
for n = 100 and n = 500. It can be seen that the approximation of exp(â0) using Eq.
(10) is very good for both values of n. As expected, a larger κ (corresponding to less
smoothing) is required for larger sample sizes. Despite their asymptotic equivalence,
the use of P1 improves on the standard kernel density estimate, whereas the P2 per-
formance is even better. This is despite the fact that the normalization step has a bigger
(beneficial) impact for p = 1 than for p = 2 in terms of bias reduction. Overall, the
estimator L0 has the best performance.

In the second simulation experiment, we consider some mixture distributions. In
the first case, we use an equal mixture between wrapped Cauchy with mean direction 0
and concentration 0.225 (WC(0, 0.225)) and uniform (UC(−π, π)) distributions. This

κ
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Fig. 2 log(MISE) for a range of values of κ for p = 0 (solid), p = 1 using Eq. (8) (dashed), p = 1 using
Result 1 (dotted), L0 (longdash) and p = 2 using Eq. (12) (dotdash) for 200 samples of size n = 100 (left)
and n = 500 (right) from a vM(0, 5)
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Fig. 3 log(MISE) for a range of values of κ for p = 0 (solid), p = 1 using Eq. (8) (dashed), L0 (dotdash)
and p = 2 using Eq. (12) (dotted) for 200 samples of size n = 500 from equal mixture of a WC(0, 0.225)
and a uniform distribution (left) and an equal mixture of vM(± π/3, 5) (right)

population model is not as well behaved as a von Mises one as it has very thick tails,
and the integral of the squared second derivative is larger. In such a context, we may
expect that the case p = 2 would be superior to other models. Simulations confirm
that this is indeed the case; see Fig. 3. The second example uses a equal mixture of
von Mises densities to form a bimodal distribution. In this case, also, p = 2 is the
best, with p = 0 the worst.

The final experiments are designed to gain knowledge about practical performance
in the case that the smoothing degree is data-driven. We consider sixteen models,
eight of which are bivariate. They are unimodal or multimodal and are more or less
(rotationally) symmetric around the origin. We use, for each sample, two bandwidth
selectors: the maximizer of likelihood cross-validation (LCV) given by Eq. (4) (which
uses an un-normalized estimator); and classical least-squares cross-validation (LSCV).

Computations were made using MATLAB, and some example code is available
from http://www1.maths.leeds.ac.uk/~charles/TESTpaper/matlab.zip. The results are
presented in terms of average integrated squared errors evaluated using normalized
estimates; see Tables 1 (univariate populations) and 2 (bivariate populations). After
noting that the relative merits of the estimators do not depend on which selector has
been used, the main message is that the standard kernel is the worst density estimator,
even with n = 100, when asymptotic performance is not relevant. First-order fits,
i.e. P1, always have satisfactory performance because the bias reduction at the peaks,
which is mainly due to normalization, is often decisive. From additional results not
reported in Table 1, it appears that estimator L0 seems better suited than P1 when the
population shape is simpler but their performances are very similar.

Quadratic modelling behaves unexpectedly well, being the best one in the majority
of cases. In general, it ismore efficientwhen the roughness ismore pronounced. Indeed,
in the case of the uniform population, which can be considered as a proper counterex-
ample in that all derivatives are zero, P0 and P1 fits have very similar behaviour (for
both the smoothing degree selectors) which outperform Q0.
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Table 1 Average integrated squared errors (1000×) over 200 samples of sizes 100 or 500 drawn from
various univariate population models (WN wrapped normal)

Population model Shape n P0 P1 Q0

UC(− π, π) 100 3.02 2.94 7.89

(3.20) (3.12) (3.79)

500 0.68 0.67 2.09

(0.69) (0.70) (0.73)

vM(0, 5) U, S 100 15.43 10.98 9.89

(17.59) (12.89) (10.80)

500 4.66 2.77 2.23

(4.82) (3.14) (2.67)
1
2WC(0, 0.225) + 1

2UC(− π, π) U, S 100 40.21 38.37 32.19

(35.75) (34.12) (31.74)

500 20.08 18.87 16.15

(17.93) (16.94) (15.75)
3
5WN(0, 1) + 2

5WN(1, 0.5) U, A 100 9.50 8.12 8.54

(11.11) (9.91) (10.35)

500 2.75 2.47 2.18

(3.08) (2.83) (2.44)
1
2WN(0, 0.3) + 1

2WN(1, 0.3) B, S 100 22.07 22.30 24.27

(23.73) (23.90) (23.73)

500 6.22 6.46 5.86

(6.57) (6.34) (5.65)
1
2WN(0, 0.3) + 1

2WN(2, 0.6) B, A 100 19.39 18.51 18.65

(21.36) (20.07) (18.46)

500 5.32 4.82 4.25

(5.54) (4.95) (4.35)
1
4WN(− 2, 0.3) + 1

2WN(0, 0.3)

+ 1
4WN(2, 0.3)

T, S 100 20.89 17.88 20.53

(22.95) (19.13) (21.13)

500 5.82 4.42 4.83

(6.16) (4.53) (4.74)

1
5WN

(
2π
5 , 0.2

)
+ 1

5WN
(
4π
5 , 0.2

)

+ 1
5WN

(
6π
5 , 0.2

)
+ 1

5WN
(
8π
5 , 0.2

)

+ 1
5WN (2π, 0.2)

F, S 100 27.18 25.19 29.17

(28.47) (25.82) (28.89)

500 8.12 6.91 7.73

(8.37) (6.77) (7.44)

Smoothing degree is selected by likelihood (least-squares) cross-validation
U unimodal, B bimodal, T trimodal, F five-modes, S rotationally symmetric, A rotationally asymmetric

123



M. Di Marzio et al.

Table 2 Average integrated squared errors (1000×) over 200 samples of sizes 100 or 500 drawn from
various bivariate population models (BvM stands for bivariate von Mises by Singh et al. (2002))

Population model Shape n P0 P1 Q0

WN(0, 1) × WN(0, 1) U, S 100 4.46 3.41 3.92

(4.98) (3.86) (4.32)

500 1.75 1.07 1.05

(1.80) (1.10) (1.11)

vM(0, 1) × vM(0, 10) U, A 100 20.15 14.31 9.00

(22.41) (16.53) (11.56)

500 7.41 4.37 2.33

(7.57) (4.57) (2.60)

U, A 100 8.95 7.94 8.23
(
3
5WN (0, 1) + 2

5WN (1, .5)
)

× (10.28) (9.46) (9.79)

×
(
3
5WN (0, 1) + 2

5WN (1, .5)
)

500 6.06 5.55 5.05

(7.50) (7.24) (7.16)
1
2 (WN(0, 0.5) × WN(0, 0.5)) + 1

2 (WN(π, 0.5)
× WN(π, 0.5))

B, A 100 15.25 10.97 12.04

(15.43) (11.28) (11.92)

500 5.62 3.24 2.62

(5.77) (3.29) (2.58)
1
2 (WN(0, 0.4) × WN(0, 0.7)) + 1

2 (WN(π, 0.5)
× WN(π, 0.6))

B, A 100 13.78 10.07 10.57

(14.69) (11.04) (10.75)

500 5.20 2.98 2.29

(5.34) (3.18) (2.35)
1
2 (WN(0, 0.5) + WN( π

2 , 0.5)) × WN(0, 0.5) B, A 100 14.02 11.15 13.43

(11.31) (10.40) (15.60)

500 5.22 3.97 5.66

(5.33) (4.09) (4.28)

BvM(0, 0, 1.9, 1.9, 2) U, S 100 8.96 6.60 6.81

(9.26) (7.00) (7.24)

500 3.53 2.14 2.22

(3.32) (2.20) (2.15)

BvM(0, 0, 4.9, 4.9, 5) U, S 100 21.43 14.82 15.63

(23.43) (16.16) (17.12)

500 8.34 4.69 5.57

(8.26) (4.82) (4.72)

Smoothing degree is selected by likelihood (least-squares) cross-validation
U unimodal, B bimodal, S rotationally symmetric, A rotationally asymmetric
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Table 3 Number of matches of estimator, over 200 samples, between optimal ISE estimator and optimal
LCV (or LSCV) function

Population model n LCV LSCV

vM(0, 5) 100 20 75

500 25 96
1
2WN(0, 0.3) + 1

2WN(2, 0.6) 100 48 72

500 71 102

vM(0, 5) × vM(0, 5) 100 13 64

500 29 88
1
2 (WN(0, 0.4) × WN(0, 0.7)) + 1

2 (WN(π, 0.5) × WN(π, 0.6)) 100 4 48

500 31 78

Top, univariate samples; bottom, bivariate samples

The saddle-shaped population (bottom three in Table 2) has large regions where
the asymptotic bias is mainly due only to first-order properties of the model since sec-
ond derivatives have different signs at opposite sides. In such case, variance inflation
of the quadratic estimator dominates its bias reduction and the overall performance
degrades. The last two models in Table 2 deserve particular attention because they
concern correlated variables. Specifically, we use the bivariate von Mises model pro-
posed by Singh et al. (2002). Similar to a bivariate Gaussian family, we have five
parameters: two locations, two concentrations, and a “correlation”. Our two cases—
both bimodal—are, respectively, featured by small concordance (concentrations equal
to 1.9 and correlation equal to 2), and moderate concordance (concentrations equal
to 4.9 and correlation equal to 5). We see that in these cases our proposals are by far
superior to the standard kernel method reaching an improvement of nearly 40% in the
case of moderate concordance.

Acomparisonbetween the two smoothing selectors shows thatLCVperforms a little
better in the majority of cases, although for n = 500 they appear almost equivalent.
The fact that we measure discrepancy by squared errors suggests that we still could try
to select at least p by LSCV. In order to investigate the effectiveness of this approach,
we have considered, for each sample of the previous simulation, the four integrated
squared error curves as functions of κ (one for each estimator), and then selected the
p associated to the smallest minimum. Then we have checked if such p is the same
as the one optimizing LSCV or LCV curves over κ . In Table 3 we report the number
of such matches for a few populations. Since the results suggest that LSCV is the best
in this regard, we might thus envisage choosing the estimator based on the optimal
LSCV, and then choosing the smoothing parameter for that estimator based on LCV.
This idea is taken up further in the next section.

6 A real data case study

Aprotein is comprised of a chain of 20 different amino acids, which join together along
a “backbone”. The atoms on the backbone are a sequence of three atoms (nitrogen–
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carbon–carbon) to which other atoms are linked. In particular, to one of the carbon
atoms a “side chain” is formed, and the structure of this side chain defines the type of
amino acid. The sequence of dihedral angles (φ,ψ,ω) along the backbone is deter-
mined by the relative positions of the atoms, and this determines the overall shape of
the protein after folding. Since ω is highly predictable, with little variation, a study
of −π < φ,ψ < π is useful for many purposes, particularly in validation of newly
determined protein structures.

A plot of pairs (φi , ψi ), i = 1, . . .—known as a Ramachandran plot—for any pro-
tein reveals several subgroups, and mixture models of von Mises distributions have
been used to summarize these from a parametric perspective. Work by Mardia et al.
(2007) used an EM algorithm to fit a mixture, with the number of components being
determined by AIC. Lennox et al. (2010) proposed a Dirichlet process to determine
the number of components. A related Bayesian approach was developed by Boomsma
et al. (2008) which allowed for many more components in a hidden Markov model,
in which mixtures were trained on a set of angles from each amino acid. Kernel
density estimation has also been used on the protein data (Taylor et al. 2012) where
interest lay in considering a bivariate density estimate conditional on the amino acid
type. This has been considered as an alternative approach to validation (Lovell et al.
2003), in which procheck—based on histograms—is currently used. Finally, we
note that Fernández-Durán and Gregorio-Domínguez (2016) have anaylzed similar
datasets using trigonometric sums, with visual results that exhibit a periodic struc-
ture.

In this case study, we use data from 500 high-quality, “representative” proteins
available from the Richardson Laboratory.1 Each protein is represented by a sequence
of bivariate angles, each of which is associated with an amino acid. These are pooled
together, and we thus obtain 20 datasets corresponding to the 20 amino acids. It should
be noted that, within a protein, we expect observations not to be independent. However,
in each of the 20 datasets we are pooling data from 500 unrelated proteins, and so
strong dependence between observations in the same dataset will only occur when an
amino acid occurs consecutively along the backbone; this is relatively uncommon. For
each dataset, we can obtain a bivariate density estimate using the methods described
in this paper, in which the smoothing parameter is selected by cross-validation. Our
objective is to examine the differences in the estimates, and to see how these results
may relate to previous work.

Obviously, we are unable to compare density estimates with the true densities for
these data, as will be the case in any real-life application. One of the uses of den-
sity estimation is to obtain information about subgroups, or clusters, within the data.
This could be subsequently used in the fitting of (parametric) models, for example. A
natural way to investigate this is to identify the location (and height) of local modes.
The ability of our estimators to identify bumps has been discussed, by presenting
extensive simulation evidence, in Di Marzio et al. (2016). This motivates our focus
on such data, where amino acid distributions are partially characterized by modes.
As it is customary in peak recognition, we applied two filters, a global and a local

1 https://www.kinemage.biochem.duke.edu/databases/top500.php.
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Table 4 Amino acid recognition of subgroups through bivariate density estimation

Amino n P0 P1 L0 Q0

A 8979 10 (5.53) 23.7 8 (5.13) 25.0 5 (3.26) 8.9 5 (4.17) 15.6

G 8334 18 (1.27) 1.1 10 (1.12) 2.2 5 (0.84) 0.8 6 (1.07) 1.4

I 5570 6 (3.96) 8.6 3 (3.72) 8.8 2 (1.70) 1.4 3 (2.71) 3.8

N 4796 13 (1.68) 1.5 9 (1.54) 1.6 4 (0.91) 0.4 6 (1.30) 0.9

Sample sizes, number of modes (maximum), and roughness in the estimates using various methods. The
smoothing parameters are selected by likelihood cross-validation

one, in order to reduce false positives. So, for a global threshold for the modes of
estimator E ∈ {P0,P1, L0, Q0} we used c0mE where c0 = 0.005, and mE indicates
the maximum among the estimates made over an equispaced grid (of 50 × 50) loca-
tions using E . Secondly, to avoid locations which were more akin to saddle points,
we required that, at a mode, say (φm, ψm), f̂ (φm, ψm) − maxδm f̂ > c1mE, where
δm represents the set of neighbouring points around a mode, and c1 = 0.0001. Table
4 gives the maximum of f̂ , the number of modes, and the roughness for some of
the amino acids. It can be seen that P0 has the largest maxima and the largest num-
ber of modes, but that P1 has the largest roughness. Correspondingly, L0 has the
lowest maximum, the fewest number of modes and the smallest roughness, with Q0
generally being closer to L0. We found that the number of elements in the union of
mode locations, over all 20 amino acid datasets, for each of the methods in Table
4 is: 111, 74, 43 and 38, respectively. We note that the hidden Markov model of
Boomsma et al. (2008) used 50 components in a mixture of bivariate von Mises dis-
tributions which seems to be consistent with these values, except for the standard
kernel.

The most striking difference, however, is in the visual appearance of the density
estimates, in which the difference in roughness is very evident. We first note that the
height of the highest mode is much greater than the rest of the density, so in order to
visualize the whole density estimate we have taken cube roots throughout. To illustrate
the differences, we focus on two amino acid datasets: Alanine (A), and Asparagine
(N). Figures 4 and 5 show (transformed) contour plots of estimatesP0 and Q0, as well
as slices through the density estimates at the indicated values of φ and ψ . The slices
were chosen to pass through (or close to) a mode. Comparison of the contour plots
confirms that the estimates for Q0 are much smoother than those for P0. The profile
densities, which have been chosen to pass near to a local mode, show an “adaptive”
smoothing character of the Q0 estimate, in which the tails of the density are noticeably
smoother, while the height of the modes are not much less than those for P0. We note,
also, the possibility of spurious modes far in the tails of Q0 which may arise for
similar reasons to the sinusoidal behaviour seen in Fig. 1. In all these interpretations,
it should be remembered that the comparisons are made on the basis of an LCV choice
of smoothing parameter.
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Fig. 4 Top: transformed (cube-root) contour plots of the bivariate density estimates for amino acid A
(alanine) using P0 (left) and Q0 (right). Bottom: profile densities for P0 (continuous) and Q0 (dashed)
corresponding to ψ = 2.5 (left) and φ = − 1.1 (right)

7 Discussion

Nonparametric density estimation for circular data has previously focussed on classical
kernel density estimation (using a circular kernel). In this paper, we propose a family
of estimators that have better theoretical properties in the sense of an arbitrarily small
asymptotic biaswithout asymptotic variance inflation. Suchmethods have the potential
to be more useful when the shape of the density shows unfriendly features like big
curvature or large tails. A disadvantage of our proposal is that it is more restrictive
than traditional circular kernel method because it requires that population densities
are as smooth as required by the sin-polynomial order. Moreover, it is not guaranteed
to give favourable results with small sample sizes. However, in our simulations it
seems that improvements come with reasonable sample sizes like 100 and 500. A final
drawback is that our estimators are more computationally expensive since they have
not, in general, closed forms, although in the paper we have seen that use of the von
Mises kernel gives an efficient closed form (in approximate or exact form) for p ≤ 2.
Thus, the computational effort in our simulation examples is never more than twice
that of the standard (p = 0) case.
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Fig. 5 Top: transformed (cube-root) contour plots of the bivariate density estimates for amino acid N
(asparagine) usingP0 (left) and Q0 (right). Bottom: profile densities forP0 (continuous) and Q0 (dashed)
corresponding to ψ = 0.7 (left) and φ = − 1.1 (right)

A promising development could lie in replacing our sin-polynomial expansion
by a proper, flexible circular parametric family, namely the distributions based
on non-negative trigonometric sums introduced by Fernández-Durán (2004) and
Fernández-Durán and Gregorio-Domínguez (2016). This would give a fully para-
metric method for a null concentration of the kernel, becoming more nonparametric
with increasing concentration. The main difficulty would be to find the global maxi-
mum of the likelihood functions, which have many local maxima. Kernel weighting
would still be used to make the method nonparametric. The formal asymptotic theory
would need to be studied, and this task appears less straightforward.
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Appendix

Proof of Theorem 1 Letting g = log f , from Eq. (3) we have

E[â] − ã = J̃−1

(

E

[
1

n

n∑

i=1

A(θ i − θ)Kκ1,...,κd (θ i − θ)

]

−
∫

[−π,π)d

A(α − θ)Kκ1,...,κd (α − θ) exp
(
P̃p(α − θ)

)
dα

⎞

⎟
⎠

= J̃−1
∫

[−π,π)d

A(α − θ)Kκ1,...,κd (α − θ)

×
[
exp(g(α)) − exp

(
P̃p(α − θ)

)]
dα.

Observe that

exp(g(α)) − exp
(
P̃p(α − θ)

)
= exp(g(α))

[
1 − exp

(
P̃p(α − θ) − g(α)

)]

≈ f (α)
[
g(α) − P̃p(α − θ)

]
. (15)

Hence, when p is odd, using

g(α) − P̃p(α − θ) = (S′
α−θ )

⊗(p+1) ã p+1

(p + 1)! + o
(
sinp+1

(
α(1) − θ (1)

))
, (16)

and f (α) = f (θ) + O
(
sin
(
α(1) − θ (1)

))
in (15), due to assumption (a), we get

E[â] − ã ≈ J̃−1
∫

[−π,π)d

A(α − θ)Kκ1,...,κd (α − θ) f (θ)
(S′

α−θ )
⊗p+1 ã p+1

(p + 1)! dα

Then the bias result follows by approximating (15) along with f (α) = f (θ) +
S′
α−θ D f (θ) + o

(
sin
(
α(1) − θ (1)

))
.

For the variance, again from Eq. (3) we see that Var[â] ≈ J̃−1VJ̃−1, where V
stands for the covariance matrix of the LHS of system (1). We have

V = 1

n

∫

[−π,π)d

A(α − θ)A(α − θ)′K 2
κ1,...,κd

(α) f (α)dα

−1

n

∫

[−π,π)d

A(α − θ)Kκ1,...,κd (α) f (α)dα
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×
∫

[−π,π)d

A(α − θ)′Kκ1,...,κd (α) f (α)dα.

The second term on the RHS is O
(
n−111′ {∫ Kκ1,...,κd (α) sinp+1

(
α(1)

)
dα
}2)

, and

so it is negligible under hypothesis (a). After a change of variable, the first-order
expansion for f (α) around θ leads to the variance under assumption (b).
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