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Abstract
We consider the ferromagnetic q-state Potts model with zero external field in a finite volume
evolving according to Glauber-type dynamics described by the Metropolis algorithm in the
low temperature asymptotic limit. Our analysis concerns the multi-spin system that has q
stable equilibria. Focusing on grid graphs with periodic boundary conditions, we study the
tunneling between two stable states and from one stable state to the set of all other stable
states. In both cases we identify the set of gates for the transition and prove that this set
has to be crossed with high probability during the transition. Moreover, we identify the tube
of typical paths and prove that the probability to deviate from it during the transition is
exponentially small.
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List of symbols
Symbol Meaning
H Hamiltonian function
X State space
X s Set of global minima of H
Xm Set of metastable configurations
S Set of all possible spin values
Ns(σ ) Number of spins s in configuration σ

X (r , s) Set of configurations with all spins either r or s
Ωσ,σ ′ Set of all the paths from σ to σ ′
Ω

opt
σ,σ ′ Set of all the optimal paths from σ to σ ′

Φω maxi=0,...,n H(ωi ), height of the path ω

Φ(σ, σ ′) minω:σ→σ ′ Φω, communication height between σ and σ ′
τσ
A First hitting time of the subset A ⊂ X starting from σ

S(σ, σ ′) Set of essential saddles for the transition from σ to σ ′
W(σ, σ ′) Gate for the transition from σ to σ ′
WRES(s, s′) Restricted-gate for the transition from s ∈ X s and s′ ∈ X s\{s} following a

path that does not intersect X s\{s, s′}
G(σ, σ ′) Union of all minimal gates for the transition from σ to σ ′
F(s, s′) Union of all minimal restricted-gate for the transition σ → σ ′
CA(σ ) Initial cycle for the transition σ → A
C (X ) Set of all the cycles and extended cycles of X
M(A) Collection of maximal cycles and extended cycles that partitions A ⊂ X
B(C) Principal boundary of the cycle C
∂npC Non-principal boundary of the cycle C
TA(σ ) {η ∈ X | ∃ω ∈ Ω

vtj
σ,A : η ∈ ω}, tube of typical paths from σ to A

TA(σ ) {C ∈ M(C+
A(σ )\A)|∃(C1, . . . , Cn) ∈ JCA(σ ),A, and ∃ j ∈ {1, . . . , n} : C j =

C}, tube of typical paths from σ to A
Uσ ′(σ ) {η ∈ X | ∃ω ∈ Ω

vtj
σ,σ ′ s.t. ω ∩ X s\{σ, σ ′} = ∅ and η ∈ ω}, restricted-tube of

typical paths from σ to σ ′
Uσ ′(σ ) {C ∈ M(C+

{σ ′}(σ )\{σ ′})|∃(C1, . . . , Cm) ∈ JCσ ′ (σ ),{σ ′}s. t.
⋃m

i=1 Ci∩X s\{σ, σ ′}
= ∅ and ∃ j ∈ {1, . . . , n} : C j = C}, restricted-tube of typical paths from σ

to σ ′
Cs(σ ) Union of all the s-cluster in the configuration σ for some s ∈ S
R(Cs(σ )) Smallest rectangle surrounding Cs(σ )

R	1×	2 Rectangle in R
2 with sides of length 	1 and 	2

R̄a,b(r , s) Set of configurations with all spins r , except those, which are s, in a rectangle
a × b

R̃a,b(r , s) Set of configurations with all spins s, except those, which are r , in a rectangle
a × b

B̄l
a,b(r , s) Set of configurations with all spins r , except those, which are s, in a rectangle

a×bwith a bar 1×l adjacent to one of the sides of length b, with 1 ≤ l ≤ b−1
B̃l
a,b(r , s) Set of configurations with all spins s, except those, which are r , in a rectangle

a×bwith a bar 1×l adjacent to one of the sides of length b, with 1 ≤ l ≤ b−1
H (r, s) B̄1

1,K (r , s) ∪ ⋃K−2
h=2 B̄h

1,K−1(r , s)

H̃ (r, s) B̃1
1,K (r , s) ∪ ⋃K−2

h=2 B̃h
1,K−1(r , s)

Q(r, s) R̄2,K−1(r , s) ∪ ⋃K−2
h=2 B̄h

1,K (r , s)
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Q̃(r, s) R̃2,K−1(r , s) ∪ ⋃K−2
h=2 B̃h

1,K (r , s)

P(r, s) B̄K−1
1,K (r , s)

P̃(r, s) B̃K−1
1,K (r , s)

W(h)
j (r, s) B̄h

j,K (r , s) = B̃K−h
L− j−1,K (r , s) for j = 2, . . . , L − 3

W j (r, s)
⋃K−1

h=1 W(h)
j (r, s)

K(r , s) {σ ∈ X (r , s) : H(σ ) = 2K+2+H(r),σ has a s-cluster ormore s-interacting
clusters, R(Cs(σ )) = R2×(K−1)} ∪ Q(r, s) ∪ P(r, s)

D1(r , s) {σ ∈ X (r , s) : H(σ ) = 2K + H(r), σ has either a s-cluster or more s-
interacting clusters such that R(Cs(σ )) = R2×(K−2)}

E1(r , s) {σ ∈ X (r , s) : H(σ ) = 2K + H(r), σ has either a s-cluster or more s-
interacting clusters such that R(Cs(σ )) = R1×(K−1)} ∪ R̄1,K (r , s).

Di (r , s) {σ ∈ X (r , s) : H(σ ) = 2K −2i +2+ H(r), σ has either a s-cluster or more
s-interacting clusters such that R(Cs(σ )) = R2×(K−(i+1))}

E i (r , s) {σ ∈ X (r , s) : H(σ ) = 2K −2i +2+ H(r), σ has either a s-cluster or more
s-interacting clusters such that R(Cs(σ )) = R1×(K−i)}

1 Introduction

Metastability is a phenomenon that occurs when a physical system is close to a first order
phase transition. More precisely, the phenomenon of metastability occurs when a system is
trapped for a long time in a state different from the stable state, the so-calledmetastable state.
After a long (random) time or due to randomfluctuations the systemmakes a sudden transition
from the metastable state to the stable state. When this happens, the system is said to display
metastable behavior. On the other hand, when the system lies on the phase coexistence line,
it is of interest to investigate its tunneling behavior, i.e., how the system transitions between
the two (or more) stable states. Since metastability occurs in several physical situations,
such as supercooled liquids and supersaturated gases, many models for metastable behavior
have been formulated throughout the years. Tipically, the evolution of the physical system is
approximated by a stochastic process, and broadly speaking the following three main issues
are investigated. The first is the study of the first hitting time at which the process starting
from a metastable state visits a stable state. The second issue is the study of the so-called set
of critical configurations, i.e., the set of those configurations that are crossed by the process
during the transition from the metastable state to the stable state. The final issue is the study
of the typical trajectories that the system follows during the transition from the metastable
state to the stable state. This is the so-called tube of typical paths. The same three issues
are investigated when a system displays tunneling behavior, except that in this case one is
interested in the transition from one stable state to another stable state.

In this paper we study the tunneling behavior of the q-state Potts model on a two-
dimensional discrete torus. At each site i of the lattice lies a spinwith value σ(i) ∈ {1, . . . , q}.
To each spin configuration we associate an energy such that configurations where neighbor-
ing spins have the same value are energetically favored. A model that satisfies this condition
is said to be ferromagnetic. The q-state Potts model is an extension of the classical Ising
model from q = 2 to an arbitrary number of spins states. We study the q-state ferromagnetic
Potts model with zero external magnetic field (h = 0) in the limit of large inverse temper-
ature β → ∞. When h = 0, the energy only depends on the local interactions between
nearest-neighbor spins. Moreover, when β � 1 there are q stable states, corresponding to
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Fig. 1 Example of configurations
belonging to the set of the
minimal-restricted gates between
the stable configurations r and s.
We color white the vertices with
spin r , gray those vertices with
spin s

the configurations where all spins are equal. In other words, the system lies on a coexistence
line. The stochastic evolution is described by a Glauber-type dynamics, that consists of a
single-spin flip Markov chain on a finite state space X with transition probabilities given by
the Metropolis algorithm and with stationary distribution given by the Gibbs measure μβ ,
see (2.7). In this setting, the metastable states are not interesting since they do not have a
clear physical interpretation, hence we focus our attention on the tunneling behavior between
stable configurations.

The goal of this paper is to investigate the second and third issues introduced above for
the tunneling behavior of the system. We describe the set of minimal gates, which have the
physical meaning of “critical configurations”, and the tube of typical paths for three different
types of transitions. More precisely, we study the transition from any stable configuration r
(a) to some other stable configuration s �= r under the constraint that the path followed does
not intersect other stable configurations, (b) to any other stable configuration, and (c) to some
other stable configuration s �= r. In Sect. 3.1.1 (resp. Sect. 4.1.1) we introduce the notion
of minimal restricted-gates (resp. restricted-tube of typical paths) to denote the minimal
gates (resp. tube of typical paths) for the transition (a). Let us now briefly describe our
approach. First we study the energy landscape between two stable configurations. Roughly
speaking, we prove that the set of minimal-restricted gates for any transition (a) contains
those configurations in which all the spins are r (respectively s) except those, which have
spins s (respectively r ), in a strip that wraps around the shortest side of the torus and that also
has a bar attached to one of the two vertical sides, see Fig. 1.We build on this result to describe
the set of minimal gates for the transitions (b) and (c). Next we describe the tube of typical
trajectories for the transitions (a), (b) and (c). Once again we first describe the restricted-tube
of typical paths between two stable configurations, and then we lean on this result to describe
the tube of typical paths for the transitions (b) and (c). We show that the restricted-tube of
typical paths between the stable states r and s includes the minimal-restricted gates, as well
as configurations with one or more clusters of spin s (respectively r )—of at most a certain
size, which we identify—surrounded by spins r (respectively s). See Sect. 4.1.2 and Figs.
13–15 below. As a special case of our general results we retrieve the minimal gates and the
tube of typical paths for the Ising model with zero external magnetic field. We give these
respectively at the end of Sects. 3 and of 4.

Related work. Our work concludes the study of the metastability of the Potts model in
the low-temperature regime first initiated in [1], where the authors derive the asymptotic
behavior of the first hitting time associated with the transitions (b) and (c) above. They obtain
convergence results in probability, in expectation and in distribution. They also investigate
the mixing time, which describes the rate of convergence of the process to its stationary
distribution μβ . They further show that, as β → ∞, the mixing time grows as exp(c	β),
where c > 0 is some constant constant factor and 	 is the smallest side length of Λ.

In [2] the authors study the q-Potts model with zero external magnetic field in two and
three dimensions. Their manuscript appeared on ArXiv roughly at the same time as ours.
While there are some overlaps between the two papers, the works of the two groups were
carried out independently of each other. They find sharp estimates for the tunneling time
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(the so-called prefactor) using the potential-theoretic approach and extending the results in
[1]. In the second part of their manuscript, the authors focus on the two-dimensional setting.
However, the results and the strategy adopted to prove them are quite different from ours.
For this type of transitions, they define the set of the gateway configurations in Definition
8.1 that is a model-dependent set visited with probability tending to one as β → ∞, see [2,
Corollary 8.9]. This set is different from the classical model-independent definition of gate
and of union of minimal gates, see [3] and following papers. The gates and minimal gates
have the physical meaning of critical configurations. In Theorems 3.1, 3.3 and 3.5, we give
an explicit and thorough geometric description of the minimal gates and union of all minimal
gates for the three transitions (a), (b), (c). Moreover, in Corollaries 3.1, 3.2, 3.3 we prove that
these sets are crossed with probability tending to one. On the other hand, [2] does not give
a complete geometrical characterization of the set of gateway configurations and this set is
not a minimal gate. The description of the gateway configurations is suitable to allow them
to compute the prefactor. Finally, in our paper we analyse the third issue of metastability by
indentifying precisely the tube of typical trajectories. This analysis is absent in [2].

In [4], the authors consider the q-Potts model with non-zero external field and analyze
separately the case of positive and negative external magnetic field. In the first scenario there
are q − 1 stable configurations and a unique metastable state. In the second scenario there
are q − 1 degenerate-metastable configurations and only one global minimum. In both cases
the authors describe the asymptotic behavior of the first hitting time from the metastable to
the stable state as β → ∞, the mixing time, the spectral gap and they identify geometrically
the set of gates for these transitions.

We adopt the statistical mechanics framework known as pathwise approach. This is a
set of techniques that rely on a detailed knowledge of the energy landscape and on ad hoc
large deviations estimates to give a quantitative answer to the three issues of metastability
which we described above. The pathwise approach was first introduced in 1984 [5] and then
developed in [6–9]. We adopt the convention of listing citations in order of publication date.
This approach was further expanded in [3,10–14] to distinguish the study of the transition
time and of the gates from the study of typical paths. In [3,8] the pathwise approach was
expanded and refined with the aim of finding answers valid with maximal generality and of
reducing as much as possible the number of model dependent inputs necessary to study the
metastable behaviour of a system.

The pathwise approach was applied in [8,15–21] to study the metastable behaviour of
Ising-like models with Glauber dynamics. Moreover, the approach was used in [12,22–26] to
find the transition time and the gates for Ising-like and hard-core models with Kawasaki and
Glauber dynamics. The pathwise approach was also applied to study probabilistic cellular
automata (parallel dynamics) in [27–31].

On the other hand, the so-calledpotential-theoretical approach exploits a suitableDirichlet
form and spectral properties of the transition matrix to study the hitting time of metastable
dynamics. One of the advantages of this approach is that it makes possible the estimation of
the expected value of the transition time up to the (lower-order) coefficient that multiplies the
(leading-order) exponential term. The coefficient is known in the literature as the pre-factor.
These results are grounded in a detailed knowledge of the critical configurations and on the
configurations connected to them in one step of the the dynamics, see [32–35]. This method
was applied to find the pre-factor for Ising-like models and the hard-core model in [35–41]
for Glauber and Kawasaki dynamics and in [42,43] for parallel dynamics. Recently, other
approaches have been developed in [44–46] and in [47]. These approaches are particularly
well-suited to find the pre-factor when dealingwith the tunnelling between two ormore stable
states.
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The outline of the paper is as follows. At the beginning of Sect. 2, we define the model. In
Sect. 3 we give a list of definitions that are necessary in order to state our main results on the
set of minimal gates. In Sect. 3.2.1 we give the main results for the minimal restricted-gates
for the transition (a). In Sects. 3.2.2 and 3.2.3 we state our main results for the minimal gates
for the transitions (b) and (c), respectively. In Sect. 4 we give some additional definitions
that are necessary in order to state our results on the tube of typical paths. In Sect. 4.2.1 we
state the main results on the restricted-tube of typical paths. In Sect. 4.2.2 and 4.2.3 we give
the main results on the tube of typical paths for the transitions (b) and (c), respectively. In
Sect. 5 we prove some useful lemmas that allow us to complete the proof of the main results
stated in Sect. 3.2.1. In Sect. 6 we carry out the proof of the main results introduced in Sects.
3.2.2–3.2.3. Finally, in Sect. 7 we prove the results on the tube of typical paths between two
stable states.

2 Model Description

In the q-state Pottsmodel each spin lies on the vertices of a finite two-dimensional rectangular
lattice Λ = (V , E), where V = {0, . . . , K − 1} × {0, . . . , L − 1} is the vertex set and
E ⊆ V × V is the set of nearest-neighbors vertices. Without loss of generality, we assume
K ≤ L ≤ 3. We consider periodic boundary conditions. Formally, the vertices lying on
opposite sides of the rectangle are identified, so that we end up with a two-dimensional torus.
To each vertex v ∈ V is associated a spin value σ(v) ∈ S := {1, . . . , q}. Therefore, a spin
configuration σ is an element of the set X := SV . To each configuration σ ∈ X is associated
the energy function (or Hamiltonian)

H(σ ) := −Jc
∑

(v,w)∈E
1{σ(v)=σ(w)}, σ ∈ X , (2.1)

where Jc is known as coupling or interaction constant. For our model, H is just the sum
of the interaction energy between nearest-neighbor spins. The Potts model is said to be
ferromagnetic when Jc > 0, and antiferromagnetic otherwise. In this paper we focus on the
ferromagnetic Potts model, and we set Jc = 1 without loss of generality. We denote by X s

the set of the global minima of the Hamiltonian (2.1) in X .
The system evolves according to a Glauber-type dynamics which depends on the the

inverse temperature parameter β > 0. Formally, the dynamics is a single-spin updateMarkov
chain {Xβ

t }t∈N on the state space X with the transition probabilities

Pβ(σ, σ ′) :=
{
Q(σ, σ ′)e−β[H(σ ′)−H(σ )]+ , if σ �= σ ′,
1 − ∑

η �=σ Pβ(σ, η), if σ = σ ′,
(2.2)

where [n]+ := max{0, n} is the positive part of n and Q is the connectivity matrix

Q(σ, σ ′) :=
{

1
q|V | , if |{v ∈ V : σ(v) �= σ ′(v)}| = 1,

0, if |{v ∈ V : σ(v) �= σ ′(v)}| > 1.
(2.3)

We say that σ ∈ X communicates with σ ′ ∈ X when Q(σ, σ ′) �= 0. The matrix Q is
symmetric and irreducible. This dynamics may be equivalently generated as follows. Given
a configuration σ ∈ X , at each step

1. a vertex v ∈ V and a spin value s ∈ S are selected independently and uniformly at
random;
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2. the spin σ(v) at v is updated to spin s with probability
{
1, if H(σ v,s) − H(σ ) ≤ 0,

e−β[H(σ v,s )−H(σ )], if H(σ v,s) − H(σ ) > 0,
(2.4)

where σv,s is the configuration obtained from σ by updating σ(v) to s, i.e.,

σv,s(w) :=
{

σ(w) if w �= v,

s if w = v.
(2.5)

Hence, at each step the update probability of the selected vertex v depends on the energy
difference

H(σ v,s) − H(σ ) =
∑

(v,w)

(1{σ(v)=σ(w)} − 1{σ(w)=s}). (2.6)

It follows from standard results that the dynamics (2.2) is reversible with respect to the
so-called Gibbs measure

μβ(σ) := e−βH(σ )

∑
σ ′∈X e−βH(σ ′) . (2.7)

In the low-temperature regime β � 1, μβ is concentrated on the the global minima of H .
In our setting, we denote by 1, . . . ,q ∈ X the configurations with constant spin values. For
example, 1(v) = 1 for any v ∈ V . By simple algebraic calculations the following proposition
is verified.

Proposition 2.1 (Identification of the stable configurations) The set of the global minima of
the Hamiltonian (2.1) is given by

X s := {1, . . . , q}. (2.8)

Finally, we refer to the triplet (X , H , Q) as the energy landscape. Note that μβ and Pβ are
completely specified by the energy landscape.

3 Minimal Restricted-Gates andMinimal Gates: Main Results

In this section we state formally our results on the set of minimal restricted-gates and the one
of minimal gates for the transition either from a stable configuration to the other stable states
or from a stable state to another stable configuration. However, first we give some notations
and definitions which are used throughout the next sections.

3.1 Definitions and Notations

Each v ∈ V is identified by its coordinates (i, j), where i and j denote respectively the row
and the column ofΛwhere v lies. The i-th row (resp. column) ofΛ is denoted by ri (resp. ci ).

3.1.1 Model-Independent Definitions and Notations

We now give a list of model-independent definitions and notations that will be useful in
formulating our main results.
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– A path ω is a finite sequence of configurations ω0, . . . , ωn ∈ X such that Q(ωi , ωi+1) >

0 for i = 0, . . . , n − 1. A path from ω0 = σ to ωn = σ ′ is denoted as ω : σ → σ ′.
Finally, Ωσ,σ ′ denotes the set of all paths between σ and σ ′.

– The height of a path ω is

Φω := max
i=0,...,n

H(ωi ). (3.1)

– For any pair σ, σ ′ ∈ X , the communication height Φ(σ, σ ′) between σ and σ ′ is the
minimal energy across all paths ω : σ → σ ′. Formally,

Φ(σ, σ ′) := min
ω:σ→σ ′ Φω = min

ω:σ→σ ′ max
η∈ω

H(η). (3.2)

More generally, the communication energy between any pair of non-empty disjoint sub-
sets A,B ⊂ X is Φ(A,B) := minσ∈A,σ ′∈B Φ(σ, σ ′).

– The set of optimal paths between σ, σ ′ ∈ X is defined as

Ω
opt
σ,σ ′ := {ω ∈ Ωσ,σ ′ : max

η∈ω
H(η) = Φ(σ, σ ′)}. (3.3)

In other words, the optimal paths are those that realize the min-max in (3.2) between σ

and σ ′.
– The set of minimal saddles between σ, σ ′ ∈ X is defined as

S(σ, σ ′) := {ξ ∈ X : ∃ω ∈ Ω
opt
σ,σ ′ , ξ ∈ ω : max

η∈ω
H(η) = H(ξ)}. (3.4)

– We say that η ∈ S(σ, σ ′) is an essential saddle if either

– there exists ω ∈ Ω
opt
σ,σ ′ such that {argmaxωH} = {η} or

– there exists ω ∈ Ω
opt
σ,σ ′ such that {argmaxωH} ⊃ {η} and {argmaxω′ H} �

{argmaxωH}\{η} for all ω′ ∈ Ω
opt
σ,σ ′ .

A saddle η ∈ S(σ, σ ′) that is not essential is said to be unessential.
– Given σ, σ ′ ∈ X , we say that W(σ, σ ′) is a gate for the transition from σ to σ ′ if

W(σ, σ ′) ⊆ S(σ, σ ′) and ω ∩ W(σ, σ ′) �= ∅ for all ω ∈ Ω
opt
σ,σ ′ .

We say that W(σ, σ ′) is a minimal gate for the transition from σ to σ ′ if it is a minimal
(by inclusion) subset of S(σ, σ ′) that is visited by all optimal paths, namely, it is a gate
and for any W ′ ⊂ W(σ, σ ′) there exists ω′ ∈ Ω

opt
σ,σ ′ such that ω′ ∩ W ′ = ∅. We denote

by G = G(σ, σ ′) the union of all minimal gates for the transition from σ to σ ′.
– Let σ, σ ′ ∈ X s, σ �= σ ′, we define restricted-gate for the transition from σ to σ ′ a subset

WRES(σ, σ ′) ⊂ S(σ, σ ′)which is intersected by allω ∈ Ω
opt
σ,σ ′ such thatω∩X s\{σ, σ ′} =

∅.
We say that a restricted-gate WRES(σ, σ ′) for the transition from σ to σ ′ is a minimal
restricted-gate if for anyW ′ ⊂ WRES(σ, σ ′) there exists ω′ ∈ Ω

opt
σ,σ ′ such that ω′ ∩W ′ =

∅. We denote by F(σ, σ ′) the union of all minimal restricted-gates for the transition
from σ to σ ′. Note that all gates are restricted gates in the case of the Ising model with
zero external magnetic field, for which q = 2, see Corollary 3.4.

3.1.2 Model-Dependent Definitions and Notations

Next we give some further model-dependent notations in order to be able to state our main
results. The definitions hold for any q-Potts configuration σ ∈ X and any two different spin
values r , s ∈ {1, . . . , q}.
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(a) (b) (c)

Fig. 2 Examples of configurations which belong to R̄3,8(r , s) (a), B̄4
4,7(r , s) (b) and B̃6

6,9(r , s) (c). For
semplicity we color white the vertices whose spin is r and we color gray the vertices whose spin is s

Fig. 3 Example of configuations
belonging to P(r, s) andQ(r, s)
on a 9 × 12 grid Λ. Gray vertices
have spin value s, white vertices
have spin value r . By flipping to
r a spin s among those with the
lines, the path enters into
B̄K−2
1,K (r , s) ⊂ Q(r, s); instead,

by flipping to r a spin s among
those with dots, the path goes to
R̄2,K−1(r , s) ⊂ Q(r, s)

– R̄a,b(r , s) denotes the set of those configurations in which all the vertices have spins
equal to r , except those, which have spins s, in a rectangle a × b, see Fig. 2a;

– B̄h
a,b(r , s) denotes the set of those configurations in which all the vertices have spins r ,

except those, which have spins s, in a rectangle a × b with a bar 1 × h adjacent to one
of the sides of length b, with 1 ≤ h ≤ b − 1, see Fig. 2b.

– Analogously, we set R̃a,b(r , s) and B̃h
a,b(r , s) interchanging the role of spins r and s, see

Fig. 2c.

Note that

R̄a,K (r , s) ≡ R̃L−a,K (r , s) and B̄h
a,K (r , s) ≡ B̃K−h

L−a−1,K (r , s). (3.5)

Next, we define sets of configurations that are crucial to describe the gate. We show their
location on the energy landscape in Fig. 5 below.

– We set

P(r, s) := B̄K−1
1,K (r , s), P̃(r, s) := B̃K−1

1,K (r , s). (3.6)

We refer to Fig. 3 for an example of a configuration belonging to P(r, s).

– We define

Q(r, s):=R̄2,K−1(r , s) ∪
K−2⋃

h=2

B̄h
1,K (r , s), Q̃(r, s):=R̃2,K−1(r , s) ∪

K−2⋃

h=2

B̃h
1,K (r , s).

(3.7)
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30 Page 10 of 38 G. Bet et al.

Fig. 4 Example of configuations
belonging toQ(r, s) andH (r, s)
on a 9 × 12 grid Λ. White
vertices have spin r , gray vertices
have spin s. By flipping a spin s
to r among those with dots, the
optimal path remains in Q(r, s).
Otherwise, if a spin s with lines
becomes r , the path arrives for
the first time inH (r, s). Starting
from B̄K−2

1,K−1(r , s), the path can
pass to another configuration
belonging to H (r, s)

– We define

H (r, s):=B̄1
1,K (r , s)∪

K−2⋃

h=2

B̄h
1,K−1(r , s), H̃ (r, s):=B̃1

1,K (r , s)∪
K−2⋃

h=2

B̃h
1,K−1(r , s). (3.8)

We refer to Figs. 3 and 4 for an example of a configurations belonging to Q(r, s) and to
H (r, s). See Figs. 9 and 10 for other examples of this type of configurations.

– Finally, we set

W(h)
j (r, s) := B̄h

j,K (r , s) = B̃K−h
L− j−1,K (r , s) for j = 2, . . . , L − 3, (3.9)

W j (r, s) :=
K−1⋃

h=1

W(h)
j (r, s). (3.10)

We refer to Fig. 2c for an example of configuration belonging to W(3)
5 (r, s).

3.2 Main Results

We are now ready to state the main results of this section.

3.2.1 Minimal Restricted-Gates Between Two Potts Stable Configurations

The set of all minimal restricted-gates for the transition between two given stable configura-
tions r �= s is given in the following theorem.

Theorem 3.1 (Minimal-restricted gates) For every r, s ∈ X s , s �= r, the following sets are
minimal restricted-gates for the transition r → s:

(a) P(r, s) and P̃(r, s);
(b) Q(r, s) and Q̃(r, s);
(c) H (r, s) and H̃ (r, s);
(d) W(h)

j (r, s) for any j = 2, . . . , L − 3 and any h = 1, . . . , K − 1.

123



Critical Configurations and Tube of Typical Trajectories... Page 11 of 38 30

Fig. 5 Focus on the energy landscape between r and s and example of some essential saddles for the transition
r → s following an optimal path which does not pass through other stable states

We prove Theorem 3.1 in Sect. 5 by studying the energy landscape between r, s. In Fig. 5 we
give a side view of the energy landscape between two stable configurations r and s, and we
draw the restricted-gates corresponding to the transition between these two configurations. In
Fig. 6we give a top-down view of the energy landscape between several stable configurations.
Figure 5 then is a side view of any one of the four arms in Fig. 6. Accordingly, studying the
restricted-gates between, say 1 and 2, corresponds to focusing on only those paths that cross
the right part of Fig. 6. The following results identify the minimal restricted-gates between
two stable configurations.

The next theorem implies that there are no other minimal-restricted gates than the ones
identified in Theorem 3.1.

Theorem 3.2 (Union of all minimal-restricted gates) For any r, s ∈ X s , s �= r, the union of
all minimal restricted-gates for the transition r → s is given by

F(r, s)=
L−3⋃

j=2

W j (r, s)∪H (r, s)∪H̃ (r, s)∪Q(r, s)∪Q̃(r, s)∪P(r, s)∪P̃(r, s). (3.11)

Given a non-empty subset A ⊂ X and a configuration σ ∈ X , we define τσ
A := inf{t > 0 :

Xβ
t ∈ A} as the first hitting time of the subsetA for the Markov chain {Xβ

t }t∈N starting from
σ at time t = 0.

Corollary 3.1 (Crossing the restricted-gates) Consider any r, s ∈ X s and the transition from
r to s. Then,

(a) lim
β→∞Pβ(τ r

P (r,s)
< τ rX s\{r}|τ rs < τ rX s\{r,s}) = 1

(b) lim
β→∞Pβ(τ rQ(r,s)

< τ rX s\{r}|τ rs < τ rX s\{r,s}) = 1

(c) lim
β→∞Pβ(τ r

H (r,s)
< τ rX s\{r}|τ rs < τ rX s\{r,s}) = 1

(d) lim
β→∞Pβ(τ rW(h)

j (r,s)
< τ rX s\{r}|τ rs < τ rX s\{r,s}) = 1 for any j = 2, . . . , L − 3,

h = 1, . . . , K − 1.

Items (a)–(c) hold also for P̃(r, s), Q̃(r, s), H̃ (r, s), respectively.
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3.2.2 Minimal Gates for the Transition from a Stable State to the Other Stable States

Using the results about theminimal restricted-gates, inTheorem3.3we identify geometrically
all the sets of minimal gates for the transition from a stable configuration to the other stable
states.While in Theorem3.4we identify the union of allminimal gates for the same transition.
We assume q > 2, otherwise when q = 2, |X s | = 2 and Theorems 3.3–3.4 coincide with
Theorems 3.1–3.2.

Theorem 3.3 (Minimal gates for the transition r → X s\{r}) Let r ∈ X s . Then, the following
sets are minimal gates for the transition r → X s\{r}:
(a)

⋃
t∈X s\{r} P(r, t) and

⋃
t∈X s\{r} P̃(r, t);

(b)
⋃

t∈X s\{r} Q(r, t) and
⋃

t∈X s\{r} Q̃(r, t);
(c)

⋃
t∈X s\{r} H (r, t) and

⋃
t∈X s\{r} H̃ (r, t);

(d)
⋃

t∈X s\{r} W(h)
j (r, t) for any j = 2, . . . , L − 3 and any h = 1, . . . , K − 1.

Theorem 3.4 (Union of all minimal gates for the transition r → X s\{r}) Given r ∈ X s , the
union of all minimal gates for the transition r → X s\{r} is given by

G(r,X s\{r}) =
⋃

t∈X s\{r}
F(r, t), (3.12)

where

F(r, t) =
L−3⋃

j=2

W j (r, t)∪H (r, t)∪H̃ (r, t)∪Q(r, t)∪Q̃(r, t)∪P(r, t)∪P̃(r, t). (3.13)

Remark 3.1 Note that when A = {r} and B = S\{r} the set of model-dependent gateway
configurations given in [2, Definition 8.1] contains strictly G(r,X s\{r}), thus it is a gate but
it is not minimal.

We refer to Fig. 5 for an illustration of the energy landscape between two Potts stable states.
Moreover, in Fig. 6, we depict an example of restricted-gates for 5-state Potts model in which
the set of minimal restricted-gate corresponds to one of the arms that collegues two different
stable states.

Corollary 3.2 (Crossing the gates) Consider any r ∈ X s and the transition from r to X s\{r}.
Then, the following properties hold:

(a) lim
β→∞Pβ(τ r⋃

t∈X s \{r} P (r,t)
< τ rX s\{r})= 1;

(b) lim
β→∞Pβ(τ r⋃

t∈X s \{r} Q(r,t)
< τ rX s\{r})= 1;

(c) lim
β→∞Pβ(τ r⋃

t∈X s \{r} H (r,t)
< τ rX s\{r})= 1;

(d) lim
β→∞Pβ(τ r⋃

t∈X s \{r} W(h)
j (r,t)

< τ rX s\{r})=1, for any j = 2, . . . , L − 3,

h = 1, . . . , K − 1.

Items (a)–(c)arealso satisfied for
⋃

t∈X s\{r} P̃(r, t),
⋃

t∈X s\{r} Q̃(r, t), and
⋃

t∈X s\{r} H̃ (r, t),
respectively. Moreover, (a)–(d) imply

lim
β→∞Pβ(τ rG(r,X s\{r})< τ rX s\{r})= 1. (3.14)
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Fig. 6 Example of 5−Potts model with S = {1, 2, 3, 4, 5}. Viewpoint from above on the set of minimal gates
around the stable state 1 at energy 2K + 2 + H(1). For any s ∈ {2, 3, 4, 5}, starting from 1, the process hits
X s\{1} for the first time in s with probability 1

q−1 = 1
4

This corollary implies that every geometrical gate and their union have to be crossed with
probability tending to one in the asymptotic limit. In [2], the authors prove Corollary 8.9 that
is similar to Corollary 3.2(d).

3.2.3 Minimal Gates for the Transition from a Stable State to Another Stable State

In Theorem 3.5 we identify geometrically all the sets of minimal gates for the transition from
a stable configuration to the another stable state.While in Theorem 3.6we fully geometrically
describe the union of all minimal gates for the same transition. We assume q > 2, otherwise
when q = 2, |X s | = 2 and Theorems 3.5–3.6 coincide with Theorems 3.1–3.2. We invite
the reader to see Fig. 6 for a pictorial illustration of the structure of the minimal gates.

123



30 Page 14 of 38 G. Bet et al.

Theorem 3.5 (Minimal gates for the transition r → s) Consider r, s ∈ X s , r �= s. Then, the
following sets are minimal gates for the transition r → s:

(a)
⋃

t∈X s\{r}
P(r, t),

⋃

t∈X s\{s}
P(t, s),

⋃

t∈X s\{r}
P̃(r, t),

⋃

t∈X s\{s}
P̃(t, s);

(b)
⋃

t∈X s\{r}
Q(r, t),

⋃

t∈X s\{s}
Q(t, s),

⋃

t∈X s\{r}
Q̃(r, t),

⋃

t∈X s\{s}
Q̃(t, s);

(c)
⋃

t∈X s\{r}
H (r, t),

⋃

t∈X s\{s}
H (t, s),

⋃

t∈X s\{r}
H̃ (r, t),

⋃

t∈X s\{s}
H̃ (t, s);

(d)
⋃

t∈X s\{r}
W(h)

j (r, t),
⋃

t∈X s\{s}
W(h)

j (t, s) for any j =2, . . . , L− 3, h=1, . . . , K−1.

Theorem 3.6 (Union of all minimal gates for the transition r → s) Consider r, s ∈ X s ,
r �= s. Then, the union of all minimal gates for the transition r → s is given by

G(r, s) =
⋃

t∈X s\{r}
F(r, t) ∪

⋃

t∈X s\{s}
F(t, s), (3.15)

where, for any t, z ∈ X s , t �= z,

F(t, z) =
L−3⋃

j=2

W j (t, z)∪H (t, z)∪H̃ (t, z)∪Q(t, z)∪Q̃(t, z) ∪ P(t, z)∪P̃(t, z). (3.16)

Corollary 3.3 (Crossing the gates) Consider any r, s ∈ X s , with r �= s, and the transition
from r to s. Then, the following properties hold:

(a) lim
β→∞Pβ(τ r⋃

t∈X s \{r} P (r,t)
< τ rs ) = 1, lim

β→∞Pβ(τ r⋃
t∈X s \{s} P (t,s)

< τ rs ) = 1;
(b) lim

β→∞Pβ(τ r⋃
t∈X s \{r} Q(r,t)

< τ rs ) = 1, lim
β→∞Pβ(τ r⋃

t∈X s \{s} Q(t,s)
< τ rs ) = 1;

(c) lim
β→∞Pβ(τ r⋃

t∈X s \{r} H (r,t)
< τ rs ) = 1, lim

β→∞Pβ(τ r⋃
t∈X s \{s} H (t,s)

< τ rs ) = 1;
(d) lim

β→∞Pβ(τ r⋃
t∈X s \{r} W(h)

j (r,t)
< τ rs ) = 1, lim

β→∞Pβ(τ r⋃
t∈X s \{s} W(h)

j (t,s)
< τ rs ) = 1.

for any j = 2, . . . , L − 3, h = 1, . . . , K − 1. Items (a)–(c) hold also for
⋃

t∈X s\{r} P̃(r, t),
⋃

t∈X s\{s} P̃(t, s),
⋃

t∈X s\{r} Q̃(r, t),
⋃

t∈X s\{s} Q̃(t, s),
⋃

t∈X s\{r} H̃ (r, t),
⋃

t∈X s\{s} H̃ (t, s), respectively. Moreover, (a)–(d) imply

lim
β→∞Pβ(τ rG(r,s)< τ rs )= 1. (3.17)

This corollary implies that every geometrical gate for the transition r → s and their union
have to be crossed with probability tending to one in the asymptotic limit.

3.2.4 Minimal Gates of the Ising Model with Zero External Magnetic Field

When q = 2, the Potts model corresponds to the Ising model with no external magnetic field,
in which S = {−1,+1} and X s = {−1,+1}. In this scenario, starting from −1, the target is
necessarily +1 and the following corollary holds.
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Corollary 3.4 Consider the Isingmodel on a K ×L gridΛwith periodic boundary conditions
and with zero external magnetic field. Then, the following sets are minimal gates for the
transition −1 → +1:

(a) P(−1,+1), P̃(−1,+1);
(b) Q(−1,+1), Q̃(−1,+1);
(c) H (−1,+1), H̃ (−1,+1);
(d) W(h)

j (−1,+1) for any j = 2, . . . , L − 3 and any h = 1, . . . , K − 1.

Moreover

G(−1,+1) =
L−3⋃

j=2

W j (−1,+1) ∪ H (−1,+1) ∪ H̃ (−1,+1) ∪ Q(−1,+1)

∪ Q̃(−1,+1) ∪ P(−1,+1) ∪ P̃(−1,+1). (3.18)

4 Restricted-Tube of Typical Paths and Tube of Typical Paths: Main
Results

In this section we state formally our results on the restricted-tube of typical paths for the
transition from one stable state to another. We then state our results on the tube of typical
paths for the transition from a stable state to any other stable configuration and for the
transition from one stable state to another fixed stable configuration. However, first we give
some notations and definitions which are used throughout the next sections.

4.1 Definitions and Notations

In order to state our results, we make use of the definitions in Sect. 3.1, as well as some new
ones.

4.1.1 Model-Independent Definitions and Notations

The following definitions are taken from [8,11,12].

– The bottomF (A) of a non-empty setA ⊂ X is the set of global minima of H inA, i.e.,
F (A) := {η ∈ A : H(η) = minσ∈A H(σ )}.

– A non-empty subset A ⊆ X is said to be connected if for any σ, η ∈ A there exists a
path ω : σ → η contained in A. Moreover,

∂A := {η /∈ A : P(σ, η) > 0 for some σ ∈ A}. (4.1)

is the external boundary of A.
– A connected set of equal energy states which is maximal by inclusion is called a plateau.
– A non-empty subset C ⊂ X is called cycle if it is either a singleton or a connected set

such that

max
σ∈C H(σ ) < H(F (∂C)). (4.2)

When C is a singleton, it is said to be a trivial cycle. An extended cycle is a collection of
cycles which belong to the same plateau. C (X ) denotes the set of cycles and extended
cycles.
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– The principal boundary of C ∈ C (X ) is

B(C):=

⎧
⎪⎨

⎪⎩

F (∂C) if C is non-trivial cycle,

{η ∈ ∂C : H(η) < H(σ )} if C={σ } is trivial cycle,
{η ∈ ∂C : ∃σ ∈ C s.t. H(η)<H(σ )} if C is extended cycle.

(4.3)

The non-principal boundary of C is then ∂npC := ∂C\B(C).

– Given a non-empty set A and σ ∈ X , the initial cycle CA(σ ) is

CA(σ ) := {σ } ∪ {η ∈ X : Φ(σ, η) < Φ(σ,A)}. (4.4)

If σ ∈ A, then CA(σ ) = {σ } and thus is a trivial cycle. Otherwise, CA(σ ) is either a trivial
cycle (when Φ(σ,A) = H(σ )) or a non-trivial cycle containing σ (when Φ(σ,A) >

H(σ )). In any case, if σ /∈ A, then CA(σ ) ∩ A = ∅.
– The relevant cycle C+

A(σ ) is

C+
A(σ ) := {η ∈ X : Φ(σ, η) < Φ(σ,A) + δ/2}, (4.5)

where δ is the minimum energy gap between an optimal and a non-optimal path from σ

to A.
– For any non-empty set A ⊂ X , M(A) denotes the collection of maximal cycles and

extended cycles that partitions A. Formally,

M(A) := {C ∈ C (X )| C maximal by inclusion under constraint C ⊆ A}.
– A cycle-path is a finite sequence (C1, . . . , Cm) of any combination of trivial, non-trivial

and extended cycles C1, . . . , Cm ∈ C (X ), such that Ci ∩ Ci+1 = ∅ and ∂Ci ∩ Ci+1 �= ∅,
for every i = 1, . . . ,m − 1. The set of cycle-paths that lead from σ to A and consist of
maximal cycles in X\A is

Pσ,A := {(C1, . . . , Cm)| C1, . . . , Cm ∈ M(C+
A(σ )\A), σ ∈ C1, ∂Cm ∩ A �= ∅}.

– Given a non-empty set A ⊂ X and σ ∈ X , we constructively define a mapping G :
Ωσ,A → Pσ,A. More precisely, given ω = (ω1, . . . , ωn) ∈ Ωσ,A, we set m0 = 1, C1 =
CA(σ ) and define recursivelymi := min{k > mi−1| ωk /∈ Ci } and Ci+1 := CA(ωmi ). We
note that ω is a finite sequence and ωn ∈ A, so there exists an index n(ω) ∈ N such that
ωmn(ω)

= ωn ∈ A and there the procedure stops. The way the sequence (C1, . . . , Cmn(ω)
)

is constructed shows that it is a cycle-path with C1, . . . , Cmn(ω)
⊂ M(X\A). Moreover,

the fact thatω ∈ Ωσ,A implies that σ ∈ C1 and that ∂Cn(ω)∩A �= ∅, henceG(ω) ∈ Pσ,A
and the mapping is well-defined.

– A cycle-path (C1, . . . , Cm) is said to be connected via typical jumps toA ⊂ X or simply
vt j−connected to A if

B(Ci ) ∩ Ci+1 �= ∅, ∀i = 1, . . . ,m − 1, and B(Cm) ∩ A �= ∅. (4.6)

JC,A denotes the collection of all cycle-path (C, C1, . . . , Cm) that begin in C and are
vtj-connected to A.

– We say that ω ∈ Ωσ,A is a typical path from σ ∈ X toA ⊆ X if its corresponding cycle-

pathG(ω) is vtj-connected toA and we denote byΩ
vtj
σ,A the collection of all typical paths

from σ to A. Formally,

Ω
vtj
σ,A := {ω ∈ Ωσ,A| G(ω) ∈ JCA(σ ),A}. (4.7)

See [12, Lemma 3.12] for an equivalent characterization of a typical path.
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– The tube of typical paths TA(σ ) from σ to A is the subset of states η ∈ X that can be
reached from σ by means of a typical path which does not enter A before visiting η.
Formally,

TA(σ ) := {η ∈ X | ∃ ω ∈ Ω
vtj
σ,A : η ∈ ω}. (4.8)

Moreover, TA(σ ) is the set of all maximal cycles and maximal extended cycles that
belong to at least one vtj-connected path from CA(σ ) to A,

TA(σ ) :={C ∈ M(C+
A(σ )\A)|∃ (C1, . . . , Cn) ∈ JCA(σ ),A,

and ∃ j ∈ {1, . . . , n} : C j = C}. (4.9)

Note that TA(σ ) = M(TA(σ )\A) and that the boundary of TA(σ ) consists of states
either in A or in the non-principal part of the boundary of some C ∈ TA(σ ):

∂TA(σ )\A ⊆
⋃

C∈TA(σ )

(∂C\B(C)) =: ∂npTA(σ ). (4.10)

For the sake of semplicity, we will also refer to TA(σ ) as tube of typical paths from σ

to A.
– When |X s | > 2, the restricted-tube of typical paths Uσ ′(σ ) between two stable states

σ and σ ′ �= σ is the subset of states η ∈ X that can be reached from σ by means of a
typical path which does not intersect X s\{σ, σ ′} and does not visit σ ′ before visiting η.
Formally,

Uσ ′(σ ) := {η ∈ X | ∃ ω ∈ Ω
vtj
σ,σ ′ s.t. ω ∩ X s\{σ, σ ′} = ∅ and η ∈ ω}. (4.11)

Moreover, we setUσ ′(σ ) as the set of maximal cycles and maximal extended cycles that
belong to at last one vtj-connected path from Cσ ′(σ ) to σ ′ such that does not intersect
X s\{σ, σ ′}. Formally,

Uσ ′(σ ) := {C ∈ M(C+
{σ ′}(σ )\{σ ′})|∃(C1, . . . , Cm) ∈ JCσ ′ (σ ),{σ ′} such that

m⋃

i=1

Ci ∩ X s\{σ, σ ′} = ∅ and ∃ j ∈ {1, . . . , n} : C j = C}. (4.12)

Note that Uσ ′(σ ) = M(Uσ ′(σ )\(X s\{σ })) and that the boundary of Uσ ′(σ ) consists of
σ ′ and of states in the non-principal part of the boundary of some C ∈ Uσ ′(σ ):

∂Uσ ′(σ )\{σ ′} ⊆
⋃

C∈U σ ′ (σ )

(∂C\B(C)) =: ∂npUσ ′(σ ). (4.13)

For sake of semplicity, we will also refer to Uσ ′(σ ) as restricted-tube of typical paths
from σ to σ ′.

Remark 4.1 Note that the notion of extended cyles is taken from [8]. In particular, using also
the extended cycles for defining a cycle-path vtj-connected, we get that this object is the
so-called standard cascade in [8].

4.1.2 Model-Dependent Definitions and Notations

– The union of all unit closed squares centered at the vertices v ∈ V such that σ(v) = s
is denoted as Cs(σ ) ⊆ R

2. The s-clusters Cs
1,C

s
2, . . . are the connected components of
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Cs(σ ), with the additional rule that we consider as distinct two s-clusters which share
only one point. Two clusters Cs

i ,C
s
j are said to be interacting when either one of the

following conditions is satisfied: (a) Cs
i and Cs

j intersect or (b) C
s
i and Cs

j are disjoint
and there exists a site v /∈ Cs

i ∪Cs
j such that σ(v) �= s with two distinct nearest-neighbor

sites u, w lying inside Cs
i ,C

s
j respectively.

We say that a q-Potts configuration has s-interacting clusters when all its s-clusters are
interacting.

– R(Cs(σ )) ⊆ X denotes the smallest rectangle that contains Cs(σ ).
– For any s, r ∈ {1, . . . , q}, let X (r , s) := {σ ∈ X : σ(v) ∈ {r , s} ∀v ∈ V }.
– Let R	1×	2 be a rectangle in R

2 with horizontal side of length 	1 and vertical side of
length 	2.

Now we define some extended cycles that are crucial to describe the tube of typical paths.

– Let

K(r , s) := {σ ∈ X (r , s) : H(σ ) = 2K + 2+ H(r), σ has either a s-cluster or

more s-interacting clusters and R(Cs(σ )) = R2×(K−1)}∪Q(r, s)∪P(r, s). (4.14)

Note that H (r, s) ⊂ K(r , s).
– We set

D1(r , s) := {σ ∈ X (r , s) : H(σ ) = 2K + H(r), σ has either a s-cluster

or more s-interacting clusters such that R(Cs(σ )) = R2×(K−2)}, (4.15)

and

E1(r , s) := {σ ∈ X (r , s) : H(σ ) = 2K + H(r), σ has either a s-cluster or

more s-interacting clusters such that R(Cs(σ )) = R1×(K−1)}∪ R̄1,K (r , s). (4.16)

– For i = 2, . . . , K − 2, let

Di (r , s) :={σ ∈ X (r , s) :H(σ ) = 2K − 2i + 2+ H(r), σ has either a s-cluster

or more s-interacting clusters such that R(Cs(σ )) = R2×(K−(i+1))}, (4.17)

E i (r , s) :={σ ∈ X (r , s) :H(σ ) = 2K − 2i + 2+ H(r), σ has either a s-cluster

or more s-interacting clusters such that R(Cs(σ )) = R1×(K−i)}. (4.18)

– The sets K̃(r , s), D̃i (r , s), Ẽi (r , s) are defined analogously by interchanging the role of
the spins r and s.

We refer to Fig. 7 and to Figs. 13–15 for some examples of the extended cycles defined above.

4.2 Main Results

We are now ready to state the main results of this section. In order to understand Theorems
4.1, 4.2, 4.3, it is helpful to think of the following analogy. If Fig. 6 represented a top-down
view of valleys having actual physical depth, and one imagines pouring a liquid in the valley
corresponding to the configuration 1, then the tubes of typical trajectories are all the different
ways in which the liquid might flow out of that valley.
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Fig. 7 Illustration of the first descent fromK(r , s) to r. The rectangles denote extended cycles, i.e., the sets of
trivial equielevated cycles. The arrows denote the connection between each extended cycle and the sets which
belong to its principal boundary

4.2.1 Restricted-Tube of Typical Paths Between Two Potts Stable Configurations

Since in absence of external magnetic field the energy landscape between two Potts stable
configurations is characterized by many extended-cycles, we describe the restricted-tube of
typical paths defined in general in (4.12). For our model, let

Us(r) :=R̄1,1(r , s)∪
K−2⋃

i=1

(Di (r , s)∪E i (r , s))∪K(r , s)∪
K−2⋃

h=2

B̄h
1,K−1(r , s)

∪
L−2⋃

j=2

K−1⋃

h=1

B̄h
j,K (r , s) ∪

L−2⋃

j=2

R̄ j,K (r , s)∪
K−2⋃

h=2

B̃h
1,K−1(r , s)∪K̃(r , s)

∪
K−2⋃

i=1

(D̃i (r , s)∪Ẽi (r , s))∪ R̃1,1(r , s). (4.19)

As illustrated in the next result,Us(r) includes those configurations with nonzero probability
of being visited by theMarkov chain {Xt }βt∈N started in r before hitting s in the limit β → ∞.

Theorem 4.1 (Restricted-tube of typical paths) For r, s ∈ X s , s �= r, the set Us(r) is the
restricted-tube of typical paths for the transition r → s. Moreover, there exists k > 0 such
that for β sufficiently large

Pβ(τ r∂npU s(r) ≤ τ rs |τ rs < τ rX s\{r,s}) ≤ e−kβ . (4.20)
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4.2.2 Tube of Typical Paths Between a Stable State and the Other Stable States

In this section we assume q > 2, since for q = 2 the Hamiltonian only has two global
minima, and the tube of typical trajectories is given by Theorem 4.1. We recall the tube of
typical paths defined in general in (4.9) and define TX s\{r} for Potts model with q > 2:

TX s\{r}(r) :=
⋃

t∈X s\{r}
Ut(r). (4.21)

Theorem 4.2 (Tube of typical paths for the transition r → X s\{r}) For any r ∈ X s , the set
TX s\{r}(r) is the tube of typical trajectories for the transition r → X s\{r} and there exists
k > 0 such that for β sufficiently large

Pβ(τ r∂npTX s \{r}(r) ≤ τ rX s\{r}) ≤ e−kβ . (4.22)

4.2.3 Tube of Typical Paths Between a Stable State and Another Stable State

We are now able to describe the tube of typical paths from a stable configuration to some other
fixed stable state. We describe the typical trajectories for the transition r → s in terms of a
sequence of transitions between two stable states such that the path followed by the process
does not intersect other stable configurations. We recall the tube of typical paths defined in
general in (4.9) and define Ts(r) for Potts model with q > 2:

Ts(r) :=
⋃

t∈X s\{r}
Ut(r) ∪

⋃

t,t′∈X s\{r,s},t �=t′
Ut(t′) ∪

⋃

t′∈X s\{s}
Us(t′). (4.23)

Theorem 4.3 (Tube of typical paths for the transition r → s) For any r, s ∈ X s , r �= s the
set Ts(r) is the tube of typical trajectories for the transition r → s and there exists k > 0
such that for β sufficiently large

Pβ(τ r∂npTs(r) ≤ τ rs ) ≤ e−kβ . (4.24)

4.2.4 Tube of Typical Paths for the Ising Model with Zero Magnetic Field

For sake of concreteness, we give the following result on the tube of typical paths for the
Ising model with zero magnetic field. We recall the tube of typical paths defined in general
in (4.9) and define T+1(−1) for Ising model:

T+1(−1) :=R̄1,1(−1, +1)∪
K−2⋃

i=1

(Di (−1, +1)∪E i (−1, +1))∪K(−1, +1)

∪
K−2⋃

h=2

B̄h
1,K−1(−1, +1)∪

L−2⋃

j=2

K−1⋃

h=1

B̄h
j,K (−1, +1)∪

L−2⋃

j=2

R̄ j,K (−1, +1)

∪
K−2⋃

h=2

B̃h
1,K−1(−1, +1) ∪K̃(−1, +1)∪

K−2⋃

i=1

(D̃i (−1, +1)∪Ẽi (−1,+1))∪ R̃1,1(−1,+1).

Corollary 4.1 Consider the Isingmodel on a K ×L gridΛwith periodic boundary conditions
and with zero external magnetic field. Then, we have that T+1(−1) is the tube of typical
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trajectories for the transition +1 → −1 and there exists k > 0 such that for β sufficiently
large

Pβ(τ r∂npT{+1}(−1) ≤ τ−1
+1 ) ≤ e−kβ . (4.25)

5 Minimal Restricted-Gates: Proofs

In this section we prove our results on the set of minimal restricted-gates for the transition
from r ∈ X s to s ∈ X s , r �= s. To this end, we first study the energy landscape between r
and s by analyzing the optimal paths that do not visit other stable states.

5.1 Energy Landscape Between Two Potts Stable Configurations

In [1, Theorem 2.1], the authors prove that the communication energy (3.2) between any
r, s ∈ X s , with r �= s, is given by

Φ(r, s) = 2min{K , L} + 2 + H(r) = 2K + 2 + H(r). (5.1)

Hence, any optimal pathω ∈ Ω
opt
r,s does not contain configurations with energy strictly larger

than 2K + 2 + H(r).

Remark 5.1 For any σ ∈ X and every r ∈ X s ,

H(σ ) − H(r) = −
∑

(v,w)∈E
1{σ(v)=σ(w)} + |E | =

∑

(v,w)∈E
1{σ(v)�=σ(w)}. (5.2)

Note that the total number of edges that connect two vertices with different spins, say r ∈ S
and s ∈ S\{r}, in a configuration σ ∈ X is equal to the perimeter of the same-spin clusters
in Cr

1,C
r
2, . . . . Thus, thanks to (5.1) and (5.2), it follows that for any σ , that belongs to an

optimal path ω ∈ Ω
opt
r,s , the total perimeter of its clusters with the same spin value cannot be

larger than 2K + 2.

The following lemma is an immediate consequence of (5.2).

Lemma 5.1 Consider r, s ∈ X s , r �= s. Then, for every j = 1, . . . , L − 1,

(a) The energy of any σ ∈ B̄h
j,K (r , s) = B̃K−h

L− j−1,K (r , s), h = 1, . . . , K − 1,is H(σ ) =
H(s) + 2K + 2 = Φ(r, s).

(b) The energy of any σ ∈ B̄h
1,K−1(r , s) ∪ B̃h

1,K−1(r , s), h = 2, . . . , K − 2,is such that
H(σ ) = H(s) + 2K + 2 = Φ(r, s).

(c) The energy of any σ ∈ R̄ j,K (r , s) = R̃L− j,K (r , s) is H(σ ) = H(s) + 2K;
(d) The energy of any σ ∈ R̄ j,K−1(r , s) ∪ R̃ j,K−1(r , s) is

⎧
⎪⎨

⎪⎩

H(σ ) = H(s) + 2K , if j = 1;
H(σ ) = H(s) + 2K + 2 = Φ(r, s), if j = 2;
H(σ ) > Φ(r, s), if j = 3, . . . , L − 1.

(5.3)

The next lemma identifies which configurations communicate along an optimal path with the
sets defined at the beginning of Sect. 3.1.2. For any n = 0, . . . , K L , let Ns(σ ) := |{v ∈ V :
σ(v) = s}| be the number of vertices with spin s in the configuration σ .
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Lemma 5.2 Consider r, s ∈ X s , r �= s. Given a configuration σ , let σ̄ be a configuration
which communicateswithσ alonganoptimal path from r to s that does not intersectX s\{r, s}.
For any j = 2, . . . , L − 2, the following properties hold:

(a) if σ ∈ B̄h
j,K (r , s) and Ns(σ )>Ns(σ̄ ), then

{
σ̄ ∈ R̄ j,K (r , s),if h=1;
σ̄ ∈ B̄h−1

j,K (r , s),if h=2, ..., K −1;

(b) if σ ∈ B̄h
j,K (r , s) and Ns(σ )<Ns(σ̄ ), then

{
σ̄ ∈ B̄h+1

j,K (r , s), if h=1, ..., K −2;
σ̄ ∈ R̄ j+1,K (r , s),if h=K − 1;

(c) if σ ∈ R̄ j,K (r , s) and Ns(σ )>Ns(σ̄ ), then σ̄ ∈ B̄K−1
j−1,K (r , s);

(d) if σ ∈ R̄ j,K (r , s) and Ns(σ )<Ns(σ̄ ), then σ̄ ∈ B̄1
j,K (r , s).

Proof Consider σ ∈ B̄h
j,K (r , s) for some j = 2, . . . , L−2, h = 1, . . . , K −1. Let σ̄ = σv,t

for some v ∈ V and some t ∈ S. Thanks to (2.6) the following implications hold:

(i) if t ∈ S\{r , s}, then H(σ̄ ) − H(σ ) ≥ 2;

(ii) if σ(v)=s, v has four nearest-neighbor spins s, σ̄ (v)=r , then H(σ̄ ) − H(σ )=4;

(iii) if σ(v)=r , v has four nearest-neighbor spins r , σ̄ (v)=s, then H(σ̄ ) − H(σ )=4;

(iv) if σ(v)=s, v has three nearest-neighbor spins s, σ̄ (v)=r , then H(σ̄)− H(σ)=2;

(v) if σ(v)=r , v has three nearest-neighbor spins r , σ̄ (v)=s, then H(σ̄)− H(σ)=2.

Thanks to Lemma 5.1, in all the cases above we have H(σ̄ ) > Φ(r, s), which contradicts
the assumed optimality of the path. Hence, the only configurations σ̄ that communicate with
σ ∈ B̄h

j,K (r , s) along an optimal path are those which are obtained by flipping either a spin
from s to r or a spin from r to s among the spins with two nearest-neighbor spins s and two
nearest-neighbor spins r . In particular, following an optimal path from σ ∈ B̄h

j,K (r , s) to r
we have

{
σ̄ ∈ R̄ j,K (r , s), if h = 1;
σ̄ ∈ B̄h−1

j,K (r , s), if h = 2, . . . , K − 1.
(5.4)

Similarly, following an optimal path from σ ∈ B̄h
j,K (r , s) to s, we have

{
σ̄ ∈ B̄h+1

j,K (r , s), if h = 1, . . . , K − 2;
σ̄ ∈ R̄ j+1,K (r , s), if h = K − 1.

(5.5)

When σ ∈ R̄ j,K (r , s) for some j = 2, . . . , L − 2, the proof proceeds similarly as above.
Indeed, since by Lemma 5.1 we have that H(σ ) = 2K + H(r), the items (i)–(iii) above
imply H(σ̄ ) > Φ(r, s) which is not admissible. On the other hand, we obtain that the moves
depicted in (iv) and (v) above are admissible and that starting from σ ∈ R̄ j,K (r , s), the next
step in an optimal path to r is some σ̄ ∈ B̄K−1

j−1,K (r , s), and the next step in an optimal path

to s is some σ̄ ∈ B̄1
j,K (r , s). ��

We remark that thanks to (3.5), Lemma 5.2 also describes the transition between those con-
figurations which belong to either some B̃h

j,K (r , s) or some R̃ j,K (r , s), for j = 2, . . . , L−2
and h = 1, . . . , K − 1.

5.2 Geometric Properties of the Potts Model with Zero External Magnetic Field

A two dimensional polyomino onZ
2 is a finite union of unit squares. The area of a polyomino

is the number of its unit squares, while its perimeter is the cardinality of its boundary, namely,
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Fig. 8 First steps of path ω̃ on a 11 × 15 grid Λ. The white squares have spin r , the other colors denote spin
s. The arrow indicates the order in which the spins are flipped from r to s. The colors of the squares indicate
when they have been flipped, with darker squares having been flipped later

the number of unit edges of the dual lattice which intersect only one of the unit squares of
the polyomino itself. Thus, the perimeter is the number of interfaces on Z

2 between the sites
inside the polyomino and those outside. We define Mn as the set of all the polyominoes with
minimal perimeter among those with area n. We call minimal polyominoes the elements of
Mn . Next we prove some useful lemmas.

For any n = 0, . . . , K L , let Vs
n := {σ ∈ X : Ns(σ ) = n} be the set of configurations with

n spins s. Note that every optimal path from any stable configuration r �= s to s necessarily
intersects Vs

n for any n = 0, . . . , K L .

Lemma 5.3 Let r, s ∈ X s be two different stable configurations and let ω be an optimal
path for the transition from r to s such that ω ∩ (X s\{r, s}) = ∅. There exists K ∗ ∈
{0, 1, . . . , (K − 1)2} such that in any σ ∈ ω with K ∗ + 1 ≤ Ns(σ ) ≤ (K − 1)2 at least a
cluster of spins s belongs to either R̄ j,K (r , s) or B̄h

j,K (r , s), for some h = 1, . . . , K − 1 and
j = 2, . . . , L. In other words, at least a cluster of spin s wraps around Λ.

Proof The strategy for the proof is to construct a path ω̃ : r → σ̃ for some σ̃ ∈
R̄K−1,K−1(r , s) as a sequence of configurations in which the unique cluster of spins s is a
polyomino (cluster that does not wrap around the torus) with minimal perimeter among those
with the same area. After this construction we compare ω̃ with any optimal path ω : r → s
up to η̃ ∈ Vs

(K−1)2
with the aim to understand what is the last polyomino with perimeter

smaller or equal than 2K +2, see Remark 5.1. In [48, Theorem 2.2] the authors show that the
set of minimal polyominoes of area n, Mn , includes squares or quasi-squares with possibly
a bar on one of the longest sides. Thus, we define ω̃ := (ω̃0, ω̃1, ω̃2, . . . , σ̃ ) as the sequence
of configurations having these shapes in which the number of spins s increases following the
clockwise direction, see Fig. 8 for an example of this construction.

Since Ns(ω̃ j+1) = Ns(ω̃ j ) + 1 for all j = 0, 1, . . . , there exists some K ∗ > 0 such that
the perimeter of the s-cluster of ω̃K ∗ is equal to 2K + 2 and the perimeter of the s-cluster
of ω̃K ∗+1 is strictly larger than 2K + 2. It follows that H(ω̃K ∗) = 2K + 2 + H(r) and
H(ω̃K ∗+1) > 2K + 2 + H(r), thus ω̃K ∗+1 does not belong to any ω ∈ Ω

opt
r,s . Explicit

computations show that K ∗ is given by

K ∗ :=
{

K 2+2K+1
4 , if K is odd,

K 2+2K
4 , if K is even.

(5.6)

If K is odd (resp. even), the s-cluster of ω̃K ∗ is a K+1
2 × K+1

2 square (resp. K
2 × ( K2 + 1)

rectangle). It follows that the configuration(s) in the intersection ω ∩ Vs
n for any ω ∈ Ω

opt
r,s

and K ∗ + 1 ≤ n ≤ (K − 1)2, do not contain any ω̃n for any n ≥ K ∗ + 1. Hence, any
optimal path intersects Vs

n with n > K ∗ only in configurations with s-clusters wrapping
around Λ. Moreover, the intersection belongs to either R̄ j,K (r , s) or B̄h

j,K (r , s), for some
h = 1, . . . , K − 1 and j = 2, . . . , L . �� .
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Lemma 5.4 Consider r, s ∈ X s , r �= s. Then, for any ω ∈ Ω
opt
r,s such that ω ∩ (X s\{r, s}) =

∅, we have

(a) ω ∩ P(r, s) �= ∅, ω ∩ P̃(r, s) �= ∅;
(b) ω ∩ Q(r, s) �= ∅, ω ∩ Q̃(r, s) �= ∅;
(c) ω ∩ H (r, s) �= ∅, ω ∩ H̃ (r, s) �= ∅.

Proof Using the reversibility of the dynamics, we prefer to study the optimal path ω ∈ Ω
opt
r,s

such that ω ∩ (X s\{r, s}) = ∅ by analyzing instead its time reversal ωT = (ωn, . . . , ω0).
Indeed, a path ω = (ω0, . . . , ωn) from r to s is optimal if and only if the path ωT =
(ωn, . . . , ω0) is optimal.

We begin by proving (a). We prove the statement only for P(r, s) since the proof for
P̃(r, s) follows by switching the roles of r and s and using the symmetry of the model.

Let ω ∈ Ω
opt
r,s be any optimal path between r and s such that ω ∩ (X s\{r, s}) = ∅.

Thanks to Lemma 5.3, there exists K ∗ ∈ N such that, when n > K ∗, every ω intersects Vs
n

in configurations which belong to either B̄h
j,K (r , s) or R̄ j,K (r , s) for some j = 2, . . . , L −2

and h = 1, . . . , K−1.Moreover, by Lemma 5.2 it follows thatω reaches these configurations
only moving among configurations belonging to either B̄h

j,K (r , s) or R̄ j,K (r , s) with j =
2, . . . , L − 2, h = 1, . . . , K − 1. In particular, the intersection ω ∩ R̄2,K (r , s) is not empty.
Take σ ∈ ω ∩ R̄2,K (r , s). By Lemma 5.2(c), the only σ̄ ∈ Vs

2K−1 which communicates with

σ belongs to P(r, s) = B̄K−1
1,K (r , s).

Let us move to the proof of (b). To aid the understanding, we suggest to use Fig. 3 in Sect.
3.1.2 as a reference for this part of the proof. We prove the statement only for Q(r, s) since
the proof for Q̃(r, s) again follows from symmetry considerations. Consider ω ∈ Ω

opt
r,s such

that ω ∩ (X s\{r, s}) = ∅ and take σ ∈ P(r, s) ∩ ω This exists in view of (a). Note that
from Lemma 5.1 we have H(σ ) = Φ(r, s). Since σ ∈ Vs

2K−1, we have to move from σ to
σ̄ by removing a spin s and the only possibility to not overcome Φ(r, s) is to change from s
to r a spin s with two nearest-neighbor spins r . Indeed, in a such a way the perimeter of the
cluster with spins s does not increase and H(σ̄ ) does not exceed Φ(r, s), see Remark 5.1.
Hence, given σ ∈ P(r, s), the only configurations σ̄ ∈ Vs

2K−2 which communicate with σ ,

along an optimal path from σ to r, belong to either R̄2,K−1(r , s) or B̄
K−2
1,K (r , s), which are

subsets of Q(r, s).
Finally, we carry out the proof of (c). We prove the statement only for H (r, s) since the
proof for H̃ (r, s) again follows from symmetry considerations. For semplicity, we split the
proof in several steps.
Step 1. We claim that, given σ̄ ∈ R̄2,K−1(r , s) ∪ B̄K−2

1,K (r , s), the only configurations σ̂ ∈
Vs
2K−3 which communicate with σ̄ , along an optimal path from σ̄ to r, belong to either

B̄K−2
1,K−1(r , s) or B̄

K−3
1,K (r , s), see Fig. 9.

We remark that σ̄ ∈ Vs
2K−2 and, thanks to Lemma 5.1, that H(σ̄ ) = Φ(r, s). Hence, we

have to move from σ̄ to σ̂ by removing a spin s without increasing the energy and the only
possibility is flipping from s to r a spin s among those with two nearest-neighbor spins s. This
can happen in several ways. Assume first that σ̄ ∈ R̄2,K−1(r , s), then σ̂ ∈ B̄K−2

1,K−1(r , s) ⊂
H (r, s) and both the proof of (c) and the proof of the claim are concluded. Otherwise, when
σ̄ ∈ B̄K−2

1,K (r , s), we flip from s to r either

(i) a spin s with two nearest-neighbor spins s which lies on the column full of s or
(ii) a spin s among those with two nearest-neighbor spins s on the incomplete column of

spins s.
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Fig. 9 Example on a 9 × 12 grid
Λ of Step 1. White vertices have
spin r , gray vertices have spin s.
Starting from B̄K−2

1,K (r , s), the

path can remain inQ(r, s) by
flipping a spin s to r among those
with dots, otherwise it can enter
into H (r, s) by flipping from s
to r a spin s among those with
lines. Note that from
B̄K−3
1,K−1(r , s) the path can enter

into CX s\{r}(r) in one step by
flipping from s to r the spin s
with three nearest-neighbor r

In particular, in case (i), σ̂ ∈ B̄K−2
1,K−1(r , s) ⊂ H (r, s) and both the proof of (c) and of

the claim are completed. Otherwise, in case (ii), σ̂ ∈ B̄K−3
1,K (r , s) ⊂ Q(r, s). Thus claim is

verified. However it is necessary to consider another step to prove (c).
Step 2. We claim that, given σ̂ ∈ B̄K−3

1,K (r , s), the only configurations of Vs
2K−4 which

communicate with σ̂ , along an optimal path between σ̂ and r, belong to either B̄K−3
1,K−1(r , s)

or B̄K−4
1,K (r , s), see Fig. (4) in Sect. 3.1.2.

Since H(σ̂ ) = Φ(r, s) (see Lemma 5.1), then in order to not increase the energy and
to reduce the number of spins s, the moves (i) and (ii) of Step 1 are the only possibilities.
It follows that ω can pass through B̄K−3

1,K (r , s) coming from a configuration that lies in

B̄K−3
1,K−1(r , s) ⊂ H (r, s) or in B̄K−4

1,K (r , s) ⊂ Q(r, s). In any case, the claim is verified.
However, we conclude the proof of (c) only in the first case, otherwise we have to consider
another step. Iterating the above construction, if at a certain step ω intersects Vs

m , for m =
K+2, . . . , 2K−2, in a configuration of B̄n

1,K−1(r , s) ⊂ H (r, s) for some n = 3, . . . , K−3,
then item (c) is satisfied and the proof is completed at that step. Otherwise, if ω intersects
every Vs

m , for m = K + 2, . . . , 2K − 2, in configurations belonging to Q(r, s), then the
above construction leads to a configuration that lies in B̄2

1,K (r , s) ⊂ Q(r, s) and item (c) is

satisfied because any η ∈ B̄2
1,K (r , s) communicates with Vs

K+1 only through configurations

belonging to either B̄1
1,K (r , s) ⊂ H (r, s) or B̄2

1,K−1(r , s) ⊂ H (r, s), see Fig. 10. Indeed, (i)
and (ii) of Step 1 are the only admissible options to move from B̄2

1,K (r , s) to Vs
K+1 following

an optimal path. ��
In the proof of [1, Proposition 2.5], the authors define a reference pathω∗ between any pair

of different stable configurations of a q-state Potts model on a K × L grid Λ. Before stating
the last lemma of the section, we briefly introduce this path. We say that a path ω : σ → σ ′ is
the concatenation of the L paths ω(i) = (ω

(i)
0 , . . . , ω

(i)
mi ), for some mi ∈ N, i = 1, . . . , L,

if ω = (ω
(1)
0 = σ, . . . , ω

(1)
m1 , ω

(2)
0 , . . . , ω

(2)
m2 , . . . , ω

(L)
0 , . . . , ω

(L)
mL = σ ′).

Definition 5.1 Given any r, s ∈ X s , r �= s, the reference path ω∗ is an optimal path from
r to s that is formed by a sequence of configurations in which the cluster of spins s grows
gradually column by column. During the first K steps, ω∗ passes through configurations in
which the spins on a particular column, say c j for some j = 0, . . . , L − 1, become s, then it
crosses those configurations in which the spins on either c j+1 or c j−1 become s and so on.
Without loss of generality the first spins that flip lie on the first column c0. Formally, ω∗ is
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Fig. 10 Example on a 9× 12 grid
Λ of the final step of the proof of
Lemma 5.4(c). White vertices
have spin r , gray vertices have
spin s. If the optimal path
intersects Vs

K+2 in a
configuration of
B̄2
1,K (r , s) ⊂ Q(r, s) and it has

not already passed thorugh
H (r, s), necessarily it arrives in
this set by considering the step
towards Vs

K+1

defined as the concatenation of L paths ω∗(1), . . . , ω∗(L) such that ω∗(i) : ηi−1 → ηi , where
η0 := r, ηL := s and for any i = 1, . . . , L , ηi is defined as

ηi (v) :=
{
s, if v ∈ ⋃i−1

j=0 c j ,

r , otherwise.
(5.7)

In particular, for any i = 1, . . . , L , we define ω∗(i) = (ω∗(i)
0 , . . . , ω∗(i)

K ) as ω∗(i)
0 = ηi−1,

ω∗(i)
h = (ω∗(i)

h−1)
(h−1,i),s , for h = 1, . . . , K − 1 and ω∗(i)

K = ηi . Note that for any i =
1, . . . , L − 1, h = 1, . . . , K − 1, we have ω∗(1)

h ∈ R̄1,h(r , s), ηi ∈ R̄i,K (r , s) and ω∗(i+1)
h ∈

B̄h
i,K (r , s). Using Lemma 5.1 and the fact that Φ(r, s) = 2K + 2 + H(r), we see, indeed,

that ω∗ is an optimal path.

Lemma 5.5 Let r, s ∈ X s , r �= s. For any σ ∈ H (r, s) there exists a path ω̄ = (ω̄0, . . . , ω̄n)

from r to σ such that

H(ω̄i ) < 2K + 2 + H(r), (5.8)

for every i = 0, . . . , n−1. Similarly, there exists ω̃ from s to any σ ∈ H̃ (r, s) with the same
properties of ω̄.

Proof We prove that there exists ω̄ : r → σ which satisfies (5.8) for any σ ∈ H (r, s); by
reversing the roles of r and s, the proof of the existence of ω̃ from s to any σ ∈ H̃ (r, s)
is analogous. The definition of H (r, s) gives rise to the two following scenarios, see (3.8).
If σ ∈ B̄1

1,K (r , s), then ω̄ is given by the first steps of the path ω∗ depicted in Definition
5.1. Indeed, without loss of generality, we rename the column in which σ has all spins
s as c0 and we set ω̄ = (r, ω∗(1)

1 , . . . , ω∗(1)
K , ω∗(2)

1 = σ). If σ ∈ B̄h
1,K−1(r , s) for some

h = 2, . . . , K − 2, we proceed as follows. Possibly relabeling the columns, we build ω̄

taking into account the columns c0, c1 of the grid. In Fig. 11 we depict an example of the
path ω̄. For every h = 2, . . . , K − 2 and for any odd value i from 1 to 2h − 1, we set

ω̄i = ω̄
( i−1

2 ,0),s
i−1 , ω̄i+1 = ω̄

( i−1
2 ,1),s

i .

Then, we set

ω̄ j = ω̄
( j−h,0)
j−1 ,

for any j = 2h + 1, . . . , K − 1 + h. As we see in Fig. 11, after 2h steps ω̄ arrives in ω̄2h ∈
R̄2,h(r , s) and its next configurations belong to B̄h

1, j−h(r , s) for j = 2h+ 1, . . . , K − 1+ h.
Finally, (5.8) is satisfied in view of (5.2). ��
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Fig. 11 Example of ω̄ : r → σ of Lemma 5.5 where σ ∈ B̄h
1,K−1(r , s)with K = 9 and h = 3.White vertices

have spin r , gray vertices have spin s

5.3 Study of the Set of All Minimal Restricted-Gates Between Two Different Stable
States

We are now able to prove the following results concerning the set of minimal restricted-gates
from r ∈ X s to s ∈ X s, s �= r.

Proof of Theorem 3.1. In order to prove that a setWRES ⊂ S(r, s) is a minimal restricted-gate
for the transition from r to s we show that

(i) WRES is a restricted-gate, i.e., every ω ∈ Ω
opt
r,s such that ω ∩ (X s\{r, s}) = ∅ intersects

WRES,
(ii) for any η ∈ WRES there exists an optimal path ω′ ∈ Ω

opt
r,s such that ω′ ∩ (WRES\{η}) = ∅.

Hence, we now show that the sets defined in (a), (b), (c) and (d) of Theorem 3.1 satisfy the
conditions above. Using Lemma 5.4(a),P(r, s) and P̃(r, s) are gates for the transition from
r to s. Next let us show that for any η ∈ P(r, s) there exists an optimal path ω′ ∈ Ω

opt
r,s such

that ω′ ∩ (P(r, s)\{η}) = ∅. It is enough to consider ω′ as the path ω∗ of Definition 5.1 and
to rewrite it in order to have ω′ ∩ P(r, s) = {η}, i.e., ω∗(2)

K−1 = η. By the symmetry of the
model, we prove similarly that there exists a such a path also for any η ∈ P̃(r, s).

Using Lemma 5.4(b), Q(r, s) and Q̃(r, s) are gates for the transition from r to s. Next
let us show that for any η ∈ Q(r, s) there exists an optimal path ω′ ∈ Ω

opt
r,s such that

ω′ ∩ (Q(r, s)\{η}) = ∅. We distinguish two cases:

(i) if η ∈ R̄2,K−1(r , s), given η̄ ∈ B̄K−2
1,K−1(r , s) and η̂ ∈ P(r, s) which communicate with

η, then ω′ is the path given by the concatenation of

– the path ω̄ : r → η̄ of Lemma 5.5;
– the path (η̄, η, η̂);
– the portion of the path ω∗ in Definition 5.1 from ω∗(2)

K−1 = η̂ to s,

so that ω′ ∩ Q(r, s) = {η};
(ii) if η ∈ B̄h

1,K (r , s), for some h = 2, . . . , K − 2, then to define ω′ it is enough to consider
the path ω∗ of Definition 5.1 and to construct it in order to have ω′ ∩Q(r, s) = {η}, i.e.,
ω∗(2)

h = η.

Thanks to the symmetry of the model, we define ω′ in an analogous way for any η ∈ Q̃(r, s).
Using Lemma 5.4(c), H (r, s) and H̃ (r, s) are gates for the transition from r to s. Next

let us show that for any η ∈ H (r, s) there exists an optimal path ω′ ∈ Ω
opt
r,s such that

ω′ ∩ (
H (r, s)\{η}) = ∅. We distinguish two cases:
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(i) if η ∈ B̄1
1,K (r , s), then ω′ is given by the path ω∗ of Definition 5.1 defined in order to

have ω′ ∩ H (r, s) = {η}, i.e., ω∗(2)
1 = η;

(ii) if η ∈ B̄h
1,K−1(r , s), for some h = 2, . . . , K − 2, then ω′ corresponds to the optimal

path given by the concatenation of

– the path ω̄ : r → η of Lemma 5.5;
– the path (η, η̄) with η̄ ∈ B̄h

1,K (r , s), such that the bar of length h is in the same
position as in η;

– the portion of the path ω∗ in Definition 5.1 from ω∗(2)
h = η̄ to s,

so that ω′ ∩ H (r, s) = {η}.
Thanks to the symmetry of the model, we define ω′ for any η ∈ H̃ (r, s) following the same
strategy.

From Lemma 5.3 and Lemma 5.2, we conclude thatW(h)
j (r, s) are gates for the transition

r → s for any j = 2, . . . , L − 3 and any h = 1, . . . , K − 1. Indeed, by Lemma 5.3, there
exists K ∗ ∈ N such that when n > K ∗ every ω ∈ Ω

opt
r,s intersects Vs

n in configurations which

belong to either R̄ j,K (r , s) or W(h)
j (r, s) = B̄h

j,K (r , s) for some j = 2, . . . , L − 3, h =
1, . . . , K −1. Moreover, by Lemma 5.2, ω reaches these configurations only moving among
configurations lying either in R̄ j,K (r , s) or in W(h)

j (r, s) = B̄h
j,K (r , s). Hence, between its

last visit toP(r, s) and its first visit to P̃(r, s),ω passes at least once through eachW(h)
j (r, s),

j = 2, . . . , L − 3. Thus, to conclude the proof we show that for every η ∈ W (h)
j (r, s), there

exists a path ω′ ∈ Ω
opt
r,s such that ω′ ∩ (W(h)

j (r, s)\{η}) = ∅. For any j = 2, . . . , L − 3 and
any h = 1, . . . , K − 1, we define ω′ as the path ω∗ of Definition 5.1, which we rewrite in
order to have ω′ ∩ W(h)

j (r, s) = {η}, i.e., ω∗( j+1)
h = η. ��

Remark 5.2 A saddle η ∈ S(σ, σ ′) is unessential if for any ω ∈ Ω
opt
σ,σ ′ such that ω ∩ η �= ∅

the following conditions are both satisfied:

(a) {argmaxωH}\{η} �= ∅,
(b) there exists ω′ ∈ Ω

opt
σ,σ ′ such that {argmaxω′ H} ⊆ {argmaxωH}\{η}.

Proof of Theorem 3.2. In view of Theorem 3.1, we have

L−3⋃

j=2

W j (r, s)∪H (r, s)∪H̃ (r, s)∪Q(r, s)∪ Q̃(r, s)∪P(r, s)∪P̃(r, s)⊆F(r, s).

Hence, we are left to prove the opposite inclusion. In order to do this, we use the character-
ization of minimal gates as essential saddles given in [3, Theorem 5.1]. More precisely, we
prove that any

η∈S(r, s)\
[L−3⋃

j=2

W j (r, s)∪H (r, s)∪H̃ (r, s)∪Q(r, s)∪Q̃(r, s)∪P(r, s)∪P̃(r, s)
]

(5.9)

is an unessential saddle for the restricted transition from r to s. Consider η as in (5.9) and
some ω ∈ Ω

opt
r,s , ω = (ω0, . . . , ωn), such that ω ∩X s\{r, s} = ∅ and η ∈ ω. See Fig. 12 for

an example of ω. By Lemmas 5.2 and 5.1 the condition (i) of Remark 5.2 is satisfied. Indeed,
anyω ∈ Ω

opt
r,s passes throughmany configurationswith energy value equal toΦ(r, s). Hence,

to conclude that η is an unessential saddle we are left to verify condition (b) of Remark 5.2.
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Fig. 12 Example of the paths ω (solid black path) and ω′ (dotted gray path) of the proof of Theorem 3.6

By Lemma 5.4(c), there exist η̄ ∈ ω ∩ H (r, s) and η̃ ∈ ω ∩ H̃ (r, s), where η̄ is the last
configuration visited by ω inH (r, s) and η̃ is the first configuration visited by ω in H̃ (r, s).
Moreover, Lemma 5.4(a) implies that there exist η̄∗ ∈ ω ∩ P(r, s) and η̃∗ ∈ ω ∩ P̃(r, s),
where η̄∗ is the last configuration visited by ω in P(r, s) and η̃∗ is the first configuration
visited by ω in P̃(r, s).

In view of the proof of Lemma 5.4, after visiting η̄, ω interstects S(r, s) only in saddles
belonging to either Q(r, s) or P(r, s) or W j (r, s), for some j = 2, . . . , L − 3, until it
intersects P̃(r, s) in η̃∗. Similarly, after the visit in η̄∗ and before the arrival in η̃, ω passes
only through saddles belonging to eitherW j (r, s), for some j = 2, . . . , L − 3, or P̃(r, s) or
Q̃(r, s). It follows that after η̄ and before η̃, ω intersects S(r, s) only in those saddles which
belong to

⋃L−3
j=2 W j (r, s) ∪ H (r, s) ∪ H̃ (r, s) ∪ Q(r, s) ∪ Q̃(r, s) ∪ P(r, s) ∪ P̃(r, s).

Now consider the paths ω̄ : r → η̄ and ω̃ : s → η̃, which exist in view of Lemma
5.5, and take the time reversal of ω̃, i.e., ω̃T = (ωn = η̃, ω̃n−1, . . . , ω1, ω0 = s). Thus, if
ω = (ω0 = r, . . . , ωi = η̄, . . . , ω j = η̃, . . . , ωn = s), the path ω′ ∈ Ω

opt
r,s , may be defined

as ω′ ≡ ω̄ from r to η̄, ω′ ≡ (ωi = η̄, . . . , ω j = η̃) from η̄ to η̃, and ω′ ≡ ω̃T from η̃ to s.
Thus, condition (b) of Remark 5.2 is verified. ��

Proof of Corollary 3.1. The corollary follows from Theorem 3.1 and [3, Theorem 5.4]. ��

6 Minimal Gates: Proofs

We are now able to carry out the proof of the main results on the minimal gates for the
transitions from a stable state to the other stable configurations and from a stable state to
another stable configuration.

6.1 TheMinimal Gates from a Stable State to the Other Stable States

Proof of Theorem 3.3. We begin by proving that the sets in (a) are minimal gates. Consider
any ω ∈ Ω

opt
r,X s\{r} and let s ∈ X s\{r} be the first configuration visited by ω in X s\{r}. From
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Theorem 3.1(a) we have that ω ∩ P(r, s) �= ∅ and ω ∩ P̃(r, s) �= ∅. Thus,

ω ∩
( ⋃

t∈X s\{r}
P(r, t)

)

�= ∅ and ω ∩
( ⋃

t∈X s\{r}
P̃(r, t)

)

�= ∅ (6.1)

hence these sets are gates. Moreover, for any η ∈ ⋃
t∈X s\{r} P(r, t) there exists s ∈ X s\{r}

such that η ∈ P(r, s). The optimal path ω′ ∈ Ω
opt
r,X s\{r} from r to s ∈ X s\{r} that was

constructed in the proof of Theorem 3.1(a) was such that ω′ ∩ (
⋃

t∈X s\{r} P(r, t)\{η}) = ∅

and ω′ ∩ X s\{r, s} = ∅. Hence,
⋃

t∈X s\{r} P(r, t) is a minimal gate. By the symmetry of

the model, the same holds for
⋃

t∈X s\{r} P̃(r, t).
The proof for the sets (b), (c) and (d) proceeds analogously by exploiting the path con-

struction in the proof of Theorem 3.1(b), (c), (d), respectively. ��
Proof of Theorem 3.4. In view of Theorem 3.3 we have

⋃

t∈X s\{r}

[L−3⋃

j=2

W j (r, t) ∪ H (r, t) ∪ H̃ (r, t) ∪ Q(r, t)

∪ Q̃(r, t) ∪ P(r, t) ∪ P̃(r, t)
]

⊆ G(r,X s\{r}).

Hence, we are left to prove the opposite inclusion. In order to do this, we again use the
characterization of minimal gates as essential saddles given in [3, Theorem 5.1]. Thus, our
strategy is to prove that any

η ∈ S(r,X s\{r})\
⋃

t∈X s\{r}

[L−3⋃

j=2

W j (r, t) ∪ H (r, t) ∪ H̃ (r, t) ∪ Q(r, t)

∪ Q̃(r, t) ∪ P(r, t) ∪ P̃(r, t)
]

(6.2)

is an unessential saddle. In particular, for any saddle η as in (6.2) and for any ω ∈ Ω
opt
r,X s\{r}

such that η ∈ ω, we prove that conditions (a), (b) of Remark 5.2 are satisfied. Let s ∈ X s\{r}
be the first stable state visited by ω. By Lemmas 5.2 and 5.1 the condition (a) of Remark 5.2
is satisfied. Moreover, condition (b) is satisfied by the optimal path ω′ ∈ Ω

opt
r,X s\{r} from r

to s ∈ X s\{r} constructed in the proof of Theorem 3.2 since for that path, {argmaxω′ H} ⊆
{argmaxωH}\{η} and ω′ ∩ X s\{r, s} = ∅. In conclusion, η is an unessential saddle. ��
Proof of Corollary 3.2. The corollary follows by Theorem 3.3 and [3, Theorem 5.4]. ��

6.2 TheMinimal Gates from a Stable State to Another Stable State

Proof of Theorem 3.5. Let us begin by considering the sets in (a). First, we focus on the sets
⋃

t∈X s\{r}
P(r, t) and

⋃

t∈X s\{r}
P̃(r, t). (6.3)

Let ω ∈ Ω
opt
r,s and let z ∈ X s\{r} be the first stable configuration visited by ω after r. By

Theorem 3.1(a), we get ω ∩ P(r, z) �= ∅ and ω ∩ P̃(r, z) �= ∅. Thus,

ω ∩ (
⋃

t∈X s\{r}
P(r, t)) �= ∅ and ω ∩ (

⋃

t∈X s\{r}
P̃(r, t)) �= ∅, (6.4)
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and so these sets are gates. Let us now prove that these sets are in fact minimal gates. There
exists z ∈ X s\{r} such that η ∈ P(r, z). Let ω(1) : r → z be the optimal path constructed in
the proof of Theorem 3.1(a) such thatω(1)∩X s\{r, z} = ∅. Letω(2) : z → s be the reference
path given in Definition 5.1. If z = s, then we set ω′ := ω(1). Otherwise, we define ω′ as the
concatenation of the paths ω(1) and ω(2). The optimal path associated to

⋃
t∈X s\{r} P̃(r, t)

is constructed similarly using the symmetry of the model. In both cases, this concludes the
proof that the sets in (6.3) are minimal gates for the transition r → s. Second, let us focus
on the sets

⋃

t∈X s\{s}
P(t, s) and

⋃

t∈X s\{s}
P̃(t, s). (6.5)

Again by Theorem 3.1(a) these sets are gates. Let us now prove that they are minimal gates.
Let z ∈ X s\{s} such that η ∈ P(z, s). Let ω(1) : r → z be the reference path given in
Definition 5.1. Let ω(2) : z → s be the path constructed in the proof of Theorem 3.1(a) such
that ω(2) ∩ X s\{z, s} = ∅. If z = r, then we set ω′ := ω(2). Otherwise, we define ω′ as the
concatenation of the paths ω(1) and ω(2). The optimal path associated to

⋃
t∈X s\{s} P̃(t, s),

is constructed similarly. In both cases, (ii) is verified and the sets in (6.5) are minimal gates
for the transition r → s. Following the same strategy, we prove that the sets in (b), (c) and (d)
are minimal gates for the transition from r to s by using Theorem 3.1(b), (c), (d), respectively,
instead of Theorem 3.1(a). ��
Proof of Theorem 3.6. Our aim is to prove that G(r, s) only contains the minimal gates of
Theorem 3.5. Thus, our strategy is to prove that any

η ∈ S(r, s)\
( ⋃

t∈X s\{r}
F(r, t) ∪

⋃

t∈X s\{s}
F(t, s)

)

(6.6)

does not belong to a minimal gate. To do this, note that

S(r, s)\
( ⋃

t∈X s\{r}
F(r, t) ∪

⋃

t∈X s\{s}
F(t, s)

)

=
⋃

t,z∈X s \{r,s},
t �=z

F(t, z) ∪
(

S(r, s)\
⋃

t,z∈X s ,
t �=z

F(t, z)
)

.

The proof of the theorem is given by the following claims

1.
⋃

t,z∈X s\{r,s},t �=z F(t, z) is not a gate for the transition r → s;
2. any η ∈ S(r, s)\⋃

t,z∈X s ,t �=z F(t, z) is an ussential saddle.

Indeed, 1. implies in particular that
⋃

t,z∈X s\{r,s},t �=z F(t, z) is not a minimal gate. On the
other hand, 2. implies that any η ∈ S(r, s)\ ⋃

t,z∈X s ,t �=z F(t, z) is not a minimal gate by

[3, Theorem 5.1]. In order to prove 1., it is enough to construct an optimal path ω ∈ Ω
opt
r,s

such that ω ∩ F(t, z) = ∅ for any t, z ∈ X s\{r, s}, t �= z. The reference path ω : r → s in
Definition 5.1 satisfies these properties, and so 1. is verified. Let us now prove the claim 2,
i.e., that any η∈S(r, s)\⋃t,z∈X s ,t �=z F(t, z) and for any ω ∈ Ω

opt
r,s such that η ∈ ω satisfies

conditions (a), (b) of Remark 5.2. By Lemmas 5.1 and 5.2 the condition (a) of Remark 5.2
is satisfied. Next, let t1, . . . , tm−1 ∈ X s\{r, s} be the stable configurations visited by ω in
X s\{r, s} before hitting s. If we set t0 = r, tm = s and ti �= ti+1 for all i = 0, . . . ,m − 1,
m ∈ N, we partition the path ω in the m paths ω(i) : ti → ti+1 such that their concatenation
is ω.

Let j ∈ {0, . . . ,m − 1} such that η ∈ ω( j). We set ω′( j) ∈ Ω
opt
t j ,t j+1

the opti-
mal path constructed to prove condition (b) of Remark 5.2 in Theorem 3.2 such that
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{argmaxω′( j) H} ⊆ {argmaxω( j) H}\{η} and ω′( j) ∩ X s\{t j , t j+1} = ∅. Thus we define a
path ω′ as the concatenation of the m paths ω(1), . . . , ω( j−1), . . . , ω( j), ω( j+1), . . . , ω(m)

such that {argmaxω′ H} ⊆ {argmaxωH}\{η}. Hence, both the conditions of Remark 5.2 are
satisfied and η is an unessential saddle. ��
Proof of Theorem 3.6. Since Theorem 3.5 holds, the corollary follows by [3, Theorem 5.4].

��

7 Restricted-Tube and Tube of Typical Paths: Proofs

In this section we prove the main results on the restricted-tube of typical paths and on the
tube of typical paths stated in Sect. 4.2.

Remark 7.1 Given a q-Potts configuration σ ∈ X on a grid-graph Λ, a vertex v ∈ V and a
spin value s ∈ {1, . . . , q} such that σ(v) �= s, using (2.6) we have

H(σ ) − H(σ v,s) ∈ {−4,−2, 0, 2, 4}. (7.1)

It follows that the principal boundary of extended cycles C in (4.14)–(4.18) is the union of
those configurations σ̄ ∈ ∂C such that either

(i) H(σ̄ ) − H(σ ) = −2, or
(ii) H(σ̄ ) − H(σ ) = −4.

Let us now state some useful lemmas which we prove at the end this section by using
Remark 7.1. It is understood that all results hold for the q-state Potts model on a K × L grid
Λ with periodic boundary conditions.

Lemma 7.1 Let r, s ∈ X s , r �= s. Then,

B(K(r , s)) = D1(r , s) ∪ D2(r , s) ∪ E1(r , s) ∪ E2(r , s). (7.2)

The principal boundary (7.2) is illustrated in the first row of Fig. 7.

Lemma 7.2 Let r, s ∈ X s , r �= s. Then, for any i = 1, . . . , K − 4,

B(Di (r , s)) = Di+1(r , s) ∪ Di+2(r , s) ∪ E i+1(r , s) ∪ E i+2(r , s), (7.3)

B(E i (r , s)) = E i+1(r , s) ∪ E i+2(r , s). (7.4)

The principal boundaries (7.3)–7.4 are illustrated in the middle rows of Fig. 7.

Lemma 7.3 Let r, s ∈ X s , r �= s. Then,

B(DK−3(r , s)) = DK−2(r , s) ∪ EK−2(r , s) ∪ R̄1,1(r, s), (7.5)

B(EK−3(r , s)) = EK−2(r , s) ∪ R̄1,1(r , s), (7.6)

B(DK−2(r , s)) = B(EK−2(r , s)) = R̄1,1(r , s). (7.7)

The principal boundaries described in Lemma 7.3 are illustrated in the last rows of Fig. 7.

Proof of Theorem 4.1. We will prove that Us(r) in (4.19) contains C ∈ M(C+
s (r)\s) that

belong to at least a cycle-path (C1, . . . , Cn) ∈ Jr,s, n ∈ N, such that
⋃n

i=1 Ci ∩X s\{r, s} = ∅,
C1 = Cs(r) and s ∈ ∂Cn , see 4.1.1.
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We start by studying the first descent from a trivial cycle {ξ∗} for some ξ∗ ∈ R̄� L
2 �,K (r , s)

to r, where �n� := max{m ∈ Z : m ≤ n}. Using the symmetry of the model on Λ,
we describe similarly the first descent from the same configuration ξ∗ to s. Finally using
reversibility, we will obtain a complete description of Us(r) by joining the time reversal of
the first descent from {ξ∗} to r with the first discent from {ξ∗} to s.

For the sake of semplicity, we separate the description of the first descent from {ξ∗} to
r for some ξ∗ ∈ R̄� L

2 �,K (r , s) in several steps. We start by studying the typical trajectories

followed by the process during the transition from {ξ∗} to R̄2,K (r, s) ⊂ ∂K(r , s), see (4.14),
and then we study the typical paths followed for the first descent fromK(r , s) to r. Note that
∂Cs(r) ∩ K(r , s) �= ∅. Using Lemma 5.2(a) and (c), for any i = � L

2 � − 1, . . . , 2 we define
a cycle-path (C0i , C1i , C2i ) such that

– C0i = {ηK } for ηK ∈ R̄i+1,K ,

– C1i = ⋃K−1
j=1 {η j } for η j ∈ B̄ j

i,K ,

– C2i = {η0} for η0 ∈ R̄i,K ,

where ηi := η
v,r
i+1 for some v = v(i) ∈ V . Note that C0i , C2i are non-trivial cycles. For any

i = � L
2 � − 1, . . . , 2, using Lemma 5.2, we also remark that for any σ ∈ R̄i,K , F (∂{σ }) ⊂

B̄K−1
i−1,K ∪ B̄1

i,K . Then, using Lemma 5.1 we have that {σ } satisfies (4.2) and that
B({σ }) = F (∂{σ }).

Moreover, using Lemmas 5.1 and 5.2 we remark that for any i = � L
2 � − 1, . . . , 2, C1i is a

plateau and its principal boundary is given by

B(C1i ) = C0i ∪ C2i .

Thus, (C0i , C1i , C2i ) ∈ JC0
i ,C2

i
since (4.6) is satisfied.Hence, starting fromC0� L

2 � = {ξ∗} for some

ξ∗ ∈ R̄� L
2 �,K (r , s), we depict a cycle-path vtj-connected to C22 = {η̂} for some appropriate

η̂ ∈ R̄2,K as

(C0� L
2 �, C

1
� L
2 �−1

, C2� L
2 �−1

≡ C0� L
2 �−1

, . . . , C23 ≡ C02 , C12 , C22). (7.8)

Let us now describe a cycle-path

(C̄1, . . . , C̄m) (7.9)

which is vtj-connected to r and such that C̄1 = {η̄∗}, with η̄∗ ∈ P(r, s). This cycle-path
exists in view of Lemma 5.4 and it is chosen in such a way that it is defined by a spin update
in a vertex of η̂. Note that any set from (4.14) to (4.18) is an extended cycle, i.e., a maximal
connected set of equielevated trivial cycles. Thanks to Lemmas 7.1, 7.2 and 7.3 we obtain
that for every i = m, . . . , n−1, the cycle-path (7.9) is characterized by a sequence of cycles
and extended cycles C̄1, . . . , C̄m such that

C̄1, . . . , C̄m ⊂ K(r , s) ∪
K−2⋃

i=1

(Di (r , s) ∪ E i (r , s)) ∪ R̄1,1(r , s) (7.10)

and C̄m = r. More precisely, (C̄1, . . . , C̄m) ∈ JC̄1,C̄m . Indeed, using Lemmas 7.1, 7.2 and 7.3
it follows that for any pair of consecutive cycles the condition (4.6) is satisfied.
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Arguing similarly, we construct a cycle-path vtj-connected from {ξ∗} to s. Indeed, first
we construct the following

(C0� L
2 �, C

1
� L
2 �+1

, C2� L
2 �+1

≡ C0� L
2 �+1

, . . . , C2L−3 ≡ C0L−2, C1L−2, C2L−2) ∈ J{ξ∗},{η̌} (7.11)

from {ξ∗} to {η̌} for some η̌ ∈ R̄L−2,K (r , s). Then, we define

(C̃1, . . . , C̃m) ∈ JC̃1,C̃m (7.12)

for the first descent from {η̃∗} to s, where η̃∗ ∈ P̃(r, s) exists in view of Lemma 5.4 and it is
chosen in such a way that it is defined by a spin update in a vertex of η̌. More precisely, using
Lemma 5.2(b) and (d), for any i = � L

2 � + 1, . . . , L − 2 we define a cycle-path (C0i , C1i , C2i )
such that

– C0i = {η0} for η0 ∈ R̄i−1,K ,

– C1i = ⋃K−1
j=1 {η j } for η j ∈ B̄ j

i,K ,

– C2i = {ηK } for ηK ∈ R̄i,K ,

where ηi := η
v,r
i−1 for some v = v(i) ∈ V . On the other hand, thanks to the symmetry of the

model onΛ, we prove the analogue of Lemmas 7.1, 7.2 and 7.3 for K̃(r , s), D̃i (r , s), Ẽi (r , s)
for any i = 1, . . . , K −2. Thus, we construct the cycle-path vtj-connected (C̃1, . . . , C̃m) from
{η̃∗} to s with

C̃1, . . . , C̃m ⊂ K̃(r , s) ∪
K−2⋃

i=1

(D̃i (r , s) ∪ Ẽi (r , s)) ∪ R̃1,1(r , s).

Finally, using reversibility and in view of the above construction, we construct a cycle-path
vtj-connected from r to s as

(C̄m ≡ r, . . . , C̄1, C22 , C12 , C23 ≡ C02 , . . . , C2� L
2 �−1

≡ C0� L
2 �−1

, C1� L
2 �−1

, C0� L
2 � ≡ {ξ∗},

C1� L
2 �+1

, C2� L
2 �+1

≡ C0� L
2 �+1

, . . . , C2L−3 ≡ C0L−2, C1L−2, C2L−2, C̃1, . . . , C̃m ≡ s). (7.13)

Using (7.13), we obtain that the restricted-tube of typical paths between r and s is (4.19).
Finally, (4.20) follows by [12, Lemma 3.13]. ��

We are now ready to prove Theorems 4.2 and 4.3.

Proof of Theorem 4.2. Using the description of the restricted-tube of typical paths between
two stable states, we depict the tube TX s\{r}(r) as in (4.21). Indeed, any cycle-path
(C1, . . . , Cn), n ∈ N, vtj-connected to X s\{r} starting from r is described by a sequence
of cycles belonging to some Us(r) where s is the first stable configuration visited by that
(C1, . . . , Cn) in X s\{r}. Finally, (4.22) follows by [12, Lemma 3.13]. ��
Proof of Theorem 4.3. Starting from r, the process may intersect some stable configurations
different from the target s. It follows that, when we study the typical trajectories for the
transition r → s we have to take into account the possible intermediate transitions between
two stable states and such that do not intersect other stable configurations beyond them. For
any of these intermediate transitions, we apply the result of the restricted-case. It follows that
(4.23) is the tube of typical trajectories. Moreover, (4.24) follows by [12, Lemma 3.13]. ��
Proof of Lemmas 7.1, 7.2, 7.3
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Fig. 13 Examples of σ ∈ K(r , s) and σ̄ ∈ B(K(r , s). We color white the vertices with spin r and gray those
vertices whose spin is s

Proof of Lemma 7.1 According to (4.3), we describe the principal boundary of the extended
cycleK(r , s) by looking for those configurations σ̄ /∈ K(r , s)which communicate with some
σ ∈ K(r , s) such that σ and σ̄ satisfy either case (i) or case (ii) of Remark 7.1. Let us start to
consider (i) of Remark 7.1. In view of (4.14), this case occurs only when σ has a spin s with
three nearest-neighbor spins r and σ̄ is obtained from σ by flipping from s to r this spin s.
In particular, we note that σ ∈ K(r , s) has a spin s with three nearest-neighbor spins r only
when σ ∈ K(r , s)\[Q(r, s) ∪ P(r, s)], i.e., when

σ ∈ H (r, s)∪{σ ∈ X : σ(v) ∈ {r , s} ∀v ∈ V , H(σ ) = 2K + 2 + H(r), σ has at

least two s-interacting clusters, and R(Cs(σ )) = R2×(K−1)}.
Hence, consider σ ∈ K(r , s)with a spin s, say on vertex v̂, with three nearest-neighbor spins
r and one nearest-neighbor spin s and define σ̄ := σ v̂,r . We note that

– for any h = 2, . . . , K − 2, if σ∈B̄h
1,K−1(r , s), then σ̄∈B̄h−1

1,K−1(r , s)⊂D1(r , s);

– if σ ∈ B̄1
1,K (r , s), then σ̄ ∈ R̄1,K (r , s) ⊂ E1(r , s);

– if v̂ has its unique nearest-neighbor spin s on an adjacent column, then σ̄ ∈ E1(r , s), see
Fig. 13i;

– if v̂ and its nearest-neighbor spin s lie on the same column, then σ̄ ∈ D1(r , s), see Fig.
13ii.

Next we move to consider (ii) of Remark 7.1. This occurs only when σ has a spin s,
say on vertex ŵ, sourrounded by four spins r and σ̄ := σ ŵ,r . This happens when σ ∈
K(r , s)\[H (r, s) ∪ Q(r, s) ∪ P(r, s)]. Then, we note that
– if R(Cs(σ̄ )) = R1×(K−2), i.e., if ŵ lies on a column where there are no other spins s,

then σ̄ ∈ E2(r , s), see Fig. 13iii;
– if R(Cs(σ̄ )) = R2×(K−3), i.e., if ŵ lies on a column where there are other spins s, then

σ̄ ∈ D2(r , s), see Fig. 13iv.

��
Proof of Lemma 7.2 Similarly to the proof of Lemma 7.1, for any i = 1, . . . , K − 4 we
describe the principal boundary of the extended cyclesDi (r , s) and E i (r , s) by using Remark
7.1. For any i = 1, . . . , K − 4, let us start by studying the principal boundary of Di (r , s).
Case Remark 7.1(i) occurs only when σ ∈ Di (r , s) has a spin s, say on vertex v̂ with three
nearest-neighbor spins r and one nearest-neighbor spin s and σ̄ := σ v̂,r . Then, we note that

– if v̂ its unique nearest-neighbor spin s on an adjacent column, then
R(Cs(σ̄ ))= R1×(K−(i+1)) and σ̄ ∈ E i+1(r , s), see Fig. 14ii;

– if v̂ and its nearest-neighbor spin s lie on the same column, then R(Cs(σ̄ ))= R2×(K−(i+2))
and σ̄ ∈ Di+1(r , s), see Fig. 14i.

Regarding (ii) of Remark 7.1, it occurs only when σ has a spin s, say on vertex ŵ,
sourrounded by four spins r and σ̄ := σ ŵ,r . It follows that

123



30 Page 36 of 38 G. Bet et al.

Fig. 14 Examples of σ ∈ D2(r , s) and σ̄ ∈ B(D2(r , s)) in (i) and (ii); examples of σ ∈ E2(r , s) and
σ̄ ∈ B(E2(r , s)) in (iii) and (iv). We color white the vertices with spin r and gray those vertices whose spin
is s

Fig. 15 Examples of σ ∈ DK−3(r , s) and σ̄ ∈ B(DK−3(r , s)). We color white the vertices with spin r and
gray those vertices whose spin is s

– if R(Cs(σ̄ )) = R1×(K−(i+2)), i.e., if ŵ lies on a column where there are no other spins
s, then σ̄ ∈ E i+2(r , s), see Fig. 14i;

– if R(Cs(σ̄ )) = R2×(K−(i+3)), i.e., if ŵ lies on a column where there are other spins s,
then σ̄ ∈ Di+2(r , s), see Fig. 14ii.

Nextwemove to describe the principal boundary ofE i (r , s) for any i = 1, . . . , K−4.Case
(i) of Remark 7.1 occurs when σ ∈ E i (r , s) has a spin s, say on vertex v̂, with three nearest-
neighbor spins r and one nearest-neighbor spin s and σ̄ := σ v̂,r . Hence, σ̄ ∈ E i+1(r , s), see
Fig. 14ii. On the other hand, case (ii) of Remark 7.1 occurs only when σ has a spin s, say on
vertex ŵ, sourrounded by four spins r and σ̄ := σ ŵ,r . Thus σ̄ ∈ E i+2(r , s), see Fig. 14iv. ��

Proof of Lemma 7.3 First, note that from (4.17) and (4.18) we have

DK−2(r , s) = R̄2,1(r , s) and EK−2(r , s) = R̄1,2(r , s). (7.14)

Once again we describe the principal boundary of the extended cycles Di (r , s) and E i (r , s)
for i = K − 3, K − 2 by using Remark 7.1. Let us begin by studying the principal boundary
of DK−3(r , s). Case (i) of Remark 7.1 takes place if σ has a spin s, say on vertex v̂, with
three nearest-neighbor spins r and one nearest-neighbor s and σ̄ := σ v̂,r . Hence, it occurs
only when σ ∈ B̄1

1,2(r , s) and either σ̄ ∈ DK−2(r , s) or σ̄ ∈ EK−2(r , s), see Fig. 15i and ii.
Case (ii) of Remark 7.1 occurs when σ has only two spins s and they lie on the diagonal of a
rectangle R2×2, i.e., when σ̄ is obtained by flipping from s to r one of these two spins s and
σ̄ ∈ R̄1,1(r , s), see Fig. 15iii.

Next we describe the principal boundary of EK−3(r , s). Case (ii) of Remark 7.1 occurs
when σ ∈ EK−3(r , s) has a spin s, say on vertex v̂, with three nearest-neighbor spins r and
one nearest-neighbor s and σ̄ := σ v̂,r . Hence, when σ ∈ R̄1,3(r , s) and σ̄ ∈ EK−2(r , s).
Finally, case (ii) of Remark 7.1 is verified when σ ∈ EK−3(r , s) has two spins s with four
nearest-neighbor spins r and one of them is flipped to r , i.e., when σ̄ ∈ R̄1,1(r , s), see Fig.
15iv. To conclude, we show that (7.7) follows by Remark 7.1 and (7.14). Indeed,DK−2(r , s)
and EK−2(r , s) contain those configurations in which there are two spins s with three nearest-
neighbor spins r and by flipping from s to r one of them we obtain a configuration belonging
to their principal boundary. ��
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