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Abstract. We consider a queue to which only a finite pool of n customers can arrive,
at times depending on their service requirement. A customer with stochastic service
requirement S arrives to the queue after an exponentially distributed time with mean S-α for
some α∈ [0,1]; therefore, larger service requirements trigger customers to join earlier. This
finite-pool queue interpolates between two previously studied cases: α = 0 gives the so-
called Δ(i)/G/1 queue and α = 1 is closely related to the exploration process for inho-
mogeneous random graphs. We consider the asymptotic regime in which the pool size n
grows to infinity and establish that the scaled queue-length process converges to a dif-
fusion process with a negative quadratic drift. We leverage this asymptotic result to
characterize the head start that is needed to create a long period of activity. We also
describe how this first busy period of the queue gives rise to a critically connected random
forest.
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1. Introduction
This paper introduces the Δα

(i)/G/1 queue that models a situation in which only a finite pool of n customers will
join the queue. These n customers are triggered to join the queue after independent exponential times, but the
rates of their exponential clocks depend on their service requirements. When a customer requires S units of
service, its exponential clock rings after an exponential time with mean S−α with α ∈ [0, 1]. Depending on the
value of the free parameter α, the arrival times are independent and identically distributed (i.i.d.) (α � 0) or
decrease with the service requirement (α ∈ (0, 1]). The queue is attended by a single server that starts working
at time zero, works at unit speed, and serves the customers in a first-come-first-served manner (i.e., FIFO
service discipline). At time zero, we allow for the possibility that i of the n customers have already joined the
queue, waiting for service. We will take i � n, so that without loss of generality we can assume that at time
zero there are still n customers waiting for service. These initial customers are numbered 1, . . . , i, and the
customers that arrive later are numbered i + 1, i + 2, . . . in order of arrival. Let A(k) denote the number of
customers arriving during the service time of the kth customer. The busy periods of this queue will then be
completely characterized by the initial number of customers i and the random variables (A(k))k≥1. The random
variables (A(k))k≥1 are not i.i.d. because of the finite-pool effect and the service-dependent arrival rates. We will
model and analyze this queue using the queue-length process embedded at service completions.

We consider the Δα
(i)/G/1 queue in the large-system limit n → ∞ while imposing at the same time a heavy-

traffic regime that will stimulate the occurrence of a substantial first busy period. By substantial we mean that
the server can work without idling for quite a while, not only serving the initial customers but also those arriving
somewhat later. Our main contribution is showing that the embedded queue-length process converges to a
Brownian motion with negative quadratic drift. Both the drift coefficient and the variance of the limiting process
depend crucially on the value of α. Therefore, from an operational perspective, our result makes clear the
dependence of the queue-length process on the highly inhomogeneous arrival process. For the case α � 0,
referred to as the Δ(i)/G/1 queue with i.i.d. arrivals (Honnappa and Ward 2014, Honnappa et al. 2015),
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a similar regime was studied in Bet et al. (2018), whereas for α � 1 it is closely related to the critical in-
homogeneous random graph studied in Bhamidi et al. (2010) and Joseph (2014).

Although the queueing process consists of alternating busy periods and idle periods, in the Δα
(i)/G/1 queue,

we naturally focus on the first busy period. After some time, the activity in the queue inevitably becomes
negligible. The early phases of the process are therefore of primary interest, when the head start provided by
the initial customers still matters and when the rate of newly arriving customers is still relatively high. The
head start and strong influx together lead to a substantial first busy period and essentially determine the
relevant time of operation of the system.

We also consider the structural properties of the first busy period in terms of a random graph. Let the
random variable H(i) denote the number of customers served in the first busy period, starting with i initial
customers. We then associate a (directed) random graph to the queueing process as follows. Say H(i) � N and
consider a graph with vertex set {1, 2, . . . ,N} and in which two vertices r and s are joined by an edge if and
only if the r-th customer arrives during the service time of the s-th customer. If i � 1, then the graph is a rooted
tree with N-labeled vertices, the root being labeled 1. If i > 1, then the graph is a forest consisting of i distinct
rooted trees whose roots are labeled 1, . . . , i, respectively. The total number of vertices in the forest is N.

This random forest is exemplary for a deep relation between queues and random graphs, perhaps best
explained by interpreting the embedded Δα

(i)/G/1 queue as an exploration process, a generalization of a
branching process that can account for dependent random variables (A(k))k≥1. Exploration processes arose in
the context of random graphs as a recursive algorithm to investigate questions concerning the size and
structure of the largest components (Aldous 1997). For a given random graph, the exploration process declares
vertices active, neutral, or inactive. Initially, only one vertex is active, and all others are neutral. At each time
step, one active vertex (e.g., the one with the smallest index) is explored, and it is declared inactive afterward.
When one vertex is explored, its neutral neighbors become active for the next time step. As time progresses,
and more vertices are already explored (inactive) or discovered (active), fewer vertices are neutral. This
phenomenon is known as the depletion-of-points effect and plays an important role in the scaling limit of the
random graph. Let A(k) denote the neutral neighbors of the kth explored vertex. The exploration process then
has increments (A(k))k≥1 that each have a different distribution. The exploration process encodes useful in-
formation about the underlying random graph. For example, excursions above past minima are the sizes of the
connected components. The critical behavior of random graphs connected with the emergence of a giant
component has received tremendous attention (Bhamidi et al. 2010, 2012, 2014; van der Hofstad et al. 2010,
2016; Addario-Berry et al. 2012; Joseph 2014; Dhara et al. 2016, 2017). Interpreting active vertices as being in a
queue, and vertices being explored as customers being served, we see that the exploration process and
the (embedded) Δα

(i)/G/1 queue driven by (A(k))k≥1 are identical.
The analysis of the Δα

(i)/G/1 queue and associated random forest is challenging because the random variables
(A(k))k≥1 are not i.i.d (Bet et al. 2020). In the case of i.i.d. (A(k))k≥1, there exists an even deeper connection
between queues and random graphs, established via branching processes instead of exploration processes
(Kendall 1951). To see this, declare the initial customers in the queue to be the zeroth generation. The
customers (if any) arriving during the total service time of the initial i customers form the first generation, and
the customers (if any) arriving during the total service time of the customers in generation t form generation
t + 1 for t ≥ 1. The total progeny of this Galton-Watson branching process has the same distribution as the
random variable H(i) in the queueing process. Through this connection, properties of branching processes can
be carried over to the queueing processes and associated random graphs (Takács 1988, 1993, 1995; Limic 2001;
Duquesne and Le Gall 2005; Le Gall 2005). Takács (1988, 1993, 1995) proved several limit theorems for the case
of i.i.d. (A(k))k≥1, in which case the queue-length process and derivatives such as the first busy period weakly
converge to (functionals of) the Brownian excursion process. In that classical line, the present paper can be
viewed as an extension to exploration processes with more complicated dependency structures in (A(k))k≥1.

In Section 2 we describe the Δα
(i)/G/1 queue and associated graphs in more detail and present our main

results. The proof of the main theorem, the stochastic-process limit for the queue-length process in the large-
pool heavy-traffic regime, is presented in Sections 3 and 4. Section 5 discusses some interesting questions
related to the Δα

(i)/G/1 queue and associated random graphs that are left open.

2. Model Description
We consider a sequence of queueing systems, each with a finite (but growing) number n of potential customers
labeled with indices i ∈ [n] :� {1, . . . ,n}. Customers have i.i.d. service requirements with distribution FS(·). We
denote with Si the service requirement of customer i and with S a generic random value, and Si and S all have
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distribution FS(·). In order to obtain meaningful limits as the system grows large, we scale the service speed by
n/(1 + βn−1/3) with β ∈ R so that the service time of customer i is given by

S̃i � Si 1 + βn−1/3
( )

n
. (1)

We further assume that E[S2+α] < ∞.
If the service requirement of customer i is Si, then, conditionally on Si, its arrival time Ti is assumed to be

exponentially distributed with mean 1/(λSαi ), with α ∈ [0, 1] and λ > 0. Hence

Ti
d�Ei λSαi

( )
, (2)

with d� denoting equality in distribution and Ei(c) an exponential random variable with mean 1/c independent
across i. Conditionally on the service times, the arrival times are independent (but not identically distributed).
We introduce c(1), c(2), . . . , c(n) as the indices of the customers in order of arrival, so that Tc(1) ≤ Tc(2) ≤ Tc(3) ≤ . . .
almost surely.

We will study the queueing system in heavy traffic, in a similar heavy-traffic regime as in Bet et al. (2017, 2019).
The initial traffic intensity ρn is kept close to one by imposing the relation

ρn :� λnE S1+α
[ ]

1 + βn−1/3
( ) � 1 + βn−1/3 + oP n−1/3

( )
, (3)

where λ � λn can depend on n, and fn � oP(n−1/3) is such that limn→∞ fnn1/3 −→P 0. The traffic intensity is greater
than 1 for β > 0, so that the system is initially overloaded, whereas the system is initially underloaded
for β < 0.

Our main object of study is the queue-length process embedded at service completions, given by Qn(0) � i and

Qn k( ) � Qn k − 1( ) + An k( ) − 1( )+, (4)
with x+ � max{0, x} and An(k) the number of arrivals during the kth service given by

An k( ) � ∑
i/∈νk

1 Ti≤S̃c k( ){ }, (5)

where νk ⊆ [n] denotes the set of customers who have been served or are in the queue at the start of the kth
service. Note that

|νk | � k − 1( ) +Qn k − 1( ) + 1 � k +Qn k − 1( ). (6)
Given a process t 
→ X(t), we define its reflected version through the reflection map φ(·) as

φ X( ) t( ) :� X t( ) − inf
s≤t X s( )−. (7)

The process Qn(·) can alternatively be represented as the reflected version of a certain process Nn(·), that is
Qn k( ) � φ Nn( ) k( ), (8)

where Nn(·) is given by Nn(0) � i and

Nn k( ) � Nn k − 1( ) + An k( ) − 1. (9)
As a consequence of our assumptions, whenever the server finishes processing one customer, and the queue is
empty, the customer to be placed into service is chosen according to the following size-biased distribution:

P customer j is placed in service | νi−1( ) � Sαj∑
l/∈νi−1 Sαl

, j /∈ νi−1, (10)

where we tacitly assumed that customer j is the ith customer to be served. With definitions (5) and (10), the
process (4) describes the Δα

(i)/G/1 queue with exponential arrivals (2), embedded at service completions.
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2.1. The Scaling Limit of the Embedded Queue
All the processes we consider are elements of the space $ :� $([0,∞)) of càdlàg functions that admit left limits
and are continuous from the right. To simplify notation, for a discrete-time process X(·) : N → R, we write X(t),
with t ∈ [0,∞), instead of X(�t�). A process defined in this way has càdlàg paths. The space $ is endowed with
the usual Skorokhod J1 topology. We then say that a process converges in distribution in ($, J1) when it
converges as a random measure on the space $, when this is endowed with the J1 topology. We are now able
to state our main result. Recall that Qn(·) is the embedded queue-length process of the Δα

(i)/G/1 queue and let

Qn t( ) :� n−1/3Qn tn2/3
( ) (11)

be the diffusion-scaled queue-length process.

Theorem 1 (Scaling Limit for the Δα
(i)/G/1 Queue). Assume that α ∈ [0, 1], E[S2+α] < ∞ and that the heavy-traffic con-

dition (3) holds. Assume further that Qn(0) � q. Then, as n → ∞,

Qn ·( ) →d φ W( ) ·( ) in $, J1( ), (12)
where W(·) is the diffusion process

W t( ) � q + βt − λ
E S1+2α
[ ]
2E Sα[ ] t2 + σB t( ), (13)

with σ2 � λ2E[Sα]E[S2+α], and B(·) is a standard Brownian motion.

Surprisingly, the assumption that α lies in the interval [0, 1] plays no role in our proof. On the other hand,
we see from (13) that

max E S2+α
[ ]

,E S1+2α
[ ]

,E Sα[ ]{ }
< ∞ (14)

is a necessary condition for Theorem 1 to hold. For example, for S having exponential distribution we need to
restrict to α > −1. This suggests that Theorem 1 remains true as long as α ∈ R is such that (14) is satisfied. From
the modeling point of view, α > 0 represents a situation in which customers with larger job sizes have a
stronger incentive to join the queue. The larger α is (e.g., α > 1), the stronger the incentive is. On the other
hand, when α < 0, customers with large job sizes are lazy and thus favor joining the queue later. In what
follows, for simplicity, we will limit ourselves to the case α ∈ [0, 1].

By the continuous-mapping theorem and Theorem 1 we have the following.

Theorem 2 (Number of Customers Served in the First Busy Period). Assume that α ∈ [0, 1], E[S2+α] < ∞ and that the
heavy-traffic condition (3) holds. Assume further thatQn(0) � q. Then, as n → ∞, the number of customers served in the first
busy period BPn :� HQn

(0) converges to

BPn →d Hφ W( ) 0( ), (15)
where W(·) is given in (13).

Theorem 1 implies that the typical queue length for the Δα
(i)/G/1 system in heavy traffic is OP(n1/3) and that

the typical busy period consists of OP(n2/3) services. The linear drift t → βλt describes the position of the
system inside the critical window. For β > 0, the system is initially overloaded, and the process W(·) is more
likely to cause a large initial excursion. For β < 0 the traffic intensity approaches 1 from below, so that the
system is initially stable. Consequently, the process W(·) has a strong initial negative drift, so that φ(W)(·) is
close to zero also for small t. Finally, the negative quadratic drift t → −λ E[S1+2α]

2E[Sα] t
2 captures the depletion-of-points

effect. Indeed, for large times, the process W(t) is dominated by −λ E[S1+2α]
2E[Sα] t

2, so that φ(W)(t) performs only small
excursions away from zero (Figure 1).

Let us now compare Theorem 1 with two known results. For α � 0, the limit diffusion simplifies to

W t( ) � βt − 1
2
t2 + σB t( ), (16)
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with σ2 � λ2E[S2], in agreement with Bet et al. (2019, theorem 5). In Bhamidi et al. (2010), it is shown that,
when (0i)i∈[n] are i.i.d. and further assuming that E[02]/E[0] � 1, the exploration process of the corre-
sponding inhomogeneous random graph converges to

W t( ) � βt − E 03[ ]
2E 02[ ]2 t2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E 0[ ]E 03[ ]√
E 02[ ] B t( ). (17)

For α � 1, (13) can be rewritten using (3) as

W t( ) � βt − E S3
[ ]

2E S2[ ]2 t
2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E S[ ]E S3[ ]√
E S2[ ] B t( ). (18)

Therefore, the two processes coincide if 0i � Si, as expected.

2.2. Numerical Results
We now use Theorem 2 to obtain numerical results for the first busy period. We shall also use the explicit
expression of the probability density function of the first passage time of zero of φ(W) obtained by Martin-
Löf (1998) (see also van der Hofstad et al. 2010). Let Ai(x) and Bi(x) denote the classical Airy functions
(Abramowitz and Stegun 1964). The first passage time of zero of W(t) � q + βt − 1/2t2 + σB(t) has probability
density (Martin-Löf 1998)

f t; β, σ
( ) � e− t−β( )3 + β3

( )
/6σ2 − βa

∫ +∞

−∞
etu

Bi cu( )Ai c u − a( )( ) −Ai cu( )Bi c u − a( )( )
π Ai cu( )2 +Bi cu( )2( ) du, (19)

where c � (2σ2)1/3 and a � q/σ2 > 0. The result (19) can be extended to a diffusion with a general quadratic drift
through the scaling relation W(τ2t) � τ(q/τ + βτt − τ3t2/2 + σB(t)).

Figure 2 shows the empirical density of BPn, for increasing values of n and various values of α, together with
the exact limiting value (19).

Table 1 shows the mean busy period for different choices of α and different service time distributions. We
computed the exact value for n � ∞ by numerically integrating (19). Observe that E[BPn] decreases with α.
This might seem counterintuitive, because the larger α, the more likely customers with larger service join the
queue early, who in turn might initiate a large busy period. Let us explain this apparent contradiction. When
the arrival rate λ is fixed, assumption (3) does not necessarily hold, and E[BPn] increases with α, as can be seen
in Table 2.

However, our heavy-traffic condition (3) implies that λ depends on α because λ � 1/E[S1+α]. The inter-
pretation of condition (3) is that, on average, one customer joins the queue during one service time. Notice
that, because of the size biasing, the average service time is not E[S]. Therefore, the number of customers that
join during a (long) service is roughly equal to 1 as α ↑ 1. However, when customers with large services leave
the system, they are not able to join any more. As α ↑ 1, customers with large services leave the system earlier.

Figure 1. Sample Paths of the Process Qn(·) for Various Values of α and n � 104

Notes. The service times are taken unit-mean exponential. The dashed curves represent the drift t 
→ q + βt − λE([S1+2α])/(2E[Sα])t2. In all plots,
q � 1, β � 1, and λ � 1/E[S1+α].
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Therefore, as α ↑ 1, the resulting second-order depletion-of-points effect causes shorter excursions as time
progresses (Figure 1). In the limit process, this phenomenon is represented by the fact that the coefficient of the
negative quadratic drift increases as α ↑ 1, as shown in the following lemma.

Lemma 1. Let

α 
→ f α( ) :� E S1+2α
[ ]

E Sα[ ]E S1+α[ ] . (20)

Then f ′(α) ≥ 0.

Proof. Because

f ′ α( ) � 2E log S( )S1+2α[ ]
E Sα[ ]E S1+α[ ] − E S1+2α

[ ]
E log S( )Sα[ ]

E Sα[ ]2E S1+α[ ] − E S1+2α
[ ]

E log S( )S1+α[ ]
E Sα[ ]E S1+α[ ]2 , (21)

f ′(α) ≥ 0 if and only if

2E log S( )S1+2α[ ]
E Sα[ ]E S1+α

[ ] ≥ E S1+α
[ ]

E S1+2α
[ ]

E log S( )Sα[ ] + E Sα[ ]E S1+2α
[ ]

E log S( )S1+α[ ]
. (22)

We split the lefthand side in two identical terms and show that each of them dominates one term on the
righthand side. That is

E log S( )S1+2α[ ]
E Sα[ ]E S1+α

[ ] ≥ E S1+α
[ ]

E S1+2α
[ ]

E log S( )Sα[ ]
, (23)

the proof of the second bound being analogous. The inequality (23) is equivalent to

E log S( )S1+α( )
Sα

[ ]
E Sα[ ] ≥ E S1+αSα

[ ]
E Sα[ ]

E log S( )Sα[ ]
E Sα[ ] . (24)

Table 1. Numerical Values of n−2/3E[BPn] for Different Population Sizes and the Exact Expression for n � ∞ Computed
Using (19)

Deterministic Exponential Hyperexponential

α 0 1/2 1 0 1/2 1 0 1/2 1

n

101 1.1318 1.1318 1.1318 1.0359 0.8980 0.7429 0.8920 0.6356 0.5332
102 1.5842 1.5842 1.5842 1.3584 1.0924 0.8333 1.0959 0.7454 0.5525
103 1.9188 1.9188 1.9188 1.6387 1.2506 0.9284 1.2936 0.8352 0.6134
104 2.1474 2.1474 2.1474 1.8419 1.3925 1.0014 1.4960 0.9210 0.6554
∞ 2.3374 2.3374 2.3374 2.0038 1.4719 1.0440 1.6242 0.9717 0.6881

Notes. The service requirements are displayed in order of increasing coefficient of variation. In all cases q � β � E[S] � 1. The hyperexponential
service times follow a rate λ1 � 0.501 exponential distribution with probability p1 � 1/2 and a rate λ2 � 250.5 exponential distribution with
probability p2 � 1 − p1 � 1/2. Each value for finite n is the average of 104 simulations.

Figure 2. Density Plot (Black) and Gaussian Kernel Density Estimates (Colored) Obtained by Running 106 Simulations of a
Δα
(i)/G/1 Queue with n � 100, 1,000, 10,000 Customers and α � 0, 1/2, 1

Note. In all cases, the service times are exponentially distributed, and q � β � E[S] � 1.
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The term on the left and the two terms on the right can be rewritten as the expectation of a size-biased random
variable W, so that (24) is equivalent to

E log W( )W1+α[ ] ≥ E log W( )[ ]
E W1+α[ ]

. (25)
Finally, the inequality (25) holds because W is positive with probability 1, and x 
→ log(x) and x 
→ x1+α are
increasing functions (van der Hofstad 2016, lemma 2.14). □

2.3. Component Sizes of Directed Random Graphs
The directed Erdős-Rényi random graph (directed ERRG) is obtained by taking n vertices and placing each of the
possible n(n − 1) directed edges with probability p. This differs from the undirected ERRG, where each of the
possible n(n − 1)/2 undirected edges is present independently with probability p.

A strongly connected component of a directed graph (digraph) is a subgraph such that, for every two pairs of
vertices i, j, there exists a directed path from i to j and one from j to i. We denote the strongly connected
components, ordered by decreasing size, as #1,#2,#3, . . . It can be shown that the directed ERRG undergoes a
phase transition when p � p̃ � 1/n (Luczak 1990). Indeed, when p � c/n with c < 1, the largest strongly con-
nected component #1 is of size OP(log(n)), and when p � c/n with c > 1, #1 is of size OP(n) and #2 is of size
OP(log(n)). When p is in the so-called critical window between the two regimes p � p̃ � n−1 + λn−4/3, λ ∈ R, the
strongly connected components #1,#2,#3, . . . are all of size OP(n1/3) (Luczak and Seierstad 2009).

A crucial tool for the study of undirected random graphs in the critical regime is the so-called depth-first
exploration process, defined as follows. Start with an arbitrary vertex, then reveal its neighbors and place them
in a stack. Then discard the first vertex, consider the first vertex in the stack (called the active vertex), reveal its
neighbors, and place them in the stack. If at any point the stack is empty and not all vertices have been
activated, take one vertex uniformly at random and place it in the stack. This process continues by exploring
the neighbors of each revealed vertex in order of appearance. The sizes of the connected components are
encoded as the time between successive minima of the exploration process. Because of this, the exploration
process has been extensively applied to the study of undirected random graphs in the critical regime (Bollobás
et al. 2007; Bhamidi et al. 2014, 2010, 2012, 2017; van der Hofstad et al. 2018). However, until recently, it was
not known if this approach was useful for the study of directed critical random graphs.

This issue has been solved when recently Goldschmidt and Stephenson (2019) used exploration-process
techniques in their breakthrough paper to determine the scaling limit for the critical directed ERRG, extending
an earlier result for the undirected ERRG (Addario-Berry et al. 2012). Roughly speaking, their scaling limit
fully characterizes the structure of the strongly connected components of the digraph as n → ∞. Their ar-
gument crucially relies on an exploration process that at each step follows the outgoing edges, revealing the
so-called forward exploration trees of the directed graph. To obtain the original graph from the forward ex-
ploration tree, one has then to add back edges independently with probability p.1 The proof in Goldschmidt and
Stephenson (2019) consists of two main steps:

1. Ignoring edge directions, the forward exploration trees have the same distribution as the exploration
trees of the undirected ERRG (Goldschmidt and Stephenson 2019, proposition 2.1). In Aldous (1997), it is
shown that the rescaled component sizes of the undirected ERRG are distributed, in the limit, as the excursions
of a Brownian motion with negative parabolic drift. Hence, the rescaled sizes of the forward exploration trees
follow the same limiting distribution.

2. Conditionally on their sizes, the forward exploration trees are independent. Their topological structure is
the same as in the undirected ERRG, and thus the scaling limit is the same as Addario-Berry et al. (2012).

Table 2. Expected Number of Customers Served in the First Busy Period of the Nonscaled Δα
(i)/G/1 Queue with Mean One

Exponential Service Times and Arrival Rate λ � 0.01

Exponential

α 0 1/4 1/2 3/4 1

n

101 1.0854 1.0922 1.1053 1.1118 1.1306
102 5.9515 8.1928 11.4478 16.3598 22.0381

Note. In all cases, q � 1. Each value is the average of 104 simulations.
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Finally, to obtain the scaling limit of the directed ERRG, one has to prove that the process that adds the back
edges is continuous in a suitable sense and identify the corresponding operation on the limit object.

Despite its mathematical significance, the ERRG model is inappropriate as a model for most concrete
applications because it is homogeneous, that is, the vertices share the same degree distribution. This leads to
considering the (directed) inhomogeneous random graph (IRG). In the directed IRG, each vertex i is assigned a
(possibly random) weight 0i ≥ 0 and an edge from i pointing to j is present with probability pij proportional to
f (0i,0j), where f : R2 
→ R+ is a smooth function. A simple example of such a graph is obtained by taking
f (x, y) � xyα for α ∈ R, so that

pij ∼ 0i0
α
j . (26)

The exponent α is a parameter that controls the out-degree distribution of the vertices. Indeed, if for example
α � 0, then each outgoing edge from a given vertex i is present with equal probability proportional to 0i. For
α � 1, we have that pij � pji, so the graph is undirected and we retreive the classical IRG (van der Hofstad
2016). Note that (26) leads to an interesting dependence between the out-degree and in-degree of vertices.

The next natural step in the study of critical directed random graphs is then to extend the result
(Goldschmidt and Stephenson 2019) to the inhomogeneous setting. The main challenges are that

1. the scaling limit of the size of the forward exploration trees is not known, and
2. the scaling limit of a forward exploration tree with fixed size m is not known.
Our main result (Theorem 1) gives an answer to the first question. In fact, the embedded queueing pro-

cess (4) is distributionally equivalent to the depth-first exploration process of the directed IRG. To see
this, associate a vertex i to customer i and let c(1) be the root. Then, draw a directed edge from c(1) to
c(2), . . . , c(An(1) + 1), that is, to all customers who joined during the service time of c(1). Then, draw an edge
from c(2) to each of the customers who joined during the service time of c(2), and so on. According to this
construction, we associate to each busy period of the queue a different directed tree, and thus the queueing
process corresponds to a directed random forest. The degree of vertex c(i) is 1 + |An(i)| and the total number of
vertices in the first tree (say) is given by

HQn 0( ) � inf k ≥ 0 : Qn k( ) � 0{ }, (27)
the (first) hitting time of zero of the process Qn(·). The directed random forest thus created is distributionally
equivalent to the exploration process of the directed IRG, as we now show in detail. In the directed IRG,
conditionally on the weights (0i)i∈[n], a directed edge from i to j is present with probability

pij � 1 − exp − 0i0α
j∑

l∈ n[ ] 0l

( )
. (28)

We set Si :� (1 + βn−1/3)−1/α0i for i ∈ [n]. Then the probability that an edge from i to j is present is equal to

pij � 1 − exp − 1 + βn−1/3
( ) Si

n

Sαj n∑
l∈ n[ ] Sl

( )
� 1 − exp −S̃iSαj

n∑
l∈ n[ ] Sl

( )
� P Tj ≤ S̃i| Sl( )l∈ n[ ]

( )
, (29)

where S̃i � (1 + βn−1/3)Si/n and Tj are distributed as

Tj
d�Ej λnSαj

( )
, (30)

with λn :� n/
∑

i∈[n] Si and Ej(c) being exponential random variables with mean 1/c independent across j. This
implies that, for every fixed n ∈ N, the directed forest associated to the Δα

(i)/G/1 queue with service times
Si � (1 + βn−1/3)−1/α0i and arrival parameter λn � n/

∑
i∈[n] Si is distributed as the exploration process of the

directed IRG with weights (0i)i∈[n].
Theorem 1 then implies that the size of each tree in the forward depth-first forest is OP(n2/3) and gives the

limiting distribution of the rescaled sizes. This is only an upper bound on the size of strongly connected
components. In fact, we expect from Goldschmidt and Stephenson (2019) that the strongly connected
components have size OP(n1/3).
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2.3.1. The Critical Condition and the Heavy-Traffic Condition. The undirected IRG with weights (0i)ni�1 is said to
be critical (see Bhamidi et al. 2010, equation 1.13) if∑

i∈ n[ ] 02
i∑

i∈ n[ ] 0i
� E 02

[ ]
E 0[ ] + oP n−1/3

( ) � 1 + oP n−1/3
( )

. (31)

Recall also that, in the special case α � 1, the heavy-traffic condition (3) for the Δα
(i)/G/1 reads

λnE S2
[ ]

1 + βn−1/3
( ) � 1 + βn−1/3 + oP n−1/3

( )
. (32)

Consequently, if Si � (1 + βn−1/3)−10i and λn � n/
∑

i∈[n] Si, the heavy-traffic condition (32) for the Δα
(i)/G/1

queue implies the criticality condition (31) for the associated random graph and vice versa.

2.3.2. Extension to the Queue-Length Process. By definition, the embedded queue (4) neglects the idle time of
the server. Via a time-change argument, it is possible to prove that, in the limit, the (cumulative) idle time is
negligible, and the embedded queue is arbitrarily close to the queue-length process uniformly over compact
intervals. This has been proven for the Δ(i)/G/1 queue in Bet et al. (2017), and the techniques developed there
can be extended to the Δα

(i)/G/1 queue without additional difficulties.

3. Preliminaries
The proof of Theorem 1 extends the techniques we developed in Bet et al. (2017). However, the dependency
structure of the arrival times complicates the analysis considerably. Customers with larger job sizes have a
higher probability of joining the queue earlier, and this gives rise to a size-biased reordering of the service
times. In the next section, we study this phenomenon in detail.

Given two sequences of random variables (Xn)n≥1 and (Yn)n≥1, we say that Xn converges in probability to X,
and we denote it by Xn −→P X, if P(|Xn − X| > ε) → 0 as n → 0 for each ε > 0. We also write Xn � oP(Yn) if
Xn/Yn −→P 0 and Xn � OP(Yn) if (Xn/Yn)n≥1 is tight. Given two real-valued random variables X, Y, we say that X
stochastically dominates Y and denote it by Y � X, if P(X ≤ x) ≤ P(Y ≤ x) for all x ∈ R.

For our results, we condition on the entire sequence (Si)i≥1. More precisely, if the random variables that we
consider are defined on the probability space (Ω,^,P), then we define a new probability space (Ω,^S,PS), with
PS(A) :� P(A|(Si)∞i�1) and ^S :� σ({^, (Si)∞i�1}), the σ-algebra generated by ^ and (Si)∞i�1. Correspondingly, for any
random variable X on Ω, we define ES[X] as the expectation with respect to PS, and E[X] for the expectation
with respect to P. We say that a sequence of events (%n)n≥1 holds with high probability (w.h.p.) if P(%n) → 1
as n → ∞.

First, we recall a well-known result that will be useful on several occasions.

Lemma 2. Assume (Xi)ni�1 is a sequence of positive i.i.d. random variables such that E[Xi] < ∞. Then maxi∈[n] Xi � oP(n).
Proof. We have the inclusion of events

max
i∈ n[ ]

Xi ≥ εn
{ }

⊆ ⋃n
i�1

Xi ≥ εn{ }. (33)

Therefore,

P max
i∈ n[ ]

Xi ≥ εn
( )

≤ ∑n
i�1

P Xi ≥ εn( ). (34)

Because for any positive random variable Y, ε1{Y≥ε} ≤ Y1{Y≥ε} almost surely, it follows

P max
i∈ n[ ]

Xi ≥ εn
( )

≤
∑n

i�1 E Xi1 Xi≥εn{ }
[ ]
εn

� E X11 X1≥εn{ }
[ ]

ε
. (35)

The rightmost term tends to zero as n → ∞ because E[X1] < ∞, and this concludes the proof.
Given a vector x̄ � (x1, x2, . . . , xn)with deterministic, real-valued entries, the size-biased ordering of x̄ is a random

vector X(s) � (X(s)
1 ,X(s)

2 , . . . ,X(s)
n ) such that

P X s( )
1 � xj

( )
� xj∑n

l�1 xl
, P x s( )

2 � xj | X s( )
1

( )
� xj∑n

l�1 xl − X s( )
1

, . . . . □ (36)
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More generally, for any α ∈ R, the α size-biased ordering of x̄ is given by a vector X̄(α) � (X(α)
1 ,X(α)

2 , . . . ,X(α)
n )

such that

P X α( )
1 � xj

( )
� xαj∑n

l�1 x
α
l
, P X α( )

2 � xj | X α( )
1 � xi

)
� xαj∑n

l�1 x
α
l − xαi

, . . . .

(
(37)

Finally, we define

Sk � c 1( ), . . . , c k( ){ } (38)
as the set of the first k customers served. The following lemma is the first step in understanding the structure
of the arrival process:

Lemma3. (Size-Biased Reordering of the Arrivals). The order of appearance of customers is the α size-biased ordering of their
service times. In other words,

PS c j
( ) � i | Sj−1

( ) � Sαi∑
l/∈S j−1 S

α
l
. (39)

Proof. Conditionally on (Sl)nl�1, the arrival times are independent exponential random variables. By basic
properties of exponentials, we have

PS c j
( ) � i | Sj−1

( ) � PS min Tl : l /∈Sj−1
{ } � Ti | S j−1

( ) � Sαi∑
l/∈S j−1 S

α
l
, (40)

as desired. □

We remark that (40) differs from the classical size-biased reordering in that the weights are a nonlinear
function of the (Si)ni�1. In our definition of the queueing process (4) and (5), we do not keep track of the service
requirements of the customers that join the queue but only of their arrival times (2). Therefore, at the start of
service, a customer’s service requirement is a random variable that depends on the arrival time relative to the
remaining customers.

The next lemma is crucial, establishing stochastic domination between the service requirements of the
customers in order of appearance. Recall that X stochastically dominates Y (with notation Y � X) if and only if
there exists a probability space (Ω̄, ¯̂ , P̄) and two random variables X̄, Ȳ defined on Ω̄ such that X̄ d�X, Ȳ d�Y,
and P̄(Ȳ ≤ X̄) � 1.

Lemma 4. Assume that α > 0. Let f : R+ → R be a function such that E[f (S)Sα] < ∞. Then there exists a constant Cf ,S such
that almost surely, for n large enough,

ES f Sc k( )
( )[ ] ≤ Cf ,S < ∞, (41)

uniformly in k ≤ cn, for a fixed c ∈ (0, 1).
Proof. We compute explicitly

ES f Sc k( )
( )[ ] � ES

∑
j/∈Sk−1 f Sj

( )
Sαj∑

j/∈Sk−1 S
α
j

[ ]

� ES

∑
j∈ n[ ] f Sj

( )
Sαj −∑

j∈Sk
f Sj
( )

Sαj∑
j/∈Sk−1 S

α
j

[ ]

≤ ES

1∑
j/∈Sk−1 S

α
j

[ ]∑
j∈ n[ ]

f Sj
( )

Sαj . (42)

We have the almost sure bound

1∑
j/∈Sk−1 S

α
j
� 1∑

j∈ n[ ] Sαj −∑
j∈Sk−1 S

α
j
≤ 1∑

j∈ n[ ] Sαj −∑
j∈Sk−1 S

α
j
≤ 1∑

j∈ n[ ] Sαj −∑k−1
j�1 Sαn−j+1( )

� 1∑n−k+1
j�1 Sα

j( )
, (43)
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where Sα(1) ≤ Sα(2) ≤ . . . ≤ Sα(n) denote the order statistics of the finite sequence (Sαi )i∈[n]. There exists p ∈ (0, 1) such
that n − k + 1 ≥ pn, for large enough n. Consequently,

1∑
j/∈Sk−1 S

α
j
≤ 1∑�pn�

j�1 Sα
j( )
, (44)

so that we have

ES f Sc k( )
( )[ ] ≤ ∑

j∈ n[ ] f Sj
( )

Sαj∑�pn�
j�1 Sα

j( )
. □ (45)

Let us denote by ξp the pth quantile of the distribution FS(·), and let us assume, without loss of generality,
that fS(ξp) > 0. Note that S(�np�) � F−1n,S(�np�/n), where Fn,S(t) � ∑n

i�1 1{Si≤t}/n is the empirical distribution function
of the (Si)ni�1, and ξp � F−1S (p). Indeed, the assumption fS(ξp) > 0 implies that FS(·) is invertible in a neighborhood
of ξp. We have that, as n → ∞,

S �np�( )
a.s.→ ξp. (46)

In particular, as n → ∞,

1
n

∑
j∈ n[ ]

Sj1 Sj≤ξp{ } −
∑
j∈ n[ ]

Sj1
Sj≤S �pn�( )
{ }⃒⃒⃒⃒

⃒⃒
⃒⃒⃒⃒
⃒⃒ a.s.→ 0. (47)

Therefore, by the strong law of large numbers, as n → ∞,∑�pn�
j�1 S j( )
n

a.s.→E S1 S≤ξp{ }
[ ]

. (48)

Then, choosing Cn,f ,S � E[f (S)Sα]/E[S1{S≤ξp}] + ε, for an arbitrary ε > 0, gives the desired result.
If α > 0, as is the case in our setting, the proof of Lemma 4 shows that, uniformly in k � O(n2/3),

ES f Sc k( )
( )[ ] ≤ ∑

j∈ n[ ] f Sj
( )

Sαj∑�pn�
j�1 Sα

j( )
�
∑

j∈ n[ ] f Sj
( )

Sαj∑n
j�1 Sαj( )

1 +
∑n

j��pn� S
α
j( )∑�pn�

j�1 Sα
j( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (49)

and therefore

ES f Sc k( )
( )[ ] ≤ ES f Sc 1( )

( )[ ]
1 +OPS 1( )( )

. (50)
If f (·) is an increasing function, (50) makes precise the intuition that, if α > 0, customers with larger job sizes
join the queue earlier. We will often make use of the expression (50)

The following lemma will often prove useful in dealing with sums over a random index set.

Lemma 5. (Uniform Convergence of Random Sums). Let (Sj)nj�1 be a sequence of positive random variables such that
E[S2+α] < +∞, for α ∈ (0, 1). Then,

sup
-⊆ n[ ]

|-|�OP n2/3( )

1
n

∑
j∈-

Sαj � oP 1( ). (51)

Proof. By Lemma 2, maxj∈[n] Sαj � oP(nα/(2+α)). This gives

sup
-⊆ n[ ]

|-|�OP n2/3( )

1
n

∑
j∈-

Sαj ≤ maxj∈ n[ ] Sαj
n1/3

OP 1( ) � oP n
α−2/3−α/3

2+α
( )

� oP n
2
3
α−1
2+α

( )
. (52)

Because α − 1 ≤ 0 by assumption, the claim is proven. □
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We now focus on the i-th customer joining the queue (for i large) and characterize the distribution of its
service time. In particular, for α > 0, this is different from Si.

Lemma 6. (Size-Biased Distribution of the Service Times). For every bounded, real-valued continuous function f (·),
as n → ∞,

ES f Sc i( )
( ) | ^i−1

[ ] −→P E f S( )Sα[ ]
E Sα[ ] , (53)

uniformly for i � OPS(n2/3). Moreover, as n → ∞,

ES f Sc i( )
( )[ ] → E f S( )Sα[ ]

E Sα[ ] , for i � OPS n2/3
( )

. (54)

Proof. First, note that

ES f Sc i( )
( ) | ^i−1

[ ] � ∑
j/∈S i−1

f Sj
( )

PS c i( ) � j | ^i−1
( ) � ∑

j/∈S i−1

f Sj
( )

Sαj∑
l/∈S i−1 S

α
l
. (55)

This can be further decomposed as

ES f Sc i( )
( ) | ^i−1

[ ] � ∑n
j�1 f Sj

( )
Sαj −∑

j∈S i−1 f Sj
( )

Sαj∑n
l�1 S

α
l −

∑
l∈S i−1 S

α
l

. (56)

Because |S i−1| � i − 1 and i � OP(n2/3), by the law of large numbers and Lemma 5,∑
j/∈S i−1 f Sj

( )
Sαj

n
−→P E f S( )Sα[ ]

,

∑
l/∈S i−1 S

α
l

n
−→P E Sα[ ]. (57)

uniformly in i � OP(n2/3). This gives the first claim.
Furthermore, we bound ES[f (Sc(i)) | ^i−1] as

ES f Sc i( )
( ) | ^i−1

[ ] � ∑
j/∈S i−1

f Sj
( )

Sαj∑
l/∈S i−1 S

α
l
≤ sup

x≥0
f x( ) < ∞. (58)

Because ES[f (Sc(i))] � ES[ES[f (Sc(i)) | ^i−1]], using (53) and the dominated convergence theorem, the second
claim follows. □

In Lemma 6, we studied the distribution of the service time of the ith customer, and we now focus on
its (conditional) moments. The following lemma should be interpreted as follows: Because of the size-biased
reordering of the customer arrivals, the service time of the ith customer being served (for i large) is highly
concentrated.

Lemma 7. For any fixed γ ∈ [−1, 1],

ES S
1+γ
c i( ) | ^i−1

[ ]
� E S1+γ+α

[ ]
E Sα[ ] + oP 1( ) for i � OPS n2/3

( )
, (59)

where the error term is uniform in i � OPS(n2/3). Moreover, the convergence holds in L1, that is,

ES ES S
1+γ
c i( ) | ^i−1

[ ]
− E S1+γ+α

[ ]
E Sα[ ]

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

[ ]
� oP 1( ), (60)

uniformly in i � OPS(n2/3).
Proof. In order to apply Lemma 6, we first split

S1+γc i( ) � Sc i( ) ∧ K
( )1+γ+ Sc i( ) − K

( )+( )1+γ, (61)
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where K > 0 is arbitrary, so that

ES S
1+γ
c i( ) | ^i−1

[ ]
� ES Sc i( ) ∧ K

( )1+γ| ^i−1
[ ]

+ ES Sc i( ) − K
( )+( )1+γ| ^i−1

[ ]
. (62)

The first term is bounded and therefore converges to E[(S ∧ K)1+γSα]/E[Sα] by Lemma 6. The second term is
bounded through Markov’s inequality, as

PS ES Sc i( ) − K
( )+( )1+γ| ^i−1

[ ]
≥ ε

( )
≤
ES Sc i( ) − K

( )+( )1+γ[ ]
ε

. (63)

Next we apply Lemma 4 with f (x) � fK(x) � ((x − K)+)1+γ,
ES Sc i( ) − K

( )+( )1+γ[ ]
≤ CfK ,S. (64)

Therefore,

ES S
1+γ
c i( ) | ^i−1

[ ]
− E S1+γ+α

[ ]
E Sα[ ]

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ ES Sc i( ) ∧ K

( )1+γ| ^i−1
[ ]

− E S1+γ+α
[ ]
E Sα[ ]

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ + CfK ,S. (65)

The proof of Lemma 4 shows that, for any ε > 0, limK→∞ CfK ,S ≤ ε, and thus limK→∞ CfK ,S � 0. Therefore, by
letting K → ∞ in (65), (59) follows. Next, we split

ES ES S
1+γ
c i( ) | ^i−1

[ ]
− E S1+γ+α

[ ]
E Sα[ ]

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

[ ]
≤ ES Sc i( ) ∧ K

( )1+γ−E S1+γ+α
[ ]
E Sα[ ]

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

[ ]
+ ES Sc i( ) − K

( )+( )1+γ[ ]
. (66)

The second term can be bounded as in (64). For the first term,

ES Sc i( ) ∧ K
( )1+γ−E S1+γ+α

[ ]
E Sα[ ]

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

[ ]
≤

∑n
j�1 Sj ∧ K

( )1+γSαj∑n
j�1 Sαj

− E S1+γ+α
[ ]
E Sα[ ]

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

+ES

∑n
j�1 Sj ∧ K

( )1+γSαj ∑l∈S i−1 S
α
l∑n

j�1 Sαj
( )2

⃒⃒⃒⃒
⃒⃒⃒

⃒⃒⃒⃒
⃒⃒⃒⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ES

∑n
l�1 S

α
l
∑

j∈S i−1 Sj ∧ K
( )1+γSαj∑n

j�1 Sαj
( )2

⃒⃒⃒⃒
⃒⃒⃒

⃒⃒⃒⃒
⃒⃒⃒⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(67)

where we have used that |(a − b)/(c − d) − a/c| ≤ ad/c2 + bc/c2, for positive a, b, c, and d. The second and third
terms converge uniformly over i � OPS(n2/3) by Lemma 5. Summarizing,

ES ES S
1+γ
c i( ) | ^i−1

[ ]
− E S1+γ+α

[ ]
E Sα[ ]

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

[ ]
≤

∑n
j�1 Sj ∧ K

( )1+γSαj∑n
j�1 Sαj

− E S1+γ+α
[ ]
E Sα[ ]

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ +

∑n
l�1 Sl − K( )+( )1+γ∑n

j�1 Sαj
+ oP 1( ). (68)

Letting first n → ∞ and then K → ∞, (60) follows. □

We will make use of Lemma 7 several times throughout the proof, with the specific choices γ ∈ {0, α, 1}. The
following lemma is of central importance in the proof of the uniform convergence of the quadratic part of
the drift.

Lemma 8. As n → ∞,

n−2/3 sup
j≤tn2/3

∑j

i�1
S1+αc i( ) − E S1+2α

[ ]
E S[ ]

( )⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ −→P 0. (69)

Proof. By Lemma 7, (68) is equivalent to

n−2/3 sup
j≤tn2/3

∑j

i�1
S1+αc i( ) − E S1+αc i( ) | ^i−1

[ ]( )⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ −→P 0. (70)

Bet, van der Hofstad, and van Leeuwaarden: Big Jobs Arrive Early
322 Stochastic Systems, 2020, vol. 10, no. 4, pp. 310–334, © 2020 The Author(s)



We split the event space and separately bound

n−2/3 sup
j≤tn2/3

∑j

i�1
S1+αc i( ) 1

S1+αc i( ) ≤Kn

{ } − E S1+αc i( ) 1
S1+αc i( ) ≤Kn

{ } | ^i−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒ (71)

and

n−2/3 sup
j≤tn2/3

∑j

i�1
S1+αc i( ) 1

S1+αc i( ) >Kn

{ } − E S1+αc i( ) 1
S1+αc i( ) >Kn

{ } | ^i−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒, (72)

for a sequence (Kn)n≥1 that we choose later on and is such that Kn → ∞. We start with (71). Because the sum
inside the absolute value is a martingale as a function of j, (71) can be bounded through Doob’s Lp inequality
(Klenke 2008, theorem 11.2) with p � 2 as

PS sup
j≤tn2/3

∑j

i�1
S1+αc i( ) 1

S1+αc i( ) ≤Kn

{ } − ES S1+αc i( ) 1
S1+αc i( ) ≤Kn

{ } | ^i−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒ ≥ εn2/3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 1
εn4/3

ES

∑tn2/3
i�1

S1+αc i( ) 1
S1+αc i( ) ≤Kn

{ } − ES S1+αc i( ) 1
S1+αc i( ) ≤Kn

{ } | ^i−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 2
εn4/3

∑tn2/3
i�1

ES S2+2αc i( ) 1
S1+αc i( ) ≤Kn

{ }⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≤ 2

εn4/3
∑tn2/3
i�1

K2α
n ES S2c i( )

[ ]
.

(73)

Lemma 7 allows us to approximate ES[S2c(i)] uniformly by E[S2+α]
E[Sα] . Thus, we get

2
εn4/3

∑tn2/3
i�1

K2α
n

E S2+α
[ ]
E Sα[ ] + oP 1( )

( )
� tK2α

n

εn2/3
OP 1( ), (74)

which converges to zero as n → ∞ if and only if Kα
n/n

1/3 does. We now turn to (72) and apply Doob’s L1

martingale inequality (Klenke 2008, theorem 11.2) to obtain

PS sup
j≤tn2/3

∑j

i�1
S1+αc i( ) 1

S1+αc i( ) >Kn

{ } − ES S1+αc i( ) 1
S1+αc i( ) >Kn

{ } | ^i−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒ ≥ εn2/3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 1
εn2/3

ES

∑tn2/3
i�1

S1+αc i( ) 1
S1+αc i( ) >Kn

{ } − ES S1+αc i( ) 1
S1+αc i( ) >Kn

{ } | ^i−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 2
εn2/3

∑tn2/3
i�1

ES S1+αc i( ) 1
S1+αc i( ) >Kn

{ }⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≤ 2

εn2/3
∑tn2/3
i�1

ES S1+αc 1( )1
S1+αc 1( )>Kn

{ }⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1 +OPS 1( )( )

� 2t
ε
ES S1+αc 1( )1

S1+αc 1( )>Kn

{ }⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1 +OPS 1( )( ) � oP 1( ).

(75)

We have used Lemma 7 in the second inequality, and Lemma 4 with f (x) � x1+α1{x1+α>Kn} in the third. The
rightmost term in (75) is oP(1) as n → ∞ by the strong law of large numbers. This side of the bound does not
impose additional conditions on Kn, so that, if we take Kn � nc, it is sufficient that c < 1

3α, with the convention
that 1

0 � ∞. □

We conclude this section with a technical lemma concerning error terms in the computations of quadratic
variations. Denote the density (respectively, distribution function) of a rate λ exponential random variable by
fE(·) (respectively, FE(·)).
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Lemma 9. We have

ES

∑
h,q∈ n[ ]

FE

Sc i( )Sαh
n

( )
− λSc i( )Sαh

n

⃒⃒⃒⃒ ⃒⃒⃒⃒
FE

Sc i( )Sαq
n

( )
− λSc i( )Sαq

n

⃒⃒⃒⃒ ⃒⃒⃒⃒
| ^i−1

[ ]
� oP 1( ) (76)

uniformly in i � O(n2/3).
Proof. Because |FE(x) − x| � O(x2), the bound |λSc(i)Sαh/n − FE(Sc(i)Sαh/n)| ≤ C(Sc(i)Sαh/n)1+ε holds almost surely for
0 < ε < 1 and C > 0, which gives

λ2
∑

h,q∈ n[ ]
ES

Sc i( )Sαh
n

( )1+ε Sαq Sc i( )
n

( )1+ε
| ^i−1

[ ]
� λ2

n2+2ε
∑

h,q∈ n[ ]
ES S2+2εc i( ) | ^i−1
[ ]

Sα 1+ε( )
h Sα 1+ε( )

q . (77)

Therefore,

λ2
∑

h,q∈ n[ ]
ES

Sc i( )Sαh
n

( )1+ε Sαq Sc i( )
n

( )1+ε
| ^i−1

[ ]

≤ λ2

n2+2ε
max
j∈ n[ ]

S2εj ES S2c i( ) | ^i−1
[ ] ∑

h,q∈ n[ ]
Sα 1+ε( )
h Sα 1+ε( )

q

≤ λ2E S2+α
[ ]

E Sα[ ]
maxj∈ n[ ] S2εj

n2ε
1
n2

∑
h,q∈ n[ ]

Sα 1+ε( )
h Sα 1+ε( )

q + oP 1( ),

(78)

where in the last step we used Lemma 7. Because E[S2+α] < ∞, by Lemma 2, maxj∈[n] S2εj � oP(n2ε/(2+α)). The
rightmost term in (78) then tends to zero as n tends to infinity as long as 0 < ε < min{1, 2/α}. □

4. Proving the Scaling Limit
We first establish some preliminary estimates on Nn(·) that will be crucial for the proof of convergence. We will
upper bound the process Nn(·) by a simpler process NU

n (·) in such a way that the increments of NU
n (·) almost

surely dominate the increments of Nn(·). We also show that, after rescaling, NU
n (·) converges in distribution

to W(·). In fact, we introduce the upper bound NU
n (·) to deal with the complicated index set for the summation

in (5). The difficulty arises as follows: in order to estimate Nn(·), one has to estimate An(·). To do this, one has to
separately (uniformly) bound each element in the sum, and also estimate the number of elements in the sum.
The first goal is accomplished, for example, through Lemma 7, whereas for the second the crude upper bound,
n is too loose. However, estimating |νk | requires an estimate on Nn(·) itself, as (6) shows. To solve this cir-
cularity, we introduce a bootstrap argument: first, we upper bound Nn(·) and we obtain estimates on the upper
bound; from this follows an estimate on |νk |, and this in turn allows us to estimate Nn(·).

This technique can be applied to solve a recently found technical issue in the proof of the main result of
Bhamidi et al. (2010). Bhamidi et al. (2010) prove convergence of a process that upper bounds the exploration
process of the graph. Therefore, their main result is analogous to Theorem 3. However, a further step is
required to complete the proof of convergence of the exploration process, and this is provided by
our approach.

The process NU
n (·) is defined as NU

n (0) � Nn(0), and
NU

n k( ) � NU
n k − 1( ) + AU

n k( ) − 1, (79)
where

AU
n k( ) � ∑

i/∈Sk

1 Ti≤S̃c k( ){ }, (80)

with

Ti
d�Ei λSαi

( )
, (81)

and where we have used notation (1). Moreover, Ei(c) denotes a family of exponential random variables with
mean 1/c independent across i. The process NU

n (·) can be interpreted as follows. Each customer is replaced by
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an ON/OFF source of arriving customers. The source is initially ON and is turned OFF as soon as the first
customer it generated has been served. Once a source is OFF, it remains in that state indefinitely. We couple
the processes Nn(·) and NU

n (·) as follows. Consider a sequence of arrival times (Ti)∞i�1 and of service times (Si)∞i�1
and then define An(·) as (5) and AU

n(·) as (80) With this coupling we have that, almost surely,

An k( ) ≤ AU
n k( ) ∀ k ≥ 1. (82)

Consequently,

Nn k( ) ≤ NU
n k( ) ∀k ≥ 0, (83)

and

Qn k( ) � φ Nn( ) k( ) ≤ φ NU
n

( )
k( ) �: QU

n k( ) ∀k ≥ 0, (84)
almost surely. Crucially, the complicated set νk does not appear in the definition of NU

n (·). The random variable
AU

n(·) depends instead on the set Sk.
Although, in general, only the upper bounds (83) and (84) hold, the processes Nn(·) and NU

n (·) (respectively,
Qn(·) and QU

n(·)) turn out to be very close to each other. We start by proving results for NU
n (·) and QU

n(·) because
they are easier to treat, and only then, we are able to prove that identical results hold for Nn(·) and Qn(·).
Theorem 3 (Convergence of the Upper Bound). We have

n−1/3NU
n tn2/3
( ) →d W t( ) in $, J1( ) as n → ∞, (85)

where W(·) is the diffusion process in (13). In particular,

n−1/3φ NU
n

( )
tn2/3
( ) →d φ W( ) t( ) in $, J1( ) as n → ∞. (86)

The next section is dedicated to the proof of Theorem 3.

4.1. Convergence of the Upper Bound
We use a classical martingale decomposition followed by a martingale FCLT. The process NU

n (·) in (79) can be
decomposed as NU

n (k) � MU
n(k) + CU

n(k), where MU
n(·) is a martingale and CU

n(·) is a drift term, as follows:

MU
n k( ) � ∑k

i�1
AU

n i( ) − ES AU
n i( ) | ^i−1

[ ]( )
, CU

n k( ) � ∑k
i�1

ES AU
n i( ) | ^i−1

[ ] − 1
( )

. (87)

Moreover, (MU
n(k))2 can be written as (MU

n(k))2 � ZU
n(k) + BU

n(k) with ZU
n(k) a martingale and BU

n(k) the com-
pensator, or quadratic variation, of MU

n(k) given by

BU
n k( ) � ∑k

i�1
ES AU

n i( )( )2| ^i−1
[ ]

− ES AU
n i( ) | ^i−1

[ ]2( )
. (88)

In order to prove convergence of NU
n (·), we separately prove convergence of CU

n(·) and of MU
n(·). We prove the

former directly and the latter by applying the following martingale FCLT (Ethier and Kurtz 1989, theo-
rem 7.1.4).

Theorem 4. Let {^n}n∈N be an increasing filtration and {M̄n}n∈N be a sequence of continuous-time, real-valued, square-
integrable martingales, each with respect to ^n, such that M̄n(0) � 0. Assume that V̄n(·), the predictable quadratic variation
process associated with M̄n(·), and M̄n(·) satisfy the following conditions:

a. V̄n(t)−→P σ2t, ∀t ∈ R+;
b. limn→∞ E[supt≤t̄ |V̄n(t) − V̄n(t−)|] � 0, ∀t̄ ∈ R+; and
c. limn→∞ E[supt≤t̄ |M̄n(t) − M̄n(t−)|2] � 0, ∀t̄ ∈ R+.
Then, as n → ∞, M̄n(·) converges in distribution in $([0,∞)) to a centered Brownian motion with variance σ2t.
For this, we need to verify the following conditions:

i. supt≤t̄ |n−1/3CU
n(tn2/3) − βt + λ E[S1+2α]

2E[Sα] t
2| −→P 0, ∀t̄ ∈ R+;

ii. n−2/3BU
n(tn2/3) −→

P
σ2t, ∀t ∈ R+;
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iii. limn→∞ n−2/3ES[supt≤t̄ |BU
n(tn2/3) − BU

n(tn2/3−)|] � 0, ∀t̄ ∈ R+; and
iv. limn→∞ n−2/3ES[supt≤t̄ |MU

n(tn2/3) −MU
n(tn2/3−)|2] � 0, ∀t̄ ∈ R+.

4.1.1. Proof of (i) for the Upper Bound. First we obtain an explicit expression for E[AU
n(i) | ^i−1], as

ES AU
n i( ) | ^i−1

[ ] � ∑
j/∈S i−1

PS c i( ) � j | ^i−1
( ) ∑

l/∈S i−1∪ j{ }
FE

cn,βSjSαl
n

( )

� ∑
j/∈S i−1

PS c i( ) � j | ^i−1
( )∑n

l�1

cn,βλSjSαl
n

− ∑
j/∈S i−1

PS c i( ) � j | ^i−1
( ) ∑

l∈S i−1∪ j{ }
cn,βλSjSαl

n

+ ∑
j/∈S i−1

PS c i( ) � j | ^i−1
( ) ∑

l/∈S i−1∪ j{ }
FE

cn,βSjSαl
n

( )
− cn,βλSjSαl

n

( )
. (89)

The third term is an error term. Indeed, for some ζn ∈ [0, Sc(i)Sl/n],

ES

∑
l/∈S i−1∪ j{ }

FE

Sc i( )Sαl
n

( )
− λSc i( )Sαl

n

⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒^i−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ ∑n
l�1

ES FE

Sc i( )Sαl
n

( )
− λ

Sc i( )Sαl
n

⃒⃒⃒⃒ ⃒⃒⃒⃒⃒⃒⃒⃒
^i−1

[ ]
� 1
2n2

ES FE
′′ ζn( )S2c i( )

⃒⃒⃒ ⃒⃒⃒⃒⃒⃒
^i−1

[ ]∑n
l�1

S2αl ≤ λ2

2n2
ES S2c i( )

⃒⃒⃒
^i−1

[ ]∑n
l�1

S2αl , (90)

because |F′′E (x)| ≤ λ2 for all x ≥ 0. By Lemma 7, this can be bounded by

λ2

2n2
Cn + oP 1( )( )∑

l∈ n[ ]
S2αl , (91)

where Cn is bounded w.h.p. and the oP(1) term is uniform in i � O(n2/3). Therefore, the third term in (89) is
oP(n−1/3). Inserting this into (89) and splitting the summation in the second term gives

ES AU
n i( ) | ^i−1

[ ] − 1 � ∑
j/∈S i−1

PS c i( ) � j | ^i−1
( )

cn,βλSj
∑n

l�1 S
α
l

n

− ∑
j/∈S i−1

PS c i( ) � j | ^i−1
( ) ∑

l∈S i−1

cn,βλSjSαl
n

− cn,βλ
∑
j/∈S i−1

PS c i( ) � j | ^i−1
( )S1+αj

n
− 1 + oP n−1/3

( )
� cn,βλ

∑
l∈ n[ ] Sαl
n

E Sc i( ) | ^i−1
[ ] − 1

( )
− cn,βES Sc i( ) | ^i−1

[ ] ∑
l∈S i−1

λ
Sαl
n

− cn,β
λ

n
ES S1+αc i( ) | ^i−1
[ ]

+ oP n−1/3
( )

.

(92)

Let us focus on the first term of (92). Using c
a−b � c

a + c
a−b

b
a, with a � ∑

l∈[n] Sαl and b � ∑
l∈S i−1 S

α
l , we get

cn,βλ
∑n

l�1 S
α
l

n
ES Sc i( ) | ^i−1
[ ] − 1

� cn,βλ
∑

l∈ n[ ] Sαl
n

∑
j/∈S i−1

S1+αj∑
l∈ n[ ] Sαl

− 1 + cn,βλ
∑

l∈ n[ ] Sαl
n

∑
j/∈S i−1

S1+αj∑
l/∈S i−1 S

α
l

∑
s∈S i−1 S

α
s∑

l∈ n[ ] Sαl

� cn,β
λ

n

∑
j/∈S i−1

S1+αj − 1

( )
+ cn,βES Sc i( ) | ^i−1

[ ] ∑
s∈S i−1

λ
Sαs
n
. (93)
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The second term in (92) is canceled out by the rightmost term in (93). We emphasize that this cancellation is
what makes the analysis of NU

n (·) considerably easier than the analysis of Nn(·).
Finally, Lemma 7 implies that the third term in (92) is oP(n−1/3). Piecing together the computations, we obtain

ES AU
n i( ) | ^i−1

[ ] − 1 � cn,β
λ

n

∑
j/∈S i−1

S1+αj − 1 + oP n−1/3
( )

� cn,β
λ

n

∑n
j�1

S1+αj − 1

( )
− cn,β

λ

n

∑
j∈S i−1

S1+αj + oP n−1/3
( )

� cn,β
λ

n

∑n
j�1

S1+αj − 1

( )
− cn,β

λ

n

∑i−1
j�1

S1+αc j( ) + oP n−1/3
( )

, (94)

and the oP(n−1/3) term is uniform in i � O(n2/3). We are now able to compute

n−1/3CU
n tn2/3
( ) � n−1/3

∑tn2/3
i�1

ES AU
n i( ) | ^i−1

[ ] − 1
( )

� tn1/3 cn,β
λ

n

∑n
j�1

S1+αj − 1

( )
− cn,β

λ

n4/3
∑tn2/3
i�1

∑i−1
j�1

S1+αc j( ) + oP 1( ). (95)

Because E[(S1+α)2+α1+α] < ∞, by the Marcinkiewicz and Zygmund theorem (Durrett 2010, theorem 2.5.8),
if α ∈ (0, 1],

cn,β
λ

n

∑n
j�1

S1+αj � cn,βλE S1+α
[ ] + oP n−

1
2+α

( )
� 1 + βn−1/3 + oP n−

1
2+α

( )
. (96)

For α � 0, by a similar result (Durrett 2010, theorem 2.5.7), for all ε > 0,

1
n

∑n
j�1

Sj � E S[ ] + oP n−1/2 log n( )1/2+ε( )
. (97)

Summarizing the two results, for any α ∈ [0, 1] we have

tn1/3 cn,β
λ

n

∑n
j�1

S1+αj − 1

( )
� t β + oP 1( )( )

. (98)

Because this expression is monotone in t, we also have

sup
t≤T

tn1/3 cn,β
λ

n

∑n
j�1

S1+αj − 1

( )
− βt

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ −→P 0, (99)

so that, for α ∈ [0, 1],

n−1/3CU
n tn2/3
( ) � βt − cn,β

λ

n4/3
∑tn2/3
i�1

∑i−1
j�1

S1+αc j( ) + oP 1( ). (100)

Because cn,β � 1 +O(n−1/3), the second term in (100) converges uniformly to −t2λE[S1+2α]/2E[Sα] by Lemma 8.

4.1.2. Proof of (ii) for the Upper Bound. Rewrite BU
n(k), for k � O(n2/3), as

BU
n k( ) � ∑k

i�1
ES AU

n i( )2| ^i−1
[ ] − ES AU

n i( )|^i−1
[ ]2( )

� ∑k
i�1

ES AU
n i( )2| ^i−1

[ ] − 1
( ) +OP kn−1/3

( )
, (101)
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where we have used the asymptotics for ES[AU
n(i) | ^i−1] in (94). Moreover, we can compute ES[AU

n(i)2 | ^i−1] as

ES AU
n i( )2 | ^i−1

[ ] � ES

∑
h/∈S i

1 Th≤cn,βSc i( )Sh/n{ }
( )2

| ^i−1

[ ]

� ES AU
n i( ) | ^i−1

[ ] + ES

∑
h,q/∈S i

1 Th≤cn,βSc i( )Sh/n{ }1 Tq≤cn,βSc i( )Sq/n{ } | ^i−1

[ ]
. (102)

By (94), ES[An(i) | ^i−1] � 1 + oP(1), uniformly in i � O(n2/3), so that (101) simplifies to

Bn k( ) � ∑k
i�1

ES

∑
h,q/∈S i

1 Th≤cn,βSc i( )Sαh/n{ }1 Tq≤cn,βSc i( )Sαq /n{ } | ^i−1

[ ]
+OP kn−1/3

( )
. (103)

We then focus on the second term in (102), which we compute as∑
h,q/∈S i
h��q

ES 1 Th≤cn,βSc i( )Sαh/n{ }1 Tq≤cn,βSc i( )Sαq /n{ } | ^i−1
[ ]

� ∑
j/∈S i−1

PS c i( ) � j | ^i−1
( ) ∑

h,q/∈S i−1∪ j{ }
h��q

ES 1 Th≤cn,βSjSαh/n{ }1 Tq≤cn,βSjSαq /n{ } | ^i−1
[ ]

. (104)

By Lemma 9,

r.h.s. (4.26) � ∑
j/∈S i−1

PS c i( ) � j | ^i−1
( ) ∑

h,q/∈S i−1∪ j{ }
h ��q

c2n,βλ
2S2j S

α
hS

α
q

n2
+ oP n−2

( )( )

� cn,βλ
( )2

ES S2c i( ) | ^i−1
[ ] 1

n2
∑

h,q/∈S i−1∪ c i( ){ }
h��q

SαhS
α
q + oP 1( )

� cn,βλ
( )2

n2
ES S2c i( ) | ^i−1
[ ] ∑

1≤h,q≤n
SαhS

α
q

− cn,βλ
( )2

n2
ES S2c i( )

∑
h,q∈S i−1∪ c i( ){ }
∪ h�q{ }

SαhS
α
q | ^i−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + oP 1( ).

The leading contribution to BU
n(k) is given by the first term, wheras the second term is an error term by Lemma 5.

We have shown that BU
n(·) can be rewritten as

BU
n k( ) � λ

n

∑
h∈ n[ ]

Sαh

( )2∑k
i�1

ES S2c i( ) | ^i−1
[ ]

+ oP k( ). (105)

Thus,

n−2/3BU
n n2/3u
( )→P λ2E Sα[ ]E S2+α

[ ]
u, (106)

which concludes the proof of (ii).

4.1.3. Proof of (iii) for the Upper Bound. The jumps of BU
n(k) are given by

BU
n i( ) − BU

n i − 1( ) � ES AU
n i( )2| ^i−1

[ ] − ES AU
n i( ) | ^i−1

[ ]2
� ES

∑
h,q/∈S i
h��q

1 Th≤cn,βSc i( )Sαh/n{ }1 Tq≤cn,βSc i( )Sαq /n{ } | ^i−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ES AU
n i( ) | ^i−1

[ ] − ES AU
n i( ) | ^i−1

[ ]2( )
.

(107)
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Because ES[AU
n(i) | ^i−1] � 1 +OP(n−1/3) for i � OP(n2/3) by (94), the second term is of order OP(n−1/3), uniformly

in i � OP(n2/3). The first term was computed in (104). Therefore,

BU
n i( ) − BU

n i − 1( )

� cn,βλ
( )2

n2
ES S2c i( ) | ^i−1
[ ] ∑

h,q∈ n[ ]
SαhS

α
q −

cn,βλ
( )2

n2
ES S2c i( )

∑
h,q∈S i−1∪ c i( ){ }
∪ h�q{ }

SαhS
α
q | ^i−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + oP 1( )

≤ cn,βλ
( )2

n2
ES S2c i( ) | ^i−1
[ ] ∑

h,q∈ n[ ]
SαhS

α
q . (108)

After rescaling and taking the expectation, we obtain the bound

n−2/3ES sup
i≤t̄n2/3

BU
n i( ) − BU

n i − 1( )⃒⃒ ⃒⃒[ ]
≤ cn,βλ
( )2
n2/3

ES sup
i≤t̄n2/3

S2c i( )

[ ]
1
n

∑
h,q∈ n[ ]

Sαh

( )2
. (109)

Lemma 10. If E[S2+α] < ∞,

ES sup
k≤tn2/3

S2c k( )

[ ]
� oP n2/3

( )
, (110)

for each t ∈ R+

Proof. For ε > 0, split the expectation as

1
n2/3

ES sup
k≤tn2/3

Sc k( )

( )2[ ]
≤ 1
n2/3

ES sup
k≤tn2/3

S2c k( )1 Sc k( )>εn1/3{ }
[ ]

+ ε2. (111)

We bound the expected value in the first term as

ES sup
k≤tn2/3

S2c k( )1 Sc k( )>εn1/3{ }
[ ]

≤ ∑
k≤tn2/3

ES S2c k( )1 Sc k( )>εn1/3{ }
[ ]

≤ n2/3tES S2c 1( )1 Sc 1( )>εn1/3{ }
[ ]

1 +OPS 1( )( )
, (112)

where we used Lemma 4 with f (x) � x21{x>εn1/3}. Computing the expectation explicitly we get

tES S2c 1( )1 Sc 1( )>εn1/3{ }
[ ]

� t
∑
i∈ n[ ]

S2i 1 Si>εn1/3{ }P c 1( ) � i( )

� t
∑
i∈ n[ ]

S2i 1 Si>εn1/3{ }
Sαi∑

j∈ n[ ] Sαj
,

(113)

so that the lefthand side of (111) is bounded by

t∑
j∈ n[ ] Sαj

∑
i∈ n[ ]

S2+αi 1 Si>εn1/3{ } + ε2, (114)

which tends to zero as n → ∞ because E[S2+α] < ∞ and ε > 0 is arbitrary.

By Lemma 10 the righthand side of (109) converges to zero, and this concludes the proof.
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4.1.4. Proof of (iv) for the Upper Bound. First, we split

ES sup
k≤tn2/3

MU
n k( ) −MU

n k − 1( )( )2[ ]
� ES sup

k≤tn2/3
AU

n k( ) − ES AU
n k( ) | ^k−1

[ ]( )2[ ]

≤ ES sup
k≤tn2/3

|AU
n k( )|2

[ ]
+ ES sup

k≤tn2/3
E AU

n k( ) | ^k−1
[ ]2[ ]

≤ 2ES sup
k≤tn2/3

|AU
n k( )|2

[ ]
. (115)

We then stochastically dominate (AU
n(k))k≤tn2/3 by a sequence of Poisson processes (Πk)k≤tn2/3 , according to

AU
n k( ) � Πk cn,βSc k( )

∑
i∈ n[ ]

Sαi
n

( )
�: A′

n k( ). (116)

Indeed, if E1,E2, . . . ,En are exponential random variables with parameters λ1, λ2, . . . , λn, there exists a coupling
with a Poisson process Π(·) such that

∑
i≤n 1{Ei≤t} ≤ Π(∑i≤n λit). The coupling is constructed as follows. Each

random variable Ei is coupled with a Poisson process Π(i) with intensity λi in such a way that 1{Ei≤t} ≤ Π(i)(λit).
Moreover, by basic properties of the Poisson process

∑
i≤n Π(i)(λit) d�Π(∑i≤n λit).

We bound (115) via martingale techniques. First, we decompose it as

n−2/3ES sup
k≤tn2/3

|AU
n k( )|2

[ ]
≤ 2n−2/3ES sup

k≤tn2/3
A′

n k( ) − cn,βSc k( )
∑
i∈ n[ ]

Sαi
n

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

( )2[ ]

+ 2n−2/3ES cn,β sup
k≤tn2/3

Sc k( )
∑
i∈ n[ ]

Sαi
n

( )2[ ]
. (117)

Applying Doob’s L2 martingale inequality (Klenke 2008, theorem 11.2) to the first term, we see that it
converges to zero, because

n−2/3ES sup
k≤tn2/3

|A′
n k( ) − Sc k( )

∑
i∈ n[ ]

Sαi
n

⃒⃒⃒⃒
⃒

( )2[ ]
≤ 4n−2/3ES A′

n tn2/3
( ) − Sc tn2/3( )

∑
i∈ n[ ]

Sαi
n

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒
2[ ]

� 4n−2/3ES Sc tn2/3( )
∑
i∈ n[ ]

Sαi
n

[ ]
.

(118)

The last equality follows from the expression for the variance of a Poisson random variable. The rightmost
term converges to zero by Lemma 7. We now bound the second term in (117), as

n−2/3ES sup
k≤tn2/3

Sc k( )
∑
i∈ n[ ]

Sαi
n

( )2[ ]
� n−2/3

∑
i∈ n[ ]

Sαi
n

( )2
ES sup

k≤tn2/3
Sc k( )

( )2[ ]
. (119)

By Lemma 10, the righthand side of (119) converges to zero, concluding the proof of (iv).

4.2. Convergence of the Scaling Limit
As a consequence of (84) and Theorem 3, we have that Qn(k) � OP(n1/3) for k � O(n2/3). In fact, n−1/3Qn(k) is
tight when k � O(n2/3), as the following lemma shows.

Lemma 11. Fix t̄ > 0. The sequence n−1/3 supt≤t̄ Qn(tn2/3) is tight.
Proof. The supremum function f (·) 
→ supt≤t̄ f (t) is continuous in ($, J1) by Whitt (2002, theorem 13.4.1).
In particular,

n−1/3 sup
t≤t̄

QU
n tn2/3
( ) →d sup

t≤t̄
W t( ), in $, J1( ). (120)
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Because Qn(k) ≤ QU
n(k), the conclusion follows. □

As an immediate consequence of (6) and Lemma 11, we have the following important corollary. Recall that
νi is the set of customers who have left the system or are in the queue at the beginning of the ith service, so
that |νi| � i +Qn(i).
Corollary 1. As n → ∞,

|νi| � i + oP i( ), uniformly in i � OP n2/3
( )

. (121)
Intuitively, this implies that the main contribution to the downward drift in the queue-length process comes
from the customers that have left the system and not from the customers in the queue. Alternatively, the order
of magnitude of the queue length, that is n1/3, is negligible with respect to the order of magnitude of the
customers who have left the system, which is n2/3.

In order to prove Theorem 1, we proceed as in the proof of Theorem 3, but we now need to deal with the
more complicated drift term. As before, we decompose Nn(k) � Mn(k) + Cn(k), where

Mn k( ) � ∑k
i�1

An i( ) − ES An i( ) | ^k−1[ ]( ),

Cn k( ) � ∑k
i�1

ES An i( ) | ^k−1[ ] − 1( ),

Bn k( ) � ∑k
i�1

ES An i( )2| ^i−1
[ ] − ES An i( ) | ^i−1[ ]2( )

. (122)

As before, we separately prove the convergence of the drift Cn(k) and of the martingale Mn(k) by verifying
conditions (i)–(iv) in Section 4.1. Verifying (i) proves to be the most challenging task, whereas the estimates
for (ii)–(iv) in Section 4.1 carry over without further complications.

4.2.1. Proof of (i) for the Embedded Queue. By expanding ES[An(i) | ^i−1] − 1 as in (92), we get

ES An i( ) | ^i−1[ ] − 1 � cn,βλ
∑n

l�1 S
α
l

n
ES Sc i( ) | ^i−1
[ ] − 1

( )
− cn,βES Sc i( ) | ^i−1

[ ] ∑
l∈νi\ c i( ){ }

λ
Sαl
n

− cn,β
λ

n
ES S1+αc i( ) | ^i−1
[ ]

+ oP n−1/3
( )

.

(123)

By further expanding the first term in (123) as in (93), we get

ES An i( ) | ^i−1[ ] − 1 � cn,β
λ

n

∑
j/∈S i−1

S1+αj − 1

( )
− cn,βES Sc i( ) | ^i−1

[ ] ∑i+1+Qn i−1( )

l�i+1
λ
Sαc l( )
n

− cn,β
λ

n
ES S1+αc i( ) | ^i−1
[ ]

+ oP n−1/3
( )

,

(124)

where in the first equality we have used (6). Comparing Equation (124) with Equation (94), we rewrite the
drift as

Cn k( ) � CU
n k( ) − cn,βλ

∑k
i�1

ES Sc i( ) | ^i−1
[ ] ∑i+1+Qn i−1( )

l�i+1

Sαc l( )
n

. (125)

Therefore, to conclude the proof of (i) it is enough to show that the second term vanishes, after rescaling. We
do this in the following lemma.

Lemma 12. As n → ∞,

n−1/3cn,βλ
∑t̄n2/3
i�1

ES Sc i( ) | ^i−1
[ ] ∑i+1+Qn i−1( )

l�i+1

Sαc l( )
n

−→P 0. (126)
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Proof. By Lemma 11, supi≤t̄n2/3 Qn(i) ≤ C1n1/3 w.h.p. for a large constant C1, and by Lemma 7, supi≤t̄n2/3 ES[Sc(i) |
^i−1] ≤ C2 w.h.p. for another large constant C2. This implies that, w.h.p.,

n−1/3cn,βλ
∑t̄n2/3
i�1

ES Sc i( ) | ^i−1
[ ] ∑i+1+Qn i−1( )

l�i+1

Sαc l( )
n

≤ cn,βλC2
∑t̄n2/3
i�1

∑i+1+C1n1/3

l�i+1

Sαc l( )
n4/3

. (127)

The double sum can be rewritten as

cn,βλC2
∑t̄n2/3
i�1

∑i+1+C1n1/3

l�i+1

Sαc l( )
n4/3

≤ cn,βλC2
∑t̄n2/3+C1n1/3

j�1
min j,C1n1/3

{ }Sαc j( )
n4/3

≤ cn,βλC1C2
∑t̄+C1( )n2/3

j�1

Sα
c j( )
n

.

(128)

The rightmost term converges to zero in probability as n → ∞ by Lemma 8. This concludes the proof. □

Because

n−1/3Cn tn2/3
( ) � n−1/3CU

n tn2/3
( ) − n−1/3cn,βλ

∑tn2/3
i�1

ES Sc i( ) | ^i−1
[ ] ∑i+1+Qn i−1( )

l�i+1

Sαc l( )
n

, (129)

Lemma 12 and the convergence result (100) for n−1/3CU
n(tn2/3) conclude the proof of (i). □

4.2.2. Proof of (ii), (iii), and (iv) for the Embedded Queue. Proceeding as before, we find that

Bn k( ) � ∑k
i�1

ES An i( )2| ^i−1
[ ] − ES An i( ) | ^i−1[ ]2( )

� ∑k
i�1

ES An i( )2| ^i−1
[ ] − 1

( ) +OP kn−1/3
( )

,

(130)

where

ES An i( )2| ^i−1
[ ] � ES An i( ) | ^i−1[ ] + ES

∑
h,q/∈νi−1
h��q

1 Th≤Sc i( )Sh/n{ }1 Tq≤Sc i( )Sq/n{ } | ^i−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (131)

Similarly as in Section 4.1.2, we get∑
h,q/∈νi−1
h��q

ES 1 Th≤Sc i( )Sαh/n{ }1 Tq≤Sc i( )Sαq /n{ } | ^i−1
[ ]

� ES S2c i( ) | ^i−1
[ ]λ2

n2
∑n
h�1

Sαh

( )2
−ES S2c i( )

λ2

n2
∑

h,q∈νi−1∪ c i( ){ }
∪ h�q{ }

SαhS
α
q | ^i−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + oP 1( ).

(132)

The second term is an error term by Lemma 5 and Corollary 1. This implies that Bn(·) can be rewritten as

Bn k( ) � λ

n

∑n
h�1

Sαh

( )2∑k
i�1

ES S2c i( ) | ^i−1
[ ]

+ oP k( ), (133)

so that

n−2/3Bn n2/3u
( )→P λ2E Sα[ ]E S2+α

[ ]
u, (134)

which concludes the proof of (ii). □
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To conclude the proof of Theorem 1, we are left to verify (iii) and (iv). However, the estimates in Sections 4.1.3
and 4.1.4 also hold for Bn(·) and Mn(·), because they rely, respectively, on (109) and (115) to bound the lower-
order contributions to the drift. This concludes the proof of Theorem 1.

5. Conclusions and Discussion
In this paper, we considered a generalization of the Δ(i)/G/1 queue, which we coined the Δα

(i)/G/1 queue, a
model for the dynamics of a queueing system in which only a finite number of customers can join. In our
model, the arrival time of a customer depends on its service requirement through a parameter α ∈ [0, 1]. We
have proved that, under a suitable heavy-traffic assumption, the diffusion-scaled queue-length process
embedded at service completions converges to a stochastic process W(·). A distinctive characteristic of our
results is the so-called depletion-of-points effect, represented by a quadratic drift in W(·). A (directed) tree is
associated to the Δα

(i)/G/1 queue in a natural way, and the heavy-traffic assumption corresponds to criticality of
the associated random tree. Our result interpolates between two already known results. For α � 0 the arrival
clocks are i.i.d., and the analysis simplifies significantly. In this context, Bet et al. (2019) proves an analogous
heavy-traffic diffusion approximation result. Theorem 1 can then be seen as a generalization of Bet et al. (2019,
theorem 5). If α � 1, the Δα

(i)/G/1 queue has a natural interpretation as an exploration process of an inho-
mogeneous random graph. In this context, Bhamidi et al. (2010) proves that the ordered component sizes
converge to the excursion of a reflected Brownian motion with parabolic drift. Our result can then also be seen
as a generalization of Bhamidi et al. (2010) to the directed components of directed inhomogeneous ran-
dom graphs.

Lemma 6 implies that the distribution of the service time of the first O(n2/3) customers to join the queue
converges to the α-size-biased distribution of S, irrespective of the precise time at which the customers arrive.
This suggests that it is possible to prove Theorem 1 by approximating the Δα

(i)/G/1 queue via a Δ(i)/G/1 queue
with service time distribution S∗ such that

P S∗ ∈ !
( ) � E Sα1 S∈!{ }

[ ]
/E Sα[ ], (135)

and i.i.d. arrival times distributed as Ti ∼ exp(λE[Sα]). This conjecture is supported by two observations. First,
the heavy-traffic conditions for the two queues coincide. Second, the standard deviation of the Brownian
motion is the same in the two limiting diffusions. However, this approximation fails to capture the higher-
order contributions to the queue-length process. As a result, the coefficients of the negative quadratic drift in
the two queues are different, and thus the approximation of the Δα

(i)/G/1 queue with a Δ(i)/G/1 queue is
insufficient to prove Theorem 1.

Endnote
1 For brevity, we ignore the so-called surplus edges because they do not contribute to the sizes of the strongly connected component (Goldschmidt
and Stephenson 2019, proposition 5.7).
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