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Abstract

Background: Recently, selection for milk technological traits was initiated in the Italian dairy cattle industry based
on direct measures of milk coagulation properties (MCP) such as rennet coagulation time (RCT) and curd firmness
30 min after rennet addition (a30) and on some traditional milk quality traits that are used as predictors, such as somatic
cell score (SCS) and casein percentage (CAS). The aim of this study was to shed light on the causal relationships between
traditional milk quality traits and MCP. Different structural equation models that included causal effects of SCS and CAS on
RCT and a30 and of RCT on a30 were implemented in a Bayesian framework.

Results: Our results indicate a non-zero magnitude of the causal relationships between the traits studied. Causal effects of
SCS and CAS on RCT and a30 were observed, which suggests that the relationship between milk coagulation ability and
traditional milk quality traits depends more on phenotypic causal pathways than directly on common genetic influence.
While RCT does not seem to be largely controlled by SCS and CAS, some of the variation in a30 depends on the
phenotypes of these traits. However, a30 depends heavily on coagulation time. Our results also indicate that,
when direct effects of SCS, CAS and RCT are considered simultaneously, most of the overall genetic variability of
a30 is mediated by other traits.

Conclusions: This study suggests that selection for RCT and a30 should not be performed on correlated traits
such as SCS or CAS but on direct measures because the ability of milk to coagulate is improved through the
causal effect that the former play on the latter, rather than from a common source of genetic variation. Breaking
the causal link (e.g. standardizing SCS or CAS before the milk is processed into cheese) would reduce the impact
of the improvement due to selective breeding. Since a30 depends heavily on RCT, the relative emphasis that is put on
this trait should be reconsidered and weighted for the fact that the pure measure of a30 almost double-counts RCT.

Background
In recent years, increasing efforts have been made to
enhance efficiency in the Italian dairy industry and dairy
cattle breeding organizations have started selecting for a
wide range of novel traits. Milk coagulation properties
(MCP) have been included in the data recording system
and breeding values are routinely produced for Italian
Holstein bulls [1]. Milk coagulation properties, namely
rennet coagulation time (RCT) and curd firmness after
30 min from rennet addition (a30), have been shown to
be good predictors of milk technological quality and

cheese yield [2-4], which are key factors in dairy indus-
tries where most of the milk produced is processed into
cheese. In particular, a30 is the trait that has the stron-
gest impact on Grana Padano cheese processing [4].
Generally, selection for RCT and a30 is based either on

correlated traits such as somatic cell score (SCS), fat,
protein and casein percentages [5-8] or on direct
measures of RCT and a30 [1,9]. These two traits can vary
in terms of curd firmness at different time points in the
milk coagulation process and depend heavily on each
other. This is inherent to the test used (see Bittante [10]
and Bittante et al. [11] for a review of current know-
ledge), i.e. RCT (in min) measures the amount of time* Correspondence: ftmaestr@ncsu.edu
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between rennet addition and the beginning of the coagu-
lation process, whereas a30 measures curd firmness
30 min after rennet addition. The longer the milk takes
to start coagulating, the softer the curd will be at the
end of the test, and vice versa. Somatic cell score and
milk casein percentage (CAS) are considered to affect
RCT and a30 [12-14] and are correlated at the genetic
level [5,15]. Pretto et al. [7] suggested that the genetic
correlation that exists between SCS and CAS could be
used as a predictor in breeding programs that focus on
improving MCP.
The overall genetic effects that influence MCP are

probably distributed into multiple causal paths: on the
one hand, some genes may affect MCP directly, while,
on the other hand, some genes may affect other milk
quality parameters, which in turn affect the ability of
milk to coagulate. Alternatively, a causal path that in-
volves MCP may exist. For instance, a strong association
between a30 and RCT could support a causal hypothesis
that variability in a30 is mostly explained by the influence
of RCT, while there is no strong direct genetic effect on
a30 (i.e. they are independent). In other words, some
genes may not strongly and directly affect both RCT and
a30, but only RCT.
As discussed by [16], in the classical genetic evaluation

scenario, breeding values of candidate individuals are
predicted by fitting multiple trait models (MTM), which
neglect the causal network that influences phenotypic
traits. Structural equation models (SEM) [17-31] can
help “dissect” the overall genetic effects expressed by
MTM into distinct sources of genetic variation, by sep-
arating the common sources of variation that affect dir-
ectly two or more traits in the system (e.g. the genetic
correlation between SCS and RCT) from the causal ef-
fect that one phenotypic trait plays on the other (e.g. the
causal effect of SCS on RCT). In addition, using non-
intervened data (such as field data routinely collected for
genetic evaluations), SEM would be able to predict gen-
etic effects for scenarios for which interventions on the
phenotype are performed [16]. For example, let us con-
sider a scenario in which the goal is to predict the indi-
viduals’ genetic effects on RCT or a30 when milk quality
traits are physically controlled (e.g., by filtering somatic
cell load [32,33] or standardizing casein percentage
[34,35]). Such a scenario will take only the individuals’
genetic effects on RCT and a30 into account, since the
genetic influence mediated by SCS and CAS is blocked.
Alternative approaches to assess the impact of SCS and
CAS on MCP require that additional experimental re-
cords, this time under the given intervention, and then
genetic effects based on these data can be predicted.
Therefore, the genetic parameters and breeding values
for a30 that are estimated with SEM result in interpreta-
tions that differ from those obtained with MTM. The

breeding value of a given cow that is estimated with
SEM for a30 indicates its genetic merit in terms of firm-
ness of the milk produced that is not mediated by SCS
and CAS and that cannot be obtained with standard
MTM. Moreover, if indirect effects play a major role in
the variation of a30 and if the traits through which the
effect is mediated are in the selection index, it might not
be necessary to consider a30 since that would represent
redundant information.
The aim of this study was to: (1) infer the magnitude

of the causal effects of two traditional milk quality traits
(SCS and CAS) on MCP, (2) estimate the causal effect of
RCT on a30 and the genetic variation in the latter when
the causal effect of the former is removed, and (3) esti-
mate genetic and phenotypic variation of a30 by taking
the causal effect of all other traits into account, i.e. by
assessing the magnitude of the variance components
that would hold if some milk quality parameters are
controlled.

Methods
Data collection and editing procedure
Routine assessment of MCP via mid-infrared spectros-
copy began in September 2011 in the Veneto region of
Italy [1,36]. Approximately 25 000 cows are currently
under monthly routine control. A panel of traits is rou-
tinely assessed with Milko-Scan FT6000 (Foss Electric
A/S, Hillerød, Denmark), including fat, protein and
casein percentages, milk coagulation properties (such as
RCT, curd firming time and a30) and fatty acid profile of
milk. Milk somatic cell count (SCC) is determined with
Cell Fossomatic 250.
For this study, we extracted data from the same data-

set as in Tiezzi et al. [36]. Traditional milk quality
parameters were chosen, i.e. SCS (as log-transformation
of SCC) and CAS, while we used RCT and a30 as mea-
sures of MCP. We retained only the records from
early-lactation (5 to 125 days in milk) on first-lactation
cows in order to avoid accumulation of carry-over ef-
fects of deteriorated milk quality on coagulation prop-
erties (e.g. an identical decrease in SCS may have a
different impact on RCT in early and late lactation
because of the accumulation of the effect of SCS over
lactation, such that late lactation RCT and a30 may be
affected by early lactation SCS, late lactation SCS and
their interaction). Therefore, data editing was similar to
that in [36], except that only the records from early-
lactation (5 to 125 days in milk) first-parity cows were
considered. For statistical analysis, 8783 records col-
lected on 3266 first-lactation Italian Holstein cows
across the period from January to December 2012 were
used for statistical analyses. Cows were sired by 128 AI
bulls and reared in 309 herds.
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Statistical analysis
We fitted three SEM and a single MTM. The baseline
MTM (M0) was as follows:

M0

y1 ¼ Xb1 þ Zhh1 þ Zpp1 þ Zss1 þ e1
y2 ¼ Xb2 þ Zhh2 þ Zpp2 þ Zss2 þ e2
y3 ¼ Xb3 þ Zhh3 þ Zpp3 þ Zss3 þ e3
y4 ¼ Xb4 þ Zhh4 þ Zpp4 þ Zss4 þ e4

;

8
>><

>>:

where the index ‘i’ indicates correspondence to the ith

trait, y1,, y2 , y3 and y4 are the vectors reporting the
four traits (SCS, CAS, RCT and a30, considered in this
order), X and bi are the incidence matrix and the
corresponding vector of fixed effects (intercept and
four classes of stage of lactation, namely 5 to 34, 35 to
64, 65 to 94 and 95 to 125 days in milk), Zh and hi are
the incidence matrix and corresponding vector of
herd random effect (309 levels), Zp and pi are the inci-
dence matrix and vector of cow permanent environ-
mental random effect (3266 levels), Zs and si are the
incidence matrix and vector of sire random additive
genetic effect (128 sires, 1254 total individuals in the
sire-MGS pedigree), and ei are random residuals.
Different causal structures with varying complexity

in terms of number of causal connections were
assigned to each model. Causal connections are repre-
sented in the same manner as in Wu et al. [26]. For in-
stance, λyx indicates a causal effect of x on y, traits are
coded as follows: 1 for SCS, 2 for CAS, 3 for RCT and
4 for a30. Model 1 (M1, Figure 1) takes the effect of
SCS on RCT and a30 (λ31 and λ41, respectively) and
the effect of CAS on RCT and a30 (λ32 and λ42 , re-
spectively) into account. This model is represented as
follows:

M1

y1 ¼ Xb1 þ Zhh1 þ Zpp1 þ Zss1 þ e1
y2 ¼ Xb2 þ Zhh2 þ Zpp2 þ Zss2 þ e2

y3 ¼ λ31y1 þ λ32y2 þ Xb3 þ Zhh3 þ Zpp3 þ Zss3 þ e3
y4 ¼ λ41y1 þ λ42y2 þ Xb4 þ Zhh4 þ Zpp4 þ Zss4 þ e4

:

8
>><

>>:

In model 2 (M2, Figure 2), only the effect of RCT on
a30 (λ43) was considered,

M2

y1 ¼ Xb1 þ Zhh1 þ Zpp1 þ Zss1 þ e1
y2 ¼ Xb2 þ Zhh2 þ Zpp2 þ Zss2 þ e2
y3 ¼ Xb3 þ Zhh3 þ Zpp3 þ Zss3 þ e3

y4 ¼ λ43y3 þ Xb4 þ Zhh4 þ Zpp4 þ Zss4 þ e4

:

8
>><

>>:

In model 3 (M3, Figure 3), effects of SCS, CAS and RCT
on a30 were considered (λ41, λ42 and λ43, respectively).

M3

y1 ¼ Xb1 þ Zhh1 þ Zpp1 þ Zss1 þ e1
y2 ¼ Xb2 þ Zhh2 þ Zpp2 þ Zss2 þ e2
y3 ¼ Xb3 þ Zhh3 þ Zpp3 þ Zss3 þ e3

y4 ¼ λ41y1 þ λ42y2 þ λ43y3 þ Xb4 þ Zhh4 þ Zpp4 þ Zss4 þ e4

;

8
>><

>>:

where y1, y2 , y3, y4, X, bi, Zh, hi, Zp, pi, Zs, si and ei are
defined as for the MTM. Furthermore, two additional
models derived from model M1 were used to avoid pos-
sible confounding between the effects of SCS and CAS
on RCT and a30: one took only the effect of SCS on RCT
and a30 into account, while the other took only the effect
of CAS on RCT and a30 into account. However, since
the estimated values of the causal effects were similar
with model M1 and the two derived models, results
from these models are not presented.
Analyses were implemented in a Bayesian framework

using the software SIRBAYES [24,26]. For structural co-
efficients, a multivariate normal prior distribution was
assumed as N(1λ0, Iτ2), where hyperparameters were

Figure 1 Directed acyclic graph representing the causal structure
among phenotypes assigned to model M1. Nodes represent somatic
cell score (SCS), casein percentage (CAS), rennet coagulation time
after rennet addition (RCT), curd firmness at 30 min after rennet
addition (a30). The arrows indicate direct causal effects.

Figure 2 Directed acyclic graph representing the causal structure
among phenotypes assigned to model M2. Nodes represent somatic
cell score (SCS), casein percentage (CAS), rennet coagulation time
after rennet addition (RCT), curd firmness at 30 min after rennet
addition (a30). The arrows indicate direct causal effects.
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λ0 = 0 and τ2 = 10 000. For fixed effects, the prior distri-
bution was normal, with mean 0 and variance 10 000.
Prior distributions for sire, cow permanent environ-
mental and herd effects were multivariate normal with
the following covariance structures: for sire effect
s ~N(0, G⊗A) where A was the numerator relationship
matrix and G is the sire effect covariance matrix, and
for cow and herd effects and residuals, it was assumed
that p ~N(0, P⊗ I), h ~N(0, H⊗ I), e ~N(0, R⊗ I)
where I is an identity matrix and H, P and R are the
respective covariance matrices. Prior distributions for co-
variance matrices G, H, and P were independent inverse-
Wishart invWish(ν, S), where ν are the number of degrees
of freedom and S is the scale. Prior distribution for R was
an independent inverse-Wishart invWish(ν, S) only for
the MTM, while an inverted chi-square invChisq(ν, S)
was used for the SEM since R was forced to be diagonal.
For all priors, the number of degrees of freedom (ν) was
set to 6. In this study, R was assumed as diagonal for
SEM, i.e., all residual covariances were constrained to 0.
This assumption is required to identify structural coeffi-
cients. The meaning of this commonly adopted parametric
constraint conflicts with the quantitative genetics that
underlie sire MTM, i.e. alleles that are inherited from the
dam may have associated effects in more than one trait,
and they are expected to be absorbed by the residual co-
variance. In fact, this theoretical contradiction in SEM that
are based on sire models was largely neglected in previous
studies [19-31]. However, the possible confounding is not
expected to be important here because of the structure of
the data and the model: a model that takes into consider-
ation dam effect would not take this effect into account
well since most cows do not share the same dam in the
dataset.
Structural coefficients were sampled using the Metropolis-

Hastings algorithm, and the remaining parameters were

sampled using Gibbs sampling [28]. For each model,
120 000 iterations were run, discarding the first 20 000
as burn-in and retaining one every 10 samples for infer-
ences. Posterior means and 95% highest probability
density intervals were calculated on the remaining 10
000 samples. Convergence was assessed by visual in-
spection of the trace and running mean plots and esti-
mates of autocorrelation and effective samples size
were obtained using the ‘coda’ package [37] in R
(http://cran.r-project.org).
Since the interpretation of the parameters that are es-

timated with the SEM (contained in G, P, H, and R) dif-
fers from that of the analogous parameters with a MTM
[16], further transformation is required to be able to
compare (co)dispersion of overall random effects between
the four models fitted. For each model, transformation
for the estimated covariance matrices to the MTM scale
was performed as:

G* = (I-Λ)-1G (I-Λ)’-1

P* = (I-Λ)-1 P (I-Λ)’-1

H* = (I-Λ)-1H (I-Λ)’-1

R* = (I-Λ)-1 R (I-Λ)’-1,

where G, P, H, R and Λ are defined as above. Genetic
and phenotypic correlations were calculated in the usual
way from the (co)variance components in G*, P*, H*
and R*. Heritability (h2) was computed as:

h2 ¼ 4σ2s
σ2s þ σ2p þ σ2h þ σ2e

;

where σ2s is the sire additive genetic variance, σ2p is the
cow permanent environmental variance, σ2h is the herd
environmental variance and σ2e is residual variance.
These variance components are obtained from G*, P*,
H* and R*. For easier interpretation, posterior means of
causal effects were transformed to standard deviation
units by applying the formula λ′yx ¼ λyx

sd xð Þ
sd yð Þ , where λ′yx is

the transformed value, λyx is the posterior mean of the
causal effect of x on y, sd (x) is the standard deviation of
the independent variable and sd (y) is the standard devi-
ation of the dependent variable.
For a30, we computed the difference in sire additive gen-

etic and phenotypic variance (sum of sire additive genetic,
cow permanent environmental, herd and residual vari-
ances) between model M0 and each of the considered
models under the causal effect (RCT under model M1 and
a30 from all models), expressed as the relative difference
with model M0 (difference between the variance compo-
nents divided by the respective variance component of
model M0 and scaled to 100). In addition, we computed
the heritability from the SEM variance components (i.e.,
from G, P, H and R) according to the formula above.

Figure 3 Directed acyclic graph representing the causal structure
among phenotypes assigned to model M3. Nodes represent somatic
cell score (SCS), casein percentage (CAS), rennet coagulation time
after rennet addition (RCT), curd firmness at 30 min after rennet
addition (a30). The arrows indicate direct causal effects.
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Results and discussion
Descriptive statistics and observed correlations
Descriptive statistics and observed correlations are in
Table 1. Means (SD) for SCS, CAS, RCT and a30 were
equal to 2.35 (1.66), 2.46 (0.23), 18.9 (3.80) and 23.0
(8.53), respectively. The data originated from the same
dataset as in Tiezzi et al. [36] but observations were re-
stricted to early-lactation first-parity cows. Descriptive
statistics were in partial agreement with the previous
study. Summer et al. [38] also found a significant in-
crease in casein percentage from early to late lactation
in Italian Friesian cows. Correlations of RCT with SCS
and CAS were equal to 0.087 and -0.021, respectively,
while correlations of a30 with the other traits were -0.849
for RCT, -0.107 for SCS and 0.346 for CAS.

Heritabilities, genetic and phenotypic correlations
Heritabilities (on the diagonal) and genetic and pheno-
typic correlations (above and below the diagonal, re-
spectively) estimated with each model are in Table 2.
These parameter estimators should be interpreted as the
standard parameters obtained with a MTM.
Heritabilities for all traits considered were consistent

across models: SCS ranged from 0.021 in model M1 to
0.030 in model M0, CAS ranged from 0.141 in M1 to
0.157 in M2, RCT from 0.112 in M3 to 0.167 in M0 and
a30 ranged from 0.139 in M2 to 0.187 in M0. Also, gen-
etic and phenotypic correlations did not vary signifi-
cantly across models, since in most cases, the posterior
mean of one model fell within the 95% HPD (highest
posterior density interval) intervals of the other models.
Genetic correlations that involved RCT were almost null
with SCS (posterior means ranging from -0.081 to 0.081),
very moderate and negative with CAS (-0.241 to -0.155),
and strong and negative with a30 (-0.933 to -0.883). The
trait a30 presented weak negative correlations with SCS
(-0.149 to -0.072) and moderate positive correlations
with CAS (0.374 to 0.572). Genetic correlation between
SCS and CAS was null, ranging from -0.180 to 0.059
across models. Phenotypic and genetic correlations
were similar in direction and magnitude: RCT was
moderately and positively correlated with SCS (0.147 to

0.182) and strongly and negatively correlated with a30
(-0.851 to -0.58), while correlation with CAS was null
(-0.125 to -0.021). a30 was weakly and negatively corre-
lated with SCS (-0.192 to -0.151) and moderately and
positively correlated with CAS (0.211 to 0.494), while
correlation between SCS and CAS was null (0.021 to
0.042).
Estimates of heritabilities obtained with the MTM

were lower than those reported by Tiezzi et al. [36], who
considered whole lactations up to the ninth parity. In
our study, restricting the dataset to early-lactation first-
parity cows led to decreased heritabilities for all traits:
from 0.093 to 0.030 for SCS, from 0.283 to 0.157 for
CAS, from 0.210 to 0.167 for RCT and from 0.238 to
0.187 for a30. To the best of our knowledge, there are no
studies on the heterogeneity of variance components
across lactation and parities for milk coagulation proper-
ties; however, Muir et al. [39] found a lower heritability
for SCS in the first lactation than in later lactations for
Italian Holsteins (0.165, 0.211 and 0.252 for first, second
and third lactations, respectively), while Odegard et al.
[40] reported a heritability for SCS less than 0.08 at the
beginning of lactation and a value of 0.10 in late lacta-
tion, although they used Norwegian Red cattle data. Esti-
mates of genetic and phenotypic correlations are in
agreement with Tiezzi et al. [36], therefore stage and
number of lactation do not appear to affect correlations.
As mentioned above, we found no significant differ-

ences in estimates of genetic and phenotypic correlations
between MTM and SEM. However, exceptions were ob-
served between CAS and a30, i.e., models M0 and M2
led to lower values (0.291 and 0.211, respectively) while
models M1 and M3 led to the highest values (0.494 and
0.463, respectively). Including causal effects between
CAS and a30 increased the correlation estimates. This
was observed in several other studies: (1) Konig et al.
[29] who analyzed correlations between milk yield and
claw disorders in German Holstein, found that SEM re-
sulted in lower genetic correlations compared to MTM;
(2) de los Campos et al. [21] reported that, in dairy
goats, genetic correlations between milk yield and SCS
differed between MTM and SEM; and (3) Wu et al. [26]
showed that including causal effects modified the genetic
correlations between milk yield and SCS, while heritabil-
ities varied little across models.

Causal effects on RCT and a30
The causal effects estimated with the three SEM and
their transformations to the scale of standard deviation
units for both traits are in Table 3. Model M1 took the
effects of traditional milk quality parameters (SCS and
CAS) on milk coagulation measures (RCT and a30) into
account. According to the posterior mean of this param-
eter, an increase of 1 unit in SCS (e.g. from 2.00 to 3.00)

Table 1 Descriptive statistics and observed correlation
coefficients for the analyzed traits

Descriptive statistics Correlations

Traits1 Mean SD Min Max SCS CAS RCT

SCS 2.35 1.66 -1.32 9.64

CAS 2.46 0.23 1.68 3.53 0.073

RCT, min 18.9 3.80 5.52 29.9 0.087 -0.021

a30, mm 23.0 8.53 0.19 54.7 -0.107 0.346 -0.849
1Traits are somatic cell score (SCS), casein percentage (CAS), rennet coagulation
time (RCT) and curd firmness (a30).
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causally increased RCT by 0.242 min (0.1057 SD units
increase in RCT per 1 SD unit increase in SCS). The
value ‘0’ was not included in the 95% HPD intervals
(0.196 to 0.288). However, an increase of 1 unit in CAS
(e.g. from 2% to 3%) decreased RCT by 3.043 min (95%
HPD intervals: -3.372 to -2.705, -0.1842 SD units).
Similarly, the impact of the same variables on a30 was
as follows: an increase of 1 unit in SCS led to a
0.703 mm reduction in a30 (95% HPD intervals: -0.824
to -0.625. -0.1421 SD units) and an increase of 1 unit in
CAS led to a 18.823 mm increase in a30 (95% HPD in-
tervals: 18.128 to 19.595, 0.5075 SD units).

Fitting model M2 resulted in a decrease of the poster-
ior mean of 1.901 mm in a30 per min increase in RCT
(95% HPD intervals: -1.931 to -1.869, -0.8469 SD units).
The effects inferred from model M3 were weaker than

those from other models, although they agreed in sign.
The posterior means of the effect of SCS, CAS and RCT
on a30 were equal to -0.267 (95% HPD intervals: -0.327 to
0.207, -0.0520 SD units), 12.845 (95% HPD intervals:
12.443 to 13.232, 0.3465 SD units) and -1.792 (95% HPD
intervals: -1.819 to -1.764, -0.7983 SD units), respectively.
Overall, increasing milk quality (i.e. lower SCS and

higher CAS) led to better milk coagulation ability (i.e.

Table 3 Estimates1 of causal effects with different models2 and transformation to standard deviation units3

Causal effect M1 M2 M3

Estimate SD Units Estimate SD Units Estimate SD Units

SCS - > RCT 0.242 (0.196; 0.288) 0.1057 . . . .

CAS - > RCT -3.043 (-3.372; -2.705) -0.1842 . . . .

SCS - > a30 -0.730 (-0.824; -0.625) -0.1421 . . -0.267 (-0.327; 0.207) -0.0520

CAS - > a30 18.823 (18.128; 19.595) 0.5075 . . 12.845 (12.443; 13.232) 0.3465

RCT - > a30 . . -1.901 (-1.931; -1.869) -0.8469 -1.792 (-1.819; -1.764) -0.7983
1Estimates are the means (lower and upper bound of the 95% HPD interval) of the marginal posterior distributions; 2the models differ in the causal effects
considered: M0 is the standard multiple trait model; in M1 are considered the causal effects of both SCS and CAS on RCT and a30; in M2 is considered the causal
effects of RCT on a30; in M3 the causal effects of SCS, CAS and RCT on a30 are considered; 3causal effects were transformed to standard deviation units by
applying the formula λ′yx ¼ λyx

sd xð Þ
sd yð Þ, where λ′yx is the transformed value, λyx is the posterior mean of the causal effect of x on y, sd (x) is the standard deviation of

the independent variable and sd (y) is the standard deviation of the dependent variable.

Table 2 Estimates1 of heritabilities (on the diagonal) genetic (above diagonal) and phenotypic correlations (below
diagonal)
M0 SCS CAS RCT a30

SCS 0.030 (0.007; 0.059) -0.096 (-0.515; 0.338) -0.081 (-0.581; 0.464) -0.072 (-0.589; 0.476)

CAS 0.042 (-0.030; 0.117) 0.157 (0.092; 0.196) -0.157 (-0.476; -0.182) 0.374 (0.076; 0.654)

RCT 0.182 (0.108; 0.258) -0.046 (-0.113; 0.017) 0.167 (0.083; 0.253) -0.918 (-0.978; -0.846)

a30 -0.192 (-0.264; -0.117) 0.291 (0.230; 0.348) -0.851 (-0.872; -0.830) 0.187 (0.094; 0.287)

M1 SCS CAS RCT a30

SCS 0.021 (0.005; 0.042) 0.059 (-0.342; 0.438) 0.081 (-0.457; 0.599) -0.090 (-0.570; 0.410)

CAS 0.040 (-0.019; 0.100) 0.141 (0.083; 0.205) -0.155 (-0.466; 0.162) 0.474 (0.226; 0.716)

RCT 0.152 (0.095; 0.208) -0.125 (-0.181; -0.069) 0.163 (0.095; 0.236) -0.933 (-0.974; -0.885)

a30 -0.158 (-0.216; -0.106) 0.494 (0.451; 0.537) -0.580 (-0.610; -0.548) 0.171 (0.102; 0.250)

M2 SCS CAS RCT a30

SCS 0.025 (0.007; 0.049) -0.180 (-0.599; 0.277) -0.031 (-0.532; 0.497) -0.149 (-0.669; 0.348)

CAS 0.021 (-0.039; 0.081) 0.144 (0.082; 0.217) -0.241 (-0.568; 0.096) 0.481 (0.205; 0.726)

RCT 0.152 (0.097; 0.207) -0.048 (-0.100; 0.002) 0.116 (0.058; 0.179) -0.911 (-0.978; -0.830)

a30 -0.151 (-0.208; -0.096) 0.211 (0.161; 0.259) -0.841 (-0.856; -0.826) 0.139 (0.072; 0.219)

M3 SCS CAS RCT a30

SCS 0.029 (0.007; 0.056) 0.050 (-0.330; 0.437) -0.001 (-0.505; 0.495) -0.080 (-0.556; 0.382)

CAS 0.035 (-0.021; 0.095) 0.143 (0.083; 0.208) -0.162 (-0.487; 0.150) 0.572 (0.345; 0.784)

RCT 0.147 (0.094; 0.204) -0.021 (-0.070; -0.027) 0.112 (0.055; 0.172) -0.883 (-0.953; -0.804)

a30 -0.163 (-0.219; -0.109) 0.463 (0.421; 0.502) -0.804 (-0.821; -0.787) 0.142 (0.077; 0.214)

1Estimates are the means (lower and upper bound of the 95% HPD interval) of the marginal posterior distributions.. Models differ in the structural coefficients
considered: M0 is the standard multiple trait model; in M1 are considered the causal effects of both SCS and CAS on RCT and a30; in M2 is considered the causal
effects of RCT on a30; in M3 the causal effects of SCS, CAS and RCT on a30 are considered.
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lower RCT and greater a30), although the traits used and
the strength of the relationship varied across studies.
Reviewing the effects of SCS on cheese process and
quality, Le Marechal et al. [14] found that, in most of
the studies, a high SCS was associated with extended
rennet clotting time and lower curd firmness, and Mazal
et al. [41] showed that curd firmness of milk decreased
as SCS decreased from ~ 800 000 to 170 000 cells per
mL). Politis and Ng-Kwai-Hang [13] reported a regres-
sion coefficient of a30 on CAS of 12.92, which is very
close to the value found here (12.845) although the
methodologies used differ and the required parametric
interpretation does not allow straightforward compari-
sons. However, in a study conducted by Grandison and
Ford [12], a correlation of 0.807 was estimated between
SCC and coagulum strength.

Impact of causal effects on curd firmness
Table 4 shows the genetic and phenotypic variances and
the estimated heritabilities, for a30 when causal effect(s)
between phenotypes are not accounted for (i.e., exclud-
ing random effects mediated by other traits). These
parameters express the dispersion of random effects that
affect a30 directly, i.e., not mediated by other phenotypic
traits according to each SEM fitted. Here, the genetic
variance and heritability that only account for direct ef-
fects (i.e., under a scenario in which the other traits were
physically maintained at a constant value) can be com-
pared with the standard, overall genetic variance and
heritability estimated from a classic MTM. Sire additive
genetic variance decreased as the number of traits
considered to have a causal effect on a30 increased i.e. to
3.829 with the baseline MTM M0 model and to 3.135
(instead of the initial 18,1% variance) with model M1 in
which both causal effects of SCS and CAS were taken
into account, strongly decreased to 0.536 with model
M2 (-86.0% of the variance with M0) due to the sole
effect of RCT, and finally decreased to 0.128 with model
M3, for which 96.7% of the overall sire additive genetic
variance inferred from model M0 was absorbed by the
causal effects of SCS, CAS or RCT. A similar trend was
observed for the phenotypic variance, which decreased

from 81.998 with M0 to 70.192 with M1 (-14.4%),
22.108 with M2 (-73.1%) and to 11.902 with M3
(-85.5%). It seems that most of the variance of a30 was
assigned to a path mediated by RCT, which reflects that
curd firmness depends on when coagulation starts dur-
ing the test. If the starting time of the coagulation was
hypothetically set at the same value for all milk samples
through external interventions (scenario under model
M2), only 26.9% of the total observed variability remains
for a30. The decrease in sire additive genetic variance
was larger than phenotypic variance, which resulted in a
decreased heritability for a30 from 0.187 with model M0,
to 0.179 with M1, 0.097 with M2 and 0.043 with M3.

Causal relationships between somatic cell score, casein
percentage and milk coagulation properties
Our results suggest that even under a hypothetical sce-
nario in which SCS and CAS are maintained at constant
values by external intervention and their influence on
variability is nullified, the firming process is expected to
vary, with part of the variability being attributable to the
additive genetic component. In an experimental scenario
in which CAS and SCS are standardized across samples,
we would still find some additive genetic variation in
RCT and a30. However, the causal pattern appears to
differ between RCT and a30.
For RCT, both direct sire additive genetic and pheno-

typic variances obtained with model M1 were essentially
equal to those obtained with the MTM scenario (results
reported in Table S2 [See Additional file 1: Table S2]),
which is what would be expected if variation in RCT
was weakly mediated by traditional milk quality parame-
ters. In fact, RCT showed low phenotypic correlations
with SCS and CAS, which was translated as weak in-
ferred causal effects, especially from CAS. Weak statis-
tical dependences generally suggest the absence of
strong causal effects.
Curd firmness can be considered as the most pertinent

coagulation measure that can account for cheese yield
under certain processing conditions [7]. Assuming model
M1, 18.1% of the additive genetic variance and 14.4% of
the phenotypic variance can be explained by causal effects

Table 4 Estimates1 of variance components for a30 when influence of causal effects is removed
σ2s Δσ2s (%) σ2y Δσ2y (%) h2

M0 3.829 (1.964; 5.999) - 81.998 (73.390; 91.287) - 0.187 (0.094; 0.287)

M1 3.135 (1.774; 4.528) -18.1 70.192 (65.051; 75.771) -14.4 0.179 (0.107; 0.259)

M2 0.536 (0.219; 0.895) -86.0 22.108 (20.453; 23.780) -73.1 0.097 (0.040; 0.160)

M3 0.128 (0.044; 0.212) -96.7 11.902 (11.324; 12.488) -85.5 0.043 (0.016; 0.073)

Parameters reported are sire additive genetic variance (σ2s) and phenotypic variance2 (σ2y), and relative losses (Δσ2s and Δσ2y, respectively) from the baseline
multiple trait model (M0) for the models3 considered.
1Estimates are the means (lower and upper bound of the 95% HPD interval) of the marginal posterior distributions; 2the phenotypic variance is considered as sum
of the sire additive genetic, cow permanent environmental, herd and residual components; 3the models differ in the causal effects considered: M0 is the standard
multiple trait model; in M1 are considered the causal effects of both SCS and CAS on RCT and a30; in M2 is considered the causal effects of RCT on a30; in M3 the
causal effects of SCS, CAS and RCT on a30 are considered.
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of SCS and CAS, which leaves a large proportion of the
variation explained by other sources. The moderate
correlations between a30 and CAS inferred with MTM (an
observed phenotypic correlation of 0.346 (Table 1) and a
genetic correlation of 0.374 (Table 2)) can be considered
to result from a causal effect rather than from a common
source of variation i.e., the difference in variability for a30
between real and causality-free scenarios was noticeable
for all variance components but relatively larger for the
additive genetic variance. More evidence is provided by
the fact that the square of the phenotypic and genetic cor-
relations between a30 and CAS is close to the drop in vari-
ance for a30 under model M2 (Table 4). This scenario
suggests that the overall genetic association, which is
observed between CAS and a30 with MTM, is mostly due
to a phenotypic causal effect of the former on the latter,
rather than a pleiotropic effect on both traits directly.
This hypothesis is supported by the null values esti-
mated for genetic covariances under model M1 [See
Additional file 1: Table S1].
Here, we found causal dependencies between RCT and

a30. Our results confirm that curd firmness is intrinsic-
ally connected with RTC and depends causally on it
[10], which suggests that it virtually cannot vary when
the latter is held constant. In this study, model M2
accounted for this dependency as an effect of RCT on
a30. This type of model makes it possible to investigate
how the system would react if the samples were physic-
ally set to have the same coagulation time, i.e. removing
variability due to the effect of starting coagulation time.
Variance components and heritabilities for scenarios that
involve such interventions can be inferred from informa-
tion provided by Λ, G, P, H and R pertaining to model
M2 before transformation to the standard MTM, and
are in Table 4. It should be noted that the heritability of
a30 (0.097) is low, but non-null, and the posterior mean
(95% HDP intervals) of its genetic covariance with CAS
is 0.030 (0.011; 0.052), similar to the corresponding gen-
etic covariance of 0.052 (0.001; 0.105) obtained with
model M0 [See Additional file 1: Table S1]. These results
indicate that the association between the genetic effect
of CAS and the genetic effect of a30 that is not mediated
by RCT is still present. Thus, under model M2, curd
firmness can be considered as a trait by itself and should
not be ignored in selection indices, despite its low herit-
ability (0.097), which will constrain genetic progress.
The almost complete loss of variance for a30 with

model M3 suggests that the causal effects of SCS, CAS
and RCT absorb a large part of the phenotypic variation
of a30. Subsequently, independent sources of environ-
mental variation are scarce and direct additive genetic
variance is negligible. Under the causal assumptions ap-
plied here, we show that the observed genetic associa-
tions between a30 and the other traits are due to

phenotypic causal effects rather than to common
sources of genetic variation, i.e. genes with pleiotropic
effects. Under these circumstances, the importance of
a30 in selection indices should be downplayed if SCS,
CAS and RCT are already taken into account.

Conclusions
This study inferred causal relationships between two
traditional milk quality measures (somatic cell score and
casein percentage) and milk coagulation properties
(rennet coagulation time and curd firmness). Results
from this study suggest that the additive genetic variance
of milk coagulation properties does not depend on traits
such as somatic cell score or casein percentage. If selec-
tion is performed on these traits, coagulation properties
will be improved only indirectly and to a small extent.
This means that selection for milk coagulation proper-
ties should be performed on their direct measures, and
cannot rely entirely on correlated traits since external in-
terventions on the correlated traits may break down the
causal path. In addition, including both rennet coagula-
tion time and curd firmness in genetic evaluations
appears redundant, considering that the latter depends
largely on the former. If rennet coagulation time is the
only selection objective, specific models that include
right-censoring would probably better suit this purpose,
because 5 to 10% samples of milk do not start coagula-
tion within the first 30 min after rennet addition. Other-
wise, it is necessary to demonstrate that curd firmness
can have an impact on cheese yield and quality of
products even if coagulation time is physically set to a
constant value. This trait could represent an additional
selection objective, but further research is needed.

Additional file

Additional file 1: Table S1. Estimates1 of co-variance components for
sire additive genetic effect, cow permanent environmental effect, herd
effect and residual as estimated with different models2. 1Estimates are the
means (lower and upper bound of the 95% HPD interval) of the marginal
posterior distributions.2 The models differ in the structural coefficients
considered: M0 is the standard multiple trait model; in M1 are considered
the causal effects of both SCS and CAS on RCT and a30; in M2 is considered
the causal effects of RCT on a30; in M3 the causal effects of SCS, CAS and
RCT on a30 are considered.
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