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Abstract. Internet of Robotic Things paradigm offers a concrete support to daily 

life. The pervasiveness of smart things, together with advances in cloud robotics, 
can help the smart systems to perceive and collect more information about the 

users and the environment. Often citizens have experienced “one-size-fits-all” 

approach, since the delivered service was not personalized, therefore resulting far 

from user’s expectations. Hence, future smart agents, like robots, should produce 

personalized behaviours based on user emotions and moods in order to be more 

integrated into ordinary activities. In this work, we investigated the performances 

with unsupervised and supervised approaches to recognize three different moods 

elicited during a social interaction by means of a wearable system capable of 

measuring the Electrocardiogram, the ElectroDermal Activity and the 
Electroencephalographic signals. Particularly, the classification problem was 

analysed using three unsupervised (K-Mean, Self-Organizing Map and 

Hierarchical Clustering) and three supervised methods (Support Vector Machine, 
Decision Tree and k-nearest neighbour). The supervised algorithms reached an 

accuracy of 0.86 in the best case. The outcomes show that even in an unsupervised 

context the system is able to recognize the mood, reaching an accuracy equal to 
0.76 in the best case. 

Keywords. Mood Recognition, Wearable Physiological Sensors, Unsupervised 

Machine Learning 

1. Introduction 

Recently, literature findings [1] have demonstrated that service robotics and 

Information and Communication Technology (ICT) can represent a valid support for 

population. The integration of Robotics, Internet of Things and Artificial Intelligence, 

i.e. the “Internet of Robotic Things”, enables the possibility to design and develop new 

frontiers in human-robot interaction and, more in general, in human-system interaction 

[2]. Unfortunately, in most of the cases end-users are left with a “one-size-fits-all” 

approach, which often leads to a frustrating and overall negative experience for the user 

himself because of the inadequacy of these devices, not specifically designed for such 

applications. Therefore, to exploit contemporary psychological theories of health-

related behaviour changes and users-adaptation properly, a new more specific approach 
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design is needed.   

According to literature evidences [3], emotions affect decisional processes in 

humans beings. Consequently, it is important for intelligent machines to embed 

emotion modelling to enhance and improve human-machine interaction.  

Recently researches have been conducted in the field of emotion recognition [4]. 

Latest advancements achieved in this field are based on algorithms capable to discern 

among different types of emotions by inspecting different sensing modalities, e.g. 

vision or physiological activity. However, most of these works were not conceived for 

an application in daily-life situations, as they are mainly focused on the detection of 

costumers’ satisfaction [5], or to investigate the interaction with children affected by 

autism [6]. In order to exploit emotion recognition for public utility service is  

fundamental to investigate measurement methodologies within different scenarios [7] 

in which emotions take place.  

2. Related Work 

The most famous theory regarding the representation of emotion was proposed by 

Ekman and Friesen [8]. Every emotive expression can be classified into one of six main 

categories: anger, disgust, fear, happiness, sadness, and surprise, plus a neutral one. 

Later, he added other emotional states (fun, contempt, contentment, embarrassment, 

excitement, guilt, pride, relief, satisfaction, pleasure, shame), called secondary 

emotions. The other school of thought is related to Russell’s theory [9]. He asserted 

that emotions can be retrieved in empirical sections of a plane of two main coordinates: 

valence, which gives positive or negative connotation to the emotional state, and 

arousal, which measures the intensity of the feeling. However, the use of categorical 

emotions in the classification process is under revision since  such approach has several 

limitations. It can create mistakes in interactional cases in which very different features 

represent the same emotion [10].  

Most affective computing applications primarily use vision [4] as informative channel. 

Detection of facial expressions, in fact, is the most natural way to perceive emotions of 

people. However, it has recently become evident that the typical use of vision in 

affective computing applications may not be as feasible as in social robotics. In fact, 

the standard procedure to acquire information through vision is to make a person sit in 

front of a camera with properly placed lights [11]. In a real scenario, the person for 

most of the interaction period likely would not be standing in front of the robot at a 

fixed distance. Therefore, emotion perception must be achieved by exploiting different 

informative channels not directly controlled by humans, like physiological parameters. 

Many applications of affective computing have employed these signals (See Table 1). 

Nardelli et al. [12] used electrocardiogram (ECG) signals to classify emotions in 

subjects by means of auditory stimuli. Rattanyu et al. [13] used the same modality with 

the declared intent to subsequently embed this process into service robots. Khezri et al. 

[14] performed a detailed analysis by examining EEG, electrooculography (EOG), 

electromyography (EMG), blood volume pressure (BVP), galvanic skin response 

(GSR), and heart rate variability (HRV) simultaneously in subjects . Koelstra and 

Patras [11] included visual features together with EEG recordings to achieve better 

classification accuracy. In Henriques et al. [15] measurements of electrodermal activity 

(EDA) were performed within human-robot interaction scenarios  



Table 1 In the table the presented work (Fiorini et al.) is compared to the related work about emotion/mood 

induction techniques (MIP), information channels (EEG, GSR, ECG/BVP, Facial Expression (FE) and Mood 

Self-Assessment Evaluation (ESE)) and usability of the proposed system in real life scenarios (CO). Our 

work aims to be innovative through the design of a social interaction (SI) stimulation and the integration of 

different information channels maintaining a high level of usability and user comfort during daily life 

activities. 

According to literature [4], different mood induction procedures (MIP), inherited 

from affective computing, can be successfully used to induce  emotions in human 

subjects. In most of these cases subjects are asked to sit in front of a computer (PC) 

[16] and watch video clips [17] or images from International Affective Picture System 

(IAPS) dataset [18], or listen to music [12]. However, these experiments result unfit for 

social robotics not suiting the ecology of realistic situation since the social interaction, 

mainly in the form of a dyadic interaction [19], is not considered. 

The proposed work is oriented to recognize, by using a wireless sensor network, 

the user's emotional state, better said mood, during a MIP involving an active social 

interaction (SI) as a vehicle for mood induction (See the comparison with similar work 

reported in Table 1). The first aim of this work is to preliminary investigate how to 

infer people’s mood during social interactions by means of a wearable sensors system 

able to measure physiological parameters. Particularly, in this work, three emotional 

states were assessed: positive, negative and relaxed connotations of an experienced 

situation, without considering a particular emotional model. Statistical analysis were 

conducted to investigate which set of physiological features are able to distinguish 

among the moods. Moreover, this work aims also to investigate the use of unsupervised 

machine learning algorithms to recognize the selected moods. Unsupervised machine 

learning algorithms, in fact, do not require labelled data and can therefore be more 

adaptable to real applications of emotion recognition. Particularly, we analyse the 

performances of three unsupervised machine learning algorithms comparing them with 

three supervised ones. 

 MIP Informative channel  

Ref Video Picture Sound PC SI EEG GSR 
ECG 

BVP 
FE ESE CO 

[12]   X     X   X 

[13]   X      X   X 

[20] X      X X   X 

[11] X  X   X   X   

[15]     X  X     

[16]    X      X  

[17] X  X   X      

Fiorini 

et al. 
    X X X X  X X 



3. Material and Methods 

In order to achieve all the stated aims of this study, a structured methodology was 

applied. The first part of this section describes the wearable system and the data 

acquisition, whereas the second part is related to the data analysis. 

3.1. Instruments 

Three commercial wearable sensor devices were selected to measure physiological 

response to the stimuli. The reasonable trade-off between measure accuracy and 

unobtrusiveness led to the selection of Zephyr BioHarness™3 (Zephyr, Maryland, 

USA) Shimmer GSR Module (Shimmer, Ireland)and MindWave EEG headset 

(Neurosky, California USA). Zephyr BioHarness is a Bluetooth chest belt capable of 

monitoring cardiac activity by recording the electrocardiogram (ECG) signal so as to 

obtain the Heart Rate and the R-R Intervals. The ECG signal is sampled at 250 Hz. 

Inter-Beat-Interval data provided by the device has been used for data analysis and 

features extraction. The Shimmer GSR Module is a small-size, lightweight wearable 

sensor that streams one channel data related to ElectroDermal Activity (EDA) at 

sampling rate of 51.2 Hz. The Shimmer module is composed by two special finger 

electrodes and a main unit that streams data related to the galvanic skin response via 

Bluetooth connection. The MindWave headset is a Bluetooth device able to capture 

single frontal lobe channel EEG raw data at a sample rate of 512 Hz. Furthermore, the 

headset provided the indexes of attention and meditation of the user, related to the 

frequency power spectrum of the acquired signal, provided with a rate of 1 Hz. 

3.2. Experimental Protocol 

The proposed experimental protocol had three main different phases designed to put 

subjects respectively in neutral (baseline), relaxed and elicited (positive or negative) 

mood through social interaction. At the end of elicited phase a self-assessment survey 

of the felt mood was administered. Protocol was carried out by an engineer and a 

psychologist. The psychologist administrated all the phases with skilled social 

interaction attitudes. The engineer supervised from a technical point of view, 

particularly on the signal acquisition quality. In the following paragraphs, the phases 

are described in details. 

 

Figure 1. Experimental protocol phases. 

 

Hospitality and sensors wearing - At the beginning, the experimenters gave to 

participant some explanation about what he/she was going to do, without revealing the 

final goal of the test, thus  maintaining the user’s unawareness until the very end of the 



experiment [7]. The subject was asked to sign an informed consent form. After this 

brief introduction, the subject was asked to wear the set of sensors according to the 

instructions provided by the experimenters.  

Baseline phase  After the preliminary hospitality phase, the subject was asked to rest on 

a chair in a room for 5 minutes in absence of any sonorous stimulus.  

Relax phase - The experimenters asked the subject to abandon himself in a state of 

relaxation. For the next 5 minutes the subject remained in a relaxing situation avoiding 

action or interaction with other object or people. 

Elicited phase - It is impossible to administer sequentially both the positive and the 

negative test to the same subject because the mood achieved through the first 

interaction could affect the subject's mood during the second one. For this reason, only 

one of the two conditions has been assigned randomly to each subject, maintaining a 

balance in terms of percentage between the subjects excited with negative or positive 

mood induction. Below the different induction strategies used in this phase of the 

protocol are described: 

Positive mood induction: This condition aimed at raising a positive experience in 

the participants. In this case, the psychologist was immediately very affable with 

the subject. He explained the tasks rules to the subject: he must answer 55 questions 

selecting one of the 4 possible answers, among which just one was correct. The 

questions provided for this particular condition had been prepared so as to result 

gratifying for the subject regardless him being able to answer or not, making him 

laugh and without letting him feeling ignorant in case of wrong given answer. There 

were no time restrictions for the response. Moreover, the experimenters had a kind 

attitude towards the subject. They never made him know whether a given answer 

was wrong or not, and each answer was followed by implicit signs of appreciation, 

like nodding. Furthermore, 5 specific interventions, set to be triggered at fixed 

moments of the protocol, were used to reinforce the administered condition: “keep 

going, you got a lot of correct answer”, “very well, you are doing great”, “you hit 

several of them”, “Thank goodness there are not prizes which may be won, 

otherwise you would have won that for sure!”, “I hope she/he does not bust our 

results”. 

Negative mood induction: This condition was designed to raise a negative mood 

experience in the subject. The psychologist entered in the setting during the 

relaxation phase. He sat in front of the participant carelessly and without 

introducing himself. As soon as the relax acquisition finished, he unkindly 

explained to the subject that he was about to undergo a test in which each question 

had 4 possible answers, among which just one was correct. He required the 

participant to answer in less time as possible and to stay very focused, as questions 

and options could be repeated only once. 55 questions regarding general 

knowledge were purposely prepared by the experimenters , in such a way to induce 

the subject to feel ignorant in case of wrong answer. During the task execution 

both experimenters staged an unfair approach towards the subject. Particularly, 

they overly underlined the wrong answers. Each answer was followed by implicit 

signs of consternation, like head shake of disapproval. Moreover, along the 

procedure, there were 5 scripted interventions of experimenters planned at fixed 

moments of the protocol to reinforce the administered condition: “you should try 



harder, your score is not good”, “sit up straight, or the recording will be useless”, 

“are we recording? Because here is a mess”, “if he/she keep going like this it is 

only a waste of time”, “we can stop now, it is totally useless”. 

Mood self-assessment and Explanation - At the end of the elicited phase the Self-

Assessment Manikin (SAM) questionnaire was provided to the subject [21]. The SAM 

is a picture-oriented instrument containing images for each of the three affective 

dimensions (pleasure, arousal and dominance). Such images were hence given a score 

by the participant in order to describe how he felt during the test in a quantitative 

manner. After that, the real aim of the experiment was revealed to the subject, 

explaining the importance of unawareness of the real condition in this type of emotion 

elicitation, and the subject is allowed to remove wearable sensors from himself.  

Afterwards, the subject was asked to fill the Beck Depression Inventory [22] 

and the Maudsley Obsessive Compulsive Questionnaire [23] to assess the presence of 

depression and obsessive-compulsive behaviour in subjects. In fact, these are two 

mental diseases that significantly alter the self-perception of emotions [24]–[27] and 

their presence would render the subject ineligible for the purposes of the test.   

Then, the experimenter asks the subject to indicate as accurately as possible the 

moment he felt the emotion he pointed out by filling the SAM. Thus, experimenters 

check if  these moments are close to any of one of the 5 reinforcements used. Such 

information is important for the subsequent analysis (see Sect. 4.1.2). Finally, in the 

case negative condition was administered, the experimenters apologized for the 

pretended rude attitude. 

 

Figure 2: (a) Experimental Set-up (b) a participant during the positive exited phase (c) a participant during 

the negative exited phase 

3.3. Participants 

Twenty-one voluntary healthy young subjects (9 male, 12 female) with a mean age 

of 24.0 years (standard deviation: 3.7, range: 20-35) participated on purpose in this 

study. Among tested subjects, 2 were occasional smokers whilst the remaining ones 

were no smokers. Participants completed the experimental session at the Scuola 

Superiore Sant’Anna (Pisa, Italy). Written informed consent was obtained from all the 

participants prior entering into the study. Only the results obtained in 17 out of 21 

subjects resulted eligible for the purposes of the study. In fact, two subject’s results 

were discarded since no significant emotion arousal emerged from the SAM test, one 

experienced BioHarness failure while recording, one understood the purposes of the 

test prior its administration. None of the subject resulted depressed or affected by 

obsessive-compulsive behavior. 



4. Data Analysis 

The physiological signals acquired during the experimental protocol were analyzed 

using Matlab 2016 (MathWorks, Massachusetts USA). The whole dataset, for each 

subject, was segmented in three distinct phases: baseline (5 minutes), relax (5 minutes) 

and elicitation (15 minutes).  

The classification process between different emotional states, such as positive, 

negative and relaxed, in the prospective of a social robotics application should occur in 

a much smaller time than the entire duration of the experimental session. Therefore, the 

features extraction strategy discussed below was applied on signals samples belonging 

to 180s-long windows. The choosing of 180s as windows time allows to catch 

significant variations from the GSR signal in response to the external stimuli. The 

chosen time periods are affordable for the final purpose of this work, considering that  

emotional state require a certain physiological latency time to manifest. Moreover, the 

selected time period is one of most used ranges in physiological data analysis for 

emotion recognition [28]. A 50s-long overlapping of adjacent windows was 

implemented to correctly handle the transitions. Hence, this emotion recognition 

process would enable the system to recognize change in user’s emotions each 130s. 

Two, two and six time windows were obtained from the baseline, relaxed and the 

exited phases for each subject, respectively. A pre-processing strategy and a features 

extraction algorithm were applied on each new dataset that included signals related to 

cardiac, electrodermal and brain activity. Each dataset window was now represented by 

a 42 features vector: 16 from HRV, 16 from GSR and 10 from brain activity. Their 

extraction and description is based on [29] and it is discussed below. 

4.1.1. Signal processing and features extraction 

The main informative channel in the field of emotion recognition related to the cardiac 

activity is the R-to-R signals. R-to-R samples were negatively affected by the presence 

of ectopic components of cardiac activity. Ectopic events are variations of the cardiac 

activity due to arrhythmia or fibrillation. The presence of ectopic beats gives 

deceivable results in HR analysis so they must be removed. A R-to-R sample was 

considered an ectopic interval if its percentage relative difference from the previous 

sample was  ̧in absolute value, greater than 20% [30]. In this case, the current value is 

replaced with the average of the two antecedent and two following ones. After ectopy 

removal, 6 time-domain features were extracted for each time window (Table 2). 

Table 2 Time-domain features from R-to-R values 

In order to extract frequency-domain features, the signal is  firstly resampled at 4 

Hz [31] and, secondly, smoothed through a quadratic fitting characterised by a sliding 

window with a width equal to 10% of samples amount. This fitting was subtracted from 

the signal, the latter was added with its mean beforehand. The obtained sequence was 

Feature name Description 

RR mean Mean of R-to-R inter-beat intervals belonging to the same time window 
SDNN Standard deviation of normal RR intervals (also said as NN intervals) 

HR mean Mean of heart rate 

SD mean Heart rate standard deviation 

RMSSD Square root of the mean of the squared differences between adjacent NN intervals 

pNN50 Percentage of differences between adjacent NN intervals exceeding 50 ms 



interpolated through a cubic spline interpolation and deprived of its mean value. Finally, 

after having been multiplied by a Hamming window of the same length, power spectral 

density (PSD) of the signal, with resolution 1/2048 Hz, was estimated through Burg 

method of 16-order [32]. A total of 10 frequency-domain features were extracted after 

PSD estimation (Table 3). 

Table 3 Frequency domain features from R to R values 

Table 4 GSR extracted features. 

 

The ShimmerTM sensor provides as output galvanic resistance that has been 

converted into galvanic skin conductance (SC). The SC is characterised by a slow 

varying tonic activity and a relatively fast varying phasic activity, which is 

characterised by local peaks, so-called startles, lasting between 1 and 5 seconds [33]. 

Thus, the GSR is obtained by evaluating the features of these peaks; their frequency 

content is entirely located within 1 Hz [34]. On the contrary, the tonic phase is due to 

sweating activities, taking place over periods of time longer than 5 seconds, not related 

to the phasic component. The Shimmer frequency sampling is set to 51.2 Hz, and thus, 

the signal was filtered through a 4th-order Butterworth low-pass filter, with a cut-off 

frequency of 2 Hz. Thus,the tonic component was extracted through average process by 

means of a 5 seconds-long moving window. By subtracting tonic level from the filtered 

Feature name Description 

VLF peak Frequency peak of heart activity VLF (0-0.04 Hz) 

VLF power PSD area in VLF 

%VLF Percentage ratio between PSD area in VLF and total one 
LF peak Frequency peak of LF (0.04-0.15 Hz) 

LF power PSD area in LF  

%LF Percentage ratio between PSD area in LF and total one  

HF peak Frequency peak of HF (0.15-0.40 Hz) 

HF power PSD area in HF 

%HF Percentage ratio between PSD area in HF and total one 

LF/HF Ratio between LF and HF powers 

Feature name Description 

# Startle Number of detected startles 

Amplitude mean Mean value of startles peak amplitude (µS) 

Amplitude std Standard deviation of startles peak amplitude (µS) 

Sum rise time  Sum of all detected startles rise time duration within the phasic signal portion 

analysed (s) 

Sum fall time Sum of all detected startles fall time duration within the phasic signal portion 
analysed (s) 

Rise rate mean Mean value of a startle rise time (s) 

Rise rate std Standard deviation of startle rise time (s) 

Decay rate mean Mean of a startle fall time (s) 

Decay rate std Standard deviation of a startle fall time (s) 

Phasic value mean Mean value of the phasic signal (µS) 

Phasic value std Standard deviation of the phasic signal (µS) 

Startle time mean Mean value of a startle duration (s) 

Startle time std  Standard deviation of a startle duration (s) 

Startle RMS mean Mean Value of the Root Mean Square of the curve identifying a startle (µS) 

Startle RMS std Standard deviation of the Root Mean Square of the curve identifying a startle (µS) 

Startle RMS overall Value of the Root Mean Square of the whole phasic signal portion analysed (µS) 



conductance signal, phasic response was obtained. Startles features are therefore 

extracted and the parameters reported in Table 4 are obtained. 

Regarding features from brain activity, they are provided by the Mindwave 

itself. From this sensor, 10 features related to the PSD of the recorded brain activity 

were extracted (Table 5). Regarding parameters named “Attention” and “Meditation”, 

they are calculated by the device itself and the rationale behind them is protected by 

enterprise copyright. They both range from 0 to 100. 

 

Table 5: Brain activity features extracted 

4.1.2. Label and Feature Reduction 

For each subject a baseline value was calculated by computing the mean values from 

the features correspondent to the baseline phase. Then, the remained feature sets 

(relaxed and elicited) have been scaled as a percent variation compared to the baseline 

value in order to eliminate the interpersonal variability of physiological signals, thus to 

normalize the dataset.  

It was important to understand which instances of the elicited phase could be used 

as carrier of reliable information about emotional states of a subject. Indeed, the 

minimal condition for this to be true was that the subject effectively had felt an emotion, 

better said a mood [35]. For each subject, the instances between the end of the relaxed 

phase and the moment in which subjects declared to have felt the emotion (see Sect. 

3.2) were discarded. Therefore, only the remaining instances of the elicited phase were 

maintained and used for further analysis, Then, the dataset was manually labelled. The 

selected instances coming from positive condition were labelled as “Positive”, while 

those ones from negative condition as “Negative”. Instead, the features vectors coming 

from relaxed phase were labelled as “Relaxed”.  

The normal distribution of the computed features was verified using the Shapiro-

Wilk test of normality. As all raw scores were not normally distributed, the non-

parametric Spearman (RHO) correlation coefficient between each feature was 

computed to keep in the analysis only the features with a coefficient greater than 0.85 

(absolute values) and p<0.05 in order to reduce the noise due to the redundancy of data 

[36]. Mann-Whitney test was then applied to understand which set of uncorrelated 

features could be more useful in distinguishing between positive and negative moods. 

Consequently, the test was applied comparing feature values labelled as “Positive” with 

feature values labelled as “Negative”. If the p was lower than 0.05, the specific feature 

was discarded from the analysis.  

First, the remaining features were normalized with Z-norm to avoid distortion and 

to have a zero mean and a unit standard deviation. Principal Component Analysis 

Feature name Description 

Alpha1 EEG signal power in frequency range 8-9 Hz 

Alpha2 EEG signal power in frequency range 10-12 Hz 

Beta1 EEG signal power in frequency range 13-17 Hz 

Beta2 EEG signal power in frequency range 18-30 Hz 

Delta EEG signal power in frequency range 1-3 Hz 

Gamma1 EEG signal power in frequency range 31-40 Hz 

Gamma2 EEG signal power in frequency range 41-50 Hz 

Theta EEG signal power in frequency range 4-7 Hz 

Attention  NeuroSky index for user’s level of mental “focus” or “concentration” 
Meditation NeuroSky index for user’s level of mental “calmness” and “relaxation” 



(PCA) and Sammon’s Map (SM) – applied sequentially – were used to identify how 

the subjects, in relation to the relaxed, positive and negative moods, would be grouped 

and consequently classified. As confirmed in [37] and [38], both approaches are 

efficiently applied to reduce the dimensionality of the dataset to a two-dimensional 

representation of data, which is more intuitive to understand, . As concern PCA, 

according to the Kaiser Rule [39], we consider only components with eigenvalues 

greater than 1. 

4.1.3. Supervised and Unsupervised classification 

The obtained dataset was then used to train supervised and unsupervised machine 

learning algorithms to compare the results. As concern the supervised method, a simple 

Decision Tree (DT) with a split criterion based on Gini's diversity index, Support 

Vector Machine (SVM) with linear kernel and fine k-nearest neighbour (k-NN) with 1 

neighbour based on Euclidian distance were applied. The performance of these 

algorithms was assessed with 5-cross-fold validation technique.  

Three unsupervised machine learning clustering techniques were used to group the 

instances into clusters. Particularly, in this work, the K-Mean (KM) algorithm based on 

Euclidian distance with three replicates to avoid local minima, Self-Organizing Map 

(SOM) with a hexagonal layer topology function and Hierarchical Clustering (HC) 

based on ward linkage were applied and compared. In particular, KM was applied 

considering the results obtained with the unsupervised and supervised machine learning 

algorithms were presented as a confusion matrix. Thus, the overall accuracy, F-measure, 

precision, and recall were computed to evaluate and compare the performance [40]. 

The Silhouette coefficient was used to study the separation distance between the 

resulting clusters. Silhouette coefficient value close to 1 highlights that the clusters are 

separated [41]. Additionally, the performance of the supervised analysis was used as a 

gold standard to compare the performance of the unsupervised approach. 

5. Results 

The aim of this work was to investigate with a wearable sensor system the relaxed 

status and two opposite moods evoked during a social interaction. At the end of the 

tests, participants were asked to compile a self-assessment questionnaire of the 

perceived mood. The results are shown in Table 6. The pleasure, as used in psychology, 

especially in discussing emotions, stands for the intrinsic attractiveness or averseness 

of an event, object, or situation. In this questionnaire, it ranges from -4 to 4 in the 

integer domain. The subjects expressed positive average value (3.15) during the 

positive stimulation and negative average value (-1.22) during the negative stimulation, 

which means that the proposed methodology is able to evoke in the subject the desired 

moods, even if the average dominance value is < 1 for both moods. Table 6 reports the 

average value, the standard deviations and the range of the SAM. 

According to the methodology described in the previous section, a total of 96 

instances were extracted from the acquired signals. Particularly, 34 instances are 

related to the relax phase, 35 are related to the positive mood and 27 to the negative 

mood. The final set of parameters was reduced with the Spearman correlation 

coefficient and the Mann-Whitney test from 42 to 12 features. The acquired signals 

contributed to the final dataset with the following features: HR mean, SDHR, LF 



power, %VLF, %HF from ECG, # startle, Rise time mean, RMS std from EDA and 

Beta2, Gamma2, Delta, Meditation from brain activity. According to Kaiser rule, the 

PCA reduced the dataset to 4 components, and SM finally reduce to 2D space. From a 

visual inspection, the three distinct groups were separated in the reduced feature space, 

as depicted in Figure 3. The results of the unsupervised analysis confirms the presence 

of three clusters with average silhouette values of 0.63, 0.62 and 0.60 for KM, SOM 

and HC respectively, which underline a quite good separation between the groups. 

Table 6. Results of SAM Questionnaires. 

 
 Valence Arousal Dominance 

Positive Mood 

Average 3,12 2,13 0,12 

SD 0,83 1,13 1,81 
Max 4 4 2 

Min 2 1 -2 

Negative Mood 

Average -1,22 0,78 0,89 
SD 1,64 1,64 1,90 

Max 0 (2*) 2 3 

Min -4 -3 -2 

*a participant declared to enjoy the tests. It is considered as outlier in this case. 

 

Figure 3. Data visualization in Sammon’s Map space. 

The three supervised techniques showed high results in terms of accuracy and F-

measure. In particular, as reported in Table 7 (referring to supervised algorithms), the 

best results were obtained with the k-NN with an accuracy of 0.86 and a F-measure of 

0.93. The DT algorithm showed a lower accuracy and F-measure (0.78 and 0.81 

respectively) with respect to SVM which achieved an accuracy value of 0.81 and an F-

measure of 0.81. The complete results of evaluation parameters are reported in Table 7. 

The three unsupervised algorithms show lower, still comparable results to the 

supervised ones, concerning accuracy and the F-measure. As regards precision and 

recall, the results are comparable for all the measures (average value equal to 0.80). 

Table 8 shows and compares the F-measure for all the machine learning used in this 

study in recognizing the three different moods. Particularly, the worst recognized status 

is the negative mood, which is often confused with relax status. It is worth underlying 

that, in terms of F-Measure, the KM and the SOM show higher results with respect to 

the DT and the SVM methods in recognizing the positive mood. 



Table 7. Performance of the supervised and unsupervised methods. 

 Accuracy F-Measure Precision Recall Specificity 

DT 0,78 0,81 0,78 0,79 0,88 

SVM 0,81 0,87 0,81 0,81 0,90 

k-NN 0,86 0,93 0,86 0,86 0,93 

KM 0,76 0,73 0,83 0,73 0,87 

SOM 0,72 0,80 0,80 0,80 0,89 

HC 0,65 0,54 0,67 0,61 0,78 

 

Table 8. F-measure results of the supervised and unsupervised approaches in recognizing the three states 

(relaxed, positive and negative). 

F-Measure Relaxed Positive Negative 

DT 0,81 0,73 0,81 

SVM 0,87 0,79 0,77 

k-NN 0,93 0,88 0,80 

KM 0,75 0,88 0,58 

SOM 0,72 0,86 0,46 

HC 0,70 0,80 0,13 

6. Discussion and Conclusion 

The aim of the current paper was to develop and investigate the use of physiological 

wearable sensor system for mood detection during a social interaction. The proposed 

analysis achieves high results for both machine learning approaches (complete results 

are reported in Table 7), showing that our wearable system is able to distinguish among 

the different moods quantitatively. Furthermore, the data acquired have led to 

satisfactory qualitatively results in correctly grouping the features (PCA and SM), thus 

this work can be considered a promising pilot study in which the feasibility of the 

system is demonstrated.  

The main innovation of this study consists in using a physiological wearable 

system, able to measure HRV, EDA and EEG, in order to obtain parameters  the 

variations of which are highly correlated with changes in different mental/physical 

conditions. Additionally, another important innovation is the use of a protocol which 

involves a social interaction to induce different mood in the subject. As depicted in 

Figure 3, the negative group (green stars) is more scattered respect to the other two 

groups, whereas the relax instances are the most grouped (red circles). This different 

distribution of the groups in the space can be explained by the inter- and intra- subject 

variability of the reaction to the stimuli during the same induction protocol, as 

confirmed also by the standard deviations of the pleasure value of the SAM 

questionnaires (see Table 6). Importantly, human beings could react differently to the 

same social/external stimuli. For instance, during the test, a subject (LD20) was 

stimulated with the negative condition, but during the self-assessment phase he 

declared he enjoy the questionnaires giving high scores in the SAM (valence=2). 

Indeed, his physiological parameters reveal a status more similar to the positive mood 

group as depicted in Figure 3. Moreover, another subject (BF16) was tested for the 

positive moods but he/she reported the lower SAM value for the valence among the 

overall cohort. This result is aligned to what captured and analysed by the sensor 

system.  Reasonably, the instances related to this subject are on the edge with the 



negative cohort (Figure 3). Although the data processing of this work was offline 

performed, some considerations about the concrete use in real situations, particularly 

with a real time approach, could be already discussed. It is worth to mention that SOM 

and KM algorithms show accuracy values > 0.70 comparable to the supervised 

methods. The unlabelled approach can help the recognition of different moods resulting 

hence suitable the exploitation of this system in the real world where data labelling is 

not always possible. Additionally, the window of 180s we chose is reasonably  

appropriate to distinguish among the moods.  

This work, however, presents some limitations. We analysed only three state, one 

relaxed and two stimulated (positive and negative); future work should investigate also 

more specific emotion or human moods. This is a preliminary study to investigate the 

possibility to use innovative protocol and informative channels to induce and to 

recognize moods. Further studies should investigate which informative channels are 

more appropriate in distinguishing moods, thus to balance the trade-off between 

accuracy and obtrusiveness. Another limitation is the number of participants. Future 

studies will be performed to increment the number of participants thus to reinforce the 

results.  
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