

FLORE Repository istituzionale dell'Università degli Studi di Firenze

A uniform management approach to optimize outcome in fetal growth restriction

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

Original Citation:

A uniform management approach to optimize outcome in fetal growth restriction / Seravalli, Viola; Baschat, Ahmet A. - In: OBSTETRICS AND GYNECOLOGY CLINICS OF NORTH AMERICA. - ISSN 0889-8545. - ELETTRONICO. - 42:(2015), pp. 275-288. [10.1016/j.ogc.2015.01.005]

Availability:

The webpage https://hdl.handle.net/2158/1092672 of the repository was last updated on 2018-03-13T22:57:54Z

Published version:

DOI: 10.1016/j.ogc.2015.01.005

Terms of use:

Open Access

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:

Conformità alle politiche dell'editore / Compliance to publisher's policies

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di copyright.

This version of the publication conforms to the publisher's copyright policies.

La data sopra indicata si riferisce all'ultimo aggiornamento della scheda del Repository FloRe - The abovementioned date refers to the last update of the record in the Institutional Repository FloRe

(Article begins on next page)

A Uniform Management Approach to Optimize Outcome in Fetal Growth Restriction

Viola Seravalli, мр., Ahmet A. Baschat, мр*

Q2 Q3

KEYWORDS

- Fetal growth restriction Fetal acidemia Fetal Doppler Umbilical artery
- Middle cerebral artery Biophysical profile score Neonatal outcome Fetal testing

KEY POINTS

- A uniform approach to diagnosis and management of fetal growth restriction (FGR) produces better outcomes, prevents unanticipated stillbirth, and allows appropriate timing of delivery.
- An estimated fetal weight less than the tempercentile in association with either an elevated umbilical artery Doppler index, a decreased middle cerebral artery Doppler index, or a decreased cerebroplacental ratio should be considered evidence of FGR. Early-onset and late-onset FGR represent 2 distinct clinical phenotypes of placental dysfunction.
- Integration of different testing modalities allows adjustment of monitoring intervals based on Doppler parameters and a more precise prediction of acid-base status based on biophysical variables.
- Antenatal surveillance of the growth-restricted fetus requires adjustment of monitoring intervals based on signs of disease acceleration, when delivery is not yet indicated.
- Thresholds for interventions are defined by the balance of fetal risks of continuation of pregnancy versus the neonatal risks that follow delivery and depend on gestational age.

INTRODUCTION Q6

The main challenges in the management of pregnancies complicated by fetal growth restriction (FGR) are accurate identification of the small fetus at risk for adverse outcome, prevention of unanticipated stillbirth, and appropriate timing of delivery. A

Authors declare no relationship with a commercial company that has a direct financial interest in the subject matter or materials discussed in the article or with a company making a competing product.

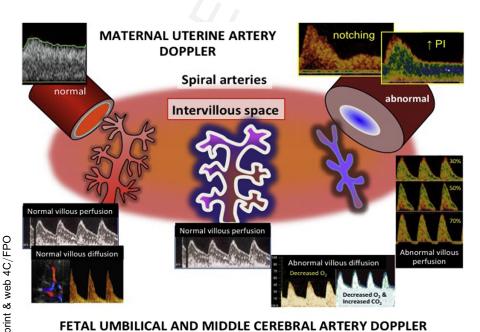
Department of Gynecology and Obstetrics, The Johns Hopkins Center for Fetal Therapy, The Johns Hopkins Hospital, 600 North Wolfe Street, Nelson 228, Baltimore, MD 21287, USA * Corresponding author.

E-mail addresses: aabaschat@hotmail.com; abascha1@jhmi.edu

Obstet Gynecol Clin N Am ■ (2015) ■-■ http://dx.doi.org/10.1016/j.ogc.2015.01.005

obgyn.theclinics.com

Q5


0889-8545/15/\$ - see front matter © 2015 Published by Elsevier Inc.

uniform management approach to diagnosis and management of FGR consistently produces better outcome than is reported in observational studies that rely on a range of diagnostic, surveillance, and delivery criteria. 1-5 Once the diagnosis of FGR has been made, surveillance tests need to be applied at appropriate intervals until the relative risks of delivery outweigh the benefits of ongoing monitoring. These factors are determined by the clinical phenotype of FGR across gestational ages.

CLINICAL PHENOTYPE OF FETAL GROWTH RESTRICTION IN RELATION TO GESTATIONAL AGE

FGR evolves from a preclinical phase to clinically apparent growth delay and may eventually lead to fetal deterioration before the spontaneous onset of labor. Growth delay due to decreased nutrient delivery affects liver size and therefore the abdominal circumference (AC) first, and then growth of the head and entire body.⁶ Abnormal placental perfusion in the maternal compartment results in increased blood flow resistance in the uterine artery flow-velocity waveform. Abnormal perfusion of the fetal villous vascular tree is associated with decreased umbilical artery (UA) end-diastolic velocity proportional to the degree of flow impairment.⁸ Abnormal oxygen diffusion across the villous membrane leading to lower fetal arterial Pagars ssociated with a decrease in middle cerebral artery (MCA) blood flow resistance, mereas decreased CO₂ clearance additionally increases the MCA peak systolic velocity (Fig. 1).¹⁰ The relative predominance of these mechanisms determines the clinical picture of FGR.^{11–16}

FGR that is established by the second trimester is associated with a greater degree of vascular abnormality in the maternal and fetal compartments of the placenta. In the mother, high-resistance uterine artery flow velocity waveforms and a 40% to 70% rate of associated pre-eclampsia are characteristic. In the fetal compartment, an elevation

FETAL UMBILICAL AND MIDDLE CEREBRAL ARTERY DOPPLER

Fig. 1. Clinical correlates of maternal and fetal aspects of placental function.

of the UA pulsatility index (PI) is typical. 11,12 In FGR that is not established until 31 to 34 weeks (late-onset FGR), villous diffusion and perfusion defects coexist in various proportions, 17-21 leading to cerebral or UA Doppler abnormalities that may be present independent of each other (Fig. 2).^{22–24} Because of this variable association between small fetal size and abnormal Doppler velocimetry, distinction between growth restriction and constitutional smallness can be challenging. Accordingly, management challenges in early-onset FGR revolve around prematurity and coexisting maternal hypertensive disease, whereas in late-onset disease, failure of diagnosis or surveillance leading to unanticipated stillbirth is the primary issue. 25,26

DIAGNOSIS OF FETAL GROWTH RESTRICTION

The diagnosis of fetal growth delay can be based on fetal biometry alone or by also taking umbilical or cerebral artery Doppler indices into consideration. An AC less than the tenth percentile has the highest sensitivity for the diagnosis of FGR, whereas a sonographically estimated fetal weight (SEFW) less than the tenth percentile has greater specificity. 11 Most national societies agree on the tenth percentile for the SEFW as a diagnostic cutoff for small for gestational age (SGA). The disadvantage of this cutoff is the inclusion of a variable number of normal constitutionally small fetuses that do not require surveillance. Using an SEFW less than the third percentile or a decreased AC growth rate is more likely to identify "true FGR," 27 but has the disadvantage that less severe forms of FGR at risk for deterioration are missed and therefore their risk for stillbirth remains. Combining an SEFW less than the tenth percentile with either an abnormal UA, MCA, or cerebroplacental ratio (CPR, defined as UA/MCA index), increases the identification of the small fetus at risk for adverse outcome. Although UA Doppler velocimetry is sufficient for the diagnosis of FGR before 32 weeks gestation, thereafter MCA Doppler is also required to represent the whole clinical spectrum found in early-onset and late-onset placental disease. 12,14,16,24 Because the CPR mathematically amplifies mild abnormalities in the umbilical and middle cerebral arteries, it is

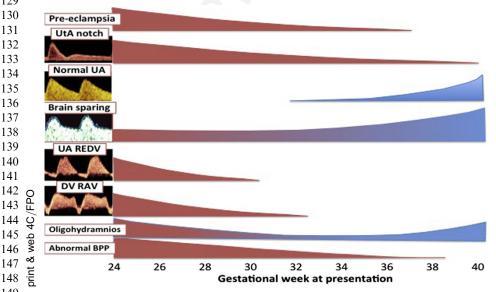


Fig. 2. Clinical signs of placental dysfunction and gestational age at presentation. BPP, biophysical profile; RAV, reversed a-wave velocity; UtA, uterine artery.

the most sensitive Doppler parameter, especially after 28 weeks of gestation, and its decrease should alert the clinician to the possibility of evolving brain sparing. Here, an SEFW less than the tenth percentile in association with either an elevated UA Doppler index, a decreased MCA Doppler index, or a decreased CPR should be considered evidence of FGR (Table 1). 11,12,14,16,24 The proportion of growth-restricted fetuses with normal UA blood-flow resistance but isolated MCA brain sparing is higher toward the late third trimester. Accordingly, MCA Doppler better identifies FGR after 34 weeks of gestation, when the predictive accuracy of CPR decreases. 12

ASSESSMENT OF THE DEGREE OF FETAL DETERIORATION

Fetal surveillance tests are applied to pregnancies with suspected FGR to estimate the risk for hypoxemia, prelabor acidemia or stillbirth, as well as the rate of clinical deterioration. The required accuracy of this assessment is highest at early gestational ages wherein prematurity-related risks are high and each additional day gained in utero can significantly increase chance of neonatal survival. An accurate estimation of pH is important to predict fetal compromise that precedes stillbirth and therefore critical to time delivery.

The association between the abnormalities in Doppler parameters and the deterioration of fetal acid-base status has been demonstrated in several studies, 28-31 predominantly in the preterm fetus. Abnormal umbilical flow patterns indicate an increased risk of hypoxemia and acidemia proportional to the severity of Doppler abnormality. Although Doppler findings in each of the examined vascular beds correlate with fetal acid-base status, there is a wide variation in fetal pH with abnormal results. Among Doppler parameters, the elevation of the precordial venous Doppler indices provides the best prediction of acidemia in fetuses with FGR.31,32 Therefore, fetal Doppler assessment that is based on the UA indices alone is no longer appropriate in early-onset FGR, and the incorporation of venous Doppler is necessary to assess the rate and degree of fetal compromise. In preterm growth-restricted fetuses, MCA Doppler study has limited accuracy to predict acidemia and adverse outcome and should not be used to time delivery. Beyond 34 weeks, the UA waveform may be normal, and therefore, the best predictor of fetal adaptation to hypoxemia is considered the MCA PI. However, studies on fetal brain circulation in late-onset FGR^{33,34} primarily evaluated the relationship of MCA Doppler with intrapartum fetal distress or neonatal acidosis rather than prelabor acid-base status. Accordingly, conclusions relating MCA Doppler to fetal pH are generally extrapolated.

Table 1 Implications of diagnostic cutoffs for management of fetal growth restriction				
Diagnostic Cutoff	Advantage	Disadvantage		
AC <10th percentile	Highest sensitivity for FGR	Lowest specificity for FGR		
SEFW <10th percentile	Acceptable sensitivity for FGR	Unnecessary monitoring of normal fetuses		
SEFW <3rd percentile	Greater specificity for FGR	Less severe FGR is missed		
SEFW <10th percentile & abnormal UA Doppler	Greatest specificity for FGR at risk for adverse outcome	Misses term FGR with normal UA Doppler		
SEFW <10th percentile with abnormal UA or MCA	Greatest specificity for FGR at risk for adverse outcome across all gestational ages	Requires interpretation of umbilical and cerebral Doppler studies		

The 5-component biophysical profile scoring (BPS) shows a reliable and reproducible relationship with the fetal pH, irrespective of gestational age. ^{35,36} An abnormal BPS of 4 or less is associated with a mean pH of less than 7.20 and a score of less than 2 has a sensitivity of 100% for acidemia. ³⁶ When the relationship between the various testing modalities and fetal acid-base status is compared, biophysical parameters show a closer relationship with the pH, whereas there is a wide variation in fetal pH with abnormal Doppler results. On the other hand, the BPS alone has limited utility in the prediction of longitudinal deterioration, ^{37,38} which is better assessed with multi-vessel Doppler studies.

Fetal heart rate is one of the 5 components of the BPS. A nonreactive cardiotocogram (CTG) has been correlated with fetal hypoxemia and acidemia, ^{39,40} but it is associated with a wide range of pH values, ³⁹ and as for the other components of the BPS, it does not anticipate the rate of deterioration. Computerized heart rate monitoring (cCTG) has been introduced to improve the interpretation of fetal heart rate traces, by determining quantitative parameters, such as the short-term variation, that cannot be visually assessed. In fetuses with intrauterine growth restriction, a short-term variation less than 3.5 ms appears the best predictor of an UA pH of less than 7.20. ⁴¹ However, cCTG as a stand-alone test in FGR offers limited accuracy, and it performs best when combined with venous Doppler or as a substitute for the traditional NST in the BPS. ⁴²

SELECTION OF MONITORING INTERVALS

The goal of fetal surveillance is to prevent stillbirth and irreversible fetal deterioration; this requires adjustment of monitoring intervals based on signs of disease acceleration, when delivery is not yet indicated.

With standardization of antenatal surveillance, a reduction in antenatal mortality might be achieved without worsening neonatal outcome.³ The optimal surveillance pattern and timing of delivery remain the objects of much debate and research. There is no general consensus between national guidelines on the appropriate frequency of testing, and they are based on expert opinion of key authors because there is no high-quality evidence to guide practice.

In the authors' opinion, the best approach consists of a longitudinal surveillance starting at 24 to 26 weeks with integrated fetal testing, including multivessel Doppler examination, fetal heart rate analysis, and assessment of fetal activity through BPS, because the combination of tests improves the prediction of acidemia and stillbirth compared with single tests. ^{37,42–44}

Monitoring interval choice depends on gestational age at onset and signs of deterioration at Doppler study. When new features indicating disease acceleration or fetal deterioration develop, monitoring frequency needs to be increased until the delivery threshold is reached. Because early-onset and late-onset FGR represent 2 distinct clinical phenotypes of placental dysfunction, they show different signs of disease progression. In early-onset FGR, fetal deterioration typically evolves from abnormal UA Doppler studies, to brain-sparing, abnormal venous Doppler parameters, abnormal computerized CTG, and finally, an abnormal 5-component BPS.^{38,45–52} The rate of progression is determined by the interval between diagnosis to loss of UA end-diastolic velocity^{49–51,53} and typically takes 4 to 6 weeks.⁵¹ Once forward velocities in the ductus venosus (DV) become absent or reversed, fetal survival of longer than 1 week is unlikely.⁵⁴ Late-onset FGRs are characterized by a slower progression (up to 9 weeks), with predominant cerebral or UA Doppler abnormalities. There are no evident Doppler changes in the precordial veins and brain sparing may be the

only observed Doppler sign of hypoxemia (see **Fig. 2**).^{16,55} Importantly, however, terminal deterioration resulting in stillbirth occurs more rapidly and unanticipated in term FGR.⁵⁶ Therefore, a closer surveillance is required after 34 weeks, and new onset of Doppler abnormalities at this age should raise consideration for delivery.

The observed progression of Doppler abnormalities should determine the interval of monitoring as follows, until the threshold for delivery is reached.

Early-onset fetal growth restriction

- Elevated UA Doppler flow PI (≥2 SDs greater than the mean for gestational age), no other abnormality: every 2 weeks Doppler, weekly BPS
- Low MCA or CPR: weekly Doppler + BPS
- UA absent end-diastolic velocity (AEDV): consider admission, 2 times per week Doppler + BPS
- UA reversed end-diastolic velocity (REDV), increased DV Doppler indices, and/or oligohydramnios (maximum vertical pocket of fluid <2 cm): admission, 3 times per week Doppler + BPS, daily CTG
- Absent/reversed DV a-wave: admission, daily Doppler + BPS, prepare for delivery

Late-onset fetal growth restriction (>34 weeks)

- Elevated UA Doppler flow PI (≥2 SDs greater than mean for gestational age), no other abnormality: weekly Doppler + BPP
- Low MCA or abnormal CPR: 2 to 3 times per week Doppler + BPS

PLANNING DELIVERY: GESTATIONAL AGE AS A DETERMINANT OF INTERVENTION THRESHOLDS

In pregnancies complicated by FGR, the thresholds for interventions are defined by the balance of fetal risks of continuation of pregnancy versus the neonatal risks that follow delivery. The principle neonatal risks are neonatal mortality, major neonatal morbidity, which is associated with long-term impacts on health, and adverse neonatal development. These risks change in specific gestation age epoch (Fig. 3, Table 2), and the outcome is comparable to that of appropriate for gestational age infants born at a 2-week shorter gestational age.⁵⁷ Accordingly, the threshold for delivery needs to be higher at earlier gestational age.

The neurodevelopmental outcome of growth-restricted babies has received growing attention in recent years, given the impact on quality of life. 4,58,59 In early-onset FGR, gestational age has been found to be one of the major determinants of neurodevelopment. However, it remains to be determined if interventions other than modulating disease course might improve neurodevelopment.

Taking in account the data on neonatal survival derived from 2 large observational studies (see Fig. 3), 3,5 the following delivery indications per gestational epoch are suggested.

24 to 26 Weeks Gestation

The survival rate of FGR neonates averages less than 50%.⁵ In surviving babies, the risks for major neonatal complications are as high as 80%. With these neonatal morbidities, especially higher grades of intraventricular hemorrhage, the motor neurodevelopmental adverse outcomes are equally high. These risks gradually decrease and there is an improvement in survival by an average of 2% per gestational day that is gained in utero. The survival rates exceed 50% once the estimate of fetal weight exceeds 500 g or 26 weeks are reached. Because of these significant neonatal morbidities, delivery for fetal deterioration may not be considered in certain health care

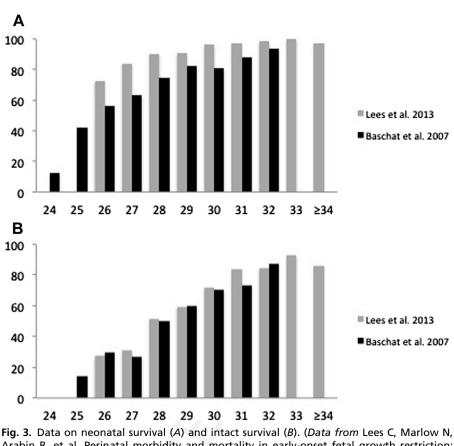


Fig. 3. Data on neonatal survival (A) and intact survival (B). (Data from Lees C, Marlow N, Arabin B, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013;42(4):400–8; and Baschat AA, Cosmi E, Bilardo CM, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007;109(2 Pt 1):253–61.)

settings. Maternal indications such as severe pre-eclampsia are the primary indications for delivery.

26 to 28 Weeks Gestation

Neonatal survival exceeds 50%. However, intact survival at 26 to 27 weeks remains around 30% (see Fig. 3). 3.5 Because neonatal morbidity rates are high, additional fetal deterioration before delivery does not appear to produce a statistical impact on survival. Although maternal disease remains an absolute delivery indication, fetal status may not qualify until acidemia is certain. Although an abnormal 5-component BPS (<6/10) is an indication to delivery from 26 weeks of gestation, because of its strong association with fetal acidemia, the evidence of venous Doppler abnormalities is not considered an indication to intervention until 28 weeks. The observed median time interval between the detection of abnormal venous Doppler indices and the deterioration of the BPS is 1 week, 52 which could potentially increase neonatal survival by 14% (see Table 2). Individualization of care in these pregnancies needs to be discussed with the patient, including the option of nonintervention.

o reach lity	Delay to gain neonatal survival	Delay to improve	Delay for	Delay to decrease	Delay not justified
	, ,		,	Delay to decrease	Delay not justified
		morbidity	administration of steroids	NICU admission rate	
veight <500 g stational age wk at delivery ciated with 6 mortality	Each day in utero increases neonatal survival by median of 2% Fetal deterioration has no statistical impact on neonatal outcome	Each day in utero increases neonatal survival by median of 1% Reversed DV a-wave before delivery is associated with lower neonatal survival	SGA fetuses receiving prenatal steroids have lower rate of RDS, BPD, IVH, and mortality	SGA neonates delivered before 38 wk have a higher rate of NICU admission	Risks of surveillance failure, risks for progressive decline in growth, low neonatal morbidities favor delivery at 38 wk
s ^ :i	tational age vk at delivery ated with	tational age increases neonatal survival by median of 2% Fetal deterioration has no statistical impact on neonatal outcome	tational age increases neonatal survival by median of 1% mortality Fetal deterioration has no statistical impact on neonatal outcome increases neonatal survival by median of 1% Reversed DV a-wave before delivery is associated with lower neonatal survival	tational age increases neonatal survival by median of 2% of 1% lower rate of RDS, BPD, IVH, and mortality impact on neonatal outcome actions associated with neonatal outcome are of the survival by median of 1% lower neonatal survival receiving prenatal steroids have lower rate of RDS, BPD, IVH, and mortality associated with lower neonatal survival	tational age increases neonatal survival by median of 2% of 1% lower rate of RDS, has no statistical impact on neonatal outcome receiving prenatal survival by median of 1% lower rate of RDS, higher rate of MICU admission mortality associated with lower neonatal survival survival

Abbreviation: NICU, neonatal intensive care unit.

28 to 32 Weeks Gestation

Neonatal survival exceeds 70% at 28 weeks and increases to more than 90% at 32 weeks (see Fig. 3). Survival gain per day in utero now averages 1% and neonatal mortality and morbidity progressively decrease. Fetal deterioration of venous Doppler parameters may be tolerated as long as DV a-wave velocities are antegrade. Reversal of the DV a-wave before delivery has an independent additional impact on neonatal morbidities, and persistence of this abnormality beyond 1 week carries significant risk for stillbirth. For this reason, the presence of a DV reversed a-wave is generally considered an indication to intervention from 28 weeks. However, delivery before 30 weeks gestation still carries a significantly higher risk for adverse neurodevelopment at age 2 because of neonatal complications and their impact on motor development.⁴

32 to 34 Weeks Gestation

Thirty-two to 34 weeks gestation is a time in fetal development whereby the cerebral circulation gains an additional structural layer, and, accordingly, there is a significant reduction in the rates of intraventricular hemorrhage. This reduction has measurable impact on motor development at age 3. Now, up until 34 weeks gestational age especially, the administration of antenatal steroids has an added benefit in reducing respiratory neonatal morbidity as well as intraventricular hemorrhage rates, and babies who have received steroids have improved survival. Moreover, recent evidence suggests that neurodevelopment is also improved by the administration of steroids⁶⁰; this is most likely due to the beneficial impact on the respiratory performance and the decrease of ventilation related intraventricular bleeding.

Evidence of reversed UA end-diastolic velocity is generally considered a delivery indication from 32 weeks onward, whereas an AEDV is an indication from 34 weeks onward.

34 to 38 Weeks Gestation

At this gestational age, the gain in survival as well as neonatal morbidity is minimal; however, up to 38 weeks gestation, the rate of neonatal admissions to the intensive care nursery is still significantly greater for FGR infants, and the overall neonatal adverse outcome scores are higher. Accordingly, delivery thresholds should be based on clear maternal or fetal indications. The absence of UA end-diastolic velocity at Doppler study is considered an indication to delivery from 34 weeks onward. In late-onset FGR, the MCA Doppler is considered the best predictor of fetal adaptation to hypoxemia, and some national guidelines recommend the use of this parameter to time delivery in fetuses with normal UA Doppler. 61,62

After 38 Weeks Gestation

Neonatal adverse events in SGA infants are negligible and, accordingly, ongoing pregnancy must be weighed carefully against the risks of unanticipated stillbirth if the patient remains undelivered. Risks of surveillance failure, risks for progressive decline in head growth, and low neonatal risks favor delivery. The Disproportionate Intrauterine Growth Intervention Study at Term (DIGITAT)² showed that among women with suspected intrauterine growth restriction at 36 to 41 weeks, a policy of labor induction affects neither the rate of adverse neonatal outcomes nor the rates of instrumental vaginal delivery or caesarean section, indicating that both approaches are acceptable. The consensus view from the DIGITAT is that the optimum time for induction in SGA with normal Doppler study is at around 38 weeks, because it is associated with the lowest neonatal morbidity⁶³ and seems to minimize the risk of stillbirth.⁶⁴

Between 24 and 34 weeks, a single course of should be administered over a period of 48 hours for fetal lung maturity if delivery is being considered. At this age, delivery should be planned at a center with a neonatal intensive care unit. The route of delivery depends on the severity of fetal compromise, along with maternal condition and other obstetric factors. If prelabor acidemia is suspected, cesarean section is recommended. In FGR cases with abnormal UA Doppler, induction of labor can be offered, but rates of emergency caesarean section are increased. The use of prostaglandin for cervical preparation is usually discouraged. Because of the increased risk of intrapartum asphyxia in growth-restricted fetuses, continuous fetal heart rate monitoring is recommended from the onset of uterine contractions.

SUMMARY

Detection of FGR must be accompanied by uniform approaches to management to improve perinatal outcomes. The understanding of the clinical phenotype of early-onset and late-onset FGR is actively evolving. A decreased estimated fetal weight coupled with abnormal umbilical, MCA, or CPR studies provides the best identification of fetuses requiring surveillance. Doppler abnormalities precede biophysical deterioration and therefore allow adjustment of monitoring frequency. Concurrent deterioration of Doppler and biophysical variables best predict prelabor acidemia and therefore allow timing of delivery. The threshold for delivery is determined by the neonatal risks at each gestational epoch and decreases with advancing gestational age.

REFERENCES

- 1. Divon MY, Girz BA, Lieblich R, et al. Clinical management of the fetus with markedly diminished umbilical artery end-diastolic flow. Am J Obstet Gynecol 1989; 161(6 Pt 1):1523–7.
- Boers KE, Vijgen SM, Bijlenga D, et al. Induction versus expectant monitoring for intrauterine growth restriction at term: randomised equivalence trial (DIGITAT). BMJ 2010;341:c7087.
- 3. Lees C, Marlow N, Arabin B, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013;42(4):400–8.
- 4. Thornton JG, Hornbuckle J, Vail A, et al. Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial. Lancet 2004;364(9433):513–20.
- 5. Baschat AA, Cosmi E, Bilardo CM, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007;109(2 Pt 1):253–61.
- Baschat AA. Fetal responses to placental insufficiency: an update. BJOG 2004; 111(10):1031–41.
- 7. Meekins JW, Pijnenborg R, Hanssens M, et al. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol 1994;101(8):669–74.
- Morrow RJ, Adamson SL, Bull SB, et al. Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am J Obstet Gynecol 1989; 161(4):1055–60.
- 9. Arbeille P, Maulik D, Fignon A, et al. Assessment of the fetal PO2 changes by cerebral and umbilical Doppler on lamb fetuses during acute hypoxia. Ultrasound Med Biol 1995;21(7):861–70.

- 508 10. Picklesimer AH, Oepkes D, Moise KJ, et al. Determinants of the middle cerebral artery peak systolic velocity in the human fetus. Am J Obstet Gynecol 2007; 197(5):526.e1–4.
- 511 11. Baschat AA, Weiner CP. Umbilical artery doppler screening for detection of the 512 small fetus in need of antepartum surveillance. Am J Obstet Gynecol 2000; 513 182(1 Pt 1):154–8.
- 514 12. Bahado-Singh RO, Kovanci E, Jeffres A, et al. The Doppler cerebroplacental ratio 515 and perinatal outcome in intrauterine growth restriction. Am J Obstet Gynecol 516 1999;180(3 Pt 1):750–6.

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536537

538

539

540

541

542

543 544

545

546

547

548

549

550

554

555

- 13. Seravalli V, Block-Abraham DM, Turan OM, et al. Second-trimester prediction of delivery of a small-for-gestational-age neonate: integrating sequential Doppler information, fetal biometry, and maternal characteristics. Prenat Diagn 2014;34(11): 1037–43.
- 14. Unterscheider J, Daly S, Geary MP, et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol 2013;208(4):290.e1–6.
- 15. Parra-Saavedra M, Crovetto F, Triunfo S, et al. Association of Doppler parameters with placental signs of underperfusion in late-onset small-for-gestational-age pregnancies. Ultrasound Obstet Gynecol 2014;44(3):330–7.
- Oros D, Figueras F, Cruz-Martinez R, et al. Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-for-gestational age fetuses. Ultrasound Obstet Gynecol 2011;37(2):191–5.
- 17. Kovo M, Schreiber L, Ben-Haroush A, et al. The placental component in early-onset and late-onset preeclampsia in relation to fetal growth restriction. Prenat Diagn 2012;32(7):632–7.
- 18. Ogge G, Chaiworapongsa T, Romero R, et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset pre-eclampsia. J Perinat Med 2011;39(6):641–52.
- 19. Egbor M, Ansari T, Morris N, et al. Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG 2006;113(5):580–9.
- Matsuo K, Malinow AM, Harman CR, et al. Decreased placental oxygenation capacity in pre-eclampsia: clinical application of a novel index of placental function preformed at the time of delivery. J Perinat Med 2009;37(6):657–61.
- 21. Parra-Saavedra M, Simeone S, Triunfo S, et al. Correlation between placental underperfusion, histologic signs, and perinatal morbidity in late-onset small for gestational age fetuses. Ultrasound Obstet Gynecol 2014. [Epub ahead of print], Q8
- 22. Savchev S, Figueras F, Sanz-Cortes M, et al. Evaluation of an optimal gestational age cut-off for the definition of early- and late-onset fetal growth restriction. Fetal Diagn Ther 2014;36(2):99–105.
- Unterscheider J, Daly S, Geary MP, et al. Predictable progressive Doppler deterioration in IUGR: does it really exist? Am J Obstet Gynecol 2013;209(6): 539.e1–7.
- 551 24. Hershkovitz R, Kingdom JC, Geary M, et al. Fetal cerebral blood flow redistribu-552 tion in late gestation: identification of compromise in small fetuses with normal 553 umbilical artery Doppler. Ultrasound Obstet Gynecol 2000;15(3):209–12.
 - 25. Frøen JF, Gardosi JO, Thurmann A, et al. Restricted fetal growth in sudden intrauterine unexplained death. Acta Obstet Gynecol Scand 2004;83(9):801–7.
- 556 26. Winje BA, Roald B, Kristensen NP, et al. Placental pathology in pregnancies with 557 maternally perceived decreased fetal movement–a population-based nested 558 case-cohort study. PLoS One 2012;7(6):e39259.

- Divon MY, Chamberlain PF, Sipos L, et al. Identification of the small for gestational age fetus with the use of gestational age-independent indices of fetal growth. Am
 J Obstet Gynecol 1986;155(6):1197–201.
 - 28. Bilardo CM, Nicolaides KH, Campbell S. Doppler measurements of fetal and uteroplacental circulations: relationship with umbilical venous blood gases measured at cordocentesis. Am J Obstet Gynecol 1990;162(1):115–20.
 - 29. Akalin-Sel T, Nicolaides KH, Peacock J, et al. Doppler dynamics and their complex interrelation with fetal oxygen pressure, carbon dioxide pressure, and pH in growth-retarded fetuses. Obstet Gynecol 1994;84(3):439–44.
 - 30. Hecher K, Snijders R, Campbell S, et al. Fetal venous, intracardiac, and arterial blood flow measurements in intrauterine growth retardation: relationship with fetal blood gases. Am J Obstet Gynecol 1995;173(1):10–5.
 - 31. Rizzo G, Capponi A, Arduini D, et al. The value of fetal arterial, cardiac and venous flows in predicting pH and blood gases measured in umbilical blood at cordocentesis in growth retarded fetuses. Br J Obstet Gynaecol 1995;102(12): 963–9.
 - 32. Baschat AA, Güclü S, Kush ML, et al. Venous Doppler in the prediction of acid-base status of growth-restricted fetuses with elevated placental blood flow resistance. Am J Obstet Gynecol 2004;191(1):277–84.
 - 33. Cruz-Martínez R, Figueras F, Hernandez-Andrade E, et al. Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-forgestational-age fetuses. Obstet Gynecol 2011;117(3):618–26.
 - 34. Severi FM, Bocchi C, Visentin A, et al. Uterine and fetal cerebral Doppler predict the outcome of third-trimester small-for-gestational age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2002;19(3):225–8.
 - 35. Ribbert LS, Snijders RJ, Nicolaides KH, et al. Relationship of fetal biophysical profile and blood gas values at cordocentesis in severely growth-retarded fetuses. Am J Obstet Gynecol 1990;163(2):569–71.
 - 36. Manning FA, Snijders R, Harman CR, et al. Fetal biophysical profile score. VI. Correlation with antepartum umbilical venous fetal pH. Am J Obstet Gynecol 1993; 169(4):755–63.
 - 37. Baschat AA. Integrated fetal testing in growth restriction: combining multivessel Doppler and biophysical parameters. Ultrasound Obstet Gynecol 2003;21(1):1–8.
 - 38. Baschat AA, Gembruch U, Harman CR. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol 2001;18(6):571–7.
 - 39. Ribbert LS, Snijders RJ, Nicolaides KH, et al. Relation of fetal blood gases and data from computer-assisted analysis of fetal heart rate patterns in small for gestation fetuses. Br J Obstet Gynaecol 1991;98(8):820–3.
 - 40. Vintzileos AM, Fleming AD, Scorza WE, et al. Relationship between fetal biophysical activities and umbilical cord blood gas values. Am J Obstet Gynecol 1991; 165(3):707–13.
 - 41. Guzman E, Vintzileos A, Martins M, et al. The efficacy of individual computer heart rate indices in detecting acidemia at birth in growth-restricted fetuses. Obstet Gynecol 1996;87(6):969–74.
 - 42. Turan S, Turan OM, Berg C, et al. Computerized fetal heart rate analysis, Doppler ultrasound and biophysical profile score in the prediction of acid-base status of growth-restricted fetuses. Ultrasound Obstet Gynecol 2007;30(5):750–6.
 - 43. Odibo AO, Goetzinger KR, Cahill AG, et al. Combined sonographic testing index and prediction of adverse outcome in preterm fetal growth restriction. Am J Perinatol 2014;31(2):139–44.

- 44. Turan S, Miller J, Baschat AA. Integrated testing and management in fetal growth
 restriction. Semin Perinatol 2008;32(3):194–200.
- 45. Arduini D, Rizzo G, Romanini C. Changes of pulsatility index from fetal vessels
 preceding the onset of late decelerations in growth-retarded fetuses. Obstet Gynecol 1992;79(4):605–10.
- 46. Harrington K, Thompson MO, Carpenter RG, et al. Doppler fetal circulation in
 pregnancies complicated by pre-eclampsia or delivery of a small for gestational
 age baby: 2. Longitudinal analysis. Br J Obstet Gynaecol 1999:106(5):453–66.

619

620 621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645 646

647

648

658

659

660

- 47. Hecher K, Bilardo CM, Stigter RH, et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet Gynecol 2001;18(6): 564–70.
- 48. Senat MV, Schwärzler P, Alcais A, et al. Longitudinal changes in the ductus venosus, cerebral transverse sinus and cardiotocogram in fetal growth restriction. Ultrasound Obstet Gynecol 2000;16(1):19–24.
- 49. Visser GH, Bekedam DJ, Ribbert LS. Changes in antepartum heart rate patterns with progressive deterioration of the fetal condition. Int J Biomed Comput 1990; 25(4):239–46.
- 50. Ferrazzi E, Bozzo M, Rigano S, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 2002;19(2):140–6.
- 51. Turan OM, Turan S, Gungor S, et al. Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol 2008;32(2):160–7.
- 52. Cosmi E, Ambrosini G, D'Antona D, et al. Doppler, cardiotocography, and biophysical profile changes in growth-restricted fetuses. Obstet Gynecol 2005; 106(6):1240-5.
- 53. Baschat AA, Kush M, Berg C, et al. Hematologic profile of neonates with growth restriction is associated with rate and degree of prenatal Doppler deterioration. Ultrasound Obstet Gynecol 2013;41(1):66–72.
- 54. Turan OM, Turan S, Berg C, et al. Duration of persistent abnormal ductus venosus flow and its impact on perinatal outcome in fetal growth restriction. Ultrasound Obstet Gynecol 2011;38(3):295–302.
- 55. Hernandez-Andrade E, Stampalija T, Figueras F. Cerebral blood flow studies in the diagnosis and management of intrauterine growth restriction. Curr Opin Obstet Gynecol 2013;25(2):138–44.
 - Crimmins S, Desai A, Block-Abraham D, et al. A comparison of Doppler and biophysical findings between liveborn and stillborn growth-restricted fetuses. Am J Obstet Gynecol 2014;211(6):669.e1–10.
- 57. Visser GH, Bilardo CM, Lees C. Fetal growth restriction at the limits of viability. Fetal Diagn Ther 2014;36(2):162–5.
- 58. Baschat AA. Neurodevelopment following fetal growth restriction and its relation ship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol 2011;37(5):501–14.
- 59. Arcangeli T, Thilaganathan B, Hooper R, et al. Neurodevelopmental delay in small
 babies at term: a systematic review. Ultrasound Obstet Gynecol 2012;40(3):
 267–75.
- 655 60. Sotiriadis A, Tsiami A, Papatheodorou S, et al. Neurodevelopmental outcome af-656 ter a single course of antenatal steroids in preterm infants: a systematic review 657 and meta-analysis. Obs Gynecol, in press.
 - 61. Royal College of Obstetricians and Gynaecologists (RCOG). The investigation and management of the small-for-gestational-age fetus. Green-top Guideline No. 31. 2nd edition. 2013.

Q9

Q10

- 62. New Zealand Maternal Fetal Medicine Network. Guideline for the management of suspected small for gestational age singleton pregnancies after 34 weeks gestation. 2013.
- 63. Boers KE, van Wyk L, van der Post JA, et al. Neonatal morbidity after induction vs expectant monitoring in intrauterine growth restriction at term: a subanalysis of the DIGITAT RCT. Am J Obstet Gynecol 2012;206(4):344.e1–7.
- 64. Trudell AS, Cahill AG, Tuuli MG, et al. Risk of stillbirth after 37 weeks in pregnancies complicated by small-for-gestational-age fetuses. Am J Obstet Gynecol 2013;208(5):376.e1–7.

Our reference: OGC 725 P-authorquery-v9

AUTHOR QUERY FORM

J.	Journal: OGC	
ELSEVIER	Article Number: 725	

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof.

Location in article	Query / Remark: Click on the Q link to find the query's location in text Please insert your reply or correction at the corresponding line in the proof
Q1	Please approve the short title to be used in the running head at the top of each right-hand page,
Q2	Are author names and order of authors OK as set?
Q3	This is how your name will appear on the contributor's list. Please add your academic title and any other necessary titles and professional affiliations, verify the information, and OK VIOLA SERAVALLI, MD , Department of Gynecology and Obstetrics, The Hopkins Center for Fetal Therapy, The Johns Hopkins Hospital, Baltimore, Maryland AHMET A. BASCHAT, MD , Department of Gynecology and Obstetrics, Director of The Johns Hopkins Center for Fetal Therapy, The Johns Hopkins Hospital, Baltimore, Maryland
Q4	The following synopsis is the one that you supplied, but edited down to less than 100 words. Please confirm OK, or submit a replacement (also less than 100 words). Please note that the synopsis will appear in PubMed: A uniform approach to the diagnosis and management of fetal growth restriction (FGR) consistently produces better outcome, prevention of unanticipated stillbirth, and appropriate timing of delivery. Early-onset and late-onset FGR represent 2-distinct clinical phenotypes of placental dysfunction. Management challenges in early-onset FGR revolve around prematurity and coexisting maternal hypertensive disease, whereas in late-onset disease failure of diagnosis or surveillance leading to unanticipated stillbirth is the primary issue. Identifying the surveillance tests that have the highest predictive accuracy for fetal acidemia and establishing the appropriate monitoring interval to detect fetal deterioration is a high priority.
Q5	Please verify the affiliation address.
Q6	If there are any drug dosages in your article, please verify them and indicate that you have done so by initialing this query.
Q7	Word(s) missing here, "a single course of should be"?
Q8	Please provide volume number and page range in Ref. 21,

Q 9	Please update "in press" details in Ref. 60,		
Q10	Please provide publisher name and location in Refs. 61 and 62.		
	Please check this box or indicate your approval if you have no corrections to make to the PDF file		

Thank you for your assistance.