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Abstract – Here we will give a perspective on new possible interplays between machine learning
and quantum physics, including also practical cases and applications. We will explore the ways in
which machine learning could benefit from new quantum technologies and algorithms to find new
ways to speed up their computations by breakthroughs in physical hardware, as well as to improve
existing models or devise new learning schemes in the quantum domain. Moreover, there are lots of
experiments in quantum physics that do generate incredible amounts of data and machine learning
would be a great tool to analyze those and make predictions, or even control the experiment itself.
On top of that, data visualization techniques and other schemes borrowed from machine learning
can be of great use to theoreticians to have better intuition on the structure of complex manifolds
or to make predictions on theoretical models. This new research field, named as quantum machine
learning, is very rapidly growing since it is expected to provide huge advantages over its classical
counterpart and deeper investigations are timely needed since they can be already tested on the
already commercially available quantum machines.

focus  article Copyright c© 2021 EPLA

Introduction. – Machine learning (ML) [1–4] is a
broad field of study, with multifaceted applications of
cross-disciplinary breadth. ML ultimately aims at de-
veloping computer algorithms that improve automatically
through experience. The core idea of artificial intelligence
(AI) technology is that systems can learn from data, so
as to identify distinctive patterns and make consequently
decisions, with minimal human intervention. The range of
applications of ML methodologies is extremely vast [5–8],
and still growing at a steady pace due to the pressing
need to cope with the efficiently handling of big data [9].
Training and deployment of large-scale machine learning
models faces computational challenges [10] that are only
partially met by the development of special purpose clas-
sical computing units such as GPUs. This has led to
an interest in applying quantum computing to machine
learning tasks [11–15] and to the development of several
quantum algorithms [16–19] with the potential to acceler-
ate training. Most quantum machine learning algorithms

(a)Contribution to the Focus Issue Progress on Statistical Physics
and Complexity edited by Roberta Citro, Giorgio Kaniadakis,
Claudio Guarcello, Antonio Maria Scarfone and Davide Valenti.

need fault-tolerant quantum computation [20–22], which
requires the large-scale integration of millions of qubits
and is still not available today. It is however possi-
ble that quantum machine learning (QML) will provide
the first breakthrough algorithms to be implemented on
commercially available noisy intermediate scale quantum
(NISQ) devices [23–26]. Indeed, a number of interest-
ing breakthroughs have alreasy been made at the inter-
face of quantum physics and machine learning [27]. For
example in many-body quantum physics machine learn-
ing has been successfully employed to speed up simula-
tions [28], predict phases of matter [29] or find variational
ansatz for many-body quantum states [30]. Similarly
in quantum computation machine learning has recently
found success in quantum control [31] and to provide error
correction [32].

In this paper we will give our perspective on new pos-
sible trends of machine learning in the quantum domain,
covering all the main learning paradigms and listing some
very recent results. Thus we will try to briefly define the
scope of each one of these ML domains, referring to the
literature for a complete overview of the specific topics.
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The three main classes of learning algorithms are the fol-
lowing ones:

– Supervised learning : In supervised learning [1,33] one

deals with an annotated dataset {(xi, yi)}N
i=1. Each

element xi is called an input or feature vector. It
can be the vector of pixel values of an image or a
feature such as height, weight and gender and so on.
All input data xi of the same dataset share the same
features (with different values). The label yi is the
ground truth upon which we build the knowledge of
our learning algorithm. It can be a discrete class in a
set of possible objects or a real number representing
some property we want to predict, or even some com-
plex data structure. For example if we want to build
a spam classifier the labels will be yi = 1 (spam) or
yi = 0 (not spam). The goal of a supervised learning
algorithm is to use the dataset to produce a model
that, given an input vector x, can predict the correct
label y.

– Unsupervised learning : In unsupervised learning
[34–36] the dataset is a collection of unlabeled vectors

{xi}N
i=1. The goal of unsupervised learning is to take

this input vector and extract some useful property
from the single data or the overall data distribution of
the dataset. Examples of unsupervised learning are:
clustering where the predicted property is the cluster
assignment; dimensionality reduction where the dis-
tribution of data is mapped in a lower-dimensional
manifold; outlier detection where the property pre-
dicted is the “typicality” of the data with respect to
its distribution; and generative models where we want
to learn to generate new points from the same distri-
bution of the dataset.

– Reinforcement learning : The ML subfield of rein-
forcement learning [5] assumes that the machine
“lives” in an environment and can probe the state
of the environment as a feature vector. The machine
can perform different actions at different states bring-
ing to different rewards. The goal of this machine (or
agent) is to learn a policy/strategy. A policy is a
function that associates to a particular feature vec-
tor, representing the state of the environment, the
best action to execute. The optimal policy maximizes
the expected average reward. Reinforcement learning
has been widely employed in scenarios where decision
making and long-term goals are crucial, for example
in playing chess, controlling robots or logistics in com-
plex environments.

Now it is important to point out that there is no rig-
orous universal definition of QML and instead it has as-
sumed different meanings in the contexts where it has been
studied in the literature. The main subjects are the data
that can be either classical or quantum, and the algorithm
used to perform ML on the data itself, which can also be
classical or quantum. One indeed can define four macro

Fig. 1: Scheme of the various types of QML. The data to be
processed can be either classical or quantum and the algorithm
that processes the data itself can also be either classical or
quantum. That gives four possible combinations of algorithms,
three of which (QQ, QC, CQ) usually fall under the umbrella
of QML.

categories of algorithms [37] as depicted in fig. 1, three of
which are generally considered QML. There are also a lot
of gray areas where the algorithms are hybrid quantum-
classical or only a subroutine or an optimization task is
carried out by the quantum processor. An exhaustive list
of all possible interplays between quantum and classical
ML algorithms is outside the scope of this paper, so we
will stick to this simplified representation for the sake of
clarity.

Supervised learning. – There are already in the lit-
erature several examples of supervised learning applica-
tions for NISQ devices. For instance, small gate-model
devices and quantum annealers have been used to per-
form quantum heuristic optimization [26,38–42] and to
solve classification problems [43–46]. An interesting ap-
proach to classification was devised in ref. [47], where clas-
sical data are embedded into a larger quantum (Hilbert)
space describing the state of a quantum system. The idea,
which is similar in spirit to classical support vector ma-
chines (SVMs) [1], is to map classical data into a high-
dimensional space where the classes can be well separated
by an hyperplane. In the quantum case the embedding is
done by a quantum circuit composed of single- and multi-
qubit gates, effectively mapping the classical data into the
Hilbert space of the qubits. For example, an embedding
of a classical point x into a single qubit state |x〉 could be
the following:

RX(x)RY (θ3)RX(x)RY (θ2)RX(x)RY (θ1)RX(x)|0〉
−→ |x〉, (1)

where RX and RY are rotation operators along the axes X
and Y , respectively, while the rotation angles {θ1, θ2, θ3}
are the trainable parameters of our learning model. Once
a dataset {xi}N

i=1 is embedded, one can compute (using a
SWAP test) the overlaps |〈xi | xj〉|2. Points (states) be-
longing to the same class will have an overlap close to
1 while points from different classes will have an over-
lap close to 0, hence enabling the classification of the
dataset. The training can be done using software such
as Pennylane [48] that computes the gradients of the
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Fig. 2: In panel (a) the 1D syntetic dataset used as classifica-
tion benchmark. Class A are the blue dots while class B are the
red crosses. Note that in the 1D space the dataset cannot be
linearly classified, i.e., there is not a simple threshold allowing
us to separate the two classes. In panel (b) an example of the
embedding circuit including the final SWAP test to compute
the overlap between the two embeddings [49].

parametric quantum gates. In fig. 2 we show an em-
bedding circuit for a one-dimensional dataset that can be
trained by small quantum processors with the circuit pro-
posed above.

In ref. [49] we train an embedding of that dataset and
test it with 10 validation points on a real quantum proces-
sor. The process has been carried out in the IBM quantum
platform using the Valencia QPU (quantum processing
unit) composed of 5 qubits. The number of samples was
rather small, namely 100 samples per point. That is due
to the queues to access the system and to the fact that
we need to compute 100 overlaps to build the Gram ma-
trix for our 10 test points. As one can see in fig. 3 our
results [49], even if they contain some noise, are good and
able to achieve a good classification boundary between
the two classes. That is quite remarkable as this scheme
is implemented on a real NISQ device via the cloud. Let
us also point out that the error on the overlap depends
on the number of samples we take and it could be the
case that our 100 samples do not contain enough statis-
tics. This method has then been proved effective on small
datasets (embedded in 1 or 2 qubits) and should be quite
robust to experimental noise, yielding some promises for
the future of NISQ devices. Indeed, as argued in ref. [47],
we can map high-dimensional data in a n-qubit state us-
ing the same protocol. And, if we could build a circuit
of 100 qubits with circuit depth 100 and a decoherence
time of 10−3 s, it could be capable to embed O(1010) bits
of classical information, i.e., a task which is classically
unattainable. Therefore, high-dimensional embeddings of
large data sets for (QC-type) QML could be accessible in
the future on NISQ devices.

Once classical data are embedded on quantum states,
one has to deal with a fundamental problem in quan-
tum physics that is the discrimination amongst a set of
non-orthogonal quantum states of a system. This can be
addressed for instance by following a recent approach [50]

Fig. 3: (a) Theoretical Gram matrix, representing the overlaps
between 10 test embeddings; (b) experimental Gram matrix
on the IBM Valencia QPU. The achieved results are pretty
consistent with the theory albeit a bit noisier than other setups
that are exploited in ref. [49].

based on the quantum stochastic walk model [51,52] and
inspired by the structure of classical neural networks. In
particular, the quantum states to discriminate can be
encoded on the input nodes of a network, while the dis-
crimination is achieved on the output nodes. Then, the
parameters of the underlying network (e.g., hopping rates
or link weights) are optimized to obtain the highest prob-
ability of correct discrimination. Interestingly enough,
this probability approaches the theoretical optimal quan-
tum limit known as Helstrom bound [53]. Our numerical
and analytical results in ref. [50] also show the robust-
ness and reconfigurability of the network for a different
set of quantum states. Our proposed (QQ-type) archi-
tecture can pave the way for experimental realizations of
QML protocols as well as novel quantum generalizations
of deep learning algorithms running over larger complex
networks.

Finally, let us mention a CQ-type QML application we
are proposing in ref. [54] where artificial neural network
models [1,33] are exploited for quantum noise discrimina-
tion in stochastic quantum dynamics. In particular some
Hamiltonian parameters are affected by noise, which is
described as a stochastic process associated to a specific
probability distribution. Our aim is to discriminate among
different noise probability distributions and correlation pa-
rameters, by measuring the quantum state at discrete time
instants. In particular, we proposed the use of classical
ML algorithms such as SVMs and Recurrent Neural Net-
works (RNN), i.e., Long Short Term Memory (LSTM) [55]
and Gated Recurrent Unit (GRU) [56], to perform super-
vised classification tasks on simulated quantum data. We
believe that these are preliminary steps towards QML al-
gorithms for quantum sensing [57], e.g., to detect Marko-
vian vs. non-Markovian noise in real quantum systems
as optical and atomic platforms that are very promising
candidates for NISQ devices.

Unsupervised learning. – Unlike supervised learn-
ing [33], unsupervised learning is a much harder, and still
largely unsolved, problem. And yet, it has the appeal-
ing potential to learn the hidden statistical correlations of
large unlabeled datasets [34–36], which constitute the vast
majority of data being available today.
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For instance, clustering algorithms have the ability to
separate unlabeled data in different classes (or clusters)
without the need for external labeling and supervision.
Hybrid approaches have been tried to solve clustering [58]
by applying a quantum-based optimization scheme to a
classical clustering algorithm. In order to represent the
clusters, we need to define a distance measure d(xi, xj)
between two data elements xi and xj . For example, a
choice could be the Euclidean distance, but specific appli-
cations may naturally lead to very different metrics. You
can then calculate the distance matrix C with elements
Cij = d(xi, xj). Now this matrix can also be interpreted
as adjacency matrix of a weighted graph G and, by a suit-
able choice of metric and doing some coarse graining, the
problem of clustering reduces to the MAXCUT optimiza-
tion problem [59] on the graph G. The MAXCUT prob-
lem is an example of the class of NP-complete problems,
which are notoriously hard to be solved. In ref. [58] a hy-
brid scheme is devised where the MAXCUT optimization
is solved by the QAOA algorithm [41] and applied to a
syntetic dataset composed of 2 clusters of 10 points living
in a 2-dimensional space. The model was also success-
fully tested on a real 19-qubit chip produced by Rigetti as
demonstration of a QC-type application.

Another opportunity to use quantum technologies on
unsupervised learning tasks comes from variational au-
toencoders (VAEs) [60]. Variational autoencoders are gen-
erative models in which the goal is to learn a complex data
distribution (e.g., the pixels of images representing cats)
to later sample from it “generating” new objects. In par-
ticular VAEs learn a probability distribution pθ(x, z) =
pθ(x | z)pθ(z), where usually the posterior distribution
pθ(x | z) is implemented by a deep neural network and
pθ(z) is a simple (prior) distribution (e.g., i.i.d. Gaussian
or Bernoulli variables). The idea here is to replace the dis-
tribution pθ(z) with a complex distribution sampled from
a quantum device [61,62]. This setup allows for the con-
struction of quantum-classical hybrid generative models
that can be scaled to large, realistic datasets. For exam-
ple in ref. [62] a quantum-classical hybrid VAE was trained
using a D-Wave 2000Q quantum annealer on the popular
MNIST [63] dataset of handwritten digits. This quantum-
classical hybrid VAE still employs a large amount of clas-
sical computing power performed on modern GPUs. The
computational task that we offloaded to the quantum an-
nealer (sampling from a complex distribution) can still be
performed classically at a fraction of the overall compu-
tational cost. To achieve any form of quantum advantage
in this framework, we need to offload generative capacity
to the prior distribution, by exploiting large graphs capa-
ble of representing complex probability distributions from
which classical sampling becomes too expensive. We have
evidence that this path to quantum advantage is possi-
ble by deploying annealers with denser connectivities and
lower noise, engineering classical neural networks that bet-
ter exploit physical connectivities and by working with
more complex datasets. All these improvements should

be achievable in the near future, and represent possible
interesting lines of research in the area of QC-type QML
models.

Furthermore, one of the most remarkable results in un-
supervised ML is provided by generative adversarial net-
works (GANs) [64,65], where game theory models aim
to learn how to faithfully reproduce some given distribu-
tion of data. In particular, the idea is that two agents,
named as the generator and the discriminator, compete
against each other in a zero-sum game where on one side
the generator aims to generate “fake” data that the dis-
criminator is not able to distinguish from the real gener-
ated ones, while on the other side the latter optimizes its
discrimination strategy. Under some reasonable assump-
tions, it is possible to demonstrate that the game reaches
the unique (Nash) equilibrium point where the generator
is able to exactly reproduce the desired (real) data dis-
tribution. GANs have been generalized to the quantum
case leading to the so-called quantum generative adver-
sarial networks (QGANs) [66,67]. They are an example
of QQ-type QML. Again the goal is to learn to repro-
duce the state of a physical system that is now quantum,
e.g., a register of qubits. This can be for instance im-
plemented by exploiting parametrized quantum circuits
(where quantum gates are controlled by real tunable pa-
rameters) [68] allowing to realize, among others, quantum
approximation optimization algorithms [41], VAEs [69],
and eigensolvers [42]. However, recent efforts have been
mainly focused on learning pure states [67,70], while the
scenario of mixed quantum states is currently under inves-
tigation and some preliminary results are appearing in the
literature [71,72]. In particular, in ref. [72] we show how
the emergence of limit cycles may considerably extend the
convergence time in the case of mixed quantum (generated
data) states that of course play a key role for practical im-
plementations on commercially available NISQ devices.

Reinforcement learning. – Reinforcement learning
(RL) has been already applied to closed quantum systems,
i.e., following a unitary dynamical evolution [37]. Yet, the
setting of an agent acting on an environment has a nat-
ural analogue in open quantum systems [73]. In ref. [74]
we propose to generalize RL into the quantum domain in
order to solve a quantum maze problem. It is an example
of QQ-type QML. For quantum maze we mean a network
whose topology is represented by a perfect maze, i.e., there
is always one unique path between any two points in the
maze, and the dynamical evolution of the physical state
(described by its adjacency matrix ρ) of this network is
quantum. The paths of the maze are defined by links be-
tween pair of nodes, which are described by an adjacency
matrix A. The coefficient Ai,j = 1 indicates the presence
of the link, while Ai,j = 0 indicates its absence. The evo-
lution of the quantum system has been based on the quan-
tum stochastic walk model [51,52] that can be described by
a Lindblad master equation [75] where the Hamiltonian of
the system H corresponds to the adjacency matrix itself,
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i.e., H = A, and with a set of Lindblad operators acting
as noise for the quantum walker, i.e.,

ρ̇ = −(1 − p) i[H, ρ] + p LCRW (ρ) + Lsink(ρ) (2)

with a term describing (for p = 1) the regime of a classical
random walk (CRW), as

LCRW (ρ) =
∑

i,j

LijρL
†
ij −

1

2
{L†

ijLij , ρ}, (3)

with the Lindblad operators being defined as Lij =
(Aij/dj)|i〉〈j|, where {dj} are the node degrees. When
p = 0 one recovers the pure quantum walker regime, while
p = 1 corresponds to the classical scenario for a random
walker. For the intermediate values of p in the range ]0, 1[,
one has a quantum stochastic walker with an interplay be-
tween coherent evolution and noise effects. In addition,
there is a Lindblad operator that irreversibly transfers the
population from the “exit” node n to the sink S with a
rate Γ, as follows:

Lsink(ρ) = Γ [2|S〉〈n|ρ|n〉〈S| − {|n〉〈n, ρ}] . (4)

Moreover, we assume that all population is initially at the
entrance node of the maze. The exit of the maze corre-
sponds to the sink S which irreversibly traps the popu-
lation. Equation (2) leads to the following expression for
the escaping probability from the maze:

psink(t) = 2Γ

∫ t

0
ρn,n(t′) dt′. (5)

The goal is to maximize this escaping probability in the
shortest amount of time. Since we consider a perfect maze,
there is a single path to exit the maze from the entrance
node, in presence of several dead ends. In this scenario,
an external controller (the computer user or the quantum
system itself) is the agent that has some information about
the quantum state of the system, while the maze is the RL
environment. The available actions for the agent, during
the evolution, are:

1) Building walls. During the evolution, at given (pe-
riodic) time instants, the system can change the ad-
jacency matrix of the environment removing a link
(changing from 1 to 0 an entry Ai,j). This emulates
the closing of a door through a passage that for in-
stance leads to a dead end or that does not bring
efficiently the walker to the exit.

2) Breaking walls. The system can change the adjacency
matrix of the environment adding a link (changing
from 0 to 1 an entry Ai,j). This mimics the creation
of an hole in a maze wall, hence opening a shortcut.

In this setup, the objective function is the amount of
time required to exit the maze (to be minimized) or the
amount of population that exits to the sink in a given

episodes
episode running average
training
training running average
baseline
final trained

(a)

(b)

Fig. 4: In panel (a) a sample of a 6× 6 perfect maze. In white
the possible paths, in black the walls. In the lower left corner,
the node in blue is the entrance to the maze, corresponding
to the initial quantum state, while the node in red is the exit,
i.e., the node connected to the sink. In panel (b) an example
of a training curve for an agent doing actions at periodic time
instants, in the regime of p = 0.8 on the 6×6 maze in (a). The
curves show the rewards from the single episodes and their
running average over 100 episodes as well as the training curve
of the agent with the running average again over 100 episodes.
The two constant lines are the baseline quantum walker with no
actions performed by the agent and the final trained policy [74].

amount of time (to be maximized). If the adjacency ma-
trix can change —either intrinsically by random flips or
as a result of actions taken by the agent— we are in the
canonical scenario for RL but in a quantum domain (quan-
tum RL). We thus want to learn a policy by which, dy-
namically changing the topology of the maze, even by just
adding or removing a small number of walls, we can sig-
nificantly improve the transfer rate of the walker to the
sink. We can also imagine the action of modifying the
adjacency matrix as a sort of additional, engineered noise
that, if carefully tuned, can improve the exit performance
of the stochastic quantum walker. An example of such an
improvement is shown in fig. 4 where an agent was trained
to perform the described actions on a 6 × 6 perfect maze.
We can see how the performance improves from the base-
line stochastic quantum walker as the agent learns how
to get better rewards, i.e., transferring more population
into the sink. The number of actions made by the agent
was quite small (8 in this particular case) but carefully
planned in order to yield a great boost to the efficiency
of the walker. Given the key role of transport of energy
or information over complex networks, this approach (see
more details in ref. [74]) might represent an interesting
and promising step towards novel QML schemes for NISQ
devices and quantum technologies in general.

Conclusions. – Quantum machine learning is where
nowadays machine learning is going to meet quantum in-
formation science in order to realize more powerful quan-
tum technologies. However, a much deeper understanding
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of their underlying mechanisms is still required in order
to develop new algorithms and especially to apply them
to address real problems and then to lead to commer-
cial applications. This is a very young but very rapidly
developing research field where the first results pave the
way for new experimental demonstrations of such hybrid
classical-quantum protocols allowing to evaluate the po-
tential advantages of exploiting them over their classical
ML counterparts and then to exploit them on commer-
cially available or coming soon NISQ devices and quantum
technologies. We have hereby presented a perspective on
new recent algorithms covering the main areas of ML (su-
pervised, unsupervised and reinforcement learning) and
different combinations of quantum-classical data and algo-
rithms (QQ, QC, CQ models). We have also pointed out
that there is still plenty of work to do, as it is definitely
necessary to scale up the algorithms listed here (and all
the other models that have been proposed recently) to the
limits of existing devices performing an accurate scaling
analysis of performances and corresponding errors. Ul-
timately, the crucial question we will need to answer in
this field is whether a quantum speedup is theoretically
and experimentally feasible via quantum machine learn-
ing models running on NISQ machines.
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and Aspuru-Guzik Alán, Phys. Rev. A, 81 (2010)
022323.

[52] Filippo Caruso, New J. Phys., 16 (2014) 055015.
[53] Helstrom C., Mathematics in Science and Engineering:

A Series of Monographs and Textbooks (Elsevier) 1976.

[54] Martina Stefano, Gherardini Stefano and Caruso
Filippo, arXiv:2101.03221 (2021).

[55] Cho K., Merrienboer B. v., Gulcehre C., Bah-
danau D., Bougares F., Schwenk H. and Bengio Y.,
in Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP) (Associa-
tion for Computational Linguistics) 2014, pp. 1724–1734.

[56] Gers F. A., Schmidhuber J. and Cummins F., in 1999
Ninth International Conference on Artificial Neural Net-
works ICANN 99, Vol. 2 (IEE) 1999, pp. 850–855.

[57] Degen C. L., Reinhard F. and Cappellaro P., Rev.
Mod. Phys., 89 (2017) 035002.

[58] Otterbach J. S., Manenti R., Alidoust N., Best-
wick A., Block M., Bloom B., Caldwell S., Didier
N., Fried E. Schuyler, Hong S. et al., arXiv preprint,
arXiv:1712.05771 (2017).

[59] Mahajan Meena and Raman Venkatesh, J. Algo-
rithms, 31 (1999) 335.

[60] Kingma Diederik P., Mohamed Shakir, Rezende
Danilo Jimenez and Welling Max, in Advances in
Neural Information Processing Systems (MIT Press) 2014,
pp. 3581–3589.

[61] Khoshaman Amir, Vinci Walter, Denis Brandon,
Andriyash Evgeny and Amin Mohammad H., Quan-
tum Sci. Technol., 4 (2019) 014001.

[62] Vinci Walter, Buffoni Lorenzo, Sadeghi Hossein,
Khoshaman Amir, Andriyash Evgeny and Amin Mo-
hammad, Machine Learning: Sci. Technol., 1 (2020)
045028.

[63] LeCun Y., http://yann.lecun.com/exdb/mnist/ (1998).
[64] Goodfellow Ian, Pouget-Abadie Jean, Mirza

Mehdi, Xu Bing, Warde-Farley David, Ozair Sher-
jil, Courville Aaron and Bengio Yoshua, in Ad-
vances in Neural Information Processing Systems (MIT
Press) 2014, pp. 2672–2680.

[65] Goodfellow Ian, arXiv preprint, arXiv:1701.00160
(2016).

[66] Lloyd Seth and Weedbrook Christian, Phys. Rev.
Lett., 121 (2018) 040502.

[67] Dallaire-Demers Pierre-Luc and Killoran
Nathan, Phys. Rev. A, 98 (2018) 012324.

[68] Benedetti Marcello, Lloyd Erika, Sack Stefan
and Fiorentini Mattia, Quantum Sci. Technol., 4
(2019) 043001.

[69] Pepper Alex, Tischler Nora and Pryde Geoff J.,
Phys. Rev. Lett., 122 (2019) 060501.

[70] Benedetti Marcello, Grant Edward, Wossnig
Leonard and Severini Simone, New J. Phys., 21 (2019)
043023.

[71] Hu Ling, Wu Shu-Hao, Cai Weizhou, Ma Yuwei,
Mu Xianghao, Xu Yuan, Wang Haiyan, Song Yipu,
Deng Dong-Ling, Zou Chang-Ling et al., Sci. Adv., 5
(2019) eaav2761.

[72] Braccia Paolo, Caruso Filippo and Banchi
Leonardo, arXiv preprint, arXiv:2012.05996 (2020).

[73] Breuer Heinz-Peter and Petruccione Francesco,
The Theory of Open Quantum Systems (Oxford Univer-
sity Press) 2002.

[74] Dalla Pozza Nicola, Buffoni Lorenzo, Martina
Stefano and Caruso Filippo, in preparation (2020).

[75] Lindblad Goran, Commun. Math. Phys., 48 (1976)
119.

60004-p7


