
Università degli Studi di Firenze
Dipartimento di Ingegneria dell’Informazione (DINFO)

Corso di Dottorato in Ingegneria dell’Informazione

Curriculum: Control, Optimization and Complex Systems

Maritime anomaly detection

based on statistical

methodologies: theory and

applications

Candidate

Enrica d’Afflisio

Supervisors

Prof. Luigi Chisci

Prof. Giorgio Battistelli

Dr. Paolo Braca

PhD Coordinator

Prof. Fabio Schoen

ciclo XXXIV, 2018-2021
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Abstract

The proposed research aims at contributing to advances in the anomaly de-

tection methodologies within the framework of maritime domain, in order to

improve the ability to reveal, understand, anticipate and prevent illegitimate

activities at sea. This work has been developed based on three fundamen-

tal tools: a prior information from a maritime traffic graph that can be

derived from a route atlas or from historical data, the Ornstein-Uhlenbeck

mean reverting stochastic process to model the vessel’s dynamics in deep wa-

ters, and the complete or incomplete observation of the available data from

heterogeneous sensor systems. Relying on the statistical hypothesis testing

framework, the work treats the problem of detecting a vessel’s anomalous

deviations from the expected conditions in the presence of different levels of

data unavailability. The problem is further complicated by the possible falsi-

fication of dynamic data self-reported by the vessel. A worst-case scenario in

terms of detection capability is finally tackled by proposing an optimization

methodology to make the trajectory of a malicious vessel as stealth as pos-

sible. The effectiveness of the proposed strategies has been assessed through

experimental analyses concerning both synthetic and real-world maritime

operational scenarios.
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Chapter 1

Introduction

1.1 An overview of maritime surveillance

Along with its primal role in the development of ecosystems, its wildlife

richness and being one of the last places on Earth mainly unknown to hu-

mankind, the World Ocean is an essential environment for the world econ-

omy, as some activities, such as transportation of goods, fishing, sailing and

cruising occur at sea and impact the worldwide economy. For instance, 80

- 90% of global goods transportation and energy transportation are done

by sea [111, 193, 222], and millions of people work on sea-related activities.

However, the increasing shipping traffic leads to risks in coastal areas, har-

bors, and densely exploited maritime routes, as all vessels try to optimize

their journey, creating conflicts in areas where a large amount of vessels are

gathered [1].

Formally defined by the NATO Military Committee as “an enabling ca-

pability which seeks to deliver the required Information Superiority in the

maritime environment to achieve a common understanding of the maritime

situation, in order to increase effectiveness in the planning and conduct of

operations,” Maritime Situational Awareness (MSA) is the concrete under-

standing of anything associated with the maritime domain that could im-

pact the security, safety, economy, or environment [9]. It aims at provid-

ing a seamless wide-area operational picture of ship traffic in coastal areas

and the oceans in real time [40, 48, 90], and establishes a view of adver-

sary activities, events, locations, and maneuvers. In the specific, Maritime

Surveillance (MS) is essential for creating maritime awareness, represent-

1



2 Introduction

ing an important domain for many national and international institutions,

agencies, and bodies. Indeed, national authorities and international bod-

ies require proper support to monitor increasing maritime activities and the

related volume of data to guarantee safety, protect the environment, opti-

mize traffic streams, and avoid illegal activities. Therefore, the MS efforts

are aimed to enhance Search and Rescue (SaR) operations, provide effective

response to accidents and disasters, monitor fisheries, prevent pollution and

support law enforcement and national defense. In this regard, asset alloca-

tion, route planning and anomaly detection tasks are among all the possible

applications within the MS context.

In order to accomplish these tasks, MS requires target detection, track-

ing, and identification, and deals with surface, subsurface, and airborne tar-

gets in considerable large areas. Besides, MS benefits from the availabil-

ity of a large number of sensors, high data storage capacity, cheap devices

and good database management systems able to handle huge volumes of

maritime traffic data. With the aim of providing comprehensive maritime

operational pictures, the huge amount of data collected by heterogeneous

sensor systems need to be condensed in the right way, to avoid overwhelm-

ing the human decision-making process. This procedure allows to prevent

the system-level failure due to potential communication interruption, hard-

ware breakage or detection limits of individual systems, and, thus, to avoid

the unique dependency on single system, as well as, to enhance the surveil-

lance performance. Indispensable in this regard are the multi-source data

fusion technologies [29], which use the data from multiple sensors to per-

form inferences that may not be possible from a single sensor alone. Data

from different sensors are then combined using signal processing, pattern and

image recognition, artificial intelligence, and information theory, in order to

produce a single, consolidated surveillance picture. In research community,

many works have been conducted to investigate the multi-source data fusion

technologies for MS [27,29,31,32,35,48,75,77,92,98,137,144].

1.2 Data sources for maritime surveillance

As previously mentioned, in support to the MS framework comes the rapid

development of information and communications technologies, with the in-

creasing availability of surveillance sensors, data stored in databases, net-

worked system solutions and robust signal processing techniques. MS data
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relate to vessels and their attributes (e.g., position, identification, history,

etc.) and to contextual geographically-linked information. Currently, MS

mostly relies on data collected by heterogeneous systems, all with their ad-

vantages and limitations. All around the world, the on-duty Vessel Traffic

Services (VTS) [20] deployed at maritime traffic control and monitoring cen-

tres collect the traffic data from the MS networks that typically comprise

multi-infrastructure sources. Specifically, vessel tracking data and attributes

can be grouped into self-reporting (voluntary broadcast by collaborative sys-

tems) or observation-based (collected by active or passive sensors) depending

on the way such data are acquired. Information registries and databases con-

tain additional information about the vessel that is essential to build a solid

awareness of maritime activities:

• Collaborative data sources comprise the systems working in a coop-

erative fashion as, e.g., systems for collision avoidance as the Automatic

Identification System (AIS) [111, 114], for security and safety as the

Long-Range Identification and Tracking (LRIT) [112], or for fisheries

monitoring as the Vessel Monitoring System (VMS) [76].

• Non-collaborative data sources include coastal radars [20, 40, 99,

145,152,175], active and passive sonar, video and infrared cameras [95].

Furthermore, space-based sensors are of notable importance in rou-

tinely providing data for MS. Specifically, space-based Synthetic Aper-

ture Radar (SAR) and Electro-Optical (EO) are effective for ship detec-

tion and are being operationally utilized by nations [219]. In addition,

space-based AIS, or Satellite Automatic Identification System (S-AIS),

provides capability for non-coastal regions with a detection perfor-

mance and persistence that depend on satellite revisit rates, ship traffic

density, and other interference sources.

A conceptual representation of some of collaborative and non-collaborative

data sources is provided in Fig. 1.1. Basically, in ports and harbour, the

coastal radars assist in detecting and tracking vessels’ navigation in busy

waterways; in remote ocean area and open oceans, the LRIT, S-AIS and

SAR consist of the primary approaches for ship surveillance.

Each of the aforementioned stand-alone systems is usually not able to en-

sure reliable surveillance for handling complex scenarios (due to the specific

effects of each technology as transitional loss of availability, errors, limits

of coverage, etc.). For example, high resolution coastal radar technology is
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Figure 1.1: A conceptual representation of collaborative and non-collaborative data

sources. An AIS equipped vessel transmits messages to other AIS equipped vessels and to

shore-based stations, using dedicated radio channels. Alternatively, the messages can be

gathered by the VTS center through satellite transmission (S-AIS). Besides, SAR satel-

lites and coastal radars take actions in a non-collaborative way.
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effective with high accuracy and persistent monitoring, but usually presents

difficulties (occlusions, shadows, fragmentation, lack of identification) which

make it necessary to supplement them with cooperative technologies such as

AIS.

In the following, we provide a descriptive summary of the primary infor-

mation systems in maritime traffic service networks.

Automatic Identification System

AIS technology is currently an important and widely used solution in smart

transportation, with an estimated number of over 300,000 installations. Pre-

cisely, AIS, refers to a technology introduced to enhance the safety of ves-

sel traffic by automatically exchanging up-to-date information as well as

tracking and monitoring ships. AIS technology enables the exchange of

both the dynamic (like position, velocity, course, rate of turn etc.) and

static (vessel identifier, dimension etc.) information between ships and be-

tween ship and shore-based AIS station in near real time through Very High

Frequency (VHF) radio transmission, as it will be better described in Ap-

pendix A.

AIS is mostly land based, also known as terrestrial AIS, of which the

AIS signals are received by shore-based monitoring stations; AIS receivers

can be also placed on low orbiting satellites to collect AIS signals, called

S-AIS [47, 109] and thus vessels can be indeed tracked in the remote areas

and open oceans beyond the reach of terrestrial AIS.

Since the 2002 International Maritime Organization (IMO) Safety on Life

at Sea (SOLAS) convention [111], AIS has been a mandatory installation

for international voyaging ships weighing at least 300 Gross Tonnage (GT)

and all passenger ships, regardless of size. Nowadays, over half a million

vessels use AIS to transmit their location, which is collected by a network

of receivers deployed in over 140 countries and transferred for display and

vessel tracking through platforms such as MarineTraffic1, that has 40 million

users annually alone [5]. As visible in Fig. 1.2, the amount of information

reported by onboard AIS transceivers is impressive.

As the AIS network of receivers grows and its technology develops from

a simple navigational and situational awareness tool for safety at sea to

the backbone of a global ship tracking network, AIS data is able to pro-

vide ever-more accurate and valuable information to track the position of

1http://www.marinetraffic.com
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Figure 1.2: Density of traffic in the world computed using AIS data collected from mul-

tiple AIS networks from April to September 2012 at the NATO Science and Technology

Organization Centre for Maritime Research and Experimentation [154].

ships anywhere in open waters or sea passageways in near real time. AIS is

currently a major technology and solution in traffic monitoring and vessel

assistance. Shipowners and maritime authorities rely on AIS to supplement

traditional radars for collision avoidance, SaR operations, accident investiga-

tion and location tracking, in addition to complementary systems for visual

observation, audio exchange, and LRIT.

Large volumes of streams of AIS messages were recently processed to

visualize ship routes and traffic density maps [78], identify global patterns

of transshipment behavior [159], analyze the effects of COVID-19 on global

maritime mobility [156], and to train deep learning networks for long-term

prediction of vessel trajectories [45]. This information is also fundamental

to enable advanced anomaly detection systems for the maritime domain to

make decisions based on near real-time data.

Long-Range Identification and Tracking System

LRIT system was established by IMO in 2006, in order to complement other

existing maritime information systems to enhance MSA [112]. LRIT is a

satellite-based, real-time reporting system that collects and disseminates ves-

sel position information [213]. According to the LRIT regulation, all passen-
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ger ships, ships used for the purpose of cargo-carrying, speedier craft of 300

GT and above, and the mobile offshore drilling units must report their posi-

tion at regular intervals (at least every six hours). The LRIT system consists

of the transmitting device and satellite communication equipment, commu-

nication service providers, the overall LRIT application service providers,

LRIT data centres, the data distribution plan and the International data ex-

change [112]. S-AIS and LRIT shares some similarity as both systems allow

for ship detection and identification from space, but they entirely differ in

the working mechanism.

Coastal radar

Coastal radar is a shore-based sensor radar system that is designed to meet

the requirements of VTS to detect and track vessels in the area covered

by the radar site. Coastal radar gives regular information about the posi-

tion and velocity of a vessel, serving as the basic infrastructure of VTS for

maritime traffic surveillance in ports, harbour and busy waterways. The

shore-based radar systems mainly focus on collision monitoring and ground-

ing prevention, and generally aim at achieving the safety and security as-

pect in the covered area [20]. In research community, the HF Surface Wave

radar (HFSW) radars (a type of over-the-horizon radar that works with

ground-wave) attract increasing interests recently due to their wider cov-

erage beyond the conventional microwave radar detection ranges. HFSW

radars provide additional data sources and enable wide-area surveillance in

MSA applications [40,99,145,175].

Satellite-borne Synthetic Aperture Radar

SAR has been utilized for maritime surveillance worldwide [122]. The high-

resolution imagery data captured by SAR platforms are able to be respon-

sible for ship detection over wide water area and in all weather condi-

tions [43, 225]. Satellite-borne SAR is developed to overcome the cover-

age limitations of coastal systems and is suited for oceanographic observa-

tions. The popular SAR platforms include RADARSAT [206], ENVISAT-

ASAR [104], Sentinel-1 [103,192], Cosmo-SkyMed SAR system [147,148] and

TerraSAR-X [167,178,216] and TanDEM-X [160] etc.

In addition EO satellites are also used for vessel tracking and monitor-

ing [150,219]. The optical satellite images can extend the SAR based systems
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through more frequent revisit times and have a higher spatial resolution for

the detection of smaller vessels [150].

1.3 The anomaly detection problem:

definition and practical scenarios

Although there is no univocal definition, in general, an anomaly always rep-

resents a deviation from what is standard, normal, or expected. In today’s

data-driven world, anomalies are often referred to as non-conforming pat-

terns, outliers, discordant observations, exceptions, aberrations, surprises,

peculiarities or contaminants in different application domains, representing

anything not fitting the general trend. Anomalies might be induced in the

data for a variety of reasons, such as malicious activity like credit card fraud,

cyber-intrusion, terrorist activity or breakdown of a system [50], and they

can be identified through various mechanisms, generally known as anomaly

detection algorithms. Anomaly detection has been studied in the statistics

community as early as the 19th century [71], and has found extensive use in

a wide variety of applications, such as fraud detection for credit cards, in-

surance or health care, intrusion detection for cyber-security, fault detection

in safety critical systems, and military surveillance for enemy activities.

A straightforward anomaly detection approach is to define a normal be-

havior and declare any observation in the data which does not belong to this

normal condition as an anomaly. But several factors make this apparently

simple approach very challenging:

– Defining every possible normal behavior is very difficult. In addition,

the boundary between normal and anomalous behavior is often not

precise.

– The exact notion of an anomaly is different for different application

domains.

– When anomalies are the result of malicious actions, the malicious ad-

versaries often adapt themselves to make the anomalous observations

appear like normal, thereby, making the task of defining normal be-

havior more difficult.

– In many domains, normal behavior keeps evolving and a current no-

tion of normal behavior might not be sufficiently representative in the
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future.

– Often the data contains noise which tends to be similar to the actual

anomalies and, hence, is difficult to distinguish and remove.

Due to the above challenges, the anomaly detection problem, in its most

general form, is not easy to solve. Indeed, most of the existing anomaly

detection techniques solve a specific formulation of the problem. The formu-

lation is induced by various factors such as nature of the data, availability

of labeled data, type of anomalies to be detected, etc. Often, these factors

are determined by the application domain in which the anomalies need to be

detected. Researchers have adopted concepts from diverse disciplines such as

statistics, data mining, machine learning, information theory, spectral theory,

and have applied them to specific problem formulations [50].

1.3.1 The maritime anomaly detection problem

Anomaly detection in the maritime domain was identified by the operators/-

analysts of the operational community as an important aspect for MSA re-

quiring research and development [146]. More specifically, automatic anoma-

lous maritime vessel behavior detection consists of finding anomalous move-

ment behavior of vessels moving in maritime areas such as in harbours or

in open sea using computational methods [197]. Anomalous vessel behavior

refers to vessel movement behavior that differs from the typical or normal

vessel movement behavior. For instance, as it will be better described in

Subsection 1.3.4, anomalous vessel behavior can refer to a sudden change in

vessel kinematic behavior (such as unusual speed or location), deviation from

standard sea lanes, unexpected port arrivals, close approach, and zone en-

try [127]. Therefore, anomalous vessel behavior detection is one of the main

tasks for MSA, allowing the identification of suspicious situations or threats

in the maritime domain and taking appropriate action. Indeed, surveillance

operators have to constantly search and predict emerging conflict situations,

e.g., risk for collision, anomalous vessels or suspicious activities from a large

number of vessels within vast sea area, and a prompt detection of such situ-

ations provides critical time to take appropriate action with, possibly before

potential problems occur.

Nowadays, in addition to the available nominative and positioning infor-

mation broadcast by collaborative systems (e.g., AIS, VMS, LRIT), other

information related to environmental, contextual and geographical data are
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also at hand and can be aggregated as complementary and correlative sources

to the exploitable data [181]. Therefore, merged and analyzed, together

with a large variety of contextual information of different natures and types,

vessel positioning data can be used to monitor maritime mobility, uncover

maritime activities, illegal trafficking or risks for the environment, living re-

sources and the navigation. However, exploring and monitoring the data

manually is a demanding task, not only due to the complexity and heteroge-

neous nature of the data itself but also due to other factors like uncertainty,

fatigue, cognitive overload, or other time constraints. Consequently, increas-

ing automation through a large number of advanced methods and techniques

for maritime anomaly detection has enabled the system and the operator to

spot complex situations by correlating various events from all surveillance

sensors and classify them into important incidents.

According to the literature [189,197], the main approaches for anomalous

vessel behavior detection can be divided into three categories: data-driven,

rule-based, and hybrid, as outlined in Fig. 1.3.

Rule-based approaches for maritime anomaly detection refer to the gen-

eration of alerts based on a set of rules [191], such as maximum speed al-

lowed in a port, presence in areas restricted to navigation or inconsistencies

between the ship’s claimed and actual activity. These approaches are com-

posed of two phases: i) creating and specifying predefined patterns that one

wants to detect using rules; ii) the new data are matched to the predefined

rules to detect predefined anomalies of interest, which are those data that

deviate from the predefined rules. However, rule-based models are generally

deterministic and do not take advantage of the variability found in large

datasets, instead relying on heuristics to assign the parameters of the model.

In contrast to rule-based models, the data-driven approaches do not foresee

a prescribed set of rules, and they can learn arbitrarily complex patterns

from large amounts of data. The hybrid approach combines the data-driven

and rule-based approaches to perform anomalous maritime vessel behavior

detection, however, recently, only limited effort has been devoted to the use

of this type of approaches [120,195,196].

Since data-driven approaches appear easier to apply on a large scale to

gain efficient classification performance and detect different types of anoma-

lies [189], the majority of studies in this research area fall under the data-

driven category, which will be considered in depth in the following subsec-

tions.
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Approaches for anomalous vessel behavior detection

Rule-based Data-driven

Data mining & machine learning Statistical

Parametric Non-parametric

Hybrid

Figure 1.3: Approaches for anomalous vessel behavior detection divided into three cat-

egories: data-driven, rule-based, and hybrid. Data-driven approaches, in turn, can be

divided into distinct categories: statistical (parametric and non-parametric), machine

learning and data mining (vector-based and grid-based).

1.3.2 Data-driven methods and techniques for maritime

anomaly detection

Data-driven approaches typically involve two common phases:

1. Normalcy extraction: a model representing the normal behavior is

learned from the available historical data;

2. Anomaly detection: new vessel movement data are matched to the

learned normalcy model of vessel behavior, considering any mismatch

as anomalous behavior.

Essential for effective anomaly detection is thus building an accurate

model of normalcy. Most of the data-driven approaches build models rep-

resenting the normal vessel behavior through the analysis of historical AIS

data [80,87,168,171,187]; indeed, accumulating tracks from AIS data over a

long time period can establish a pattern of typical movements, namely pat-

tern of life [19]. More specifically, patterns of life are understood as observ-

able human activities that can be described as patterns related to a specific

action taking place at a specified time and place. Essentially, vessel-based

maritime activity can be described in space and time, while classified to a

number of known activities at sea (e.g., fishing, dredging, etc.). The spatial

element describes recognised areas where maritime activity takes place; thus,

including ports, fishing grounds, offshore energy infrastructure, dredging ar-

eas and others. The transit paths to and from these areas also describe the

spatial element, (e.g., commercial shipping and ferry routes etc.), while the
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temporal element often holds additional information for categorising these

activities (e.g., fishing period, time of year).

Once the picture of the maritime traffic is derived through the analysis

of the increasingly available stream of AIS data, this historical knowledge

can be applied to: i) classify the routes, i.e., identify compatible routes, as-

signing a probability that the vessel is actually following a specific route; ii)

predict future vessel positions, i.e., predict the route along which a vessel is

going to move, in agreement with the partially observed track and given the

vessel static information (e.g., vessel type); iii) support decisions and action

planning at different information levels, enhancing the detection of anoma-

lous behaviors, i.e., behaviors deviating from the learned traffic normality;

iv) optimize sensor resource management, i.e., the problem of allocating the

available sensor resources in order to obtain the optimal awareness of the

situation.

According to the available proposals and studies [189,197,227], the data-

driven methodologies for maritime anomaly detection can be divided into:

data mining and machine learning approach and statistical approach, as

outlined in Fig. 1.3.

Data mining and machine learning approach

Data mining and machine learning techniques [97,121,230] are able to iden-

tify patterns emerging within huge amounts of data, fused from various un-

certain sources and generated from monitoring thousands of vessels a day, so

as to act proactively and minimize the impact of possible threats. The gen-

eral aim of such an approach include frequent pattern discovery, trajectory

pattern clustering in a multidimensional feature space, trajectory classifica-

tion, forecasting, and anomalies/outliers detection.

Clustering-based methods: Cluster analysis is one of the basic tools for

exploring the underlying structure of a given data set and its primary objec-

tive of cluster analysis is to partition a given data set of multidimensional

vectors (patterns) into so-called homogeneous clusters such that patterns

within a cluster are more similar to each other than patterns belonging to

different clusters. The huge volume of spatial trajectories enables opportuni-

ties for analyzing the mobility patterns of vessels, which can be represented

by an individual trajectory containing a certain pattern or a group of trajec-

tories sharing similar patterns. Indeed, clustering is a form of unsupervised

learning and involves automatic grouping of data into multiple clusters ac-
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cording to distinguishing features. Assuming that the data set reflects what

is considered more or less normal, the resulting set of fairly large clusters

is regarded as a model of normalcy. New data presented to the model are

regarded as more or less anomalous based on the distance to the nearest

cluster.

Therefore, vessel tracks can be clustered into a number of routes, where the

features of the track are attributes such as longitude and latitude, speed and

course, and various clustering-based methods can be applied for maritime

anomaly detection:

– Distance-based methods optimize a global criteria based on the distance

between patterns. k-Means is a distance-based method that defines k

disjoint clusters on the basis of the feature value of the objects to be

grouped. k-Medoids is very similar to the k-Means algorithm, but it

represents each cluster by the most centric object in the cluster, rather

than by the implicit mean that may not belong to the cluster. Its

main drawback is the selection of the number of clusters, which can be

optimized by using an Expectation Maximization (EM) algorithm.

– Density-based methods identify distinctive groups/clusters in the data,

based on the idea that a cluster in a data space is a contiguous region

of high point density, separated from other such clusters by contigu-

ous regions of low point density. Recently, the Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) algorithm have be-

come very popular for their convenient properties: these methods do

not require to specify the number of clusters and have the ability to

derive arbitrarily shaped clusters and identify outliers [73].

The strength of clustering-based algorithms stem from the fact that they

are inherently unsupervised and have an intuitive criteria for detecting out-

liers/anomalies. Their limitations include the quadratic computational com-

plexity and a possible incorrectness when handling high dimensional data.

Classification-based methods: The key problem of intelligent maritime

surveillance is the modelling of typical sailing patterns of training vessel

trajectories and classification of vessel behavior to be monitored. In machine

learning, classification is considered as an instance of supervised learning in

data analysis and pattern recognition that requires the construction of a

classifier, that is, a function that assigns a class label to instances described

by a set of attributes. Using supervised learning approaches, trajectories or
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segments of a trajectory can be classified into some categories, which can be

motions, human activities, or transportation modes. In general, trajectory

classification is comprised of three major steps: i) division of a trajectory

into segments using segmentation methods; ii) extraction of features from

each segment (or point); iii) building of a model to classify each segment

(or point). For anomaly detection purposes, the data are generally classified

into two categories, namely normal or anomalous.

Common learning models used for classification are:

– A Decision Tree is a machine learning classifier that uses a tree graph

model, similar to flow chart structure, to introduce conditional state-

ments in which each node represents a conditional test on an attribute

to output a class represented by one of the leaves. Then, the internal

nodes are a test property, each branch represents test result, and final

nodes, or leaves, represent the class to which any object belongs. A

training process is used to build the tree that minimizes the classifica-

tion error. Random forest is an ensemble learning method that relies

on a combination of many decision trees for classification purpose. It

uses bagging and feature randomness when building each individual

tree to try to create an uncorrelated forest of trees whose prediction

by committee is more accurate than that of any individual tree.

– Neural networks represent one of the most effective data-driven ap-

proaches for the supervised learning task. They are configured as a

set of interconnected nodes designed to imitate the functioning of the

human brain, where each node has a weighted connection to several

other nodes in neighbouring layers. A Neural Network basically infers

a function that maps an input to an output based on example input-

output pairs derived from existing data. Compared with traditional

Neural Networks, Recurrent Neural Networks turn out to be more ca-

pable of processing time series data, consequently, they are well suited

to the tasks of maritime anomaly detection since the vessel trajectory

data consists of tracking points with time stamps, a type of typical

time series data [231].

– Associative learning is a type of data mining approach to discover taxo-

nomic relationships between objects or concepts of interest [183]. This

method, based on biological principles, is able to determine anoma-

lous behaviors and predict vessels’ navigation states that include both
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location and velocity prediction.

– Support Vector Machines (SVM) are machine learning models that can

be used for classification and anomaly detection. Basically, the SVM

algorithm’s goal is to create the best line or decision boundary that

can decompose the multidimensional feature space into sets supporting

categorization of new data points. In their simplest forms, SVM suffer

from a number of problems that have limited their use in vessel anomaly

detection, including a lack of partial assignment, a restriction to binary

classes, high computational complexity and difficulties in summarizing

and communicating the learned models.

– Logistic Regression is a classification technique borrowed by machine

learning from the field of statistics. Specifically, Logistic Regression

is a parametric a statistical method for analyzing a dataset in which

there are one or more independent variables that determine an out-

come. The intention behind using Logistic Regression is to find the

best fitting model to describe the relationship between the dependent

and the independent variable. Different from Linear Regression, the

outcome of Logistic Regression on one sample is the probability that

it is positive or negative, where the probability depends on a linear

measure of the sample.

– Fuzzy Logic: was first introduced in [229] and relies on the theory of

fuzzy sets. This approach exploits the notion of degree in the verifi-

cation of a condition, enabling conditions to be in intermediate states

between the states of conventional evaluations, thus allowing variables

to be “partially” true, or “not definitely yes” etc. Fuzzy logic has been

used for static anomaly detection as it is considered to be an ideal

tool when dealing with imprecise or contradictive data, which can be

modelled adequately with fuzzy sets, and combined with human logic.

Statistical approach

Statistical approaches to maritime anomaly detection fit a statistical model

representing normal vessel behavior to the given historical vessel movement

data, and then apply a statistical inference test to determine whether a new

vessel observation belongs to this model or not. Observations that have a

low probability of being generated from the learned model, based on the

applied test statistic, are declared as anomalous behaviors.
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Basically, traffic statistics provide quantitative modelling and representa-

tion of the traffic features which can be used for determining some important

traffic parameter values (or distribution) and thresholds to help distinguish

the normal and abnormal navigation behavior.

In [189], authors identify two main statistical methods: parametric and

non-parametric methods.

– Parametric methods: a specific statistical model relying on the histori-

cal data is assumed. Gaussian Mixture Model (GMM) is a very popular

unsupervised parametric method which approximates the (unknown)

statistical distribution of the normal vessel traffic by using the EM

algorithm to estimate the distribution parameters. A GMM can be re-

garded as an ensemble model of K multivariate Gaussian distributions

(mixture components).

Bayesian Networks represent another parametric method, which as-

sumes an underlying probabilistic model and it allows capturing un-

certainty about the model in a principled way by determining proba-

bilities of the outcomes. More specifically, These networks are directed

acyclic graphs, with evidence propagation governed by Bayes’ theo-

rem [176], and allow efficient and effective representation of the joint

probability distribution over a set of random variables: each node cor-

responds to a random variable and each edge represents the conditional

probability for the corresponding random variables. Näıve Bayes clas-

sifiers are among the simplest Bayesian network models with strong

independence assumptions between the features. These classifiers are

highly scalable, requiring a number of parameters linear in the number

of variables (features/predictors) in a learning problem, and, coupled

with Kernel Density Estimation (KDE), they can achieve higher accu-

racy levels.

– Non-parametric methods: no assumption is made about the underlying

distribution of the data. In this case, KDE is a popular method which

derives a non-parametric model of traffic normalcy. One tricky step is

the selection of the free parameters of KDE: the kernel, which specifies

the shape of the distribution, and the kernel bandwidth, which controls

the size of the kernel.

Gaussian Processes (GP) are Bayesian non-parametric statistical mod-

els, which are mainly applied to regression and classification tasks, and

are able to cope with unreliable, noisy, or partially missing data. An
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advantage with GP is that the model is non-parametric so it is not nec-

essary to build in features of anomalous behavior. A limitation of this

approach is that although GP provide a flexible and robust approach

to anomaly detection, they are not typically suitable for large datasets

due to high computational complexity in training [123].

1.3.3 Representation of the maritime traffic knowledge

Fundamental to clustering is the feature model, i.e., the representation, of

the data in which we want to detect anomalies, what characteristics of the

data we chose and how we model these characteristics. According to the

available proposals and studies [189, 227], the maritime traffic knowledge

representation can be categorized as vector-based and grid-based methods.

Vector-based methods

Normalcy condition can be represented by means of vector-based methods,

which intend to establish the maritime traffic network through extracting

the network nodes, namely waypoints, and the sea routes, namely waterways,

and thus to model the traffic states along a navigation voyage. The way-

points are regions where ships regularly stop or change their velocity, such

as like entry/exist/turning point. The waterway pattern essentially reflects

the vessels’ navigating routines derived from the maritime traffic operations,

traffic planning and regulations, vessels’ manoeuvrability and hydrographical

features etc., which represents the practical sea routes through voluminous

real-world navigation instances [227]. The temporal information like route

travel time distributions and daily patterns is able to be extracted. The

historical route patterns can be associated to the navigating vessels in real

time to support traffic analysis and traffic forecasting [169].

A vector-based approach relying on point clustering is the Traffic Route

Extraction for Anomaly Detection (TREAD) algorithm developed in [169].

TREAD generates a set of historical patterns of life represented by waypoints

and route features. Waypoints are defined as stationary objects like ports

and offshore platforms and entry and exit points [90], and are clustered using

DBSCAN methodology [73].

Successful advancements on vector-based knowledge discovery [61, 80]

have recently led to the development of an unsupervised graph-based method-

ology to identify the spatiotemporal dynamics of ship routes, and efficiently
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extract a compact representation of global maritime patterns from large vol-

umes of historical AIS data, in the form of a Maritime Traffic Graph (MTG).

This method builds on recent advances in long-term vessel motion model-

ing [154,155] whereby the dynamics of ships can be effectively described by a

piecewise Ornstein-Uhlenbeck (OU) mean-reverting stochastic process. This

approach, extensively validated against real-world datasets [154, 157], relies

on model parameters. The OU model statistically represents the dynamics

of maritime traffic allowing to synthesize historical ship trajectories into a

sequence of waypoints connected together by a network of navigational legs

represented by the MTG.

Starting from raw AIS streams, the MTG model can be automatically

extracted based on the following processing steps:

1. Detection of navigational waypoints: Based on the OU dynamic

model for accurate long-term ship prediction, change detection algo-

rithms [61,158] can be applied to identify specific geospatial waypoints

where the mean long-term velocity parameter of the underlying OU

process abruptly changes. The detected waypoints represent: i) ports,

where a ship’s speed is null either before (leaving the port) or after

the change (entering the port); ii) navigational waypoints, where the

direction of the ship changes (while the speed is possibly constant);

iii) entry, exit, and entry/exit points, i.e., virtual boundary regions of

the area of interest that summarize the entering and exiting traffic.

2. Clustering of navigational waypoints: Based on the assumption

that most maritime traffic is inherently regular, change points are

expected to be concentrated around specific geospatial regions. To

find these significant waypoint areas, standard density-based cluster-

ing techniques can be used in order to group together multiple change

points into a lower number of distinct waypoint clusters.

3. Merging and pruning procedures: Pruning and merging tech-

niques can be used to progressively improve and simplify the over-

all MTG by reducing the number of graph entities (i.e., nodes and

edges), and thus implicitly encode knowledge about ships’ patterns

using a lower-dimensional representation. The number of graph edges

can be reduced by eliminating those links characterized by low weights,

these being least likely to represent recurrent patterns; and by merging

closely-spaced edges (connecting waypoints in a cluster with waypoints
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in a different cluster) into one, as these are more efficiently represented

by a single route.

Thus, the vector-based approaches allow for high compactness network

representation of the waypoints and the traffic routes connecting the way-

points and thus vessel motions and traffic patterns in large areas and even

at a global scale can be characterized as a graph-based network.

However, most of vector-based methods had indeed only been imple-

mented in bounding areas. And, besides, the vector-based approaches are

only considered operative in areas with high traffic but they are difficult to be

effective for unregulated areas; in other words, the vectorial representation

has its limitations where the behavior of vessels is difficult to categorize.

Grid-based methods

Grid-based techniques usually divide the monitored maritime traffic zone

using a spatial grid whose cells contain the motion properties (e.g., location,

heading and speed) of the crossing vessels.

This approach is fast enough to detect simple point anomalies but it suf-

fers from some limitations [227]. First of all, the grid-based methods have

been considered effective only for small area surveillance and the computa-

tional burden was regarded as its limitation when increasing the scale [37,

188]. Another limitation pertains to that a priori determination of the grid

size is required [127, 169]. The selection of the optimal cell size is critical

and often not straightforward and the adoption of a grid structure looses the

spatio-temporal correlation of vessel tracks, making difficult or impossible

the detection of structured anomalies (e.g., start/stop events); for example,

it is not reasonable for open sea (with less traffic) and harbour-like areas

(with dense traffic) to adopt uniform grid size. Other factors like vessel size

and speed may also affect the decision of grid size. The vector-based methods

have also been proposed to overcome these above-mentioned difficulties.

1.3.4 Maritime anomalous behaviors

The main maritime anomalies, described in the scientific literature [11, 115,

189], are schematically reported below:

• Kinematic anomaly: a ship exhibits significant changes to course

(e.g., 90◦ in a short timeframe), change of speed (high-speed or low-
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speed), deviation from known shipping lines in the high sea, instanta-

neous stops and turns without reporting any mechanical issues, etc.

• Historical (shipping route) anomaly: a ship is found travelling

outside the normal route it is expected to follow in a given area and

time as shown in Fig. 1.4(a). Or there is a mismatch in its type of

activity reported for the given area or time period (e.g., fishing in a

forbidden area).

• Rendezvous anomaly: ships that come alongside each other within

a given distance either at a full stop or low speed. Potential rendezvous

aim at transferring either crew, passengers and cargo. An example of

rendezvous is given in Fig. 1.4(b).

• Positional anomaly: ships that are loitering out of usual areas such

as anchorage areas or waiting areas, as depicted in Fig. 1.4(c).

• Estimated time of arrival (ETA) anomaly: ETA is an attribute

of civilian vessel information to indicate when it is planning to arrive

at the indicated destination. ETA anomaly is due to the inconsistency

between the time required for a vessel to reach its destination (based

on characteristic, e.g., cruising speed and positional information) and

the actual time of the journey.

• Destination anomaly: undeclared destination, destination inconsis-

tent with present course, speed and ETA, or unexpected port arrival.

If a ship of a particular type arrives at a port that has no facilities to

handle it, then this could be considered an anomaly.

Vessels exhibiting one or more of the listed anomalous conducts could

be connected to illegal activities at sea. More specifically, the stealth ille-

gal activities [115], in which the culprits aim to remain out of sight and

undetected by law-enforcement bodies throughout the whole duration of the

activity,2 include drug and arm smuggling, human trafficking, poaching, pro-

hibited imports/exports, unauthorized cargo transshipment, unreported or

unregulated fishing (ignoring marine protected areas), unauthorized mar-

itime arrivals and illegal immigration, marine pollution and waste dumping,

2Differently, the adversarial illegal activities [115] involve open and direct confrontation

with other vessels, which is typically not hidden. Piracy and maritime terrorism are

examples of such activities [161].
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(a) Shipping route anomaly.

(b) Rendezvous anomaly.

(c) Positional anomaly.

Figure 1.4: Examples of maritime anomalies. Panel (a) shows a vessel leaving the assigned

route. Panel (b) shows a representation of a rendezvous between two vessels. Panel (c)

shows an example of positional anomaly.
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and other unlawful activities. In some cases, the geographic characteristics

of certain areas can either hinder or support such illegal operations. For in-

stance, the desolation and other physical attributes of certain coastal areas

make them attractive sites for staging smuggling operations. Besides, the

occurrence of natural phenomena such as rain, fog, haze, blizzards, darkness

and certain sea conditions, making visibility poor or nil, turns out to be

beneficial for the malicious perpetrators.

Unexpected AIS activity

The huge amount of AIS data acts as a fundamental support to automati-

cally identify the aforementioned anomalous set patterns depending on the

illicit activity in which the vessels are engaged, however, AIS datasets could

be affected by limitations and pose some significant challenges. These actu-

ally constitute effective anomalies associated to an unexpected AIS activity.

More specifically, we need to take into consideration that a part of the infor-

mation contained in AIS messages are entered manually by the crew, both at

the initialization of the system for permanent data and at every new journey

for travel-related data (such as the destination for instance), and that the

AIS messages are transmitted in a non-secure channel.3 Consequently, three

main issues arise [25,108,113]:

1. Unintentional human errors: Each human-filled field is subject to er-

rors. Both static data (ship identification number, type of the vessel,

name of the vessel, physical characteristics) and dynamic data (posi-

tion, navigation status, ETA or destination) are subject to errors [108].

2. Internal AIS data falsification or interruption: The crew can deliber-

ately modify the AIS messages, such as the Maritime Mobile Service

Identity (MMSI) number, or the destination, with the purpose of dis-

simulating.

The crew can also interrupt the transmission simulating a malfunction;

switching the AIS transponder off could indicate a will to hide some

illegal activities, such as smuggling on coast or with other ships, or

fishing in unauthorized areas.

3Recent advances in maritime radio technology brought to the development of the VHF

data exchange system [8], which builds on the capabilities of AIS to overcome today’s net-

work limitations by providing higher data rates, and by enabling two-way and encrypted

communications.
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3. External AIS data spoofing : The AIS information are manipulated

from an external actor in order to mislead both the crew on board and

the outside world on the behavior of a vessel. The spoofer creates a

ghost vessel that would cross the trajectory of another one, forcing the

real one to change its heading, and could hypothetically be guided to

hazardous locations [25].

1.3.5 Real-world maritime anomalous scenarios

We report below two specific cases of anomalies in maritime domain related

respectively to the illegal fishing activities around the Galápagos Marine

Reserve happened in 2017, and the grounding of the Ever Given in the Suez

Canal in 2021.

Illegal fishing activities around the Galápagos Marine Reserve and

waters off Ecuador

Galápagos, protected as a UNESCO World Heritage site since 1978, is home

to about 30-odd species of sharks, and some of those are critically endan-

gered. Sharks in the Galápagos Islands are being decimated by fleets of fish-

ing vessels, many of them Chinese, and that is bringing these vital creatures

to the brink of extinction [38]. The longliners, in the specific, are ostensibly

fishing for tuna, but they also encroach on the paths of shark species that

migrate into and out of the waters of the Galápagos.

In August of 2017, a Chinese fishing fleet comprising about 300 boats

(e.g., fishing, cargo and fuel boats) was detected in international waters

and near the Exclusive Economic Zone (EEZ) of Galápagos Islands and

waters off Ecuador’s coast in the Southeastern Tropical Pacific. The Chinese

factory-mother ship (Fu Yuan Yu Leng 999) was caught in the Galapágos

Marine Reserve carrying about 300 tons of fish, including several endangered

species [17, 38]. The upper subplot of Fig. 1.5 shows the AIS track of the

mother ship navigating in the waters of the Pacific Ocean from July 7th to

December 9th 2017. As represented in the lower subplot of Fig. 1.5, between

the 8th and the 11th of August 2017, the vessel shuts the engines down

and starts drifting, with an apparent deviation from its route to rendezvous

with four tuna longliners at about 1700 miles away from Galápagos EEZ.

Each fishing vessel spends about 12 hours moving along with the vessel at

a distance of about 30 meters, which indicates the boats were likely tied
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Figure 1.5: The red track of the mother ship Fu Yuan Yu Leng 999 reveals rendezvous

with four fishing longliners (orange, yellow, green and black trajectories) at about 1700

miles away from Galápagos between the 8th and the 11th of August 2017.
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up [17]. Subsequently, the vessel and the illegal fish catch were confiscated

by Ecuador’s Armada and the Galápagos National Park [16,26].

Suez Canal blocked after massive container ship Ever Given gets

stuck sideways

On March 23rd 2021, at 05:40 UTC, one of the world’s biggest container

vessels operated by Evergreen Marine Corp., the 400 meters (1300 feet) Ever

Given, was navigating northbound through the Suez Canal on its way to

Rotterdam during a dust storm with wind speeds reaching 40 knots, when

it became stuck in a 300 meters wide channel at coordinates 30.01761◦N,

32.58018◦E (see Figs. 1.6 and 1.7). According to the Suez Canal Authority

(SCA), the ship lost its ability to steer amid high winds and a dust storm,

causing it to run aground diagonally and become wedged with its bow in one

bank, and its stern nearly touching the other. The cause of the grounding is

still unknown. While initial investigations exclude any mechanical or engine

failure and strong winds during a dust storm are widely seen as a major

factor, human and technical errors cannot be ruled out [2]. As is well-known,

there was adverse weather and the ship lost control: it deviated in its course

and collided with the bank, becoming wedged into the side of the canal (see

Figs. 1.6 and 1.7).

The Ever Given grounding had immediate consequences, resulting in the

complete blockage of the Suez Canal, extensive “traffic jams” of more than

360 ships (see Fig. 1.7), and disruptions in the maritime global trade for six

days. A similar disruption, but less intensive, was observed at global level

during the first half of 2020 because of the COVID-19 pandemic, see details

in [156]. As one of the world’s busiest trade routes, representing nearly 12%

globally, this blockage of the Suez Canal had a significant negative impact

on trade between Europe and Asia. It has been estimated that $9.6 billion

worth of trade was held up each day as a result of the stranded ship, causing

supply chain disruptions all over the world. On March 29th, at 13:04 UTC,

the ship was finally freed and started moving towards the Great Bitter Lake

for technical inspection, while traffic completely resumed in the canal at

17:00 UTC. A crucial assistance in the freeing of the Ever Given from the

Suez Canal was played by an unusual full moon, which boosted a spring or

“king” tide, helping the tugs refloat the ship [4].
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Figure 1.6: A high-resolution satellite view (captured on March 25th 2021) of the Ever

Given container ship, which grounded in the Suez Canal on March 23rd 2021. Credit:

Satellite image © 2021 Maxar Technologies.

Other relevant maritime incidents

According to the European Maritime Safety Agency (EMSA), over the pe-

riod 2014–2019 the total number of reported marine incidents was 19418,

involving a total number of 21392 ships and causing 496 fatalities, mainly

occurring during collisions [12]. Recent examples of major real-world acci-

dents that shed light on the key role of maritime surveillance data for safety

and security at sea include fatal crashes involving commercial and navy ships

such as the USS Fitzgerald [7], and the USS John S. McCain [6], the collision

between the container ship Delphis Gdansk and the cargo ship BBC Neptune

in the Great Belt Strait [3], the collision between the container vessel ANL

Wyongand and the gas carrier King Arthur investigated by the UK Marine

Accident Investigation Branch [13].

1.4 The objective

The cases and incidents presented in Subsection 1.3.5 illuminate the critical

role of maritime surveillance on a global scale, and automatic systems for

maritime anomaly detection, providing early warning and alert triggering to
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Figure 1.7: Two views from Europe’s Sentinel 1 radar observation mission show nearly

200 ships gathered on March 25th 2021 waiting for passage through the North (bottom

left) and South (bottom right) entrances of the Suez Canal. The COSMO-SkyMed radar

image above shows the Ever Given still stranded on March 25th. Credits: Copernicus

Sentinel 1 data, © ESA, CC BY-SA 3.0 IGO; COSMO-SkyMed image © ASI, processed

and distributed by e-GEOS.

avoid issues of navigational safety such as accidents and collisions, and help

to identify suspicious activities to increase security and border protection.

With anomaly detection systems that provide an enhanced maritime situa-
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tional picture in real or near real time, these situations can be automatically

detected, alerting operators by means of e.g., graphical user interface, e-mail,

or warnings sent through the user’s national system.

Therefore, the maritime surveillance domain continuously requires ad-

vances in the anomaly detection branch as well as in other research fields

such as sensor performance and data fusion, providing a wide interesting en-

vironment for the investigation and application of several statistical solutions

for the behavioral analysis of anomalous vessels.

As part of this pursuit, the proposed research aims at developing a novel

statistical methodology to contribute to advances in the anomaly detection

strategies, in order to improve the ability to reveal, understand, anticipate

and prevent illegitimate activities at sea. The work proceeds along three

main lines by exploiting i) a prior contextual information to represent nor-

malcy, ii) the employment of the OU mean reverting stochastic process to

model the vessel’s dynamics, which will be fully introduced in Chapter 3,

and iii) the complete or incomplete observation of the available data.

In the first line of work, defined in Chapter 4, we seek to reveal anomalous

deviations of a vessel from the nominal conditions while navigating, i.e., a

change in the planned route and/or the nominal velocity profile. We also

consider that, in order to hide this irregular behavior, possibly related to a

suspicious activity, the vessel switches its AIS device off for a due time, at

the end of which it tries to restore the previous nominal conditions. During

this period characterized by a data gap, the decision that has to be taken

is either declaring that a deviation happened or not, considering different

levels of data unavailability: i) relying only upon two available AIS contacts,

meaning the last contact before the AIS device shutdown and the first one

after the AIS device reactivation, and ii) considering the extension to the

scenario in which multiple heterogeneous contacts are available during the

silent period.

The work proceeds in Chapter 5 by raising the issue that the AIS mes-

sages can be subject to intentional reporting of false information by the

crew, or by external spoofers. More specifically, we address the problem

of establishing whether a vessel is reporting adulterated dynamic informa-

tion through AIS messages in order to hide its current planned route, in

addition to possible deviation from the nominal conditions. The problem of

revealing both the spoofing and stealth deviations anomalies is translated in

a multiple hypothesis testing framework and counts on the support of reli-
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able information from monitoring systems (coastal radars and space-borne

satellite sensors).

The last line of the research work, conducted in Chapter 6, considers the

worst-case scenario in terms of anomaly detection. In this regard, we move

to the opponent vessel’s side, and implement the least-detectable trajectory

that an elusive vessel can follow during an AIS disablement. Specifically,

the trajectory of the malicious vessel must turn out as stealth as possible

to the anomaly detector implemented in Chapter 4, while the vessel turns

the AIS device off, leaves the expected traffic route to approach a specific

point (for instance a rendezvous point), stops there to perform some possible

illegal exchanges, and finally returns to the nominal conditions reactivating

the AIS. We assume that, during the data gap period, the vessel is aware of

the acquisition time instants of the space-borne sensor has been observing it.

Computing the worst-case in terms of surveillance capability comes in handy

to point out the limitations of the proposed detection methodology, and

consequently to facilitate future research works in seeking countermeasures

to improve it and make it more robust.

1.5 Contributions

In Chapter 4, a novel maritime anomaly detector is proposed to reveal path

deviations of ships during an intentional AIS device disablement, in order to

possibly perform activities that would not be normally allowed. The prob-

lem has been treated within the statistical hypothesis testing framework,

based on the GLRT for a Gaussian linear model, where the null hypothesis

is that no deviation from the nominal condition occurred and the alterna-

tive hypothesis is that a deviation actually happened, during the time-frame

characterized by the data gap. The hypothesis testing procedure is designed

to identify changes in the OU long-run mean velocity parameter of the vessel,

since any anomalous deviation will inevitably result in an unknown contri-

bution to such a parameter. We provide closed analytical forms for the de-

tection and false alarm probabilities of the hypothesis test. We demonstrate

the effectiveness of the proposed detection strategy through experimental

analysis within synthetic scenarios, where we considered the case of only two

contacts available (the last contact before the AIS device shutdown and the

first after the AIS device reactivation), and the use of multiple heteroge-

neous contacts associated with the vessel along its trajectory. The support



30 Introduction

of multiple contacts compared to the case of only two contacts can lead to a

sensible improvement of detection performance, however, scenarios in which

it turns out to be degraded are also shown. Furthermore, the proposed

anomaly detection strategy is successfully applied in the real-world major

events discussed in Subsection 1.3.5: the anomalous fishing activities around

the Galápagos EEZ, and the grounding of the container vessel Ever Given

in the Suez Canal.

In Chapter 5, the goal is to jointly detect spoofing and/or surreptitious

deviation, or, more specifically, determining whether the AIS data received

from a vessel are trustworthy or not, and whether a deviation occurred or

not, with the support of additional reliable information provided by surveil-

lance systems. The proposed solution involves two detection strategies both

designed in a hypothesis testing framework and based on the changes of the

OU process velocity parameter. The first strategy splits the problem into

two binary hypothesis tests via GLRT. Specifically, the first GLRT decides if

AIS data are truthful or not, while the second decides if a deviation occurred

or not, and finally the two decisions are combined through a decision rule

named Coupled GLRT (C-GLRT). The second strategy is designed to tackle

the multiple hypothesis test, relying on the Model Order Selection (MOS)

methodology. The performance of both strategies has been analyzed in a

synthetic maritime scenario by varying relevant operational parameters.

Finally, Chapter 6 formalizes the optimal opponent vessel’s stealth tra-

jectory planning as a non-convex optimization problem and considers the

Kullback-Leibler (KL) divergence between the statistical hypotheses of the

nominal and the anomalous trajectories as key performance measure. A

computationally efficient technique, called Non-Convex Optimized Stealth

Trajectory (N-COST) algorithm, is proposed to handle the resulting con-

strained optimization problem, where physical requirements on the mean

velocity dynamics, the compliance of the trajectory with the underlying OU

statistical model, the existence of a time instant allowing the rendezvous, as

well as sea coast constraints are accounted for at the design stage. Interest-

ing case studies, concerning both synthetic and real-world scenarios, are also

investigated to prove the effectiveness of the proposed planning strategy.



Chapter 2

Literature review

This chapter gives a brief survey of related work on anomaly

detection methodologies. The first part of the chapter lists the

works that seek solutions for detecting anomalies in a wide variety

of application domains. The second part focuses on the specific

literature related to maritime anomaly detection, distinguishing

between data mining and machine learning, and statistical ap-

proaches.

2.1 Anomaly detection methodologies

Anomaly detection typically refers to the problem of finding patterns in data

not conforming to an expected behavior [50]. From image processing [53] and

sensor networks [106] to biological data [133], several approaches have been

established for detecting anomalies. Indeed, an anomalous traffic pattern

in computer networks could mean that a hacked computer is sending out

sensitive data to an unauthorized destination [126]. An anomalous mammo-

graphic image may indicate presence of malignant tumors [205]. Anomalies

in credit card transaction data could indicate credit card or identity theft [18]

or anomalous values from a space craft sensor could reveal a fault in a com-

ponent of the space craft [89].

In cyber-physical systems the anomaly detection problem is usually re-

ferred to as intrusion detection. Within such a framework, the works con-

ducted by Forti et al. [83–85] investigate the effects of signal attacks possibly

combined with network deception attacks by injecting fake measurements on

31
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stochastic cyber-physical systems. In particular, the random set paradigm

is adopted in order to model the switching nature of the signal attack and

the fake measurement injection via Bernoulli and/or Poisson random sets.

The problem of jointly detecting a signal attack and estimating the system

state in presence of fake measurements is then formulated and solved in the

Bayesian framework.

Furthermore, the outlier trajectory detection problem is addressed by

Zheng [233], that conducted a systematic survey on the major research re-

garding spatial trajectories, representing the mobility of various moving ob-

jects, such as people, vehicles, and animals. The outlier trajectories could

be a taxi driver’s malicious detour [52,141] or unexpected road changes (due

to traffic accidents or constructions).

Another direction is to detect traffic anomalies (rather than trajectory

itself) by using many trajectories. The traffic anomalies could be caused by

accidents, controls, protests, sports, celebrations, disasters and other events.

Liu et al. [142] partition a city into disjointed regions with major roads and

glean the anomalous links between two regions according to the trajectories

of vehicles traveling between the two regions. They divide a day into time

bins and identify for each link three features: the number of vehicles trav-

eling a link in a time bin, proportion of these vehicles among all vehicles

entering the destination region, and that departing from the origin region.

The Mahalanobis distance is used to measure the extreme points (in the

3D space), which are regarded as outliers. Following the aforementioned

research, Chawla et al. [51] proposed a two-step mining and optimization

framework to detect traffic anomalies between two regions and explain an

anomaly with the traffic flows passing the two regions. Pan et al. [172]

identify traffic anomalies according to drivers’ routing behavior on an ur-

ban road network. Here, a detected anomaly is represented by a sub-graph

of a road network where drivers’ routing behaviors significantly differ from

their original patterns. They then tried to describe the detected anomaly by

mining representative terms from the social media that people have posted

when the anomaly was happening. Finally, Pang et al. [173,174] use Global

Positioning System (GPS) data from taxis to monitor the emergence of un-

expected behavior in the Beijing metropolitan area, which has the potential

to estimate and improve traffic conditions in advance. They adapt the like-

lihood ratio test to describe traffic patterns, partition a city into uniform

grids, and count the number of vehicles arriving inside a grid over a time pe-
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riod. The objective was to identify contiguous sets of cells and time intervals

which have the largest statistically significant departure from the expected

behavior (i.e., the number of vehicles).

2.2 Review of recent research works on

automatic maritime anomaly detection

In recent years, anomaly detection in maritime traffic domain has attracted a

significant body of research to the development of new methodologies which

apply various data-driven solutions [189,197,210,227].

2.2.1 Data mining and machine learning approaches

In the following we present some data mining and machine learning ap-

proaches that have been recently proposed for automatic anomalous mar-

itime vessel behavior detection.

Pallotta et al. [169] proposed an approach based on an incremental vari-

ant of the DBSCAN algorithm to learn maritime traffic routes from vessel

AIS data to detect anomalous vessel behaviors and predict vessels’ future

positions. The proposed approach is called TREAD. The same TREAD

approach was used by Pallotta and Jousselme [170] to perform track asso-

ciation to vessel traffic routes for hierarchical maritime anomaly detection.

In their approach, a tool implementing the TREAD approach is first used

to extract vessel traffic routes from historical AIS data of areas of interest.

Secondly, for associating and classifying tracks (i.e., partial trajectories), the

same authors have adopted a hierarchical reasoning, where new tracks are

first associated to existing routes based on their positional information only,

and “off-route” vessels are detected as vessels not following an existing

route. Then, for on-route vessels (vessels following an existing route) further

anomalies are detected such as speed anomaly and heading anomaly.

The works by Ardeguas et al. [22, 23] proposed a methodology to auto-

matically generate graph-based maritime networks, inferring vessel behav-

iors revealed in historical traffic data to represent maritime traffic patterns.

TREAD is adopted to extract entry/exit gates, ports, and routes. The

methodology consists of i) a hierarchical graph-based extraction algorithm

and ii) an automatic maritime lane learning method. Similarly, both ports

and entry/exit gates are learned using an incremental DBSCAN algorithm.
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Vespe et al. [218] proposed a vector-based representation of maritime traf-

fic network, where trajectories can be thought of as a set of lines (sea lanes)

connecting nodes (turning points/ports and offshore platforms/entry/exit

points), extracted using the k-means algorithm. The proposed approach

utilizes AIS data to incrementally mine motion patterns using unsupervised

learning without any specific a priori contextual knowledge or labelled traffic

data.

Nevell [162] developed a methodology to automatically detect and model

the ocean traffic using a node-sparse network, where each landmass in the

World is characterized by a closed polygon area and the Great Circle links

connect between pairs of nodes that are not blocked by any landmass. This

work focuses on the traffic network design, meanwhile Bayesian methods are

applied to estimate the probabilities for journey destinations and then used

to detect kinematic anomalies like changes of destination, and inconsistent

and unexpected routings. Likewise, a similar representation was proposed by

Lane et al. [127] to construct maritime traffic network, where the waypoints

near landmasses are considered as network nodes and ocean voyages are

represented with Great Circle routes. This work conceived that an overall

threat is indicated by a sequence of the individual behaviors, and introduced

five specific anomalies.

Zhen et al. [232] use the k-medoids algorithm to cluster ship trajectories

and a Bayesian network to detect abnormal vessels.

As introduced in Chapter 1, Coscia et al. [61,62] and Millefiori et al. [153]

proposed the OU processes to establish the graph-based representation of the

maritime traffic, called MTG. In the MTG representation, the graph vertices

represent clusters of waypoints, which are connected together by a network of

navigational sealanes, i.e., graph edges. Multiple OU processes are adopted

to define vessel motion dynamics which are combined with a change detec-

tion procedure to discover regions where vessels recurrently exhibit sailing

state changes. The detected changes are then clustered in groups of similar

elements to become the nodes of the graph using DBSCAN, which are robust

against outliers, such as abnormal or nonstandard behaviors. Such methods

work in an unsupervised way to automatically extract a graph-based model

of maritime traffic routes, are computationally efficient, and fit well with big

data processing models and paradigms. The established MTG is supportive

for long-term prediction of future positions of ships at sea and allows for

global surveillance of ships at sea.
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The work by Wang et al. [224] has performed vessel route anomaly detec-

tion using DBSCAN considering Speed and Direction (DBSCANSD) [140],

and parallel meta-learning algorithms on the Hadoop MapReduce environ-

ment cluster. According to their experiment, the accuracy and execution

time of the proposed vessel route anomaly detector improve linearly with

the number of nodes in the cluster.

Lei [135] proposed a framework for maritime trajectory modelling and

anomaly detection. First, the author defines three outlying features of ab-

normal movement behaviors: spatial, sequential, and behavioral features ex-

tracted from the sequential occurrence in trajectory data collection, and

then builds a maritime trajectory model for anomaly detection. Finally, the

author develops an anomaly detection algorithm based on the learned tra-

jectory model, in which an indicator is used to evaluate suspicious behavior

and scores trajectory behavior according to the defined outlying features.

De Vries and Van Someren [69] apply different trajectory alignment ker-

nels (Dynamic Time Warping and Edit Distance) with one-class SVM for

detecting the outlying trajectories. However, this trajectory-based method

is not applicable for real-time AIS surveillance.

To reduce the rate of false alarm in anomalous maritime vessel behav-

ior detection, Radon et al. [180] have proposed an approach in two phases.

In the first phase, the normal vessel movement patterns are extracted from

historical vessel tracks (trajectories within a particular origin and destina-

tion) using trajectory partition, the DBSCAN, and line segment clustering

algorithms. In the second phase, potential anomalies are detected and then

real anomalies are filtered out from potential anomalies based on contextual

verification. In the same line of false alarm rate reduction, the works by

Laxhammar and Falkman [130,132,186] and by Smith et al. [199] have used

an anomalous vessel behavior detection approach based on conformal predic-

tors [221] known as conformal anomaly detection. The conformal anomaly

detection approach assumes that all the training data are generated by the

same probability distribution and makes no further assumptions about the

distribution. For each new test data, the likelihood that it is coming from

the same probability distribution as the training data is estimated. If this

likelihood is below the specified confidence level, then the new object is de-

clared as an anomaly. The advantage of the conformal anomaly detection

approach is that the rate of false alarm is well-calibrated and it is at most

equal to the specified confidence level.
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Eitienne et al. [74] extract trajectories of mobile objects following the

same itinerary from the spatio-temporal database and cluster them. A sta-

tistical analysis on this set of trajectories lead to spatio-temporal patterns

such as the main route and spatio-temporal channel followed by most of tra-

jectories of the set. Using these patterns, unusual situations can be detected.

Soleimani et al. [204] have proposed a new method for finding anomalies

in ships’ movements. The proposed method analyses the trajectory of ships

from a geometrical perspective. The trajectory of the ship is compared with

a near-optimal path that is generated by a graph search algorithm. To make

this comparison the proposed method extracts some scale-invariant features

from the real trajectory and from the optimal movement pattern, and then

it compares the two sets of features to generate an abnormality score.

Zhao and Shi [231] present a method that determines the parameters of

the DBSCAN algorithm through statistical analysis, and then use the results

of clustering as the traffic patterns to train a recurrent neural network; the

neural network is then applied as a vessel trajectory predictor to conduct

real-time maritime anomaly detection. While Zhong et al. [234] use a random

forest machine learning algorithm to classify vessels using AIS data streams.

Xu et al. [228] used a back propagation neural network to predict ves-

sel trajectories. Daranda [68] built a three-layer back propagation neural

network model to learn the clustered turning points and used it to predict

marine traffic. Handayani et al. [107] presented the use of SVM to establish

the vessel behavior classification model for anomaly detection.

Finally, Singh and Heymann [198] use real-world AIS data to analyze the

possibility of successful detection of various anomalies in the maritime do-

main; the work proposes a multi-class artificial neural network-based anomaly

detection framework to classify intentional and non-intentional AIS on-off

switching anomalies.

Ristic et al. [188] designed a grid-based approach to describe the mar-

itime traffic pattern, where the target surveillance area is discretized as non-

overlapping grids. The Poisson point process is adopted to model the number

of AIS messages that fall inside each grid. The velocity distribution is es-

timated by KDE. The established maritime knowledge is then applied for

anomaly detection using decisive thresholds to differentiate the anomalous

states from a range of acceptable values. The feasibility of the method is

verified with the real-world AIS data collected for Sydney Harbour.

Osekowska et al. [164,165] proposed a grid-based approach that employs
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the concept of artificial potential fields to express maritime traffic patterns.

The general idea is to aggregate all the charge potentials that are related to

the AIS records over a geographical grid to characterize the typical traffic

patterns. The potential can be regarded as a function of the values of traf-

fic density, course and velocity distribution along grid-based locations. The

method is used to support maritime traffic visualization, route planning and

anomaly detection. The authors also provided the discussion on grid op-

timization and implemented a web-based anomaly detection system, called

STRAND (Seafaring TRansport ANomaly Detection).

The works by Rhodes et al. [184,185] presented a neural network classifier

known as fuzzy Adaptive Resonance Theory Map to evaluate the behaviors

of vessels. Bomberger et al. [37] developed a method based on associative

learning and neural networks to predict future vessel behaviors and detect

abnormal vessels.

Lei et al. [136] proposed a grid-based framework of Maritime Traffic

Route Discovery (MTRD) to generate the knowledge of movement pattern,

which is able to contribute to maritime traffic management, situation aware-

ness in maritime surveillance and anomaly detection. MTRD comprises of

three modules: i) AIS Pattern Mining module to identify the trajectories

with similar movement behavior, ii) Pattern Summarization module to re-

capitulate the generated patterns and iii) Traffic Route Generation module

to derive the pattern-aware routes.

Finally, Venskus et al. [217] proposed an adaptive self-learning algo-

rithm based on a bio-inspired virtual pheromone method for the detection

of anomalous maritime traffic. The proposed algorithm first learns nor-

mal vessel traffic pattern grids from vessel movement data provided by the

surveillance data fusion subsystem, then detects a potential incident where

the moving vessel path does not match with learned pattern grids. The au-

thors have verified that the algorithm provides rapid self-learning and fast

adaptation characteristics.

2.2.2 Statistical approach

Laxhammar [129] uses the GMM and a greedy version of the EM algorithm

to extract normalcy by clustering. The work conducetd by Ristic et al. [187]

proposes to use an adaptive KDE for estimating unknown probability den-

sities and modelling arbitrary sea lanes to derive a normal traffic model;

then particle filtering is used to predict the positions of vessels based on the
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derived density. In the anomaly detection phase, the anomaly detector is se-

quentially applied to the incoming data. The value of new incoming point’s

density is calculated under the null hypothesis (no anomaly) and this value

is then compared with a detector parameter related to false alarms for decid-

ing the new point’s abnormality. A comparison between the two approaches

above is given in Laxhammar et al. [131], demonstrating that the anomaly

detection results from both models are not satisfactory. As the two models

detect the anomalous segments at a significant distance from the point where

anomaly behavior happens (three kilometer and four kilometer respectively)

while an expected effective anomaly detector should detect such behaviors

at a shorter distance.

Osekowska et al. [166] reported a maritime traffic modeling study char-

acterizing the fluctuations of maritime traffic patterns. Such fluctuations

represent the unforeseen shifts in statistical properties of traffic pattern over

time, based on one year’s AIS vessel tracking data. The outcomes offer in-

sights into regular and reoccurring drifts as well as irregularities existed in

the traffic data.

Anneken et al. [21] used a non-simulative anomalies dataset based on real-

world data, to provide an evaluation and comparison of maritime anomaly

detection algorithms, specifically the GMM and the KDE.

The method proposed by Kowalska and Peel [123] foresees a data-driven

non-parametric Bayesian model, based on Gaussian Processes, to model nor-

mal shipping behavior; this model is learned from AIS data and uses an Ac-

tive Learning paradigm to select an informative sub-sample of the data to

reduce the computational complexity of training; the resulting model allows

a measure of normality to be calculated for each newly-observed transmis-

sion.

The works by Smith et al. [200,201] have introduced an anomaly detection

technique using a combination of Gaussian Processes, extreme value theory

and divergence measurement, to identify anomalous vessel behavior in both

streaming and batch data.

Mascaro et al. [149] addressed the anomalous vessel behavior detection

issue using Bayesian Networks. By training Bayesian Networks with real-

world AIS data combined with additional real-world contextual information

such as weather and time, as well as vessel interactions, they have taught

two Bayesian Network-based models at two different time scales, namely in

the form of the time series and track summary models. As a training tool,
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the authors used a machine learner named CaMML (Causal discovery via

Minimum Message Length). The authors have found that adding further

real-world attributes helped to create a better model of normalcy.

To preserve port safety by classifying the movements of different ships in

the scene, Castaldo et al. [49] have applied Bayesian Networks to the analysis

of vessel behavior and ship-to-ship interactions in port areas.

Statistical solutions, such as the extended Kalman filter and particle fil-

ter, have been used by Perera et al. [177] to reconstruct trajectories of vessels;

whereas Bayesian networks were applied in Hruschka et al. [110] for tack-

ling missing values (anomalies) in a dataset for prediction and classification

purposes.

The work by Guerriero et al. [105] attempts to identify the AIS on-

off switching, through the introduction of the notion of channel memory

and the application of hidden Markov models, while Mazzarella et al. [151]

address the same problem exploring a solution that exploits the received

signal strength indicator available at the AIS base stations.

The work by Balduzzi et al. [25] presents a method of spoofing a vessel

by injecting invalid data into AIS gateways in order to trigger fake collision

warning alerts, and potentially make surrounding vessels alter their course.

This approach makes it possible for attackers to alter any information broad-

cast by existing AIS.

Ray et al. [182] propose an architecture capable of identifying spoofing

messages in AIS after those have entered the database system, by using a

methodology based on integrity and quality assessment of the AIS messages.

Whereas, Katsilieris et al. [117] focus on the problem of trustworthiness of

the received AIS data with the help of radar measurements and information

from the tracking system.

Furthermore, an innovative statistical framework that combines contex-

tual information to define the nominal behavior at sea with the OU model

to represent the vessel dynamics has been recently proposed by Forti et

al. [79, 81, 82, 88]. Here, the formulation of maritime anomaly detection is

based on a probabilistic joint anomaly detection and tracking methodology

for sequential detection of maritime anomalous deviations and simultaneous

vessel tracking where new contacts (e.g., from AIS, radar, SAR) are peri-

odically available based on surveillance coverage and reporting frequencies.

This is motivated by the fact that maritime anomaly detection would ideally

be performed in real-time, as new observations become available.
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2.2.3 Rule-based and hybrid approaches

Although most of the recent works on anomalous vessel detection are data-

driven, some rule-based and hybrid approaches have been proposed.

Maggi et al. [143] have demonstrated the use of process mining for analyz-

ing the behavior of vessels, and for detecting anomalies, i.e., deviations from

the normal behavior. To model the behavior of vessels, the authors have used

the Declare language, which is a constraint-based language that can specify

complex behavior in terms of a couple of restrictions. Declare combines a

formal semantics for analysis purposes with a graphical representation for

users.

Brax et al. [42] presented a Multi-Agent System (MAS) dedicated to

anomalous behavior detection and alerts triggering in the maritime surveil-

lance area. Anomalies are detected based on the implementation of maritime

regulation.

Vandecasteele et al. [215] proposed a semi-supervised learning framework

based on spatio-temporal semantic events for maritime anomaly detection

and behavior analysis. For maritime anomaly detection, the authors have

used spatial ontology for modelling a maritime operator’s knowledge.

Shahir et al. [195, 196] combined data-driven machine learning methods

with maritime background domain knowledge to detect anomalous vessel in-

teraction patterns. In Kazemi et al. [120] a hybrid framework for anomaly

detection based on the use of open data (contextual information and back-

ground knowledge) is proposed. Based on the proposed anomaly detection

framework and the algorithms implementing the expert rules, the Open Data

Anomaly Detection System (ODADS) was developed.



Chapter 3

Ornstein-Uhlenbeck stochastic

mean-reverting process

This chapter is merely introductory and aims at presenting a

novel method for predicting long-term target states based on mean-

reverting stochastic processes, that will be used in the next chap-

ters. The dynamics of non-maneuvering targets, such as vessels

under way in open sea, is traditionally modeled with a white noise

random process on the velocity, usually referred to as nearly-

constant velocity model. This model is shown to be unrealistic

for a significant portion of maritime ship traffic, when two con-

secutive contacts are several hours distant in time, since ves-

sels under way tend to adjust their speed continuously around a

desired value. A method to predict long-term vessel states has

been developed based on the OU mean-reverting stochastic pro-

cess, leading to a revised target state equation and to a completely

different time scaling law for the related uncertainty, which in the

long term is shown to be orders of magnitude lower than nearly-

constant velocity model assumption. 1

1This chapter has been implemented courtesy of L. M. Millefiori and originally pub-

lished as: L. M. Millefiori, P. Braca, K. Bryan and P. Willett, “Modeling Vessel Kine-

matics using a Stochastic Mean-Reverting Process for Long-Term Prediction” in IEEE

Transactions on Aerospace and Electronic Systems, vol. 52, no. 5, pp. 2313-2330, October

2016 [154].
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3.1 Introduction

Ship traffic monitoring is a foundation for many maritime security domains,

and modern monitoring system specifications and requirements reflect the

need for an extended and continuous ability to track vessels beyond territorial

waters and over several sensor coverage areas. However, vessels in open seas

are seldom continuously observed by monitoring sensors and even the data

coming from self-reporting systems is often highly intermittent.

The problem of long-term vessel state estimate and prediction is there-

fore crucial. Unfortunately, this issue has been overlooked in the target

tracking literature, and only few works partially address the problem, e.g.,

see [169,187,218], while most of the literature is focused on maneuvering tar-

get models, e.g., see [138, 139, 223]. The analysis of real-world self-reported

data [i.e., largely AIS] shows that a significant portion of the vessels in

open seas maneuver very seldom. In the literature, non-maneuvering tar-

get dynamics are modeled with a velocity that is perturbed by a white

noise process. This model is often referred as Nearly Constant Velocity

(NCV) [29, 138] and has been successfully used in several target tracking

applications, such as radar [145] and sonar [41] where the prediction step

always refers to the very near future, generally one sensor time-scan ahead.

The NCV model is adopted also in [187] for anomaly detection and motion

prediction.

The work in [154] proposes a novel method for the long-term prediction

of target states based on the OU stochastic process, which leads to a revised

target state equation and to a completely different time scaling law for the

related uncertainty. This novel formulation reduces of order of magnitude

the uncertainty region of the predicted position with respect to the models

available in literature.

This aspect is crucial for several applications. In SaR operations, a

smaller uncertainty region implies a smaller search region, which can sig-

nificantly improve the probability of success for search cases. For instance,

let us consider a vessel having an accident in a region with intermittent

AIS coverage (e.g., open sea); the position of the accident is consequently

unknown. Not having any information other than its last observed position

and the time of accident (e.g., time of SOS message), the only possibility is to

hypothesize that the ship had been moving from the last observation to the

position of the accident in a straight line. It is important to notice that this

assumption has to be made whether the traditional or the proposed approach
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is taken, equally; the important difference is that using the proposed method

the search area (the uncertainty region) would increase linearly –instead of

quadratically– in proportion to the time from last report, for a given level

of confidence. In the counter-piracy framework [102], vessels can keep their

AIS transmitters off for several hours when sailing in dangerous areas, in

order not to be detected by pirates: the use of the proposed modeling would

provide a good clue about their position even when their last broadcast mes-

sage is several hours old. Also the association of SAR vessel detections with

AIS contacts would greatly benefit from the proposed modeling in terms of

reduction of ambiguities because of the narrower gating region, especially in

open sea where AIS coverage might be poor. From another standpoint, a

smaller uncertainty region of the long-term prediction may reduce the prob-

ability of missing a vessel of interest in a high-resolution SAR acquisition,

that has to be planned several hours ahead of the platform passing above

the target.

The OU model is popular in various and heterogeneous scientific fields,

spanning from physics [72,94,128,212] to finance [30,55], and biology [36,211];

but is much less popular within the tracking community [208]. The OU

stochastic process was first introduced in physics [72, 128, 212] to describe

the velocity of a Brownian particle under the influence of friction. It can be

seen as a modified Wiener process so that there is a tendency of the walk

to move back towards a central location, with a greater attraction when

the process is further away from the center. More recently, OU processes

have been used in finance, e.g., [30], to model the instantaneous variance

of stock price volatility, and more recently in the context of high-frequency

trading [55]. In biology, the OU process has been adopted as a baseline

model for animal movement [36]. In [211] the authors considered a spatial

neuron model in which the membrane potential satisfies an equation with

an input current which is a dynamic random process of the OU type. In

the tracking literature the OU model has been discussed mostly notably by

Coraluppi and Carthel in [56–60], where the stability of the OU, and the

so-called Mixed Ornstein-Uhlenbeck (MOU) processes are studied.

However, all of these works, including [208], deal with zero-mean-reverting

processes, i.e., the typical velocities are null, being the aim not the long-term

target state prediction, but rather the short-term characterization of the tar-

get dynamics. Indeed, in [56] authors are more interested in the boundedness

of the target components, and for this reason the MOU is constructed in or-
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der to be a zero-mean-reverting process for both position and velocity.2

Figure 3.1: Trajectory of the target under consideration: a tanker vessel of 270 meters

in length and 48 in breadth sailing northeastwards from the Gibraltar Strait to East

Mediterranean. The dashed line represents the entire trajectory of the vessel, but only the

highlighted portion has been considered, in order for the non-maneuverability hypothesis

to be satisfied. The red square denotes the last contact in the sequence considered.

Different from [56–60,208], the work in [154], from which this chapter has

been mainly drawn, focuses on the long-term prediction of non-maneuvering

vessels, such as those under way in open sea. The thesis in [154] is that

the NCV model might be implausible for a significant portion of maritime

ship traffic, as vessels under way tend to continuously adjust their speeds

around a desired operating point. This fundamental difference between the

OU and NCV models is well explained intuitively by the case of study shown

in 3.1 and 3.2, where a real-world vessel is sailing in the Mediterranean Sea

with a desired speed. In the uppermost plot of Fig. 3.2 the actual velocity

of the vessel is reported, while the lowermost plots contain one hundred

realizations of the velocity using simulated OU and NCV models having the

2In [56–60, 208], the OU is a process in which the target position follows an OU dy-

namic, while the Integrated Ornstein-Uhlenbeck (IOU) is a process in which the target

velocity follows an OU dynamic while the position is integrated. We follow a different

nomenclature, used in the statistic literature [30], in which velocities are OU and then

positions are IOU.
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same initial point as the real trajectory. The velocity samples drawn from the

OU process are bounded around the average value, as indeed are the actual

velocity samples, while in the simulated NCV case the velocity apparently

tends to diverge. In other words, in the long-term the NCV model does not

seem to be well-suited for the representation of the vessel velocity.

Supported by real-world vessel traffic data, the main result presented

in [154] is that mean-reverting processes can be used to model non-maneuvering

vessel movement. Specifically, [154] provides evidence that the vessel veloc-

ity is well-described by a OU stochastic process, and consequently the vessel

position by a IOU process. As a consequence, after an initial transient, the

vessel position is mathematically equivalent to a Brownian particle motion.

It is also shown that the popular NCV model that is commonly adopted in

the target tracking literature is not well-suited for the characterization of the

uncertainty of the long-term target state prediction. While it is sufficiently

accurate for short-term predictions (meaning: typically the case for tradi-

tional target tracking applications) the NCV model can overestimate the

actual uncertainty of long-term predictions, even to orders of magnitude.

3.2 Vessel dynamic models

This section describes the stochastic models of the vessel (or target) dy-

namics. The four-dimensional target state at time t ∈ R+
0 is indicated with

s(t)
∆
= [x(t), ẋ(t)]

T
, (3.1)

where x(t) and ẋ(t) denote the target position and velocity, respectively, in

a two-dimensional Cartesian reference system

x(t)
∆
= [x(t), y(t)] , ẋ(t)

∆
= [ẋ(t), ẏ(t)] . (3.2)

The choice to define the target state in the Cartesian coordinates is stan-

dard in the target tracking literature, e.g., see [29]. In this formulation of

the problem, (x, y) can be either the Universal Transverse Mercator (UTM)

coordinate system, or the rotated coordinate along the target trajectory as

usually assumed in the knowledge-based tracking, e.g., see [34,46,220].

The target dynamics are generally modeled by a set of linear stochastic

differential equation (SDE)s [138]:

ds(t) = A s(t) dt+Du(t) dt+B dω(t), (3.3)
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Figure 3.2: Single-component velocity of the real-world vessel trajectory illustrated in 3.1:

the uppermost plot shows the actual velocity samples; the middle plot is for a simulated

OU process; the lowermost plot illustrates a simulated NCV process. Simulated processes

use as initial state the first velocity sample of the real-world trajectory; the process pa-

rameters are estimated from the data series shown at the top of this figure.
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where A, B and D are constant matrices, u(t) is a deterministic function,

and ω(t) is a standard bi-dimensional Wiener process. The SDE can be

solved by the use of Itô calculus [163].

Given the state of a target s(t0) observed at the time t0, the prediction

of its state at the time t is carried out by the optimal Bayesian estimator:

s (t|t0)
∆
= [x (t|t0) , y (t|t0) , ẋ (t|t0) , ẏ (t|t0)]T

= E [s(t)|s(t0)] , (3.4)

where E[·] indicates the expected value operator. The estimator is highly

dependent on the underlying motion model described by the SDE (3.3).

It is worth mentioning that in the tracking literature the target state

observation is typically affected by noise. The work in [154], and reported

in this chapter, assumes to observe directly the target positional state and

focuses only on the case of non-maneuvering vessels while under way.

3.2.1 NCV model

One of the most popular target motion models, commonly adopted in the

scientific target tracking literature, is the NCV model [138], where (3.3) has

the form

ds(t) = A s(t) dt+Bdω(t), (3.5)

with

A =

[
0 I

0 0

]
, B =

[
0

Σ

]
, (3.6)

being I the bi-dimensional identity matrix, 0 the bi-dimensional null matrix

and Σ a bi-dimensional matrix defining the noise process. In practice, the

equation for the target dynamics relies on the fact that, for non-maneuvering

vessels ẍ(t) ≈ [0, 0]T , i.e., there is a “small” effect on ẋ(t) that accounts for

unpredictable modeling errors [138].

3.2.2 OU model

For the OU model the SDE has a slightly different form, with an additional

term that accounts for the mean-reverting tendency of the velocity:

ds(t) = A s(t) dt+Dv dt+Bdω(t), (3.7)
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where v = [vx, vy]
T
, and ω(t) is a standard bi-dimensional Wiener process.

The matrices A, B and D are defined as:

A =

[
0 I

0 −Θ

]
, B =

[
0

Σ

]
, D =

[
0

Θ

]
, (3.8)

where Σ is a bi-dimensional matrix defining the noise process and Θ is a

bi-dimensional matrix quantifying the mean-reversion effect, meaning the

rate at which the target will tend back to the desired velocity after a per-

turbation; its diagonal terms refer to the x and y components, while the

off-diagonals quantify the coupling effect. The diagonal terms of Θ repre-

sent the mean reversion effect along the x and y components, respectively,

while the off-the-diagonal elements are representative of the coupling effect

between them. Assuming that Θ is diagonalizable and has positive eigenval-

ues, an affine transformation can be found that projects the matrix Θ onto

another space, i.e., Θ = RΓR−1, where R is the matrix whose columns con-

tain the eigenvectors of Θ and Γ is a diagonal matrix whose elements are the

corresponding eigenvalues. This idea is further expanded in Appendix B.1,

where the general solution to the coupled problem is also provided.

Equation (3.7) has the form of a Langevin dynamic [128] and can be

solved in closed form by using Itô calculus [94, 163], see details in Ap-

pendix B.1. The ẋ(t) process is said to be of OU type [30, 212], and cor-

respondingly, we say that x(t) is an IOU process [30]. The parameters vx
and vy in v = [vx, vy]

T play a key role in the proposed model because they

represent the typical velocities along x and y, respectively, of the vessel on

the trajectory under consideration. Roughly speaking, the velocity of the

process tends to drift over time towards its long-term mean; and the mean-

reversion tendency is stronger when the velocity is further away from that

long-term mean. In [56, 59, 208], the OU zero-mean-reverting process is in-

troduced, in which the parameters vx and vy are both null. Furthermore the

Singer model [138] provides for the target acceleration to be modeled as an

OU zero-mean-reverting process. However, in both cases the aim is not the

long-term target state prediction, but rather the short-term characterization

of the target dynamics.

3.2.3 Prediction procedure

The solution of the SDE provides for the target state prediction s (t|t0)
and the related variance, which we will take as a measure of the prediction
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uncertainty. This subsection describes the prediction procedure in the two

cases that the OU and NCV models are assumed for the target velocity.

NCV model

Assuming the NCV model for the velocity of the target, the optimal predic-

tion, given the initial target state s (t0), is the following [29]

s (t|t0) = F (t− t0)s(t0), (3.9)

where F (t) is often referred to as the state transition matrix and is given by

F (t) =

[
I t I

0 I

]
. (3.10)

According to [60], the covariance matrix of the estimator is provided by the

solution provided by Itô calculus and is given by

Cov [s(t)|s(t0)] =

[
(t−t0)

3

3
(t−t0)

2

2
(t−t0)

2

2 t− t0

]
⊗ΣΣT, (3.11)

where

ΣΣT =

[
σ2
x σxy

σxy σ2
y

]
. (3.12)

A slightly different process noise assumption of the NCV (see [29]), would

lead to the same estimator (3.9) but with a higher scaling law of the errors,

i.e., proportional to (t − t0)
4/4 instead of (t − t0)

3/3 for the position and

proportional to (t − t0)/2 instead of (t − t0) for the velocity. In common

tracking applications, where the time interval is fixed, the two models are

quite similar because the parameters σx and σy can be differently tuned in

order to compensate for the different scaling laws. Instead, in [154], even

if the parameters were tuned differently, the two models would still behave

differently in the long-term.

OU model

The case in which the velocity of the target follows the OU model is here

specifically considered. It is assumed hereafter, for the sake of clarity, that

R = I, so that Θ = Γ = diag(γ), with γ = [γx, γy]
T. The general solution

is provided in Appendix B.1.
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The optimal prediction, given the initial target state, is provided by the

first moment of the SDE solution [30,94] and, for the velocity, we have

ẋ (t|t0) = v +

[
e−γx(t−t0) 0

0 e−γy(t−t0)

]
(ẋ(t0)− v) . (3.13)

Proceeding similarly for the target position, which is an IOU process, the

following expression can be derived

x (t|t0) = x(t0)+(t−t0)v+

[
1−e−γx(t−t0)

γx
0

0 1−e−γy(t−t0)

γy

]
(ẋ(t0)− v) . (3.14)

The optimal prediction can be rearranged in the matrix form

s (t|t0) = Φ(t− t0,γ) s(t0) +Ψ(t− t0,γ)v, (3.15)

where Φ(t,γ) is the analog of the state transition matrix and Ψ(t,γ) is often

called control input function. Their definitions are respectively provided by

equations (B.6) and (B.8) in Appendix B.

The estimator covariance is provided in equation (B.12) in Appendix B.

The variance terms are reported here:

E
[
(x(t|t0)− x(t))

2 |s(t0)
]
=

σ2
x

γ3
x

f (γx(t− t0)) , (3.16)

E
[
(y(t|t0)− y(t))

2 |s(t0)
]
=

σ2
y

γ3
y

f (γy(t− t0)) , (3.17)

E
[
(ẋ(t|t0)− ẋ(t))

2 |s(t0)
]
=

σ2
x

γx
g (γx(t− t0)) , (3.18)

E
[
(ẏ(t|t0)− ẏ(t))

2 |s(t0)
]
=

σ2
y

γy
g (γy(t− t0)) , (3.19)

where f(t) and g(t) are the prediction position and the velocity error nor-

malized variance, defined in (B.15) and (B.16) in Appendix B.

Remark 3.2.1. Interestingly, it is easy to show that when γx,y = 0 the

two models are equivalent because they have the same dynamic expressions.

Furthermore, by applying l’Hôpital’s rule to (3.15) when γx,y → 0, then Φ(t−
t0,γ) → F (t− t0), while Ψ(t− t0,γ) → 0, and again, by applying l’Hôpital’s

rule the OU covariance (B.12) degenerates in the NCV covariance (3.11).
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Summing up, the SDE parameters in the NCV case are reduced to the

process noise standard deviations σ = [σx, σy]
T. While, under the OU as-

sumption on the target velocity, beyond σ, we have two more parameters: the

long-run mean velocity v = [vx, vy]
T, and the reversion rate γ = [γx, γy]

T.

In [154], a complete description of the procedure adopted to estimate

the aforementioned SDE parameters for every given trajectory is provided.

Moreover, the work conducted in [154] illustrates the validation methods

used against the NCV and OU models, based on the capability of the model

not only to predict future target states but also to quantify the uncertainty

of the prediction.

3.3 Model validation using real-world vessel

traffic data

Figure 3.3: Quasi-rectilinear trajectories under consideration in the validation study; the

color indicates the traffic category: pink for the cargo traffic, orange for the tanker and

green for the passenger. These trajectories represent a subset of a data set of AIS messages

collected over the Mediterranean Sea from multiple AIS networks during two months of

2014.

This section reports evidence, provided in [154], that the uncertainty of

long-term state predictions of non-maneuvering vessels fits better to the OU

(for the velocity) and IOU (for the position) models than what does the NCV
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model. This evidence is based on the analysis of a significant record of all

the maritime traffic in the Mediterranean Sea, collected by NATO Science

and Technology Organization (STO)-Centre for Maritime Research and Ex-

perimentation (CMRE). Specifically, the data set consists of the entirety of

AIS messages broadcast by vessels navigating in the Mediterranean Sea in

two months of 2014 and collected by a network of satellite and terrestrial

receivers.

Since the models described in Section 3.2 are valid under the assumption

of a non-maneuvering vessel, a preprocessing phase is conceived to break

every observed trajectory into “linear” piecewise parts where the target has

essentially no process noise.3 This initial step provides a set of observed

trajectories of non-maneuvering vessels of each traffic category considered

(cargo, tanker and passenger vessels). Fig. 3.3 illustrates the vessel trajec-

tories that will be used afterwards in this section to perform the analysis of

prediction errors, evaluating the actual prediction error variance against the

theoretical models described in Section 3.2.

The prediction procedure is repeated for all the trajectories and for the

different motion models, providing a collection of prediction errors relative

to the target position and velocity, as described in [154]. The OU motion

model for the velocity and its integrated version for the position, as de-

scribed in Subsection 3.2.3, are characterized by three parameters for each

coordinate: the noise level σ, the desired speed v, and the reversion rate

γ, which basically represents how quickly the target tends to restore its de-

sired speed after a perturbation. The NCV motion model has instead just

the noise level σ. These process parameters are important to the specific

realization but, more importantly, they are not known a priori and therefore

have to be estimated [154]. The estimation of the process parameters is not

error-free but, instead, introduces additional error to the prediction error.

However, the following analysis shows a good match between the real-data

and the theoretical curves meaning that the trajectory are sufficiently long

to guarantee a parameter estimation with a negligible error.

3Being on a linear track does not necessarily imply that the vessel is not-maneuvering

because, especially for long trajectories, it may have changed its velocity quite signifi-

cantly. However, it can safely assumed that a vessel under way on a linear track is not a

maneuvering target.
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Figure 3.4: Single target scenario: comparison of the uncertainty of the predicted posi-

tional target state under the assumptions of NCV and OU model. The illustration reports

the highlighted portion of the trajectory in Fig. 3.1 that has been converted into projected

coordinates. The predictions of the target position after approximately 20 hours from the

initial state are indicated with cross markers. The related 95%-confidence prediction co-

variance ellipses are plotted with dashed lines.

3.3.1 Single-target scenario

In this subsection a single trajectory is analyzed. A tanker vessel of 270 me-

ters in length and 48 in breadth is sailing north-eastwards from the Gibraltar

Strait to East Mediterranean, see Fig. 3.1. A prediction from the initial point

of the trajectory, located in the origin, up to 20 hours is performed for both

OU and the NCV and then compared with the true vessel position. Figure 3.4

reports the vessel trajectory, the OU and NCV predictions and their related

uncertainty (95th percentile) provided by both models. This case study

shows that even if the NCV prediction is reasonably close to the true vessel

position, its uncertainty is disproportionately large. On the other hand, the

OU prediction is not only closer to the true vessel position with respect to

the NCV prediction, but also has a significantly smaller uncertainty (orders

of magnitude).



54 Ornstein-Uhlenbeck stochastic mean-reverting process

Figure 3.5: Single target scenario: unnormalized standard deviation of the prediction error

on the target position assuming the OU or NCV motion model, for the two components

of the positional target state (x on the left and y on the right). Theoretical curves are

reported with dashed lines. The target is given by the tanker vessel whose trajectory is

reported in Fig. 3.1.

The empirical standard deviation of the prediction errors along x and

y with respect to the prediction time horizon is reported in Fig. 3.5 and

compared with the theoretical curves. The empirical standard deviation

curves are computed based on the data set related to this single trajectory,

see details in [154]. The empirical curves are more accurate for short-term

horizons (< 5 hours) because they are computed with more samples with

respect to the larger time horizon. For instance, the last point of these curves

has just a single sample related to the prediction from the initial point to

the last point of the trajectory. It is worth noticing that the OU and NCV

prediction errors are equal in first part (< 1 hour), while in the second part

they separate and the NCV exhibits a larger error. Furthermore, as already

discussed, it is easy to recognize that the NCV model in the very short-term

(< 10 minutes) fits sufficiently well the data while in the long time the NCV

theoretical curve significantly diverges from the empirical curve. The OU

model instead follows the data until 15 hours, after this point the empirical

curve is not statistically significant because of the lack of samples.

3.3.2 Multi-target scenario

To keep the notation lighter, let us define a generic coordinate u = {x, y}
and a generic velocity u̇ = {ẋ, ẏ}, along its corresponding long-term mean

v = vx,y, reversion rate γ = γx,y and noise term σ = σx,y.
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Figure 3.6: Normalized variance of the prediction error on the target velocity assuming

the OU (left) or NCV (right) target motion model, for the three traffic categories: cargo

(pink), tanker (green), and passenger (orange). Components along the x-axis and y-axis

are identified using different markers.

Velocity

Figure 3.6 shows the prediction error variance on the target velocity over

the prediction horizon, for the cargo, tanker and passenger traffic categories.

In each subfigure marker plots illustrate the empirical data, i.e., the actual

prediction error variance observed on the target velocity, whereas dashed

lines represent the theoretical model. The aim of these figures is to compare

how well the hypothesized models reproduce the evolution of the prediction

uncertainty over the prediction horizon. In each of the aforementioned fig-

ures, the leftmost graphs are under the OU model hypothesis, while those

on the far right relate to the NCV models, in both cases p = 3 and p = 4

(see discussion in Subsection 3.2.3 and [154]).

In Fig. 3.6 it is easy to recognize that while the NCV models fit the

empirical curve only in the short time prediction the OU instead fits the

whole evolution. It is worth mentioning that in the long time prediction

the fundamental difference between the two model becomes clear: the NCV

uncertainty diverges, as for a Brownian motion, while the OU reaches an

asymptotic level provided by g(t) → 1/2, see (B.16). The asymptotic un-

normalized OU uncertainty is instead given by σ2
x,y/2γx,y, basically it is

proportional to the noise variance σ2
x,y and to the reversion rate 1/γx,y. As

already explained in Section 3.2, the NCV model is equivalent to the OU for

γx,y → 0, this explains from another point of view why the NCV uncertainty

diverges.
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Figure 3.7: Normalized variance of the prediction error on the target position assuming

the OU (left) or NCV (right) target motion model, for the three traffic categories: cargo

(pink), tanker (green), and passenger (orange). Components along the x-axis and y-axis

are identified using different markers.

Position

Figure 3.7 illustrates how the prediction error variance on the target position

varies over the prediction horizon for the cargo, tanker and passenger traffic

categories. As before, marker plots have been used for the empirical data

and dashed lines for the theoretical models.

Like the OU model for the target velocity, the IOU is apparently more

appropriate to model the uncertainty growth over the prediction horizon,

especially for long-term target state prediction, where the actual prediction

error variance on the position of the target is several orders of magnitude

below the value one would expect according to both versions of the NCV.

As opposed to the velocity curve, the position uncertainty diverges for

both IOU and NCV. However, the divergence rates are different, specifically

the normalized IOU uncertainty grows as t while the NCV grows as tp with

p = 3 or p = 4. The growth rate for the unnormalized IOU uncertainty is

ruled by σ2/γ3, as opposed to the asymptotic variance of the velocity, this

being proportional to the cube of the reversion rate.

3.4 Conclusion

In this introductory chapter the problem of issuing long-term predictions of

future target states has been presented, with specific focus on the model-

ing of the related uncertainty. Two different stochastic motion models have
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been hypothesized, the first being the well-known Nearly Constant Veloc-

ity (NCV) model, and the second the less commonly studied – at least in

the tracking literature – Ornstein-Uhlenbeck (OU) mean-reverting stochas-

tic model. A description and comparison of the two theoretical models has

been provided and it is accompanied by an extensive validation study on

a real-world data set which is representative of a significant portion of the

maritime traffic in the Mediterranean Sea. Experimental results confirm

that OU stochastic processes may be used to model the motion of non-

maneuvering vessels while under way. Its major advantage over the more

traditional NCV model is that the variance of the predicted position grows

linearly with the prediction horizon, resulting a prediction uncertainty that

is much more contained in larger time scales.
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Chapter 4

Detection of maritime

anomalous deviations

In this chapter we present a novel anomaly detection procedure

based on the OU mean-reverting stochastic process. The consid-

ered maritime anomaly is the deviation of a vessel from a planned

route, with a possible change of the nominal velocity. In order

to hide this behavior, possibly related to a suspicious activity, the

vessel switches its AIS device off for a given time, after which

it tries to revert to the previous nominal conditions. During this

period the decision that has to be taken is either declaring that a

deviation happened or not, relying only upon two available AIS

contacts. Furthermore, we also consider the extension to the sce-

nario in which multiple contacts (e.g., radar) are available during

the silent period. A proper statistical hypothesis test that builds

on the changes in the OU process long-term velocity parameter

of the vessel is the core of the proposed approach and enables the

solution of the anomaly detection problem. We provide closed

analytical forms for the detection and false alarm probabilities of

the hypothesis test, and we demonstrate the effectiveness of the

proposed detection strategy through experimental analysis within

synthetic and real-world scenarios. 1

1This chapter has been mainly published as “Detecting Anomalous Deviations From

Standard Maritime Routes Using the Ornstein-Uhlenbeck Process,” in IEEE Transactions

on Signal Processing, Dec. 2018 [64].
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Figure 4.1: A vessel turns the AIS transponder off and follows a different trajectory from

the nominal one, changing its velocity.

4.1 Introduction

In this chapter, we study the anomaly detection problem roughly depicted in

Fig. 4.1, where a vessel deviates from its planned route, changing the nominal

velocity v0. The vessel attempts to hide the deviation by switching its AIS

transponder off for a time period T . After the deviation, the vessel would

then try to revert back to the planned route and to the original nominal

velocity v0. The decision that needs to be taken is whether a deviation

happened or not, relying upon the available contacts (AIS, radar, etc.).

During the period of data gap the vessel might have been loitering or

drifting for an unspecified (and unknown) amount of time, perhaps to en-

counter other ships; all actions commonly classified as anomalous [214]. As

also documented in [115], a practical example could be a mother ship trans-

porting a drug shipment from its place of origin to the waters off the country

of the ultimate destination, where the drug is then transferred to a second

vessel waiting in a pre-established location, which eventually brings it ashore.

Unlike other works [105, 117, 123, 127, 169, 187, 218], here the anomaly

detection problem is addressed relying on a hypothesis test that builds on

the changes of the OU process long-run mean velocity parameter, previously

introduced in Chapter 3. Such a strategy will be tested against a trajectory

of a real transshipment incident [17].

As previously discussed in Chapter 3, a ship motion model based on the
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OU process has been shown to be more realistic than other conventional

kinematic models for the behavior of the real-world commercial maritime

traffic [61,154,155,219]. In this framework, the OU model turns out to be a

valuable tool when vessel information is not available, providing an accurate

estimation of a ship’s position and velocity, even after several hours.

The proposed detection strategy is investigated assuming to have multi-

ple contacts available before and after the possible anomaly. We take into

consideration the case where only two contacts are available, for example

the last contact before the AIS device shutdown and the first one after the

AIS device reactivation, which is of particular interest for real-world appli-

cations. Then, we extend our analysis to the use of multiple heterogeneous

contacts associated with the vessel along its trajectory. This situation could

be represented by a scenario where multiple radar contacts are available in

addition to AIS contacts.

It is worth mentioning that, different from the AIS data, which contain

vessel labeling information, other (especially non-collaborative) sensors (e.g.

radar) suffer from the measurement-origin uncertainty [219]. In this chapter

we assume that the association of contacts to the vessel of interest is solved

in a preliminary stage, see e.g., [28, 219]. The possible association error,

relevant when several multiple targets are close to each other (uncommon

scenario in open sea), is neglected and left to future investigation.

The use of multiple contacts compared to the case of only two contacts

can lead to a sensible improvement of detection performance. However,

counterintuitively, there are scenarios in which the detection performance

is degraded. Mathematical conditions and physical insights related to such

scenarios are provided.

4.2 Problem formulation

Let us consider a vessel of interest, represented by a point in a bidimensional

space, which is following its planned route. As already specified in Chapter 3,

the position and velocity of the vessel are expressed in Cartesian coordinates,

resulting from the projection of the geographic coordinates reported by the

on-board AIS transponder.

Let us suppose that AIS data is unavailable for a time T after a given

instant, due to a lack of communications from the ship (because of limited

sensor coverage, interference, etc.) or an intentional shutdown of the AIS



62 Detection of maritime anomalous deviations

transponder. In this scenario, two hypotheses can be envisioned:

1. Hypothesis H0: the vessel is expected to navigate along a planned

trajectory according to a piecewise OU model characterized by a se-

quence of N0 long-run mean nominal velocities, comprised in the 2N0-

dimensional vector v0 = col{v0,n}N0
n=1 of nominal velocities, identify-

ing an N0-section nominal path. Precisely, the nominal velocity v0 is

assumed to be a known deterministic parameter of the OU process,

which may be available from contextual information such as historical

patterns extracted in the form of MTG;

2. HypothesisH1: the vessel moves away from the nominal condition once

the AIS transponder has been shut down. We assume that, during the

time it went dark, the vessel is assumed to move away from the nominal

condition by following a piecewise OU model with N unknown long-

run mean velocities, comprised in the 2N -dimensional vector v1:N =

col{vn}Nn=1. It identifies anN -section path, where, in general, N ̸= N0.

In this chapter we assume N = N0.

At the end of the time interval T the AIS device is switched back on and the

vessel keeps on moving under the nominal condition, as shown in Fig. 4.1.

The sequence of the unknown long-run mean velocities v1:N , correspond-

ing to the N -section path, is shown in Fig. 4.2. In particular, Fig. 4.2(a) rep-

resents the case where the vessel varies both trajectory and velocity, whereas

in Fig. 4.2(b) only the velocity is altered. In both cases, considering the set

of time instants t1 < ... < tn < ... < tN , the period taken to cover the n-th

section corresponds to the difference ∆n
∆
= tn − tn−1 and the sequence of

these time intervals is denoted with DN
∆
= {∆n}Nn=1. The time period T

when the AIS is disabled can be expressed as the sum of all the different

time intervals ∆n, so that T =
∑N

n=1 ∆n.

The considered problem amounts to determining, in the absence of AIS

data and without any other information during the time interval T , whether

the vessel has been following the planned trajectory at the nominal velocity

v0 or not, by means of a composite hypothesis test formulation designed to

identify changes in the velocity parameter.

In the first instance, the problem is studied just relying only upon two

contacts available at the instants t0 = 0 and tN = T , respectively. Then, the

problem is extended to the case where multiple contacts are available, each

one located in a generic point along the N -section path.
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(a) The vessel changes both trajectory and velocity during the AIS shutdown period.

(b) The vessel only alters its velocity during the AIS shutdown period.

Figure 4.2: Sequence of long-run mean velocities and time intervals characterizing the

N -section path under hypothesis H1.

4.3 Statistical representation of data based on

the OU Process

As presented in Chapter 3, the OU model [56,58,154,212], has been validated

against a real-world commercial maritime traffic dataset [154] and has been

shown to enable a more accurate representation of the target state in the

long-term when ships are not maneuvering.

It is worth mentioning that the NCV model could also be adopted in

anomaly detection [187], but it does not turn out to be suitable for the

specific problem at hand, since it lacks a parameter that represents a tar-

get’s desired (cruise) velocity (see Section 3.2). This effectively makes the

NCV incompatible with our detection strategy, that is instead based on the
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changes of the long-run mean velocity. In such a situation, the OU appears

clearly better suited, even when the anomalous maneuvering trajectory is

considered, since this can be seen as a sequence of non-maneuvering paths,

each one modeled by an OU process, and therefore as a piecewise OU model.

The SDE for the target motion model (3.7) is only suitable to represent a

non-maneuvering target, i.e., whose long-run mean velocity does not change

in time. However the model can be easily extended to the case of waypoint

navigation [61], that is relevant to our application, being the navigation mode

of substantially all the commercial maritime traffic. Along the navigational

legs, the long-run mean velocity of the target obeys, by all means, the OU

process; conversely, the maneuver is represented by a change of the long-run

mean velocity parameter.

Under these assumptions, using hereafter sub-scripted indexes to denote

time dependency, i.e., sn = s(tn) and ωn = ω(tn), where s(t) and ω(t) are

defined in (3.7), the target state at time tn, given the target state at the

previous time tn−1, can be written as

sn = Φ(∆n,γ)sn−1 +Ψ(∆n,γ)vn + ωn, (4.1)

where vn is the long-run mean velocity in the time interval [tn−1, tn] and

ωn is a zero-mean Gaussian random vector with covariance C(∆n), whose

complete expression is reported in (B.12) in Appendix B.1. The state tran-

sition matrix Φ(∆n,γ), and the control input function Ψ(∆n,γ) have been

introduced in Chapter 3 and are respectively defined in (B.6) and (B.8).

Omitting hereafter γ for clarity, the target state at time tN can be ex-

pressed recursively as

sN = Φ(∆N )sN−1 +Ψ(∆N )vN + ωN

= Φ(∆N ) [Φ(∆N−1)sN−2 +Ψ(∆N−1)vN−1 + ωN−1]

+Ψ(∆N )vN + ωN

= Φ(T )s0 +Ψ(∆N )vN + ωN +

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
[Ψ(∆n)vn + ωn] ,

(4.2)

where we exploited the property of the state transition matrix by which

Φ(∆1)Φ(∆2)...Φ(∆n) = Φ(∆1 +∆2 + ...+∆n), ∀n = 1, ..., N , that can be

derived by inspection from (B.6).
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4.3.1 Two contacts available

Let us start by considering the case in which two measurements are available

from the vessel. Specifically, we denote with m0 and m the two measure-

ments respectively available at time t0 = 0 and time tN

m0 = s0 + n0, and m = sN + n, (4.3)

where n0 and n are independent zero-mean Gaussian noises with covari-

ance matrices Cn0
and Cn, respectively. Clearly, the measurement noise is

independent of the OU process noise.

Even if the distribution ofm0 does not affect the hypothesis test, meaning

that s0 has the same distribution under both hypotheses, such information

is important because s0 represents the starting point of the kinematic ter-

minating in sN . Given the linearity of equations (4.3) and exploiting (4.2),

we can use the following data vector to avoid the dependence on s0 in m

y
∆
= m−Φ(T )m0

= Ψ(∆N )vN + ωN +

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
[Ψ(∆n)vn + ωn] + n−Φ(T )n0.

(4.4)

In Appendix C.1 we show that the process noise is distributed as a zero-mean

Gaussian with covariance matrix C(T ), as

ω(T )
∆
=

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
ωn + ωN ∼ N (0,C(T )) , (4.5)

so that the data vector y can be recast as follows

y = µ+ ω(T ) + n−Φ(T )n0. (4.6)

Consequently, the anomaly detection problem previously introduced in

Section 4.2 can be described by the following Gaussian composite hypothesis

testing problem: {
H0 : y ∼ N (µ0,Cy)

H1 : y ∼ N (µ,Cy)
(4.7)

with covariance matrix given by

Cy
∆
= C(T ) +Cn +Φ(T )Cn0Φ(T )T. (4.8)

The mean vectors are distinguished under the null and the alternative hy-

potheses:
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Under hypothesis H1

The mean term under hypothesis H1 is derived from (4.4) as

µ =E [y|H1]

=

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
Ψ(∆n)vn +Ψ(∆N )vN

=Hv1:N , (4.9)

where, in this case, H is a 4 × 2N matrix incorporating the state transi-

tion matrices (B.6) and the control input functions (B.8), dependent on the

number of sections N and the time interval sequence DN :

H
∆
=

[
Φ

(
N∑
i=2

∆i

)
Ψ(∆1), . . . ,Φ(∆N )Ψ(∆N−1),Ψ(∆N )

]
︸ ︷︷ ︸

4×2N

. (4.10)

Furthermore, we will make a distinction between the case where the num-

ber of sections N and the sequence of the time intervals DN are known quan-

tities, and the case where N and DN are instead unknown. Then the mean

term µ (4.9) can be expressed as

µ = E [y|H1] =

{
Hθ if N,DN known

θ if N,DN unknown
(4.11)

Under the condition of known parameters, H is a known matrix and θ = v1:N

is the 2N -dimensional unknown parameter vector. Under the alternative

condition, θ = µ represents a global unknown parameter.

Under hypothesis H0

Let us define the 2N -dimensional vector θ0
∆
= v0. Then, under the null

hypothesis H0, the mean term is given by

µ0 = E [y|H0] =

{
Hθ0 if N,DN known

θ0 if N,DN unknown.
(4.12)

Note that, given v0, µ0 is always known, even if N and DN are unknown.
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4.3.2 Multiple contacts available

Let us now assume that, in addition to the contacts in t0 and T , a number

of sporadic measurements (AIS, radar, SAR, etc.) is available at any time

during the period between t0 and t0 + T . We hence assume that we have a

stack of K + 1 measurements, as col {mk}Kk=0, where the k-th measurement

is given by

mk = s(Tk) + nk, (4.13)

and the measurement noise terms nk are assumed to be independent and

identically distributed according to a zero-mean Gaussian with covariance

Cnk
. The k-th measurement is available at time Tk =

pk
N T , where pk ∈ [0, N ]

is by definition a fraction of the interval [0, N ] representing the time location

of the contact with respect to the N piecewise OU velocities, as shown in

Fig. 4.3, where pk is located at some point along the n-th section of the path.

Accordingly, it is possible to consider the 4K-dimensional data vector

y = col {yk}
K
k=1, where the k-th component is defined as

yk = mk −Φ(Tk)m0

= µk + ω(Tk) + nk −Φ(Tk)n0 ∼ N
(
µk,Cyk

)
. (4.14)

Similarly to (4.5) we can compute the OU process noise ω(Tk) ∼ N (0,C(Tk))

at time Tk, which is given by

ω(Tk) =Φ(∆⌈pk⌉δk)

⌊pk⌋−1∑
n=1

 ⌊pk⌋∏
i=n+1

Φ(∆i)

ω(∆n)

+Φ(∆⌈pk⌉δk)ω(∆⌊pk⌋) + ω(∆⌈pk⌉δk), (4.15)

where δk = pk − ⌊pk⌋, with ⌈·⌉ and ⌊·⌋ denoting respectively the ceiling and

the floor functions. Consequently, the k-th component yk is Gaussian with

covariance matrix given by

Cyk

∆
= C(Tk) +Cnk

+Φ(Tk)Cn0
Φ(Tk)

T, (4.16)

assuming the independence of the noise terms in (4.14).
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Figure 4.3: The parameter pk identifies the time location of the k-th contact along the

N -section path covered by the vessel.

The mean vector µk is defined as

µk
∆
=Φ(∆⌈pk⌉δk)


⌊pk⌋−1∑
n=1

 ⌊pk⌋∏
i=n+1

Φ(∆i)

Ψ(∆n)vn +Ψ(∆⌊pk⌋)v⌊pk⌋


+Ψ(∆⌈pk⌉δk)v⌈pk⌉,

=Hk v1:N (4.17)

which is derived in the same way as the mean term (4.9) in the case of

only two contacts. Hk is the 4× 2N model matrix which includes the state

transition matrices (B.6) and the control input functions (B.8) related to the

k-th radar contact, whose expression is

Hk =


Πk︸︷︷︸

4×2⌈pk⌉

,

0 · · · 0
...

. . .
...

0 · · · 0


︸ ︷︷ ︸
4×2(N−⌈pk⌉)


, (4.18)

with

Πk =

[Φ(∆⌈pk⌉δk)Φ

⌊pk⌋∑
i=2

∆i

Ψ(∆1), . . .

. . . ,Φ(∆⌈pk⌉δk)Φ

 ⌊pk⌋∑
i=⌈pk⌉−1

∆i

Ψ(∆⌈pk⌉−2),Φ(∆⌈pk⌉βk)Ψ(∆⌈pk⌉−1),

Ψ(∆⌈pk⌉βk)], (4.19)
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and βk = 1 if δk = 0, or βk = δk otherwise. Specifically, the null matrix

appearing in (4.18) cancels the long-run mean velocities contributing later

than the time Tk of the k-th contact. Notice that, for K = 1 and pk = N , Hk

is just the matrix (4.10) found in the previous case where only two contacts

are available.

The full data vector y is therefore characterized as in (4.7) with covari-

ance matrix given by

Cy =


C11 C12 · · · C1K

C21 C22 · · · C2K

...
...

. . .
...

CK1 CK2 · · · CKK

 , (4.20)

where, ∀i, j = 1, . . . ,K, (see Appendix C.2)

Cij =

{
C(Ti) +Cni

+Φ(Ti)Cn0
Φ(Ti)

T if i = j

C(Ti)Φ(Tj − Ti)
T +Φ(Ti)Cn0

Φ(Tj)
T if i < j,

(4.21)

and Cji = CT
ij .

As for the two-contacts case, the mean vectors of the full data vector y

are distinguished under the null and the alternative hypotheses. Indeed, µ

and µ0 are still expressible as (4.11) and (4.12), respectively, with the only

difference that, in this case, H is the overall model matrix of size 4K × 2N

made up of the model matrices Hk in (4.18) as

H =
[
H1 . . . Hk . . . HK

]T
. (4.22)

4.4 Detection of anomalous deviations from

the expected route in the presence of dif-

ferent levels of data unavailability

Summarizing the results from the previous section, the anomaly detection

problem described in Section 4.2 is addressed in a binary Gaussian hypothesis

test framework as: {
H0 : y ∼ N (µ0,Cy) ,

H1 : y ∼ N (µ,Cy) ,
(4.23)
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with the same covariance matrix under the two hypotheses, given in (4.8) in

the case of only two contacts available, and in (4.20) in the case of K + 1

contacts. Instead, the mean term depends on the hypothesis as:

µ0 =

{
H known : Hθ0 = Hv0,

H unknown : θ0 = Hv0,
(4.24)

µ =

{
H known : Hθ = Hv1:N ,

H unknown : θ = Hv1:N ,
(4.25)

with model matrix H given by (4.10) in the case of only two contacts avail-

able, and (4.22) in the case of multiple contacts.

The anomaly detection strategy developed throughout this chapter for

the hypothesis testing problem at hand, is based on the GLRT approach

that can be easily traced back to the GLRT for Gaussian linear model [179].

By denoting with Lθ(y) the test function, the GLRT can be expressed as

Lθ(y) = argmax
θ

{ln [pθ(y)]} − ln [pθ0
(y)]

H1

≷
H0

τ, (4.26)

where pθ0
is the probability distribution under the simple null hypothesis

H0 by which there have been no changes in the vessel velocity during the

AIS transponder shutdown; conversely, pθ is the probability distribution,

depending on the unknown parameter θ, under the composite alternative

hypothesis H1 by which the vessel has changed its velocity during the AIS

transponder shutdown. With a minor abuse of notation, the threshold will

be always identified by τ from now on.

The test performance is defined in terms of false alarm probability PFA,

i.e., the probability that the test statistic exceeds the threshold under H0

and detection probability PD, i.e., the probability that the test statistic

exceeds the threshold under H1. By letting the threshold τ vary, the PFA

and PD values define a curve in the (PFA, PD) plane named the Receiver

Operating Characteristic (ROC). Since the hypothesis testing problem at

hand is addressed via the GLRT for Gaussian linear model, the test statistics

under the two hypotheses H0 and H1 are characterized, respectively, by a

central and a non-central Chi-squared distributions [119], both with d degrees

of freedom. In such a way, the detection performance is described by

PFA = Qχ2
d
(τ), and PD = Qχ

′2
d (λ)(τ), (4.27)
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where Qχ2
d
and Qχ

′2
d (λ) are the right tail probabilities of the central and non-

central Chi-squared distributions, respectively. The parameter λ = λ(θ),

denoted as non-centrality parameter [119], is twice the KL-divergence be-

tween the actual distributions under the hypotheses H0 and H1. In other

words, λ(θ) represents a measure of how much the hypotheses H0 and H1

are distant from each other, meaning that the two hypotheses become more

disjoint as λ(θ) increases. Therefore, the anomaly detection performance

of the clairvoyant receiver, obtained assuming known the ship velocity pro-

file under the two hypotheses, is ruled by λ(θ), which is also identified as

anomaly distance in such a context.

In the following we develop the detection strategy for the case where mul-

tiple contacts are available, making a distinction between the case where N

and DN are unknown and the one where such parameters are known. Finally

the issue arising from this strategy will be highlighted and investigated.

4.4.1 Scenario 1: N and DN unknown parameters

In this case, we have µ = θ = Hv1:N under H1 and µ0 = θ0 = Hv0 under

H0. The GLRT is derived from (4.26), as follows

Lθ(y) =
(
θ̂ − θ0

)T
C−1

y

(
θ̂ − θ0

) H1

≷
H0

τ, (4.28)

where θ̂ represents the Maximum Likelihood Estimate (MLE) for the pa-

rameter θ, and, in Appendix C.3, it is shown that θ̂ = y.2

As previously anticipated, the test statistics under the two hypotheses

H0 and H1 are characterized, respectively, by central and non-central Chi-

squared distributions, both with d = 4K degrees of freedom, corresponding

to the dimension of the known parameter θ0. The detection performance is

therefore given by (4.27) with the following non-centrality parameter

λ(θ) = (θ − θ0)
T
C−1

y (θ − θ0) (4.29)

= (v1:N − v0)
T
HTC−1

y H (v1:N − v0) .

2In this case, it is preferable to directly estimate the global unknown parameter θ,

instead of jointly estimating N , DN and v1:N , which would require a numerical solution

ot the GLRT with no available closed-form performance expression.
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4.4.2 Scenario 2: N and DN known parameters

In this case θ = v1:N under H1 and θ0 = v0 under H0. Similarly to what

seen in the previous case, the GLRT has the following form:

Lθ(y) =
(
θ̂ − θ0

)T
HTC−1

y H
(
θ̂ − θ0

) H1

≷
H0

τ, (4.30)

where θ̂ is the MLE of the parameter θ, given by (see Appendix C.3)

θ̂ =
(
HTC−1

y H
)−1

HTC−1
y y, (4.31)

when H is a full rank matrix. Therefore it is possible to achieve a direct

estimate of the vector incorporating the velocities assumed by the vessel

under the hypothesis H1 instead of an estimate of the global parameter as

shown in the previous case3. The detection performance is given by (4.27),

but in the current case the number of degrees of freedom for both central

and non-central Chi-squared distributions is d = 2N , corresponding to the

dimension of the known parameter θ0, and the non-centrality parameter is

given by (4.29).

On the other hand, when H is ill-conditioned, a problem of matrix in-

version arises in the MLE expression (4.31). This is identified as a rank

deficiency problem that can be approached by using the Singular Value De-

composition (SVD) [96] of matrix H, given by

H = USQT, (4.32)

where U is a 4K × 4K unitary matrix, S is a 4K × 2N rectangular diagonal

matrix with non-negative real numbers on the diagonal, corresponding to

the singular values of H, and Q is a 2N × 2N unitary matrix.

The central idea is to replace H by its rank reduced version, and this is

referred to as truncating the SVD [209]. It is shown that ρ
∆
= rank(H) =

rank(S) and it is equal to the number of non-zero singular values of H.

Therefore ρ provides the effective size of the matrices involved, meaning

that USQT = ŨS̃Q̃T, where Ũ, of size 4K × ρ, and Q̃T, of size ρ× 2N , are

respectively the matrices of the left-singular vectors and of the right-singular

vectors of H, while S̃ is a ρ× ρ diagonal matrix. In such a way, by using the

reduced rank version of H, it is possible to get

Hθ = ŨS̃Q̃Tθ = Ũθ̃, (4.33)

3When H holds a rank equal to the number of its rows, we fall back into the case where

H is unknown, so that H θ̂ = y, as shown in [209].
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where θ̃
∆
= S̃Q̃Tθ is a ρ-dimensional unknown vector resulting from a process

of rotation and scaling of the vector θ. In the same way, under hypothesis

H0, we obtain Hθ0 = Ũθ̃0.

By applying the SVD (4.33) to the GLRT (4.30) and considering the

following Cholesky Decomposition [96]

C−1
y = C̃TC̃, (4.34)

with C̃ lower triangular matrix with positive elements on the diagonal, the

reformulation of the GLRT is achieved as

Lθ̃(y) =

(̂̃
θ − θ̃0

)T

ŨTC̃TC̃Ũ

(̂̃
θ − θ̃0

)
=

(̂̃
θ − θ̃0

)T

H̃TH̃

(̂̃
θ − θ̃0

)
H1

≷
H0

τ, (4.35)

with H̃
∆
= C̃Ũ. Derived as done for (4.31), the MLE of parameter θ̃ is given

by ̂̃
θ =

(
H̃TH̃

)−1

H̃TC̃y, (4.36)

where the problem of matrix inversion does not arise since H̃TH̃ is a full-rank

matrix of size ρ× ρ by construction, and, therefore, invertible. In this case,

the number of degrees of freedom is d = ρ, corresponding to the dimension

of the known parameter θ̃0, while the non-centrality parameter is immutably

given by (4.29).

4.5 Experimental results

In this subsection we present some experimental results by applying the

GLRTs (4.28) and (4.35) derived in Section 4.4 to both synthetic and real-

world scenarios. In particular, the proposed anomaly detection strategy will

be applied to the real-world scenarios introduced in Chapter 1 concerning

the illicit rendezvous nearby the Galápagos Marine Reserve, and the Ever

Given grounding in the Suez Canal.

4.5.1 Analysis of a synthetic scenario

The performance of the tests (4.28) and (4.35) will be examined for a sit-

uation of concern where multiple contacts are considered. We set a config-
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Figure 4.4: Panel (a) shows the GLRT (4.28) performance for case study (a). Panel (b)

shows the GLRT (4.28) performance for case study (b). Panel (c) shows the GLRT (4.35)

performance for case study (a). Panel (d) shows the GLRT (4.35) performance for case

study (b).
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uration for the analyses of a synthetic scenario, where a vessel is navigat-

ing under nominal conditions along a straight route with constant velocity

v0 = [8 0]
T

m/s and at some point it turns its AIS device off for a time

period T = 12 hours. Under hypothesis H1 the vessel is supposed to fol-

low an N -section path and the time intervals are assumed all equal, so that

∆n = T/N, ∀n = 1, ..., N . The reversion rate of the underlying OU dy-

namic model is set as γx = γy = 0.9 · 10−2 and ΣΣT = σ2I, with noise level

σ2 = 10−2. The noise covariance matrix is set as Cnk
= diag(502, 502, 1, 1)

∀k = 1, ...,K, while Cn0 is assumed to be negligible.

A comparison between the tests (4.28) and (4.35) derived in Section 4.4 is

highlighted here, where we distinguish two specific case studies depending on

the time location of multiple contacts. Specifically we assume to observe two

AIS contacts (the last one before, and the first one just after the AIS device

shutdown) and two radar contacts located along the path covered by the

vessel, which, under hypothesis H1, consists of N = 4 sections characterized

by the following sequence of long-run mean velocities |v1| = 7.9, |v2| = 8.6,

|v3| = 7.8, |v4| = 7.8. The two radar contacts are denoted with k1 and k2
and the corresponding time locations with pk1 and pk2 . This means that the

contacts are observed at T1,2 =
pk1,2

N
T .

Performance curves are provided in terms of missed detection probability,

1 − PD, versus false alarm probability, PFA, (see Fig. 4.4). Specifically, for

both case studies, while the solid line is related to the detection procedure

performed by using the only AIS contribution, the dot-dashed and dashed

lines represent the test performance achieved by using AIS data and the

measurement provided by the radar contacts k1 and k2, respectively. Fur-

thermore performance related to the combined use of both radar contacts

and AIS is denoted with an o-marker line.

Case study (a)

The performance of the GLRTs (4.28) and (4.35) for the case study (a) is

depicted in Fig. 4.4(a) and (c) respectively. The two radar contacts are lo-

cated in pk1
= 2.7 and in pk2

= 3. We can easily verify that, in both cases,

the improvement obtained by using contact k2 is not significant since it is

located where the vessel is very close to the expected position as if the devi-

ation never happened. Whereas, the use of k1, located where the anomalous

behavior and the nominal condition are significantly distant, provides a re-

markable improvement. Finally the combined use of both radar contacts
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Table 4.1: Non-centrality parameter and degrees of freedom for radar contacts located in

pk1
= 2.7, pk2

= 3.

AIS AIS + k1 AIS + k2 AIS + k1 + k2

λ(θ) 3.3072 50.9995 7.4007 134.4314

d
1.(a) 4 8 8 12

2.(a) 4 6 6 6

Table 4.2: Non-centrality parameter and degrees of freedom for radar contacts located in

pk1
= 3.3, pk2

= 3.7.

AIS AIS + k1 AIS + k2 AIS + k1 + k2

λ(θ) 3.3072 4.1040 3.6086 4.1040

d
1.(b) 4 8 8 12

2.(b) 4 4 4 4

improves the performance with respect to the use of a single radar contact.

We observe that in both cases performance improves with increasing number

of radar contacts, however as discussed in Subsection 4.4, given that λ(θ) is

equal for both detectors, GLRT (4.35) exhibits better performance because

d is smaller comparing to the case of GLRT (4.28) (see also the deepening

in Appendix C.4). The values of λ(θ) and d for cases 1.(a) and 2.(a) are

reported in Table 4.1.

Case study (b)

Performance of GLRT (4.28) and (4.35) for the case study (b) is depicted

in Fig. 4.4(b) and (d) respectively, where the two radar contacts are now

located at pk1 = 3.3 and pk2 = 3.7, that is, along a part of the path where

the anomalous behavior is very close to the nominal condition, and therefore

the two hypotheses are difficult to distinguish. In this case, compared to the

case of AIS information only, the performance of the GLRT (4.28) gets worse

with increasing number of radar contacts. This phenomenon is explained in

Appendix C.4, and basically it is the case in which adding new contacts in

location where H1 is close to H0 has the effect of adding mostly noise to

the decision statistic. On the other hand, GLRT (4.35) shows increasingly
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better performance, even though the improvement is quite small because of

the radar contacts contain limited information for discriminating the two

hypotheses. The values of λ(θ) and d for cases 1.(b) and 2.(b) are reported

in Table 4.2.

4.5.2 Analysis of a real-world scenario: Illicit rendezvous

nearby the Galápagos Marine Reserve

The detection strategy proposed in Chapter 4.4 has been applied to a real-

world example of anomalous behavior provided in Fig. 1.5, where the about

five-month AIS track of a cargo vessel is shown.4 The vessel navigates with

a nominal speed of about 5 m/s in the waters of the Pacific Ocean [17].

Nearby the Galápagos EEZ two area of interest (AoI) characterized by an

anomalous behavior can be identified by simple visual inspection of Fig. 4.5.

In both AoIs the vessel shuts the engines down and starts drifting, with

an apparent deviation from its expected route. While there is no apparent

reason for the drifting in the first AoI, the deviation in the second AoI is

clearly performed to rendezvous with four tuna longliners at about 1700 miles

away from Galápagos. Each fishing vessel spends about 12 hours moving

along with the vessel at a distance of about 30 m, which indicates the boats

were likely tied up. This behavior suggests a substantial transfer of cargo

was possible [17].

For the application of the detection strategy, we estimated the OU param-

eters in the path section immediately preceding the AoI where the deviation

from the nominal conditions actually happens. Specifically, the estimated

values of the process noise σ, the long-run mean velocity v0, and the rever-

sion rate γ are reported in Table 4.3.

First AoI

The anomalous behavior in the first AoI is short and not very apparent.

According to the AIS track, the vessel seems to shut down the engines and

drift for about 14 hours, then it goes back to the planned route as it can be

seen in the close-up of Fig. 4.6 (a). Such an anomaly is reflected on the ve-

locity components shown in Fig. 4.6 (e), and it is more visible in Fig. 4.6 (c)

4This subsection has been published as “Maritime Anomaly Detection Based on Mean-

Reverting Stochastic Processes Applied to a Real-World Scenario,” in 21st International

Conference on Information Fusion, July 2018 [65].
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(a) First AoI (b) Second AoI

Figure 4.5: The track of the cargo vessel (red) exhibiting anomalous behaviors along

the expected route. Panel (a) shows the first AoI, where the cargo vessel drifts with no

apparent reason. Panel (b) shows the second AoI, where the cargo vessel is evidently

suspected of several rendezvous with four fishing vessels (dotted tracks).

where, during the deviation time, the decision statistic (4.28) grows by sev-

eral orders of magnitude with respect to nominal readings, exceeding all the

values of the threshold (i.e., for different values of the false alarm probability:

PFA ∈
{
10−4, 10−6, 10−8

}
).

In order to test the proposed detection strategy, we simulated a data gap

in the AIS track corresponding to the anomaly time frame, as depicted in

Fig. 4.6 (b) with the corresponding velocity gaps shown in Fig. 4.6 (f). The

detector (4.28) correctly reveals the deviation from the nominal condition

using a threshold selected with PFA = 10−6, as shown in Fig. 4.6 (d).
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Table 4.3: OU parameters estimates

First AoI Second AoI

γ
γx 5.89× 10−3 2.30× 10−4

γy 8.49× 10−4 4.19× 10−3

σ
σx 2.83× 10−2 1.13× 10−2

σy 1.84× 10−2 2.23× 10−2

v0

v0x 5.8743 5.2931

v0y -0.6320 0.0331

Second AoI

The AIS track of the ship in the second observation window is shown in

Fig. 4.7 (a) and it does indeed reveal a deviation from the normal route dur-

ing a time frame of about 5 days; Fig. 4.7 (c) displays the test statistic (4.28),

which exceeds the threshold (plotted for different values of the false alarm

probability in the same range considered for the first region analysis) cor-

responding to the deviation from the nominal condition. In particular, the

deviation from the nominal velocity is visible in Fig. 4.7 (e) where the ve-

locity components show an apparent change in that specific time frame.

As done for the first AoI, the detection strategy is tested with simulated

gaps in AIS data, as shown in Fig. 4.7 (b), with the corresponding velocity

gaps shown in Fig. 4.7 (f). The first data gap occurs in a section of the tra-

jectory where there is no deviation from the nominal conditions, while the

second one occurs where the deviation actually happens. From the applica-

tion of the detector (4.28) with PFA = 10−6, the deviation can be properly

detected while no detection is correctly declared in the first gap, as shown

in Fig. 4.7 (d).
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4.5.3 Analysis of a real-world scenario:

Ever Given grounding in the Suez Canal

In this subsection, we show how the anomaly detection tools developed in

Section 4.4 could have been successfully applied to the real-world maritime

scenario of the Ever Given using the available sequence of AIS records, and

contextual information defining the expected nominal behavior of naviga-

tion.5 In the specific, the GLRT (4.30) is sequentially run between two con-

secutive AIS records of the Ever Given to decide whether or not a deviation

from the nominal behavior happened within that specific time period. Our

results reveal an anomalous behavior of the ship, detected 19 minutes before

the grounding, which could have helped avoid the accident that caused such

a negative impact on maritime traffic and global trade.

Configuration of model parameters and nominal behavior

The five available AIS data points let us consider four time windows of du-

ration Tj , j = 1, 2, 3, 4, in each of which the vessel is assumed to move

according to a piecewise OU model. Specifically, under H0, the vessel is

expected to move along a planned trajectory according to a piecewise OU

model characterized by a sequence v0j = col{v0
n,j}

N0
j

n=1 of nominal veloc-

ities, identifying an N0
j -section nominal path within the j-th time frame

(see Fig. 4.8). Alternatively, under H1, the vessel is assumed to move away

from the nominal condition by following a sequence vj = col{vn,j}
Nj

n=1 of Nj

unknown velocities.

Given the characteristics of the navigation area, the expected nominal

behavior of the Ever Given inside the canal as shown in Fig. 4.8 was defined

based on

• the trajectory path to be followed considering its geographical con-

straints;

• speed of transit limits put in place by the SCA [10].

In particular, we considered a constant nominal speed v0 = 4 m/s, below

the limit of 4.44 m/s (16 km/h) for ordinary vessels, and consistent with an

average transit time of 14 hours to navigate a canal with a length of 193.3

5This subsection has been published as “Maritime Anomaly Detection in a Real-World

Scenario: Ever Given Grounding in the Suez Canal,” in IEEE Transactions on Intelligent

Transportation Systems, 2021 [86].
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Figure 4.8: Sequence of OU velocities and time intervals characterizing the nominal dy-

namic behavior of the Ever Given inside the Suez Canal given the available sequence of

AIS contacts.
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Figure 4.9: (a) Ever Given trajectory reported by AIS data collected from 23-03-21 to 29-

03-21. Please note that the AIS trajectory is obtained by simply connecting the available

contacts (circles) with a dotted line. (b) Test statistic of the anomaly detector (4.30) over

the period pre- and post-grounding of the Ever Given. (c) Close-up of the evolution of the

anomaly test statistic during the navigation of the ship inside the Suez Canal until the

time of the last AIS contact before grounding (i.e., from 05:19 to 05:33 UTC, 23-03-21).

(d) Velocity components of the ship along the x- and y-axis over the period pre- and

post-grounding. (e) Close-up of the velocity components during the navigation of the ship

inside the canal before grounding.

km. Note that the uncertainty about the nominal speed v0 is taken into

account through a suitable choice of the nominal OU process noise standard

deviation σ. Then, the x and y components of the nominal velocity vectors

v0
n,j , n = 1, . . . , N0

j , are obtained using the nominal speed and course angle

computed for each section of the planned trajectory path as shown in Fig. 4.8

for the trajectory segment inside the canal and before grounding. The same

nominal speed is applied to the entire AIS trajectory shown in Fig. 4.9(a).

In addition, the parameters of the underlying OU process were selected

following the statistical features estimated for the cargo traffic category

in [154]. However, since this configuration of OU parameters is typically used

in open-water navigation where the motion of vessels involves larger distances

and longer time frames for which a steady-state behavior of the process can

be assumed, for this case in the canal we have applied an adjustment factor

α = 200 to the reversion rate, to account for a shorter time scale with faster
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transient dynamics. The same factor was applied to the noise variance so as

to keep the same ratio σ2/γ, shown to be proportional to the asymptotic

OU uncertainty [154]. In particular, we set the reversion rate and process

noise level as γ̄ = [6.28× 10−4, 5.63× 10−4], σ̄ = [9.04× 10−3, 9.17× 10−3]

outside the canal, and γ = αγ̄, σ2 = ασ̄2 inside the canal.

Anomaly detector (4.30) application

The maritime anomaly detection strategy presented in Section 4.4 is applied

to the AIS data set of the Ever Given, reported from 23-03-21 to 29-03-21, in

order to detect an anomaly in its motion before grounding, which occurred

at 05:40 UTC, 23-03-21. The AIS track of interest, shown in Fig. 4.9(a),

spans over three time periods:

1. the period when the ship is navigating outside the canal,

2. the period when the ship is inside the canal until the grounding,

3. the period post-grounding.

The first AIS contacts starting from 04:13 UTC, 23-03-21 are outside the

canal when the ship starts moving on March 23rd towards the South en-

trance. Then, five key contacts are received and highlighted in our AoI in

Fig. 4.9(a), of which four, at 05:19, 05:21, 05:24, and 05:33 UTC, respec-

tively, are before grounding. The fifth data point in the AoI represents the

first contact available (07:24 UTC) once the Ever Given is stranded. Then,

we reported seven AIS contacts of the ship moving northbound after being

finally freed on March 29th at 13:04 UTC.

The hypothesis test described in Section 4.4 is run between two consec-

utive AIS contacts to determine whether or not deviation occurred from the

nominal behavior during that time window. The red segments in Fig. 4.9(a)

show an anomalous behavior detected just after entrance to the canal at the

second AIS contact inside (05:21 UTC, 23-03-21), and again at two other

contacts (05:24, 05:33 UTC) immediately before the grounding. The last de-

tection of an anomaly occurred at the first AIS contact (07:24 UTC), which is

after the accident. Otherwise, no anomaly is reported before sailing through

the Suez Canal or after the accident. Figure 4.9(b) displays the test statis-

tic (4.30) of the anomaly detector over the period pre- and post-grounding,

which is shown to exceed the threshold within four intervals of the AIS track

with false alarm probability PFA = 10−4 corresponding to the deviation from
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the nominal condition. The velocity components of the ship along the x- and

y-axis (longitude and latitude, respectively) are displayed for the same time

period in Fig. 4.9(d). These components are obtained using the projections

of geographical position coordinates in a two-dimensional Cartesian reference

system. Figure 4.9(c) shows a close-up of the evolution of decision statistic

during the navigation of the ship corresponding to the four contacts inside

the Suez Canal and before grounding where a deviation from the nominal

behavior was detected in three time intervals. From Fig. 4.9(c), note that

the velocity component in the x-direction (orange ◦-markers), despite con-

straints due to the geographical characteristics of the passage, shows a clear

alteration from the nominal behavior (orange dot line) at two time points

(05:21 and 05:24 UTC) where the velocity is shown to be abnormally higher

than expected. This alteration of the velocity along the x direction could

be an indication of swerving, that combined with the increased speed along

the y direction, could have contributed to the cause of the Ever Given’s

grounding.

An intuitive analysis on the operating principle behind the anomaly de-

tection strategy (4.30) is provided in Fig. 4.10, where we can see the predicted

nominal behavior of the ship (blue solid line), and the predicted position

(blue triangle) with related uncertainty (blue ellipse), corresponding to the

decision test run for the three contacts inside the canal and before grounding

as shown in Fig. 4.9(c). Each prediction in Fig. 4.10 is obtained through the

OU dynamic model (4.1) or, equivalently, (4.2) given the nominal parame-

ters, and the time frame between the current and last AIS observation, with

the last contact as initial state. The magenta dotted lines in Fig. 4.10 rep-

resent the actual deviation between the nominal prediction of the ship and

the observed position. Intuitively, an anomaly behavior between two obser-

vations is detected through the GLRT (4.30) whenever the actual position of

the ship available from the AIS contact falls outside the uncertainty region

associated with the predicted nominal position. In practice, this is due to

the difference between the nominal and estimated OU velocity parameters

within the time window of interest. This difference in velocity is evident in

Fig. 4.9(e) for the three AIS contacts at 05:21, 05:24, and 05:33 UTC, which

for this reason fall outside the predicted uncertainty region of the nominal

position as shown in Fig. 4.10. This, in turn, makes the test statistic exceed

the threshold, hence revealing three anomalies as shown in Fig. 4.9(c).

Based on our results derived from real-world data of the Ever Given,



4.6 Conclusion 87

(b)

05:19

05:21

05:24

05:33

07:24

32.575 32.580 32.585 32.590
Longitude [°E]

29.945

29.955

29.965

29.975

29.985

29.995

30.005

30.015

La
tit

ud
e 

[°
N

]

AIS observation
Nominal path
Nominal prediction
Nominal prediction uncertainty
Deviation from nominal
prediction
Grounded ship

Figure 4.10: Predicted nominal path of the ship (blue solid line) and predicted nominal

position (blue triangle) with related uncertainty (blue ellipse) compared to the actual AIS

observations (yellow squares) received inside the canal before grounding.

one could see how the ship traveling at a speed statistically higher than

the nominal one to be adopted in the Suez Canal, would have triggered the

anomaly detector 19 minutes before the grounding.

4.6 Conclusion

In this chapter the maritime anomaly detection problem has been studied

assuming an OU mean-reverting stochastic motion model for the vessel dy-



88 Detection of maritime anomalous deviations

namics. The aim was to reveal a possible deviation of the vessel under con-

sideration from its nominal conditions, during an AIS device disablement,

relying on a hypothesis test based on the generalized likelihood ratio deci-

sion statistic that builds on the changes in the OU process long-term velocity

parameter.

For the sake of clarity the radar model does not consider false alarms

and association error with other vessels, leading to a closed form expression

for the detector and detection performance expressed as central chi-squared

under the nominal condition and non-central chi-squared if anomaly occurs.

A detailed description of the proposed detection strategy, built by ex-

ploiting multiple contacts has been provided, presenting both synthetic and

real-world analyses.

As confirmed by the numerical analysis, the joint use of radar and AIS

information compared to the case of only AIS can lead to a remarkable

improvement of detection performance, while it has been shown that under

certain conditions detection performance not only does not improve, but

actually deteriorates. Such conditions depend on the timing of radar contacts

with respect to the differences between nominal and anomalous trajectories.

Moreover, two cases of a real anomalous trajectory have been processed

by exploiting the proposed detection strategy allowing to assess its perfor-

mance. Indeed, the proposed anomaly detection strategy has been applied to

the real-world scenarios of the illegal rendezvous nearby the Galápagos Ma-

rine Reserve and the Ever Given grounding in the Suez Canal. Through our

results we show how automatic processing of the sequence of AIS records

available from the involved vessel emphasizes the importance of anomaly

detection systems in real-world maritime situations.



Chapter 5

Joint detection of anomalous

deviations from the expected

route and spoofing of dynamic

AIS data

The AIS can be subject to intentional reporting of false infor-

mation, or “spoofing”. In this chapter we address the problem

of establishing whether a vessel is reporting adulterated dynamic

information through AIS messages in order to hide its current

planned route and a possible deviation from the nominal route.

Multiple hypothesis testing suggests a framework to enlist reliable

information from monitoring systems (coastal radars and space-

borne satellite sensors) in support of detection of both anomalies,

spoofing and stealth deviations. The proposed solution involves

the derivation of anomaly detection rules based on the GLRT and

the MOS methodologies. We tested the effectiveness of the pro-

posed anomaly detection strategy for different case studies within

an operational scenario with simulated data.1

1This chapter has been published as “Malicious AIS Spoofing and Abnormal Stealth

Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection,”

in IEEE Transactions on Aerospace and Electronic Systems, vol. 66, no. 24, pp. 6474-

6487, Jun. 2021 [66], and as “Maritime Anomaly Detection of Malicious Data Spoofing

and Stealth Deviations from Nominal Route Exploiting Heterogeneous Sources of Infor-

89
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5.1 Introduction

This chapter takes into consideration that the AIS’s transmission can be

easily jammed or manipulated, opening keys to malicious actors to explore

attack possibilities [25]. For example, the information contained in AIS

messages can be entered manually by the crew of the vessel and maliciously

altered, reporting false dynamic information and ruining the reliability of

AIS data [117,124].

We propose to jointly detect dynamic AIS data spoofing 2 and/or sur-

reptitious deviation, where the problem is complicated by the fact that both

the deviated trajectory and the spoofed trajectory are unknown and generic.

The test determining whether the AIS data received from a vessel are trust-

worthy or not, and whether a deviation occurred or not, is supported by ad-

ditional reliable information provided by surveillance systems such as coastal

radars or space-borne sensor imagery [202,203]. In the case that the AIS data

are indeed trustworthy, they can be safely used in the data fusion algorithms,

e.g., for enhancing the tracking accuracy [91]. If the AIS data are considered

to be spoofed, then their fusion with other data should be avoided and an

anomaly flag has to be raised.

Building on the work in Chapter 4, in this chapter, we propose a coupled

anomaly detection strategy based on a multiple hypothesis testing frame-

work addressed using two approaches. The first approach is based on the

GLRT [179] and comprises two GLRTs: the first one decides if AIS data

are truthful or not, the second one decides if a deviation occurred or not;

finally, the two decisions are combined in a decision rule named C-GLRT.

The second approach is based on the MOS methodology [44,207,235], which

applies an appropriate (complexity-aware) penalty term to the maximized

log-likelihood based on the statistical model hypothesized for the vessel kine-

matics. Common application examples embrace the order selection of Au-

toregressive Moving Average (ARMA) models, the variable selection in sta-

tistical regression models, the channel order estimation in wireless communi-

cations, and the order selection of models used to track maneuvering targets

in radar systems [54,70,116,190,226].

mation,” in 2021 24th International Conference on Information Fusion, [67].
2In this chapter, spoofing is intended as the intentional falsification pursued by the

vessel’s crew.
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5.2 Problem formulation

In this section we formalize the problem, starting with an operational sce-

nario concerning a forbidden area. After, we formalize the detection problem

in its most general mathematical form.

Let us consider an area wherein specific types of vessels are not supposed

to enter, e.g., an area where fishing is forbidden. In this scenario, a ship

equipped with an AIS transponder is expected to follow the planned route

sailing around the forbidden area, as depicted in Fig. 5.1(a) with a green

dotted line. Assuming the presence of data gaps within a given time window

of duration T , four hypotheses can be envisioned:

1. HypothesisH0: the vessel respects the nominal condition sailing around

the forbidden zone, as in Fig. 5.1(a); it is assumed to move in ac-

cordance with a piecewise OU model with a sequence of N0 long-

run mean nominal velocities, comprised in the 2N0-dimensional vector

v0 = col {v0,n}N0

n=1, which identifies the nominal N0-section path. As

in Chapter 4, v0 is assumed to be the deterministic parameter of the

OU process made available from contextual information;

2. Hypothesis H1: the vessel deviates from the nominal trajectory en-

tering the forbidden zone, as in Fig. 5.1(b); along the deviation, de-

scribed by the red dotted line in Fig. 5.1, the vessel is assumed to

move in accordance with a piecewise OU model with a sequence of N1

unknown long-run mean velocities, collected in the 2N1-dimensional

vector vR = col {vr,n}N1

n=1;

3. Hypothesis H2: the vessel enters the forbidden zone while reporting

that it is bypassing it, as in Fig. 5.1(c); and

4. Hypothesis H3: the vessel is just transmitting spoofed AIS messages

without an effective deviation from the nominal condition,3 as in Fig. 5.1(d).

Under hypothesesH2 andH3, in the attempt to hide its anomalous behavior,

the vessel is assumed to report AIS data generated accordingly to an OU

3Hypothesis H3 could be representative of a situation where the vessel at stake navi-

gates under the nominal condition but reports a false position (e.g., spoofing the trajectory

of another vessel, as pictorially represented by the blue dotted line in Fig. 5.1(d)). In this

way, it seems that the vessel is actually avoiding the forbidden zone. Such a strategy could

be adopted by the vessel for hiding a possible illicit rendezvous in the proximity of the

nominal route.
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(a) Hypothesis H0: nominal condition. (b) Hypothesis H1: deviation.

(c) Hypothesis H2: deviation and spoofing. (d) Hypothesis H3: spoofing.

Figure 5.1: (a) Hypothesis H0: the vessel navigates following the nominal route and avoids

the forbidden area. (b) Hypothesis H1: the vessel deviates from the nominal route to

broach the forbidden area. (c) Hypothesis H2: the vessel deviates from the nominal route

broaching the forbidden area and transmitting spoofed AIS messages. (d) Hypothesis H3:

the vessel keeps the nominal route transmitting a different position from the actual one

in order to mask a rendezvous with another vessel.

process with a 2N2-dimensional unknown spoofed velocities vector vA =

col {va,n}N2

n=1, which identifies the spoofed N2-section path.

Assuming N = N0 = N1 = N2 and considering the set of time instants

0 = t0 < t1 < . . . < tN = T , the period taken to cover the n-th section in each
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of the different N -section path corresponds to the difference ∆n = tn− tn−1,

n = 1, . . . , N .

Therefore, the multiple hypothesis testing problem addressed in this

chapter can be outlined as
H0 : vA = vR = v0

H1 : vA = vR ̸= v0

H2 : vA ̸= vR ̸= v0

H3 : vA ̸= vR = v0,

(5.1)

and we need to determine which one of the four hypotheses occurred during

the considered time window T by means of

• A piecewise OU mean-reverting stochastic motion model to properly

describe the dynamic of the vessel (see Chapter 3);

• The awareness of potentially untrustworthy AIS position data;

• The support of trustful measurements associated with the vessel along

its trajectory provided by a surveillance system, such as a radar, or a

satellite sensor.

The proposed detection strategies will be fully derived in Section 5.4

assuming, without loss of generality, that both N and the sequence DN are

known to the detectors (as considered in Subsection 4.4.2).

5.3 Statistical representation of target kine-

matics and sensor observations

We assume there are KA + 1 AIS measurements and KR + 1 measurements

provided by a surveillance system, such as a radar, available during the time

period of duration T . Recalling (4.13), the generic AIS measurement and

the one provided by the surveillance system are respectively defined as

mka
= s(Tka

) + nka
with ka = 0, . . . ,KA,

mkr = s(Tkr ) + nkr with kr = 0, . . . ,KR.
(5.2)

The measurement noise terms nka
and nkr

are assumed to be indepen-

dent and identically distributed according to a zero-mean Gaussian with co-

variance matrices Cnka
and Cnkr

, respectively. The generic measurements
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in (5.2) are available at times Tka =
pa
N T and Tkr =

pr
N T where pa,r ∈ [0, N ]

is a fraction of the interval [0, N ] representing the time location of the contact

with respect to the N piecewise OU velocities.

As done in Subsection 4.3.2, we consider the data vectors

yA = col
{
yka

}KA

ka=1
and yR = col

{
ykr

}KR

kr=1
, (5.3)

respectively built from the AIS measurements and the ones provided by the

surveillance system, with

yka
= mka −Φ(Tka)m0, (5.4)

ykr
= mkr

−Φ(Tkr
)m0, (5.5)

where m0 is the first AIS contact that can be assumed reliable (or the first

measurement provided by the surveillance system), and corresponds to the

beginning of the considered observation window.

Just like in Section 4.3 (see (4.14)), the data vectors yA and yR in (5.3)

can be expressed as follows

yA = HA vA + ωA ∼ N
(
HA vA,CyA

)
, (5.6)

yR = HR vR + ωR ∼ N
(
HR vR,CyR

)
, (5.7)

where HA and HR are the model matrices encompassing the state transition

matrices (B.6) and the control input functions (B.8), whose components

can be found in (4.22). The terms ωA and ωR are the noise terms of the

OU process, which are distributed according to a zero-mean Gaussian with

covariance CyA
and CyR

, respectively, whose components are given in (4.20)

and (4.21).

The data vectors yA and yR can be combined into a 4K-dimensional data

vector y, with K = KA+KR, by encapsulating all the available information

about the target trajectory. Vector y is structured as follows

y =

[
yA

yR

]
=

[
HA

0

]
φ+

[
HA

HR

]
vR + ω

= Gφ+HvR + ω

= M z + ω ∼ N (M z,Cy) , (5.8)

where z
∆
= [φT, vT

R]
T is the unknown vector including the spoofing parameter

φ
∆
= vA − vR and the actual velocity sequence vR, while

M
∆
= [G H] =

[
HA HA

0 HR

]
, (5.9)
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is the known 4K×4N model matrix including the sub-matrices HA and HR.

The OU process noise ω is distributed as a zero-mean Gaussian with

covariance

Cy =

[
CyA

CyA,yR

CyR,yA
CyR

]
, (5.10)

whose components are (see also C.2)

Cij =


C(Ti) +Cni

+Φ(Ti)Cn0
Φ(Ti)

T if Ti = Tj ,

C(Ti)Φ(Tj − Ti)
T +Φ(Ti)Cn0

Φ(Tj)
T if Ti < Tj ,

C(Tj)Φ(Ti − Tj)
T +Φ(Tj)Cn0

Φ(Ti)
T if Ti > Tj ,

(5.11)

∀i = 1, . . . ,KA, and ∀j = 1, . . . ,KR, and with Cji = CT
ij .

5.4 Detection strategies

Two different anomaly detection strategies are developed for the detection

problem described in Section 5.2, both based on the changes in the OU

process long-run mean velocity parameter. The first strategy aims at deter-

mining whether the trajectory reported by the vessel via AIS is trustworthy

or not by means of a composite hypothesis test based on the spoofing pa-

rameter φ, and addressed with a GLRT approach [179]; in a similar way, a

further GLRT is exploited in order to detect a possible deviation from the

nominal route relying on the unknown velocity vector vR.

The second strategy is designed to tackle jointly both the spoofing and

the deviation events from the nominal route. In this case, the MOS method-

ology [207] is used to deal with the resulting multiple hypotheses test, relying

on the assumption that one of the nested hypotheses Hi, i = 0, 1, 2, 3, is true.

Here the AIS contacts are augmented by reliable ones from a surveillance

system, and hence – differently from Chapter 4.4 – spoofing can be detected.

Indeed, without any reliable measurement, matrix HR would be null and

the spoofing parameter φ would not be distinguishable from the deviation

velocity vR.
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5.4.1 Multiple hypothesis test based on coupled GLRTs

Spoofing detector

The AIS spoofing detection problem is addressed in a binary hypothesis

testing framework as{
{H0, H1} : y = HvR + ω ∼ N (HvR,Cy)

{H2, H3} : y = Gφ+HvR + ω ∼ N (Gφ+HvR,Cy) .
(5.12)

We wish to test if φ = 0 as opposed to φ ̸= 0; hence the parameter test is{
{H0, H1} : φ = 0

{H2, H3} : φ ̸= 0,
(5.13)

where {H0, H1} is the hypothesis that the trajectory reported by the AIS

messages is the actual one, and {H2, H3} is the alternative hypothesis that

the trajectory reported by the AIS messages is spoofed. Denoted with

p (y; ẑ| {H0, H1}) and p (y; ẑ| {H2, H3}) the likelihood functions under the

hypotheses {H0, H1} and {H2, H3}, respectively, the generalized likelihood

ratio for this problem is

p (y; ẑ| {H2, H3})
p (y; ẑ| {H0, H1})

=
p (y; φ̂, v̂R| {H2, H3})

p
(
y;φ = 0, v̂

(0)
R | {H0, H1}

) , (5.14)

where ẑ = [φ̂T, v̂T
R]

T is the MLE of z under {H2, H3}, and v̂
(0)
R is the MLE of

vR under hypothesis {H0, H1} (i.e., when subject to the constraint φ = 0).

As in Subsection 4.4.2, in order to tackle ill-conditioned4 matrix inver-

sions, the reduced rank version of matrices G and H via SVD [209] is con-

sidered. Specifically, defining ρG = rank(G) and ρH = rank(H) the corre-

sponding number of nonzero singular values of G and H, respectively, we

can get

Gφ = UG SG QT
G φ = ŨG S̃G Q̃T

G φ = ŨG φ̃, (5.15)

HvR = UH SH QT
H vR = ŨH S̃H Q̃T

H vR = ŨH ṽR, (5.16)

where ŨG,H , of size 4K × ρG,H , and Q̃G,H , of size 2N × ρG,H , are the

matrices of the left-singular vectors and the right-singular vectors of G and

4Note that the ill-conditioning strongly depends on the number and the position of the

contacts.
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H, respectively, whereas S̃G,H is a ρG,H × ρG,H diagonal matrix.

φ̃
∆
= S̃G Q̃T

G φ, and ṽR
∆
= S̃H Q̃T

H vR (5.17)

are respectively the ρG-dimensional and ρH -dimensional unknown vectors

resulting from the rotation and scaling of the vectors φ and vR. In addition,

ṽ0
∆
= S̃H Q̃T

H v0 is the rotated and scaled version of the nominal velocity

vector. Accordingly, the data model (5.8) can be rewritten as

y = ŨG φ̃+ ŨH ṽR + ω =
[
ŨG ŨH

] [ φ̃
ṽR

]
+ ω = Ũ z̃ + ω, (5.18)

with Ũ
∆
= [ŨG, ŨH ] matrix of size 4K × (ρG + ρH) and z̃

∆
= [φ̃T, ṽT

R]
T

column vector of size ρG + ρH .

Therefore, considering (5.14)d, and denoting the threshold with τ ′, the

spoofing GLRT can be formulated as

Lφ̃(y) =
p
(
y; ̂̃φ, ̂̃vR| {H2, H3}

)
p

(
y; φ̃ = 0, ̂̃v(0)

R | {H0, H1}
) {H2,H3}

≷
{H0,H1}

τ ′, (5.19)

whose explicit form (see Appendix D.1 for the derivation) is:

Lφ̃(y) = ̂̃φT
C−1̂̃φ ̂̃φ {H2,H3}

≷
{H0,H1}

τ ′, (5.20)

where ̂̃φ ∼ N
(
θ̃,C ̂̃φ

)
is the MLE of φ̃ under hypothesis {H2, H3}, whose

expression is fully derived in Appendix D.2.

The test statistic under the two hypotheses {H0, H1} and {H2, H3} are

respectively characterized by a central and a non-central Chi-squared dis-

tributions. The detection performance of the GLRT (5.20) is described

by (4.27), where, in this case, PFA is the probability that the test statis-

tic exceeds τ ′ under {H0, H1}, and PD is the probability that the test

statistic exceeds τ ′ under {H2, H3}. The number of degrees of freedom is

d = rank
(
C ̂̃φ
)
, and the non-centrality parameter λ = λ(φ̃) is given by

λ (φ̃) = φ̃TC−1̂̃φ φ̃, (5.21)

with φ̃ the true value of the spoofing parameter under hypothesis {H2, H3}
provided in (5.15). In this regard, λ(φ̃) represents the spoofing distance, i.e.,

it is a measure of how much the two hypotheses {H0, H1} and {H2, H3} are

disjoint, indeed the higher λ(φ̃), the easier it is to detect the spoofing.
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Deviation detector

In order to decide whether the deviation from the nominal condition occurred

or not, we need to consider the following parameter test{
{H0, H3} : ṽR = ṽ0

{H1, H2} : ṽR ̸= ṽ0,
(5.22)

Denoting the threshold with τ ′′, the resulting deviation GLRT is given by

(see Appendix D.1 for the derivation)

LṽR
(y) =

(̂̃vR − ṽ0

)T
C−1̂̃vR

(̂̃vR − ṽ0

) {H1,H2}
≷

{H0,H3}
τ ′′, (5.23)

where ̂̃vR ∼ N
(
ṽR,Ĉ̃vR

)
is the MLE of ṽR under the deviation hypotheses,

whose expression is derived in Appendix D.2. The detection performance of

the GLRT (5.23) is still described by (4.27), with the difference that PFA

is the probability that the test statistic exceeds τ ′′ under {H0, H3}, and

PD is the probability that the test statistic exceeds τ ′′ under {H1, H2}. In

this case, the number of degrees of freedom is d = rank
(
Ĉ̃vR

)
, and the

non-centrality parameter λ = λ(ṽR) is given by

λ (ṽR) = (ṽR − ṽ0)
T
C−1̂̃vR

(ṽR − ṽ0) , (5.24)

with ṽR the true value of the velocity vector under the deviation hypotheses

{H1, H2}. In this case, λ(ṽR) represents the deviation distance, i.e., it is

a measure of how much the two hypotheses {H0, H3} and {H1, H2} are

disjoint; indeed the higher λ(ṽR), the easier it is to detect the deviation.

It is worthwhile remarking that, for both the GLRTs (5.20) and (5.23), we

are able to set the false alarm probability and compute the test performance

in closed form.

Coupled GLRT rule

A test based on the GLRTs of spoofing and deviation, referred as C-GLRT,

is proposed to decide Hi, i = 0, 1, 2, 3. The decisions spoofing versus no-

spoofing and deviation versus no-deviation are compared to finally decide
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Table 5.1: C-GLRT rule scheme

Decision in (5.20)

Decision in (5.23)
{H1, H2} {H0, H3}

{H2, H3} H2 H3

{H0, H1} H1 H0

about Hi, i = 0, 1, 2, 3. The C-GLRT decision rule is defined as follows
decideH0 if Lφ̃(y) < τ ′ and LṽR

(y) < τ ′′

decideH1 if Lφ̃(y) < τ ′ and LṽR
(y) > τ ′′

decideH2 if Lφ̃(y) > τ ′ and LṽR
(y) > τ ′′

decideH3 if Lφ̃(y) > τ ′ and LṽR
(y) < τ ′′.

(5.25)

The C-GLRT decides for Hi given by the intersection of the two decisions

taken by the GLRTs (5.20) and (5.23), as shown in Table 5.1.

Optimal selection of the C-GLRT thresholds

It is worthwhile to note that the C-GLRT has two design parameters, namely

the false alarm probabilities of the single GLRTs, that need to be selected.

Assuming equiprobable prior hypotheses, the probability of correct deci-

sion is given by

PC =

3∑
i=0

P (Hi|Hi)P (Hi) =
1

4

3∑
i=0

P (Hi|Hi), (5.26)

where Pi = P (Hi|Hi) is the probability of deciding Hi when Hi is true, and

P (Hi) = 1/4 is the prior probability. Pi depends on the joint decision of

the two GLRTs (5.25), and, thus, on the joint selection of the thresholds

τ ′ and τ ′′. Consequently, assuming one has the analytical expression of

the probabilities Pi, it is possible to optimally select the two thresholds in

order to maximize PC. In the absence of an analytical expression of the

probabilities Pi, an approximate expression for the average PC is as follows.
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Assume that the non-centrality parameter of the anomalous deviation

λ(ṽR) is large enough such that the GLRT in (5.23) can operate with negli-

gible errors. In other words, the conditional probabilities of correct decision

can be approximated as follows:

P (H0|H0) ≈ P (Lφ̃(y) < τ ′) = 1− PFA(τ
′),

P (H1|H1) ≈ P (Lφ̃(y) < τ ′) = 1− PFA(τ
′),

P (H2|H2) ≈ P (Lφ̃(y) > τ ′) = PD(τ
′),

P (H3|H3) ≈ P (Lφ̃(y) > τ ′) = PD(τ
′).

(5.27)

Therefore, the correct decision event is approximated as only based on the

spoofing (5.20):

PC ≈ 1

2
(PD(τ

′) + 1− PFA(τ
′)) , (5.28)

with PFA(τ
′) = Qχ2

d
(τ ′) and PD(τ

′) = Qχ
′2
d (λ)(τ

′). Alternatively, we can

proceed if the spoofing non-centrality parameter is large enough to neglect

the error in (5.20). In this case, the correct decision probability would depend

on the detection and false alarm probabilities of the anomalous deviation.

In a given scenario, reported in the experimental Section 5.6, we show

how it is possible to optimally select both the false alarm probabilities to

maximize the probability of correct decision assuming to know the values of

the non-centrality parameters λ(φ̃) and λ(ṽR).

5.4.2 Multiple hypothesis test based on the MOS rules

Here we apply the MOS methodology to the original multiple hypothesis

test (5.1), previously introduced in Section 5.2:
H0 : y = Hv0 + ω

H1 : y = HvR + ω

H2 : y = M z + ω

H3 : y = Gφ+Hv0 + ω.

(5.29)

As done in Subsection 5.4.1, in addition to the SVDs (5.15) and (5.16),

we also consider the following equality

M z = UM SM QT
M z = ŨM S̃M Q̃T

M z = ŨM z̃M , (5.30)

where ŨM , of size 4K × ρM , and Q̃M , of size 4N × ρM , are, respectively,

the matrices of the left-singular vectors and the right-singular vectors of M,
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whereas S̃M is a ρM × ρM diagonal matrix. The term z̃M
∆
= S̃M Q̃T

M z is

the ρM -dimensional unknown vector resulting from the rotation and scaling

of vector z.5 Consequently, we can reformulate the corresponding multiple

hypothesis testing (5.29) as
H0 : y = ŨH ṽ0 + ω

H1 : y = ŨH ṽR + ω

H2 : y = ŨM z̃M + ω

H3 : y = ŨG φ̃+ ŨH ṽ0 + ω.

(5.31)

The MOS methodology looks for the best dimension of the parametric model

given the observed data; its use is required because the different hypothe-

ses in (5.31) are nested and show different numbers of involved parameters.

Given the set of hypotheses Hi, with i = 0, 1, 2, 3, assumed mutually exclu-

sive, the MOS refers to the multiple hypothesis testing problem of establish-

ing which model best outlines the given data y. More specifically, assuming

there is a single correct hypothesis within the considered set, and since each

hypothesis identifies a probability density function with a parameter vector

ϱi of dimension ni
∆
= dim(ϱi|Hi), denoted as model order, then, the MOS is

about finding the true dimension ni of the model.

In its most general form, the MOS decides for hypothesis Hm if

ξi = −2 ln p (y; ϱ̂i) + η(ni,K) (5.32)

is minimized for i = m. The term ln p (y; ϱ̂i) is the maximum log-likelihood

function of the data y under hypothesis Hi, while the term ηi = η(ni,K)

is an increasing function of ni whose purpose is penalizing the overfitting of

the observed data, so that −2 ln p (y; ϱ̂i) decreases as such penalty coefficient

increases yielding a trade-off between goodness of fit and simplicity [207].

Among all the different criteria to choose the penalty term ηi, we take into

consideration the direct KL approach, also known as No-Name (NN) rule, the

Akaike’s Information Criteria (AIC), and the Bayesian Information Criteria

(BIC). While the NN and AIC have their foundations in the information

theory and coding [14,15,125], BIC method has its roots in major statistical

inference paradigms [194].

Specifying the expression for the term −2 ln p (y; ϱ̂i) in (5.32) under

each hypothesis Hi, the MOS rules decide for hypothesis Hi = argmin
j

ξj ,

5Note that ŨM ̸=
[
ŨG, ŨH

]
and z̃M ̸= z̃.
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j = 0, 1, 2, 3. Taking into account the Cholesky decomposition (4.34), ξj is

defined as follows 
ξ0 = ∥C̃y − H̃ ṽ0∥2 + η0

ξ1 = ∥C̃y − H̃ ̂̃vR∥2 + η1

ξ2 = ∥C̃y − M̃ ̂̃zM∥2 + η2

ξ3 = ∥C̃y − G̃ ̂̃φ− H̃ ṽ0∥2 + η3,

(5.33)

where the MLEs,6 based on the given hypothesis Hi, are given by

H1: ̂̃vR =
(
H̃T H̃

)−1

H̃T C̃y with H̃ = C̃ ŨH ,

H2: ̂̃zM =
(
M̃T M̃

)−1

M̃T C̃y with M̃ = C̃ ŨM ,

H3: ̂̃φ =
(
G̃T G̃

)−1

G̃T
(
C̃y − H̃ ṽ0

)
with G̃ = C̃ ŨG.

(5.34)

The penalty coefficient ηi is specified for each criterion and respectively

related to the hypothesis Hi, i = 0, 1, 2, 3, in Table 5.2.

Table 5.2: MOS penalty coefficients

(Four hypotheses configuration)

η0 η1 η2 η3

NN 0 ρH ρM ρG

AIC 0 2ρH 2ρM 2ρG

BIC 0 ln(4K)2ρH ln(4K)2ρM ln(4K)2ρG

6Under hypothesis H0, the nominal velocity sequence ṽ0 is deterministic and known,

so that ̂̃v0 = ṽ0.
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5.5 Extension to a five hypotheses configura-

tion

To further investigate the combined occurrence of the AIS spoofing and the

deviation from the nominal condition, it is possible to extend the multiple

hypothesis test problem (5.1) to five hypotheses. Specifically, when spoofing

and deviation anomalies arise simultaneously, we can take into account a

particular case of hypothesis H2, and discern two events:

• H2: the vessel deviates from the nominal route broaching the forbidden

area and transmitting spoofed AIS messages reporting a velocity profile

more or less close to the nominal one, as in Fig. 5.2(a);

• H4: The vessel deviates from the nominal route broaching the forbid-

den area and transmitting spoofed AIS messages reporting the nominal

velocity profile, as in Fig. 5.2(b). In this last case the vessel tries to

hide the real movements in the most stealthy way from the surveillance

system.

(a) Hypothesis H2: vA ̸= v0. (b) Hypothesis H4: vA = v0.

Figure 5.2: Visual lineup between hypotheses H2 and H4. (a) The spoofed AIS data

report a generic velocity profile, more ore less close to the nominal one, i.e., vA ̸= v0. (b)

The spoofed AIS data trace the nominal velocity profile, i.e., vA = v0.
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The resulting extended multiple hypotheses testing problem is

H0 : vA = vR = v0

H1 : vA = vR ̸= v0

H2 : vA ̸= vR ̸= v0

H3 : vA ̸= vR = v0

H4 : vA = v0 ̸= vR

−→



H0 : y = Hv0 + ω

H1 : y = HvR + ω

H2 : y = GvA + LvR + ω

H3 : y = GvA + Lv0 + ω

H4 : y = Gv0 + LvR + ω,

(5.35)

where L
∆
= H−G.

As previously done to avoid ill-conditioning problem in Section 5.4, we

exploit the following equalities applying again the SVD method

GvA = UG SG QT
G vA = ŨG S̃G Q̃T

G vA = ŨG ṽA, (5.36)

LvR = UL SL QT
L vR = ŨL S̃L Q̃T

L vR = ŨL ṽR. (5.37)

Defining ρL = rank(L), then ŨL, of size 4K × ρL, and Q̃L, of size 4N ×
ρL, are, respectively, the matrices of the left-singular vectors and the right-

singular vectors of L, whereas S̃L is a ρL × ρL diagonal matrix. The terms

ṽA
∆
= S̃G Q̃T

G vA and ṽR
∆
= S̃L Q̃T

L vR (5.38)

are the rotated and scaled version of vA and vR, respectively. Matrices ŨG,

S̃G and Q̃G have been defined in Section 5.4.

The five hypotheses testing problem (5.35) is therefore redrafted as

H0 : y = ŨH ṽ0 + ω

H1 : y = ŨH ṽR + ω

H2 : y = ŨG ṽA + ŨL ṽR + ω

H3 : y = ŨG ṽA + ŨL ṽ0 + ω

H4 : y = ŨG ṽ0 + ŨL ṽR + ω,

(5.39)

where ṽ0
∆
= S̃H Q̃T

H v0 under hypothesis H0, ṽ0
∆
= S̃L Q̃T

L v0 under hypoth-

esis H3, and, finally, ṽ0
∆
= S̃G Q̃T

G v0 under hypothesis H4.

Hierarchical GLRT decision rule

The first strategy involves three binary hypothesis test formulations struc-

tured on two different layers. In the first layer, the multiple hypothesis
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testing problem (5.35) is treated as in Subsection 5.4.1, applying the spoof-

ing detector (5.20) to decide between {H0, H1} and {H2, H3, H4}, and the

deviation detector (5.23) to decide between {H0, H3} and {H1, H2, H4}. The
second layer involves a third binary hypothesis test to decide what happens

when spoofing and deviation may occur simultaneously,7 where we need to

distinguish between {
H2 : ṽA ̸= v0

H4 : ṽA = v0.

Consequently, the third additive GLRT, whose derivation is set out in Ap-

pendix D.1,

LṽA
(y) =

(̂̃vA − ṽ0

)T
C−1̂̃vA

(̂̃vA − ṽ0

) H2

≷
H4

τ ′′′ (5.40)

is designed to establish if the velocity profile reported by the spoofed AIS

data is generic, or instead traces the nominal one. ̂̃vA ∼ N (ṽA,Ĉ̃vA
)

is the MLE of ṽA under hypothesis H2 (see Appendix D.2). As for the

GLRTs (5.20) and (5.23), it is possible to set the false alarm probability and

compute the detection performance in closed form as in (4.27). In this case

PFA is the probability that the test statistic exceeds τ ′′′ under H4, and PD

is the probability that the test statistic exceeds τ ′′′ under H2. The number

of degrees of freedom characterizing the involved Chi-squared distributions

is d = rank
(
Ĉ̃vA

)
, and the non-centrality parameter λ = λ(ṽA) is given by

λ (ṽA) = (ṽA − ṽ0)
T
C−1̂̃vA

(ṽA − ṽ0) . (5.41)

The three decisions based on GLRTs (5.20), (5.23) and (5.40) are com-

pared to decide about Hi, i = 0, 1, 2, 3, 4. Such a decision rule, referred to

here as the Hierarchical GLRT (H-GLRT), is defined as

decideH0 if Lφ̃(y) < τ ′ and LṽR
(y) < τ ′′

decideH1 if Lφ̃(y) < τ ′ and LṽR
(y) > τ ′′

decideH2 if Lφ̃(y) > τ ′ and LṽR
(y) > τ ′′ and LṽA

(y) > τ ′′′

decideH3 if Lφ̃(y) > τ ′ and LṽR
(y) < τ ′′

decideH4 if Lφ̃(y) > τ ′ and LṽR
(y) > τ ′′ and LṽA

(y) < τ ′′′.

(5.42)

Table 5.3 represents the decision made by the H-GLRT on the first layer,

where Hi is selected given by the intersection of the two decisions taken by

7Only necessary if both (5.20) and (5.23) exceed the respective thresholds.
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the GLRTs (5.20) and (5.23). The gray cell identifies the second layer of

decision made by GLRT (5.40).

Table 5.3: H-GLRT rule scheme

Decision in (5.20)

Decision in (5.23)
{H1, H2, H4} {H0, H3}

{H2, H3, H4} {H2, H4} H3

{H0, H1} H1 H0

MOS decision rules

The MOS decides for hypothesis Hi = argmin
j

ξj , j = 0, 1, 2, 3, 4, where ξj

is defined as follows

ξ0 = ∥C̃y − H̃ ṽ0∥2 + η0

ξ1 = ∥C̃y − H̃ ̂̃vR∥2 + η1

ξ2 = ∥C̃y − M̃ ̂̃zM∥2 + η2

ξ3 = ∥C̃y − G̃ ̂̃vA − L̃ ṽ0∥2 + η3

ξ4 = ∥C̃y − G̃ ṽ0 − L̃ ̂̃vR∥2 + η4.

(5.43)

The MLEs in (5.43), based on the given hypothesis Hi, are

H1: v̂R =
(
H̃TH̃

)−1

H̃TC̃y with H̃ = C̃ ŨH ,

H2: ẑM =
(
M̃TM̃

)−1

M̃TC̃y with M̃ = C̃ ŨM ,

H3: v̂A =
(
G̃TG̃

)−1

G̃T
(
C̃y − L̃ṽ0

)
with G̃ = C̃ ŨG,

H4: v̂R =
(
L̃TL̃

)−1

L̃T
(
C̃y − G̃ṽ0

)
with L̃ = C̃ ŨL.

The penalty coefficients are specified in Table 5.4 for each of the five hypoth-

esis and for the three selected MOS criteria.



5.6 Experimental results 107

Table 5.4: MOS penalty coefficients

(Five hypotheses configuration)

η0 η1 η2 η3 η4

NN 0 ρH ρA ρG ρM

AIC 0 2ρH 2ρA 2ρG 2ρM

BIC 0 ln(4K)2ρH ln(4K)2ρA ln(4K)2ρG ln(4K)2ρM

5.6 Experimental results

To assess the effectiveness of the detection strategies proposed in Section 5.4,

we investigate some case studies concerning an operational scenario. Specif-

ically, we investigate the situation described in Section 5.2 and reported in

Fig. 5.1.

The configuration set-up for the synthetic scenario considers a vessel

navigating under nominal conditions along an N -section path with N =

15, moving according to a piecewise nominal velocity v0 while skirting the

forbidden zone, as in Fig. 5.1(a), and plotted in Fig. 5.3 with a green line

with diamond markers. The time window covers T = 12 hours, and the

time intervals are assumed all equal, so that ∆n = T/N , ∀n = 1, . . . , N .

Assuming the surveillance system is a radar providing trustful measurements,

the vessel is supposed to transmit a number of KA = 4 AIS messages whose

reliability is not granted, and temporally positioned at pa ∈ {5, 7, 9, N},
whereas KR = 2 trusted radar measurements are associated with the vessel

along its trajectory at pr ∈ {3, 11}.
Under the AIS spoofing hypothesis, a fake trajectory slightly below the

nominal one, represented by a blue line with o-markers in Fig. 5.3, is reported

by the vessel with a velocities sequence vA, while its real deviation is plotted

as a straight red path covered with a velocities sequence vR.

Finally, the reversion rate associated to the underlying OU dynamic

model is set as γx = γy = 0.9 · 10−2 and ΣΣT = diag(σ2, σ2), with

noise level σ2 = 10−2. The noise covariance matrix is set as Cnka,kr
=

diag(502, 502, 1, 1), ∀ka = 1, . . . ,KA and ∀kr = 1, . . . ,KR.
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Figure 5.3: Experimental setup: nominal trajectory (green line with diamond mark-

ers), deviated trajectory (red line with x-markers), spoofed trajectory (blue line with

o-markers); KA = 4 AIS contacts (yellow patches) and KR = 2 radar contacts (light blue

patches). Vectors v0,n, va,n, and vr,n are the n-th elements of the nominal velocity v0,

spoofed velocity vA and deviating velocity vR, respectively. Each velocity is indicated on

the n-th segment of the related trajectory.

5.6.1 Performance of the spoofing detector (5.20) and

deviation detector (5.23)

The performance of the detectors (5.20) and (5.23) is reported in Fig. 5.5

in terms of false alarm probability PFA versus missed detection probability

1− PD and represented through the ROC curves considering three different

analyses.

In the first analysis, three different spoofed trajectories (STs) are consid-

ered with a gap of about 5 km at the largest distance from each other and

from the nominal path, as shown in Fig. 5.4 (blue lines with o-markers and

three different line styles). Figure 5.5(a) shows a clear performance improve-

ment as the spoofed trajectory moves away from the nominal one in terms

of spoofing detection. Figure 5.5(b) reports the ROC curve related to the

deviation detector (5.23), which is clearly the same one for each of the three

spoofed trajectories in Fig. 5.5(a).

In the second analysis, the performance of the detectors (5.20) and (5.23)

is analyzed for three different configurations of the AIS and radar contacts:

1. KA = 2 AIS contacts placed in pa ∈ {7, N}, andKR = 2 radar contacts
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Figure 5.4: Three different spoofed trajectories (STs) (blue lines with o-markers) are

considered with a gap of about 5 km at the highest distance from each other and from the

nominal path (green line with diamond markers). The red curve is the deviating trajectory

(red line with x-markers).

placed in pr ∈ {2, 14};

2. KA = 4 AIS contacts placed in pa ∈ {4, 7, 10, N}, and KR = 3 radar

contacts placed in pr ∈ {3, 5, 12};

3. KA = 5 AIS contacts placed in pa ∈ {4, 6, 8, 10, N}, and KR = 3 radar

contacts still placed in pr ∈ {3, 5, 12}.

Figure 5.5(c) shows the improving performance of test (5.20) when the to-

tal number K of contacts increases, which makes the spoofing much more

detectable.

In Fig. 5.5(d) there is only the ROC curve related to detector (5.23)

for the first configuration of contacts because of the very high values of

λ(ṽR) associated to the the increasing number of contacts in the other two

configurations, which leads to numerical errors in reporting the ROC for

very small values of the error probabilities. For this reason, a table of these

values has been reported for completeness in Fig. 5.5(d), and also compared

to the λ(φ̃) values.

The proposed detectors are also tested against varying the time window.

Specifically, T is let taking values within the set of {10, 15, 20} hours. In

Fig. 5.5(e) the missed detection probability decreases with the time window

T , underlining that the longer the anomalous behavior, the easier it is to

detect the AIS spoofing. The performance of the detector (5.23) shows a
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(a) Detector (5.20) performance for three differ-

ent spoofed trajectories (STs).
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(b) Detector (5.23) performance for the same

parameter configuration in Fig. 5.5(a).
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(c) Detector (5.20) performance for three differ-

ent numbers and combinations of contacts K.
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(d) Detector (5.23) performance for the same

parameter configuration in Fig. 5.5(c).
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(e) Detector (5.20) performance for three differ-

ent time windows T .
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different behavior, i.e., λ(ṽR) is not always increasing, reaching the values

of 59.0798, 411.9909, 55.5850 for T = 10, 15, and 20 hours, respectively. A

performance improvement is observable from T = 10 h to T = 15 h, but the

performance for T = 20 h is worse than both T = 10 h and T = 15 h. The

ROC curves for T = 10 and 20 h are reported in Fig. 5.5(f), where the case

with T = 15 h cannot be represented in terms of ROC since λṽ is too high.

5.6.2 Comparison of MOS and C-GLRT methodologies

We will compare now the performance in terms of probability of correct

decision of the C-GLRT proposed in Subsection 5.4.1 and the MOS rules

NN, AIC, and BIC in Subsection 5.4.2.

We consider the scenario reported in Fig. 5.3, described at the beginning

of Section 5.6. The experiment is executed for the same set of parameters

used in Subsection 5.4.1. Specifically, Fig. 5.6(a)-(c) refer to three different

spoofed trajectories depicted in Fig. 5.4.

The Figures 5.6(d)-(f) refer respectively to three different configurations

of the AIS and radar contacts:

1. in Fig. 5.6(d) KA = 2 AIS contacts are placed in pa ∈ {7, N}, and
KR = 2 radar contacts are placed in pr ∈ {2, 14};

2. in Fig. 5.6(e) KA = 4 AIS contacts are placed in pa ∈ {4, 7, 10, N},
and KR = 3 radar contacts are placed in pr ∈ {3, 5, 12};

3. in Fig. 5.6(f) KA = 5 AIS contacts are placed in pa ∈ {4, 6, 8, 10, N},
and KR = 3 radar contacts are placed in pr ∈ {3, 5, 12}.

The Figures 5.6(g)-(i) refer to T = 10, 15, 20 hours, respectively. The prob-

ability of correct decision is computed empirically for each hypothesis being

true via Monte Carlo simulation, with 104 trials. Clearly, the higher the

probability of correct decision, the better the detector performance will be.

In order to make a meaningful comparison, we can average the probability

of correct decision for each hypothesis. This is equivalent to minimizing the

error probability in a Bayesian fashion when the prior is uniform over the

hypotheses. The averaged values are reported on the histograms for each

rule in all panels in Fig. 5.6. We observe that the NN rule is outperformed

in most of the scenarios. In Fig. 5.6(a)-(c) the AIC, BIC and C-GLRT seem

to be equally good, being all above 0.95 in terms of probability of correct
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Figure 5.6: Results of the Monte Carlo simulation to compute the probability of correct

decision PC for each detector under each one of the four hypotheses. Panels (a)-(b)-(c)

report performance of the three different spoofed trajectories of Fig. 5.4. Panels (d)-(e)-

(f) report performance for three different configurations of AIS and radar measurements.

Panels (g)-(h)-(i) report performance respectively for T = 10, 15, 20 hours.
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decision. However, there are differences, and the AIC is slightly worse than

the BIC and C-GLRT, with C-GLRT being the best detector.

In Fig. 5.6(a)-(c), we observe that MOS rules do not change significantly

their performance when the spoofed trajectory is changing from (a) to (c).

Our conjecture is that the MOS rules are somehow collocated in an analogous

region of high PFA (> 10−4) in Fig. 5.7, where there is basically no difference

when the spoofed trajectory is changing.

In Fig. 5.6(d)-(f), the detection problem is more challenging, especially

when fewer data are available as in Fig. 5.6(d). However, when more obser-

vations are available, increasing both KA and KR as shown in Fig. 5.6(e)

and (f), performance sensibly increases for all the decision strategies. In these

settings, the C-GLRT is outperformed by both the AIC and BIC. Contrary

to the previous cases reported in Fig. 5.6(a)-(c), here the AIC is better than

the BIC. In this case, we do not have a good strategy to set both the PFA

of the detectors (5.20) and (5.23) of the C-GLRT, and a nominal value of

PFA = 0.01 has been used.

In Fig. 5.6(g) we observe again that the AIC and BIC are better than

the C-GLRT; in Fig. 5.6(h), the C-GLRT outperforms the AIC but not the

BIC, whereas, in Fig. 5.6(i), the C-GLRT outperforms both the AIC and

BIC. As observed in Subsection 5.6.1, we notice that, extending the time

window, the performance tends to increase; this is evident from T = 10

hours to T = 15 hours, but much less evident from T = 15 hours to T = 20

hours. Indeed, as already discussed in the scenarios reported in Fig. 5.5(e)

and (f), whereas λ(φ̃) always increases with T , reaching the values of 18.7314,

59.4102, and 124.8558 for T = 10, 15 and 20 hours, respectively, λ(ṽR) is not

always increasing, reaching the values of 59.0798, 411.9909 and 55.5850 for

T = 10, 15 and 20 hours, respectively. This can explain why the performance

is not improving from T = 15 hours to T = 20 hours for all the detectors

under consideration.

Remark 5.6.1. As anticipated in Subsection 5.4.1, it is possible to optimally

select the thresholds τ ′ and τ ′′, in order to maximize the probability of correct

decision PC.

Indeed, in the specific case concerning the varying deviation of the spoofed

trajectory, since λ(ṽR) ≈ 379, the decision about the abnormal deviation (5.23)

can be made almost perfectly (hence we have selected a false alarm probabil-

ity PFA = 10−10 corresponding to 1 − PD ≈ 10−10). Consequently, the

C-GLRT performance can be optimized assuming that the correct decision
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Figure 5.7: Approximate error decision probability (5.28) assuming a perfect detection

of the anomalous deviation from the nominal route plotted for each of the three spoofed

trajectories considered in the first analysis of Subsection 5.6.1 and in Fig. 5.6(a)-(c).

event is made only based on the spoofing decision in (5.20) or, in other

words, the average probability of correct decision is only function of τ ′, see

equation (5.28).

In Fig. 5.7 we reported the error probability 1−PC (5.28) versus PFA for

each value of λ(φ̃) = 72, 102, 152 corresponding to the three spoofed trajec-

tories. It is interesting to note that for larger values of PFA(> 10−4) there

are no differences among the three spoofed trajectories in Fig. 5.4, in other

words 1 − PC ≈ PFA since PD ≈ 1. However, decreasing PFA we observe a

minimum value, or, in other words, an optimal setting for PFA, which would

lead to the minimum error probability, or the maximum probability of correct

decision. With regard to the C-GLRT, we get PC = 0.99984 for the first

spoofed trajectory, while for the others the empirical probability is practically

equal to one since the theoretical error reported in Fig. 5.6 would be below

the inverse of the Monte Carlo runs (104), specifically 2 · 10−6 and 5 · 10−9
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for the second and the third spoofed trajectory, respectively.

5.7 Conclusion

In this chapter it has been documented a means to detect whether a vessel

is reporting spoofed AIS data and deviations from the planned route within

a multiple hypothesis testing formulation. Two different anomaly detection

strategies are developed based on the changes in the OU process long-run

mean velocity parameter and supported by the information from reliable

radar measurements. In particular, the first strategy aims at determining

whether the trajectory reported by the vessel via the AIS is trustworthy

or not by means of a GLRT approach, and, similarly, a further GLRT is

exploited in order to detect a possible deviation from the nominal route

relying on the velocity parameter. Eventually, the resulting decisions from

the two GLRTs are then sub-optimally combined in a C-GLRT.

The second strategy is designed to tackle jointly both the spoofing and

the deviation events from the nominal route, resorting to the Model Order

Selection rules, such as the direct KL approach (also known as NN rule), the

AIC, and the BIC.

The detection strategies have been tested within an operational scenario

concerning some varying parameters, such as the spoofed trajectory, the

number and position of both AIS and radar contacts, and the time window.

It is observed that the NN rule is always outperformed by the others,

while there is not a rule among AIC, BIC and C-GLRT that is always better

than the others. However, all the detection strategies are able to effectively

achieve good performance in terms of probability of correct decision in most

of the scenarios analyzed.
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Chapter 6

Optimal opponent stealth

trajectory planning

In this chapter we play the opponent’s side, and describe the

least-detectable trajectory that an elusive vessel can follow. The

opponent’s route planning problem is formalized as a non-convex

optimization problem, and physical and practical requirements are

accounted for by enforcing several constraints at the optimiza-

tion design stage. To handle the resulting non-convex optimiza-

tion problem, we propose a globally-optimal and computationally-

efficient technique, called Non-Convex Optimized Stealth Trajec-

tory (N-COST) algorithm, which amounts to solve a number of

convex problems. The effectiveness of the proposed approach is

demonstrated through some case studies and a real-world exam-

ple. 1

6.1 Introduction

With reference to the detection strategies proposed in Chapters 4 and 5, this

chapter moves from the point of view of the detector to that of a malicious

and elusive vessel. In the specific, we propose a new methodology to de-

sign the optimal stealth trajectory of a vessel that intends to deviate from

1This chapter has been published as “Optimal Opponent Stealth Trajectory Planning

Based on an Efficient Optimization Technique” in IEEE Transactions on Signal Process-

ing, vol. 69, pp. 270-283, 2020 [24].
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the nominal traffic route to accomplish some specific tasks, e.g., to reach

a location point where it can rendezvous with another vessel. To hide this

behavior, the vessel turns its AIS transponder off for the time required to

arrive at the specific point, stops and returns to the expected route. In ad-

dition, we assume that, during the period of the AIS disablement, the vessel

can only be observed (and that, very seldom) by space-borne sensors, such

as SAR, whose sequence of sensor measurement time instants is known to

the vessel.

The proposed route planning problem aims at defining the optimal tra-

jectory of the opponent vessel and is formalized as a constrained optimization

problem, where physical and practical requirements are accounted for at the

design stage. The resulting non-convex optimization problem is handled by

means of an efficient algorithm that determines the sequence of positions and

velocities that the opponent vessel has to follow to result as stealthy as pos-

sible to the surveillance system. The effectiveness of the proposed opponent

route planning strategy is then tested against the anomaly detector built in

Chapter 4 with applications to some relevant case studies. The ultimate goal

of this chapter is to highlight the limitations of the anomaly detection strat-

egy presented in Chapter 4 by identifying the worst-case scenario in terms of

surveillance capability. This would facilitate possible future work focusing on

the available countermeasures (e.g., optimal asset allocation) to improve the

detection capability, and perhaps thereby framing a game-theoretic analysis

and strategy.

The main contribution of this chapter is twofold, specifically:

• a novel optimal path planning formulation to blind an anomaly detec-

tion procedure so as to execute covertly a given task (e.g., a rendezvous

with another ship), and

• an optimal and efficient solution for the aforementioned problem for-

mulation, called Non-Convex Optimized Stealth Trajectory (N-COST).

Without the (non-trivial – see Theorem 6.3.4) derivation of the N-COST,

the proposed optimization problem would not have been solvable. A brute

force implementation procedure would not be feasible, since the optimization

space would grow exponentially with the length of the velocity and position

sequences for any given discretization step of the optimization variables.
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6.2 Maritime anomalous scenario and devia-

tions detector’s standpoint

We take into consideration the situation already depicted in Section 4.2,

where a vessel is following a nominal route with a nominal velocity, and, at

some point, the AIS data streaming is interrupted for a period of duration T .

Excluding the event of AIS data spoofing in this chapter, as in Section 4.2,

and considering the set of the time instants t0 < . . . < tn < . . . < tN , the

detection system can envision two hypotheses for the behavior of the ship

during this silent period:

1. Hypothesis H0: the AIS interruption was accidental or an obscuration,

and the vessel keeps on following the planned route at the nominal

velocity. The detector assumes that the vessel moves according to

a piecewise OU model, with a sequence of N long-run mean velocity

values, stored in a matrix V 0 = [v0,1, . . . ,v0,n, . . . ,v0,N ] ∈ R2,N , which

identifies the nominal N -section path;

2. Hypothesis H1: the vessel deviates from the nominal route, and is

intentionally keeping its AIS transponder switched off to hide the

deviation. The detector assumes that the vessel moves according to a

piecewise OU model, with a sequence of unknown N long-run mean

velocity values, stored in a matrix V = [v1, . . . ,vn, . . . ,vN ] ∈ R2,N ,

which identifies an alternative N -section path.

The nominal vessel’s positions along the N -section path are represented by

the random variables xn, n = 0, . . . , N . The time intervals are assumed to

be all equal, i.e., ∆t
∆
= tn − tn−1, ∀n = 1, . . . , N , and sufficiently large with

respect to the OU parameters, in order to guarantee that the process reaches

a steady state behavior in each time interval.

The detector disposes of K+1 sporadic measurements (AIS, radar, SAR,

etc.) during the period between t0 and t0 + T , where the k-th measurement

is given by (4.13). Hence, as in Chapter 4, the anomaly detection problem

is abstracted to the Gaussian composite hypothesis testing problem (4.23).

Assuming known the number of sections N and the sequence of the time

intervals Dn, and H a full rank model matrix given in (4.22), the detec-

tor considered in this chapter has the form (4.30), and reported below for
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simplicity:

(v̂ − vec(V 0))
T
HTC−1

y H (v̂ − vec(V 0))
H1

≷
H0

τ, (6.1)

where v̂ is the MLE of v = vec(V ), given by (4.31). The detection perfor-

mance is thus given by (4.27) with d = 2N degrees of freedom, corresponding

to the size of the known parameter v0 = vec(V 0), and non-centrality pa-

rameter

λ (V ) = vec (V − V 0)
T
HTC−1

y H vec (V − V 0) . (6.2)

6.3 Opponent stealth route planning:

problem formulation & solution

The goal of the opponent is to minimize the detection capability, quanti-

fied by the anomaly distance λ (V ) (6.2), as it will be discussed in Sub-

section 6.3.2, while accomplishing a specific mission. In this section, we

formalize a route planning strategy of the opponent vessel to optimally de-

termine its trajectory; we also propose an efficient technique to handle the

resulting non-convex optimization problem.

As a first step towards a meaningful problem definition, let us establish

the main tasks and objectives to account for at the design stage:

• the opponent vessel has to meet and fulfill its mission, i.e., to reach

a specific point, indicated with pc = [pcx , pcy ]
T, unknown to the de-

tector, where, for instance, a possible illicit ship-to-ship transfer would

occur;

• the kinematics of the opponent vessel have to satisfy physical con-

straints such as the maximum speed and acceleration, the presence of

land or other forbidden navigation regions, etc.; and

• the anomalous trajectory has to be as hidden as possible, namely the

detection capability has to be minimized.

As it will be detailed in the following sections, the ability to design a

stealth trajectory improves as T increases. In the proposed approach, T is a

design parameter, which can be easily included in the optimization formula-

tion at the expense of increasing the computational cost. However, the value
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of T cannot be chosen arbitrarily large, since, if it were significantly greater

than typical AIS data gaps in the area, other anomaly detection systems and

modalities would make our OU-based analysis moot.

In principle, we could optimize only the stack of long-run mean velocity

parameters V of the underlying OU process underH1. However, by doing so,

the positions would not be controlled. Consequently, it would be regulated

by an IOU process, and the position error would increase linearly over time

as n∆t, hence there would be no assurance of successful rendezvous. To

avoid this, we propose to control both the velocity and position sequences,

as it is common for ships equipped with navigation control systems. Thus,

the available degrees of freedom for the route planner are given by:

• the N long-run mean velocity vectors stacked in the V matrix, where

the n-th vector is the OU mean velocity during the time interval

[(n− 1)∆t, n∆t];

• theN vessel’s positions stacked in the matrix P = [p1, . . . ,pn, . . .pN ] ∈
R2,N , where the n-th vector is the location, at the time instant n∆t,

while the initial position p0 is assumed known and fixed.

Remark 6.3.1. The optimal control of both velocity and position returns a

deterministic trajectory as output, forced to evolve according to the realization

of an OU process.

For its part, the detector (6.1) assumes the vessel is moving according to

an OU process and attempts to rebuild the proper trajectory under hypothesis

H1 (estimating the unknown velocity sequence), among all the possible trajec-

tories, based on the available observations. Then, the use of detector (6.1),

when the optimizer is controlling both position and velocity, would be based

on the assumption that, under H1, the observed trajectory is stochastic, in-

stead of deterministic. It is worth mentioning that this approximation is also

valid in light of real-world data analysis, in which the OU model has been

corroborated by a great deal of empirical data [154].

6.3.1 Route constraints

C1) Speed and acceleration constraint : Neither the OU long-run mean veloc-

ity parameter, nor the inter-segment acceleration, can be arbitrarily large;



122 Optimal opponent stealth trajectory planning

consequently, the following constraints are included

∥vh∥ ≤ vmax, h = 1, . . . , N, (6.3)

∥vh′ − vh′−1∥ ≤ ∆vmax, h′ = 2, . . . , N, (6.4)

where vmax is the maximum mean speed allowed to the ship and ∆vmax =

amax∆t the maximum absolute acceleration in successive periods, with amax

denoting the acceleration.

C2) OU model compliance constraint : This forces the trajectory to be

compliant with the underlying OU statistical model. To this end, at the

planning stage, it is required that∥∥ph −
(
vh∆t+ ph−1

)∥∥2
C−1

p
≤ ϵ, h = 1, . . . , N, (6.5)

where
(
vh∆t+ ph−1

)
and Cp are the expected value and the position co-

variance matrix of xh, given xh−1 (where xh is defined in Section 6.2),

respectively, neglecting the transitory terms.2 The parameter ϵ rules the

proximity between the expected and the actual trajectory, which can be

formally described by the set:

Xh,ϵ =
{
x ∈ R2 :

∥∥x− (vh∆t+ ph−1)
∥∥2
C−1

p
≤ ϵ
}
.

In other words, (6.5) forces the trajectory points to lie within the IOU

model’s uncertainty region at given percentage αϵ, as:

P
(
xh ∈ Xh,ϵ|xh−1 = ph−1

)
= αϵ.

In this way, the optimized trajectory is statistically compliant with a tra-

jectory generated from an OU process. This compliance condition, imposed

to the optimized trajectory, is somehow close to the typical property of the

sequences generated by random processes [63]. Thanks to this condition,

the optimized trajectory will be statistically typical, or compliant, with OU-

generated trajectories.

C3) Land constraint : As an additional requirement, the sought route is

also forced to reside within a specific portion of the sea surface, to account

for the possible presence of land in the region. More precisely,

ph ∈ Sc, h = 1, . . . , N, (6.6)

2Note that this condition can be easily generalized to the case of a different stochastic

process using a different covariance matrix.
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where Sc ⊆ R2 is a subset of the plane, that is assumed convex for mathemat-

ical tractability. For instance, Sc can be described by means of polyhedra,

ellipsoids, as well as their intersections with appropriate regions, to account

for the shape of the coast.

C4) Rendezvous constraint : As already highlighted, the vessel’s main

goal is to reach and transact some business at the specific point pc. From

a mathematical point of view, this can be modeled with a constraint on

the vessel’s path to be close to the point pc for some, say L, time instants.

Otherwise stated, it is required that there exists a time instant h∆t, 1 ≤
h ≤ N − L+ 1, such that

max
k=h,...,h+L−1

(∥pk − pc∥) ≤ δ, (6.7)

with δ defining the stopping area size around pc where the ship will lie for a

time of at least L∆t, assumed known.

C5) Starting point condition: Finally, let us observe that the AIS trans-

mitter is turned off at time instant t0 = 0, thus the position of the vessel

at this instant, i.e., p0, does not represent a degree of freedom, but it is

constrained to be at the communicated location. Without loss of generality,

in the following, it is assumed that such position coincides with the origin of

the reference system, i.e., p0 = 0.

6.3.2 Figure of merit for surveillance system covertness

In order to control the surveillance capabilities of the sensing system, it is

worth observing that the detection performance depends on the available

measurements. Furthermore, as also seen in Chapters 4 and 5, the detection

probability in (4.27) is mainly influenced by the non-centrality parameter

in (6.2); that is, for a given probability of false alarm and detector structure

(i.e., set of measurements), the higher the non-centrality parameter is, the

better the detection performance results.

The opponent vessel is not necessarily aware of the time instants when

its kinematics will be monitored by the surveillance assets. However, the

overall set of possible acquisition instants from which these times could be

chosen can be assumed known to the opponent vessel. From the perspec-

tive of the opponent vessel, one possible strategy could be to minimize the

worst-case risk of detection. Hence, we consider λ (V ) in (6.2) as perfor-

mance metric. To shed light on such a choice and further corroborate (6.2)



124 Optimal opponent stealth trajectory planning

as a meaningful/useful figure of merit, let us remind that λ (V ) is twice

the KL-divergence between the actual distributions under the H0 and H1

hypotheses. As a consequence, since the KL-divergence controls the perfor-

mance limits for any given hypothesis testing problem [63], the non-centrality

parameter represents a viable means to predict the surveillance capability of

the sensing system. It is also worth noting that the detection performance of

the clairvoyant receiver, obtained assuming known the ship velocity profile

under the two hypotheses, is ruled by λ (V ), too. As a result, the upper

bound to the surveillance system performance can be expressed in terms of

λ (V ). In conclusion, λ (V ) provides a meaningful performance measure of

the detectability of the anomaly.

The highest non-centrality parameter is obtained when the surveillance

system uses all the possible measurements. This is a direct consequence of

information-theoretic considerations, and the chain rule for KL-divergence

[63], which implies the monotonicity of λ (V ) (with respect to the inclusion of

the measurement). Hence, hereafter λ (V ) in (6.2) directly refers to the non-

centrality parameter associated to the maximum number of measurements.

Remark 6.3.2. It is assumed that the opponent vessel has knowledge of all

the possible measurement time instants. This assumption is often realistic,

since some satellite orbits are publicly known. On the other hand, when such

surveillance comes from patrolling assets, it cannot be reasonably assumed

that the malicious vessel knows their trajectories in advance. However, their

perfect knowledge can still be assumed to consider the worst-case condition

for the anomaly detector. Summarizing, the opponent optimizes its trajectory

based on the worst set of observations in terms of λ (V ), but with a perfect

knowledge of this figure of merit.

To summarize, the idea is that the stealthy vessel has turned its AIS off

for a time T in order to linger at a rendezvous location pc. To be conser-

vative, the vessel assumes all times are used by the detector, although the

latter may (or may not) observe the positions of the vessel at all possible

available times of measurements acquirement. The detector does not check

the absolute positions of the measurements versus the expected ones, since

to do so would make little sense: the only information the detector has is in

terms of the nominal OU operation of the vessel, meaning V 0. Hence, the

detector (6.1) checks the best MLE of V against V 0 and, essentially, asks:

does this observed OU process make sense? The performance of such detec-

tion is encapsulated in the figure of merit λ (V ), and the stealthy vessel’s
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goal is to achieve pc while minimizing λ (V ).

6.3.3 Route design problem and solution technique

According to guidelines defined earlier and constraints C1–C5 in Subsec-

tion 6.3.1, the route planning problem, which computes the ship positions

P , as well as the OU long-run mean velocity values V , can be formulated

as the following constrained optimization problem

P



min
V ,P

λ(V )

s.t. ∥vh∥ ≤ vmax

∥vh′ − vh′−1∥ ≤ ∆vmax

∥ph −
(
vh∆t+ ph−1

)
∥2
C−1

p
≤ ϵ

ph ∈ Sc

h = 1, . . . , N, h′ = 2, . . . , N

min
l=1,...,N−L+1

max
k=l,...,l+L−1

(∥pk − pc∥) ≤ δ

p0 = 0

V = [v1, . . . ,vn, . . . ,vN ] ∈ R2,N

P = [p1, . . . ,pn, . . . ,pN ] ∈ R2,N

(6.8)

where: the first two constraints account for the vessel kinematic feasibility

(C1); the third constraint guarantees the compliance of the trajectory with

the underlying statistical model (C2); the fourth constraint imposes land

avoidance (C3); the fifth constraint ensures the existence of a time interval

of at least L consecutive time samples, to allow the illicit activity at the

rendezvous (C4); the last requirement defines the starting point of the vessel

trajectory (C5).

Remark 6.3.3. Different design problems can be formulated and solved

varying both ∆t and N . If we fix T = N∆t, intuitively, the decrease of

∆t and the increase of N should lead to better achievable performance. In-

deed, the optimal solution to (6.8) is still available by doubling N but a better

solution can be found in this case. Analysis is given in Appendix E.1.

In order to proceed with the solution of P, let us observe that the problem

P is non-convex, due to the C4 constraint. However, the following theorem

paves the way for an efficient globally-optimal solution technique for the

formulated route planning problem.
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Let Pl, l ∈ A = {1, . . . , N − L+ 1}, be the optimization problem

Pl



min
V ,P

λ(V )

s.t. ∥vh∥ ≤ vmax

∥vh′ − vh′−1∥ ≤ ∆vmax

∥p1 − v1∆t∥C−1
p

≤
√
ϵ∥∥ph′ − (vh′∆t+ ph′−1)
∥∥
C−1

p
≤

√
ϵ

ph ∈ Sc, h = 1, . . . , N

h = 1, . . . , N, h′ = 2, . . . , N

max
k=l,...,l+L−1

(∥pk − pc∥) ≤ δ

V = [v1, . . . ,vn, . . . ,vN ] ∈ R2,N

P = [p1, . . . ,pn, . . . ,pN ] ∈ R2,N

(6.9)

where the only difference with problem P is in the rendezvous constraint: in

Pl the rendezvous time index l is fixed; then, for any l ∈ A, Pl is a convex

optimization problem.

Theorem 6.3.4. Let us consider the problems P and Pl, l ∈ A.

• The problem P is feasible if and only if at least one among the problems

Pl, l ∈ A, is feasible.

• Assume the existence of some l ∈ A such that Pl is feasible, and

(V l,P l) is the optimal solution to Pl.

Then, an optimal solution to P is (V ⋆,P ⋆), with

V ⋆ = V l⋆ , P ⋆ = P l⋆ , (6.10)

where, denoting with v (Pl) the optimal value of Problem Pl,

l⋆ = argmin
l∈A

v(Pl).

Proof of Theorem 6.3.4 is provided in Appendix E.2.

As shown in Theorem 6.3.4, Pl, l ∈ A, is a convex optimization problem.

In particular, resorting to the epigraph representation of Pl, as well as the

fact that the square-root function is monotonically increasing, Pl, l ∈ A,

is equivalent to the following Second-Order Cone Program (SOCP) [39],

provided that Sc can be expressed in terms of second-order constraint, as it
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is the case of polyhedra and ellipsoids:

P̄l



min
V ,P ,t

t

s.t.
√
λ(V ) ≤ t

∥vh∥ ≤ vmax

∥vh′ − vh′−1∥ ≤ ∆vmax

∥C− 1
2

p (p1 − v1∆t) ∥ ≤
√
ϵ

∥C− 1
2

p

(
ph′ − (vh′∆t+ ph′−1)

)
∥ ≤

√
ϵ

ph ∈ Sc

h = 1, . . . , N, h′ = 2, . . . , N

∥pk − pc∥ ≤ δ, k = l, . . . , l + L− 1

V = [v1, . . . ,vn, . . . ,vN ] ∈ R2,N

P = [p1, . . . ,pn, . . . ,pN ] ∈ R2,N

t ∈ R

(6.11)

where
√
λ(V ) =

∥∥∥(HT
MC−1

M HM

) 1
2 vec (V − V 0)

∥∥∥.
The optimization algorithm, named N-COST, follows directly by Theo-

rem 6.3.4, and consists is solving all the feasible problems Pl, l ∈ A. The

optimal solution among all of them will also be the optimal solution of P, as

summarized in Algorithm 1. The computational complexity connected with

the implementation of the N-COST algorithm depends on the number of

outer iterations N−L+1, as well as on the complexity of each iteration. Pre-

cisely, the complexity of each cycle corresponds to that required to solve (for

our specific application) a SOCP, which is O(N3.5 log(ζ)) (see [33]), where ζ

is a prescribed accuracy. Thus, the overall complexity is O(N4.5 log(ζ)). A

brute force implementation procedure to solve the problem P would not be

feasible, given that the optimization space would need to grow exponentially

with the length of the optimization variables (position and velocity) for any

given discretization step of them.

Summarizing N-COST provides the optimal solution in virtue of Theo-

rem 6.3.4 and is efficient from a computational perspective.

Remark 6.3.5. When implementing the N-COST algorithm, the resolution

of the N−L+1 problems Pl could lead to a number nl of overlapping optimal

solutions, with 1 < nl ≤ N − L + 1. In such a case it does not make any

difference which solution is chosen among all the possible optimal ones.
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Algorithm 1 N-COST Algorithm

1: Input. HM , CM , V 0, Cp, pc, L, vmax, ∆vmax, ϵ, δ,Sc.

2: Output. The optimal trajectory P ⋆ as well as the optimal mean velocity

profile V ⋆.

3: Initialization. Set l = 0, v = +∞, V ⋆ = 0, and P ⋆ = 0.

4: repeat

5: l = l + 1.

6: Solve Problem Pl. If v(Pl) < v, then v = v(Pl), V̄
⋆

= V l and

P̄
⋆
= P l. Otherwise go to step 5.

7: until l ≤ N − L+ 1

8: Output. If v < +∞, V ⋆ = V̄
⋆
and P ⋆ = P̄

⋆
, otherwise the design

problem is not feasible.

6.4 N-COST algorithm performance analysis

In order to assess the effectiveness of the N-COST algorithm, in this section

we investigate some interesting case studies concerning both synthetic and

real-world scenarios.

To solve the N − L+ 1 problems Pl in the N-COST algorithm, we used

CVX, a package for specifying and solving convex programs [100,101].

6.4.1 Analysis of a synthetic scenario

The configuration set-up for the synthetic scenario considers a vessel navigat-

ing under nominal conditions along a straight route with constant velocity

v0 = [8, 0]T m/s, which, at some point, turns its AIS device off for an over-

all time of T = 15 hours. Under hypothesis H1, the vessel is supposed to

follow an N -section path with N = 20, and equal time intervals ∆t = 0.75

hours. Along its stealth trajectory, the vessel must reach the rendezvous

point pc = [150, 50]T km, where it is confined for a period of at least

L∆t = 0.75 hours, with L = 1. The stopping area size is defined by δ = 100

m. The other constraint parameters are: vmax = 10 m/s, ∆vmax = 1 m/s,

and ϵ = 0.1.

Finally, the reversion rate associated to the underlying OU dynamic

model is set as γ = 0.9 · 10−2 and noise level σ2 = 10−2, for both coor-

dinates. The noise covariance matrix is set as Cnm
= diag(502, 502, 1, 1),

∀m = 1, . . . ,M , while Cn0
= diag(102, 102, 1, 1).
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First analysis

As first analysis, we study the possible output trajectory from the optimizer.

The optimized trajectory under hypothesis H1 is drawn in Fig. 6.1 as against

the nominal trajectory (whose positions are marked with green dots) under

hypothesis H0. As already mentioned in 6.3,

– the optimal control of the velocity sequence returns a stochastic trajec-

tory forced to evolve according to an OU process with long-run mean

velocities determined by the N-COST algorithm. The OU process po-

sitions are depicted by small cerulean points in Fig. 6.1.

– the optimal control of both the velocity and position sequences returns

a deterministic trajectory forced to evolve according to any realization

of an OU process. The deterministic positions resulting from the ap-

plication of N-COST algorithm are represented by red square markers

in Fig. 6.1.

The comparison between the deterministic positions and the OU process

positions shows that the N-COST trajectory is compatible with the OU

statistical evolution, always being in the region of uncertainty indicated by

the related ellipses (black solid lines) at any of the time intervals. Specifically,

in the first synthetic scenario depicted in Fig. 6.1(a), in addition to the two

AIS contacts available, there is a single radar contact located in pr = 1,

highlighted by a light blue patch. Instead, Fig. 6.1(b) shows the N-COST

trajectory (red square markers) forced to evolve according to the presence

of three in-between radar contacts located in pr ∈ {2, 10, 18} (light blue

patches), and achieved by relaxing the constraint on the maximum absolute

acceleration with ∆vmax = 5 m/s.

The performance of detector (6.1) is reported in Fig. 6.2 in terms of false

alarm probability PFA versus detection probability PD. Three different sim-

ulations are considered. In the first one (black solid line), the trajectory

under H1 is assumed to evolve according to an OU process with optimal

long-run mean velocity sequence provided by the N-COST algorithm, and

the related ROC curve is given by (4.27). In the second simulation (red

dashed line), the trajectory under H1 is exactly the deterministic output of

the N-COST algorithm, and the only randomness is in the measurements.

The ROC curve is determined using the detector (6.1) with 104 Monte Carlo

runs. The third simulation concerns a heuristic and sub-optimal deviation
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(a) Single in-between contact.

(b) Multiple in-between contacts.

Figure 6.1: Comparison of the optimized positions (red squares) versus the positions drawn

from the OU process evolution (cerulean points) and the positions of the nominal trajec-

tory (green dots). The ellipses (black solid lines) represent the 95%-confidence covariance

of the OU/IOU process given the initial point of the trajectory. The point pc near which

the vessel lingers is marked with a yellow star. In the subplot (a) a single radar contact,

indicated by light blue shade, located in pr = 1 is taken into account, while in (b) there

are multiple radar contacts located in pr ∈ {2, 10, 18}.
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(a) Single in-between contact.
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(b) Multiple in-between contacts.

Figure 6.2: ROC curves describing the performance of detector (6.1) in terms of false alarm

probability PFA versus detection probability PD when the optimal deviation, occurring

under H1, is an OU process (black solid line) and a deterministic output of the N-COST

algorithm (red dashed line). The first ROC curve is provided by (4.27), while the second

is simulated with 104 Monte Carlo runs. The blue dash-dotted ROC curve describes the

sub-optimal deviation, while the blind detector ROC PD = PFA is indicated by the green

dotted line. The subplot (a) refers to the single radar contact located at the beginning

of the N -path, while the subplot (b) highlights the difference in terms of performance

achieved by considering multiple in-between radar contacts along the N -path.
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Figure 6.3: Three different optimized stealth trajectories, reaching the rendezvous points

(denoted with yellow star markers) pc1
= [200, 50]T km, pc2

= [210, 60]T km, and

pc3
= [220, 70]T km, respectively.

represented by a first path section with velocity v0 and then a triangle tra-

jectory (with vertices p0, pc and v0T ) executed by a vessel that goes to pc,

stops there and then comes back to the nominal route. In Fig. 6.2(a) it is

possible to observe that both the optimized scenarios exhibit similar (poor)

detection performance; and indeed, the ROC is close to that of the blind

detector PD = PFA (green dotted line), and this is not surprising, as the op-

timized trajectory was designed precisely to overcome the detector and the

single radar contact provides a very low contribution to the detector since it

is located where the vessel is still very close to the nominal position. While

the detection performance is quite limited for the optimized deviation, the

sub-optimal deviation is easily detectable (blue dash-dotted ROC curve) be-

ing PD around 80% when PFA is around 10%. A different situation is shown

in Fig. 6.2(b), where the three radar contacts affect the performance related

to both the optimized scenarios (black solid and red dashed lines) by mak-

ing the corresponding trajectories much more detectable, but still far less

detectable than with a stealth-agnostic deviation.
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Figure 6.4: Performance of detector (6.1) in terms of missed detection probability 1−PD

versus false alarm probability PFA for three different locations of the rendezvous point.

Second analysis

The performance of detector (6.1) is then analyzed at different locations

of the rendezvous point, indicated in Fig. 6.3 with pc1 = [200, 50]T km,

pc2 = [210, 60]T km, and pc3 = [220, 70]T km. Figure 6.4 shows a clear

performance improvement as the rendezvous point moves away from the

nominal trajectory.

Third analysis

The proposed N-COST algorithm is also tested against varying time win-

dows when the AIS transponder is shut down. Specifically, T is supposed to

assume values within the set {12, 16, 20} hours. The performance of detec-

tor (6.1) is shown in Fig. 6.5(a), and, as expected, the detection probability

decreases with time, underlining that the longer the AIS transponder is inac-

tive, the harder it is to detect possible anomalous deviation from the nominal

route. Figure 6.5(b) depicts again the performance of detector (6.1), but in

terms of detection probability versus the period T for three different fixed

values of the false alarm probabilities, i.e., PFA ∈
{
10−2, 10−4, 10−8

}
; in
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(a) Missed detection probability vs. false alarm probability.
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Figure 6.5: Panel (a): Performance of detector (6.1) in terms of missed detection prob-

ability 1 − PD versus false alarm probability PFA for three different periods of the AIS

shutdown, i.e., T ∈ {12, 16, 20} hours. Panel (b): Performance of detector (6.1) in terms of

detection probability PD versus T for three different values of the false alarm probability,

i.e., PFA ∈
{
10−2, 10−4, 10−8

}
.
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Figure 6.6: Comparison between the robust N-COST and original N-COST algorithms

with PFA = 10−8 with a single contact observing the vessel.

such a case, the common trend shows a decrease to zero after a transitional

period, underlining the increasing difficulty in performing the anomaly de-

tection with the increasing time of the AIS device shutdown. We can observe

a clear phase transition characterized by a critical time, dependent on the

choice of the PFA, before which PD ≈ 1 and the vessel is detectable, while

after this time PD ≈ 0. To summarize, right after the critical time the vessel

is able to accomplish its mission remaining hidden, and before the critical

time the vessel is detectable while accomplishing its mission. Basically, the

analysis shown in this third synthetic scenario draws the guideline in choos-

ing the most suitable period T of the AIS device shutdown in such a way

that the vessel is hardly detectable.

Fourth analysis - robust design

We explored the possibility to design the optimization strategy when the

measurement time slot is not perfectly known. Specifically, we assume to

optimize the trajectory under a worst condition scenario, where a measure-

ment is supposed to observe the vessel not only in a specific time but also in
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its neighboring slots.3 The effectiveness of such robust design is tested in the

same conditions of the first synthetic scenario (see Fig. 6.1(a)). Specifically,

measurements are assumed to be in time slots 2 − 4 and 16 − 18 to derive

the robust N-COST. This robust solution is then tested against the original

N-COST (reported in Fig. 6.1(a)) optimized assuming a single contact only

in the second time slot.

In Fig. 6.6 we compare in terms of PD (see (4.27) with PFA = 10−8)

the robust and original N-COST varying the position of a single contact.

Clearly, both solutions do not perform well in the centering region, where no

measurements should have been taken, while the vessel is moving away from

the nominal trajectory towards the rendezvous point. However, the robust

N-COST is not detectable from time slot 1 to 4 and from 15 to 20 while the

original N-COST is sensibly more detectable in time slots 4, 15 and 16. In

conclusion, under the same physical constraints and for the same mission to

accomplish, a noticeable improvement of performance is observed.

6.4.2 Analysis of real-world vessel traffic data

We applied the proposed optimization strategy to the real-world AIS track of

the vessel navigating in the waters of the Pacific Ocean and approaching the

Galápagos Marine Reserve [17], previously introduced in Subsection 1.3.5.

The information provided by the track reveals a deviation from the nominal

route, depicted in Fig. 6.7(a) by the black dashed line (ground truth), in

order to rendezvous with other ships in the specified point pc depicted by a

yellow star marker.

To test the N-COST algorithm, we artificially introduced a gap in AIS

data of about T = 145.5 hours to simulate the AIS device shutdown during

the actual deviation. Additionally, we assumed a fictitious nominal trajec-

tory (blue dotted line) when the data gap occurs, which is characterized by

a piecewise nominal velocity sequence V 0 ∈ R2,N , with N = 37, and whose

mean value is v0 = [3.36, −0.42]T m/s. The other OU parameters are also

estimated on this fictitious nominal trajectory, whose values are given by

γ =
[
1.63× 10−5, 5.95× 10−4

]
and σ =

[
1.1× 10−2, 1.58× 10−2

]
.

As regards the optimization procedure, the parameters related to the

constraints are set as: vmax = 10 m/s, ∆vmax = 1, ϵ = 1, and δ = 1 km.

Moreover, we imposed an ellipse constraint (black solid line) to contain pc

3Clearly, other robust design strategies are possible and will be investigated in future

works.
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Figure 6.7: Panel (a): Real-world AIS track (black dashed line) versus optimized trajectory

(red circle markers line). Panel (b): Performance of the anomaly detector (6.1) shows the

optimized trajectory being less detectable then the real one.
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and the resulting optimized trajectory, and it has been designed by aligning

the focal points with the positions where the AIS device is turned off and

where is then reactivated, respectively.

As can be seen in Fig. 6.7(a), the optimized trajectory is effectively de-

vised (red circle markers line) so that the vessel can arrive to the meeting

point, loiter there for the desired time (L∆t ≃ 19.6 hours), and finally restore

the nominal condition before the AIS device reactivation.

The performance of detector (6.1) is provided in terms of PFA versus

PD in Fig. 6.7(b), showing the ROC curves related to the real trajectory

(blue asterisks markers curve) and the optimized one (black circle markers

curve). Remarkably, the synthesized stealth trajectory exhibits a behavior

similar to the real anomalous route, but it turns out to be stealthy as the

ROC is almost equal to the blind detector (red dotted line), revealing the

effectiveness of the new proposed route planning tool.

6.5 Conclusion

In this chapter we propose a computationally efficient technique, called

N-COST algorithm, to solve the route planning problem with the goal to

make a vessel’s trajectory as stealthy as possible to an anomaly detector, so

as to hide a deviation from a nominal traffic route to accomplish a specific

mission.

The proposed approach assumes the velocity of the vessel evolves accord-

ing to an OU mean-reverting stochastic process, while proper kinematic and

practical constraints are taken into account. The optimization problem min-

imizes the KL divergence between the statistical hypotheses of the nominal

and the anomalous trajectories. Interesting case studies concerning both

synthetic and real-world scenarios are reported to prove the effectiveness of

the N-COST algorithm.



Chapter 7

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues

for future research.

7.1 Summary of contribution

The proposed research aims at contributing to advances in the maritime

anomaly detection methodologies in order to improve the ability to reveal,

understand, anticipate and prevent illegitimate activities at sea. The work

has been developed in the statistical framework by exploiting i) a prior in-

formation from a maritime traffic graph (MTG) that can be derived from a

route atlas or from historical data, ii) the Ornstein-Uhlenbeck (OU) mean

reverting stochastic process to model the vessel’s dynamics, and iii) the

complete or incomplete observation of the available data.

The first part of the research work has proposed a novel maritime anomaly

detector to reveal path deviations of ships during an intentional Automatic

Identification System (AIS) device disablement, in order to possibly perform

activities that would not be normally allowed. The problem has been treated

within the statistical hypothesis testing framework, based on the General-

ized Likelihood Ratio Test for Gaussian linear model, designed to identify

changes in the OU long-run mean velocity parameter of the vessel. The

proposed anomaly detection strategy has been successfully applied in two

real-world scenarios: the illicit fishing activities around the Galápagos Ma-

rine Reserve in 2017, and the grounding of the container vessel Ever Given

in the Suez Canal in 2021.

139
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The second part of the research work proceeded considering that the in-

formation contained in AIS messages can be entered manually by the crew

and maliciously altered, reporting falsified dynamic information and ruin-

ing the reliability of AIS data. Therefore, the problem addressed consists

in determining whether the AIS data received from a vessel are trustworthy

or not, and whether a deviation from the expected route occurred or not,

with the support of additional reliable information provided by surveillance

systems. The proposed solution involves two detection strategies both de-

signed in a hypothesis testing framework and based on the changes of the

OU process velocity parameter. The first strategy splits the joint problem

into two binary hypothesis tests via the Generalized Likelihood Ratio Test

(GLRT). Specifically, the first GLRT decides if the AIS data are truthful or

not, while the second decides if a deviation occurred or not, and finally the

two decisions are combined through a decision rule named Coupled GLRT

(C-GLRT). The second strategy is designed to tackle a multiple hypothesis

test, relying on the Model Order Selection methodology, which applies an

appropriate penalty term to the maximized log-likelihood. Specifically, the

direct Kullback-Leibler approach, also known as No-Name rule, the Akaike’s

Information Criteria, and the Bayesian Information Criteria have been con-

sidered among all the different criteria to choose such a penalty term. The

effectiveness of the two detection strategies has been assessed through the in-

vestigation of some case studies concerning a maritime operational scenario.

The performance of both strategies has been analyzed by varying some pa-

rameters, such as the falsified trajectory, the configurations (number and

position) of the AIS contacts and the additional reliable contacts provided

by the surveillance system, and the time window.

Finally, the third and last part of the research work moved from the

anomaly detector to the opponent vessel’s point of view, and proposed an

optimization methodology to make the anomalous trajectory of the mali-

cious vessel as stealth as possible to the anomaly detector build in the first

part of this work. Assuming that the vessel can be only observed by satel-

lite sensors, and that it has knowledge of the surveillance system acquisition

instants, the route planning is formalized as a min-max problem by capital-

izing the Kullback-Leibler divergence between the statistical hypotheses of

the nominal and the anomalous trajectories as key performance measure. A

computationally efficient technique, called Non-Convex Optimized Stealth

Trajectory N-COST algorithm, is proposed to handle the resulting con-
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strained optimization problem, where physical requirements are accounted

for at the design stage. Such requirements concern the mean velocity dy-

namic, the compliance of the trajectory with the underlying OU statistical

model, the existence of a time instant allowing a possible rendezvous, and

sea coast limitations. Interesting case studies, concerning both synthetic and

real-world scenarios, are also investigated to prove the effectiveness of the

proposed planning strategy. Leveraging the proposed optimization tool, it is

possible to compute the worst-case conditions in terms of anomaly detection

capability and consequently to determine the optimal surveillance system

acquisition instants in the region of interest.

7.2 Directions for future work

The findings presented throughout this work show excellent performance,

but it is essential to mention also the limitations related to the detection

procedure:

– An extension of the problem should encompass a multi-target scenario

and/or the presence of clutter, prompting a data association issue;

this offers the opportunity to delve into the application of the belief

propagation methodology able to provide a highly effective, efficient,

and scalable solution to the probabilistic data association problem [91,

152].

– The assumptions on the perfect knowledge of the nominal velocity

could be questioned. The nominal velocity could actually not be per-

fectly known in advance, and, thus, should be described by a proper

stochastic model that takes into account also the associated uncer-

tainty. For instance, if the MTG exhibits more than one edge in a

certain area of interest, then the nominal velocity can be modeled as a

mixture whose number of components depends on the number of the

edges in the graph.

– Due to environmental and/or financial changes, a variation of the ve-

locity and/or the planned routes should be taken into consideration.

For instance, what was standard in 2019 is not anymore after the out-

break of the Coronavirus disease (COVID-19), since an unprecedented

drop in maritime mobility across all categories of commercial shipping



142 Conclusion

and a generally reduced activity has been observed when the most

severe restrictions were in force [156].

Future areas of research could build up on this research work by looking

at improving the anomaly detection capabilities by exploring the aforemen-

tioned limitations and coming up with innovative solutions.

Moreover, regardless the strategy proposed in Chapter 5, further works

will be in the direction of mathematically establishing the observability of

the AIS data spoofing and deviations anomalies from the set of available

data, and more advanced anomalous behaviors could be considered to test

the (C-GLRT) approach. Another important aspect that can be investigated

is related to the use of the proposed approach in the context of the air traffic

control. Specifically, the behavior of stealth anomalous deviations of private

aircraft could be taken into consideration.

Although in Chapter 4 it has been demonstrated that even with few con-

tacts (e.g., space-borne acquisitions) the anomaly detection procedure can

work very well when the trajectory is not optimized against the detector, a

possible future development could overcome the lack of an optimal surveil-

lance asset. Indeed, countermeasures to the N-COST algorithm could be

investigated to benefit the maximization of the anomaly detection capability

in the worst condition, and this could include the optimal satellite schedul-

ing acquisition combined with the optimal path planning of the surveillance

asset.



Appendix A

Automatic Identification System

This appendix is related to the Automatic Identification System (AIS), pre-

viously presented in Chapter 1.

A.1 AIS functioning

AIS integrates a standardized VHF transceiver to automatically broadcast

information, such as a vessel’s position, speed, and navigational status, at

regular intervals. The information originates from the vessel’s navigational

sensors, typically its GPS receiver together with a gyrocompass or a rate of

turn indicator. Permanent information, such as the vessel name and VHF

call sign, are programmed when installing the equipment and is also trans-

mitted regularly. More precisely, the acquired GPS coordinates are broad-

cast via the dedicated Marine VHF bandwidth (through two radio channels

operating at 161.975 MHz and 162.025 MHz and based on a time division

multiple access (TDMA) system, which permits each device to communicate

during a given time period, or time slot) [114].

In order to transmit and receive AIS signals, some dedicated devices have

been put in place since the introduction of the system: class-A transponders,

for large ships, and class-B transponders, for smaller vessels. The IMO [111]

imposes that every ship of more than 300 GT, all passenger ships and all fish-

ing vessels with a length above 15 meters be equipped with class-A transpon-

ders. Conversely, class-B transponders are designed to bring the benefits of

AIS on smaller vessels; indeed, they are smaller and less expensive than class-

A type transceivers. As such, they can be installed on small ships such as

143
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recreational vessels that want to have the benefits of having the AIS even if,

for their size, they are not required to fit a transponder onboard. A class-A

AIS transponder allows vessels to automatically broadcast and receive static,

dynamic, and voyage-related information as listed in Table A.1 [114]: vessels

while underway transmit information updates every 2 to 10 seconds, while

vessels at anchor transmit information every 3 minutes. Static permanent

information are broadcast every 6 minutes. Whereas, position updates for

Table A.1: Information broadcast from a class-A AIS transponder.

Every 2 to 10 seconds while underway and every 3 minutes while at anchor

MMSI unique referenceable nine digit identification number

Navigation status “at anchor” “under way using engines”, “not under command”

Rate of turn right or left, from 0 to 720 degrees per minute

Speed over ground 0.1-knot (0.19 km/h) resolution from 0 to 102 knots (189 km/h)

Positional resolution Longitude and Latitude

Course over ground relative to true north to 0.1◦

True heading 0 to 359◦

True bearing at own position 0 to 359◦

Time stamp the seconds field of the UTC time when these data were generated

Every 6 minutes

IMO ship identification number a seven digit number that remains unchanged upon

transfer of the ship’s registration to another country

Radio call sign international radio call sign, up to 7 characters,

assigned to the vessel by its country of registry

Name 20 characters to represent the name of the vessel

Type of ship “cargo”, “tanker”, “passenger”, “fishing”

Dimension of ship to nearest meter

Location of positioning system’s antenna on board in meters aft of bow and meters port or starboard

Type of positioning system various options such as GPS or differential GPS

Draught of ship 0.1 meter to 25.5 meters

Destination maximum 20 characters

ETA at destination month, day, hour, and minute in UTC

class-B transponders are broadcast less often than class-A transponders.

Furthermore, two types of transmission are available: terrestrial and by

satellite. At first, the system was only terrestrial, with transmission oc-

curring from one vessel to another, or between a vessel and a land based

systems, such as VTS systems, in a range of distance which is limited by

the curvature of the Earth. However, the development of satellites enabled
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to receive messages even far from the coast line, by uploading and storing

the received messages then downloading information as soon as a coast line

and a shore station is reached. Therefore, when out of range of terrestrial

networks, vessels fitted with AIS device can be tracked through a growing

number of satellites that are fitted with special AIS receivers, known as

S-AIS. Using satellites with existing AIS technology gives a comprehensive

picture of vessel activity, even in high-traffic and remote areas. Hence, S-AIS

greatly extends the range of traditional AIS: signals are sent and received

from many kilometers above land and sea, so that the barrier of the horizon

does not limit these signals. The two types of transmissions are conceivably

represented in Fig. 1.1 shown in Chapter 1.



Appendix B

Ornstein-Uhlenbeck stochastic

process

This appendix is related to the OU model, previously presented in Chapter 3.

Here we present the solution of the SDE (3.7) which provides for the target

state prediction and the related variance (see Subsection 3.2.3).

B.1 Coupled OU process

The solution of the SDE (3.7) can be found using Itô calculus [93,163], and

the first two moments are as follows

s (t|t0) = eA(t−t0)s(t0) +

∫ t

t0

eA(t−s)Dv ds, (B.1)

and

Cov [s(t)|s(t0)] =
∫ t

t0

eA(t−s)BBT
(
eA(t−s)

)T
ds. (B.2)

Assuming that Θ is diagonalizable, then Θ = RΓR−1 represents its eigen-

decomposition, and the following relations hold

A =

[
0 I

0 −Θ

]
=

[
0 I

0 −RΓR−1

]
= R̃ÃR̃−1, (B.3)

where

R̃
∆
=

[
R 0

0 R

]
, and Ã

∆
=

[
0 I

0 −Γ

]
. (B.4)
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We can now exploit the power series of the matrix exponential to obtain a

convenient expression for eAt:

eAt =

∞∑
k=0

1

k!
Aktk

=

∞∑
k=0

1

k!

k∏
i=0

(
R̃ÃR̃−1

)
tk

=

∞∑
k=0

1

k!
R̃ÃktkR̃−1

= R̃

( ∞∑
k=0

1

k!
Ãktk

)
R̃−1

= R̃ eÃt R̃−1, (B.5)

that can be reworked to highlight the dependence on t and γ by defining the

state transition matrix

Φ(t,γ)
∆
= eÃt =

[
I
(
I− e−Γt

)
Γ−1

0 e−Γt

]
. (B.6)

On the other hand, the integral in (B.1) can be written in terms of Φ(t,γ)

as

Ψ(t,γ)
∆
=

∫ t

t0

eA(t−s)D ds =

∫ t

t0

Φ(t− s,γ)

[
0

Γ

]
ds, (B.7)

and allows a closed-form solution

Ψ(t,γ) =

[
tI−

(
I− e−Γt

)
Γ−1

I− e−Γt

]
, (B.8)

which is identified as the control input function.

Combining together (B.1), (B.6) and (B.8) lead us to the first moment

of the SDE solution, which has the form

s (t|t0) = R̃Φ(t− t0,γ)R̃
−1s(t0) + R̃Ψ(t− t0,γ)R̃

−1v. (B.9)

We can proceed analogously with the second order solution using (B.2)

and (B.6)

Cov [s(t)|s(t0)] = R̃

(∫ t

t0

Φ(t− s,γ)

[
0 0

0 Σ̃

]
ΦT(t− s,γ) ds

)
R̃−1,

(B.10)



148 Ornstein-Uhlenbeck stochastic process

where Σ̃ is the noise covariance in the transformed domain, wose entries are

defined as follows

Σ̃
∆
= R−1Σ

(
R−1Σ

)T
=

[
σ2
x σxy

σxy σ2
y

]
. (B.11)

Again, the problem can be solved in algebraically closed-form, and for the

second moment of the SDE solution, we obtain

Cov [s(t)|s(t0)] = R̃Ω(t− t0)R̃
−1, (B.12)

where Ω(t) = Ω1 ◦Ω2(t), with the ◦ operator denoting the Hadamard prod-

uct. Matrix Ω1 has the following form

Ω1 =



σ2
x

γ3
x

σxy

γxγy

σ2
x

2γ2
x

2σxy

γx

σxy

γxγy

σ2
y

γ3
y

2σxy

γy

σ2
y

2γ2
y

σ2
x

2γ2
x

2σxy

γy

σ2
x

γx

2σxy

γx+γy

2σxy

γx

σ2
y

2γ2
y

2σxy

γx+γy

σ2
y

γy

 , (B.13)

whereas Ω2(t) is defined as

Ω2(t) =
[
Ξ1(t) Ξ2(t)

]
, (B.14)

with

Ξ1(t) =


f(t γx) h(t,γ)

h(t,γ) f(t γy)

k(t γx)
g(γx

t
2 )

γx
− g((γx+γy)

t
2 )

γx+γy

g(γy
t
2 )

γy
− g((γx+γy)

t
2 )

γx+γy
k(t γy)

 ,

Ξ2(t) =


k(t γx)

g(γy
t
2 )

γy
− g((γx+γy)

t
2 )

γx+γy

g(γx
t
2 )

γx
− g((γx+γy)

t
2 )

γx+γy
k(t γy)

g(t γx) g
(
(γx + γy)

t
2

)
g
(
(γx + γy)

t
2

)
g(t γy)

 ,

by using the following ancillary functions:

f(t)
∆
=

1

2

(
2t+ 4e−t − e−2t − 3

)
, (B.15)

g(t)
∆
=

1

2

(
1− e−2t

)
, (B.16)
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which are the prediction position and velocity error normalized variance,

respectively, and

h(t,γ)
∆
= t− 1− e−tγx

γx
− 1− e−tγy

γy
+

1− e−t(γx+γy)

γx + γy
, (B.17)

k(t)
∆
= e−2t

(
1− et

)2
. (B.18)



Appendix C

Detection of maritime

anomalous deviations

This appendix is related to the detection of maritime anomalous deviations,

previously presented in Chapter 4. Here we outline the synthetic character-

ization of the overall process noise (see Subsection 4.3.1); we also calculate

the off-diagonal terms in the covariance matrix of the data vector y in the

multi-contacts case (see Subsection 4.3.2), and we derive the MLE of the

unknown parameter θ (see Section 4.4). Finally, we present an insight on

the detection performance determining the scaling law of λ(θ) introduced in

Section 4.4.
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C.1 Synthetic characterization of ω(T )

We easily show that ω(T ) ∼ N (0,C(T )) returning the synthetic character-

ization of ω(T ) (4.5) as follows

E[ω(T )] =
N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
E[ωn] + E[ωN ] = 0. (C.1)

Cov[ω(T )] = E
[
ω(T )ω(T )T

]
i)
=

N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
C(∆n)

[
N∏

i=n+1

Φ(∆i)
T

]
+C(∆N )

ii)
= C

(
N∑

n=1

∆n

)
= C(T ). (C.2)

Since the ωn are independent zero-mean Gaussian random vectors, the terms

involving the mean of the mixed products, E [ωnωm], are zero, and equality

i) is valid.

The equality ii) is proved by making the following considerations. For

N = 2, by using the definitions of C(∆n) in (B.12) and Φ(∆n) in (B.6), we

can show that

Φ(∆2)C(∆1)Φ(∆2)
T +C(∆2) = C(∆1 +∆2). (C.3)

It can be easily shown that for N = 3, exploiting the previous expression,

we can get

Φ(∆2 +∆3)C(∆1)Φ(∆2 +∆3)
T +Φ(∆3)C(∆2)Φ(∆3)

T +C(∆3)

= Φ(∆3)
[
Φ(∆2)C(∆1)Φ(∆2)

T +C(∆2)
]
Φ(∆3)

T +C(∆3)

= Φ(∆3)C(∆1 +∆2)Φ(∆3)
T +C(∆3)

= C(∆1 +∆2 +∆3). (C.4)

This procedure is valid for each N by induction.

C.2 Off-diagonal terms in Cy calculation

The off-diagonal terms in the covariance matrix Cy (4.20) can be derived

as follows. Let us suppose for simplicity that pi and pj , denoting the time
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location of the i-th and the j-th contacts, respectively, are integer quantities.

The result is still valid even if pi and pj are not integer.

Cij =E
[
(yi − µi)(yj − µj)

T
]

=E
[
(ω(Ti) + ni +Φ(Ti)n0)(ω(Tj) + nj +Φ(Tj)n0)

T
]

=E
[
ω(Ti)ω(Tj)

T
]
+Φ(Ti)Cn0Φ(Tj)

T

i)
=

pi∑
n=1

[
pi∏

l=n+1

Φ(∆l)

]
C(∆n)

[
pj∏

l′=n+1

Φ(∆l′)
T

]
+Φ(Ti)Cn0Φ(Tj)

T

=C(Ti)Φ(Tj − Ti)
T +Φ(Ti)Cn0Φ(Tj)

T, (C.5)

∀i, j = 1, ...,K. In i) it has been considered that the random variables

ω(∆n) involved in the expressions of ω(Ti) and ω(Tj) given in (4.15) , are

all independent so that E[ωnω
T
m] = 0 if n ̸= m. In the same way it is shown

that Cji = CT
ij , ∀i, j = 1, 2, . . . ,K with Ti < Tj .

C.3 MLE of the unknown parameter θ

Incorporating the term independent of the unknown parameter appearing in

the GLRT (4.26) in the threshold τ , under the condition in which N and

DN are unknown, the MLE of µ = θ is given by

θ̂ = argmax
θ

{ln [pθ(y)]}

= argmin
θ

{
(y − θ)

T
C−1

y (y − θ)
}
, (C.6)

whose exact expression can be found by setting to zero the derivative with

respect to θ:
∂

∂θ

{
θTC−1

y θ − 2θTC−1
y y

} ∣∣∣∣
θ=θ̂

= 0, (C.7)

from which it follows that the MLE of the unknown parameter corresponds

to data, θ̂ = y.

In the alternative case where N and DN are known, the MLE of the

vector θ = v1:N is given by

θ̂ = argmin
θ

{
(y −Hθ)

T
C−1

y (y −Hθ)
}
, (C.8)
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whose exact expression can be found by setting to zero the derivative with

respect to θ:

∂

∂θ

{
θTHTC−1

y Hθ − 2θTHTC−1
y y

} ∣∣∣∣
θ=θ̂

= 0, (C.9)

from which

θ̂ =
(
HTC−1

y H
)−1

HTC−1
y y. (C.10)

In the same way it is shown that the MLE of the unknown parameter θ̃,

achieved by applying the rank reduction method, is given by

̂̃
θ =

(
H̃TH̃

)−1

H̃TC̃y. (C.11)

C.4 More on the detection performance

Assuming that we know the matrix H (see scenario 2 in 4.4.2) we expect

that the detector (4.35) outperforms the detector (4.28) designed under the

assumption that H is unknown (see scenario 1 in 4.4.1). Indeed, given that

the parameter λ(θ) is equal for both the scenarios, the number of degrees of

freedom dmakes the difference. In scenario 1, d = 4K, while, for scenario 2, d

depends on the structure ofH (or equivalently on the contact time locations):

d = ρ = rank(H) ≤ min (4K, 2N). Then, scenario 2 is never worse than

scenario 1 when ρ < 4K and equivalently when ρ = 4K.

In both scenarios, by increasing K, we would like to obtain an improve-

ment of performance. Unfortunately, this is not guaranteed. However, when

K is large enough and the structure of H allows λ(θ) to increase with K, the

scenario 2 has performance improving with K, since d is bounded by 2N ,

implying that PD −→ 1 for any fixed PFA.

Conversely, in scenario 1, when λ(θ) increases with K, the performance

is not guaranteed to improve as d = 4K increases as well with K. In the

following, we give the scaling law of λ(θ) to obtain improving performance

of the detection strategy in scenario 1.

Scaling law of λ(θ)

Let us indicate dK = 4K. The decision statistic (4.28) has a Chi-squared

distribution, that is equivalent to the sum of the squares of dK independent
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Normal random variables x2
i

QK =

dK∑
i=1

x2
i , (C.12)

with zero mean under H0, finite mean under H1, and unit variance:{
H0 : xi ∼ N (0, 1) , QK ∼ χ2

dK
,

H1 : xi ∼ N (qi, 1) , QK ∼ χ
′2
dK

(λK),
(C.13)

where λK =
∑dK

i=1 q
2
i . Moreover, we have

E[QK ] =

{
dK H0

λK + dK H1

(C.14)

V ar[QK ] =

{
2dK H0

2(dK + 2λK) H1.
(C.15)

Exploiting the central limit theorem [134], and normalizing the decision

statistic QK under H0, we obtain the normalized decision statistic

Q̃K
∆
=

QK − dK√
2dK

H1

≷
H0

τ, (C.16)

which converges to a Gaussian distribution for large K:H0 : Q̃K −→ N (0, 1)

H1 : Q̃K −→ N
(
λ̃∞, σ̃2

∞

)
.

(C.17)

Under hypothesis H1, Q̃K can be written as

QK − λK − dK√
2(dK + 2λK)︸ ︷︷ ︸

Q̃(H1)

K −→N (0,1)

√
dK + 2λK

dK︸ ︷︷ ︸
σ̃K−→σ̃∞

+
λK√
2dK︸ ︷︷ ︸

λ̃K−→λ̃∞

, (C.18)

where the first limit is a convergence in distribution to a normal random

variable while the others are limit of deterministic sequences. Summarizing

we have

λ̃∞ = lim
K→∞

λ̃K = lim
K→∞

λK√
2dK

, (C.19)

σ̃2
∞ = lim

K→∞
σ̃2
K = 1 + lim

K→∞
2
λK

dK
. (C.20)
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Exploiting the previous convergence properties, we can analyze the asymp-

totic detection performance of the decision statistic Q̃K , specifically we have

P∞
D = lim

K→∞
PD,K = lim

K→∞
P
(
Q̃K > τ |H1

)
= Q

(
Q−1 (P∞

FA)− λ̃∞

σ̃∞

)
,

(C.21)

where P∞
FA is the asymptotic false alarm probability, obtained exploiting the

convergence in (C.16) and τ = Q−1 (P∞
FA).

Let us recall that dK = O(K) and assume λ̃K = O(K
n
2 ). We distinguish

three different cases depending on the parameter n ≥ 0. If 0 ≤ n < 1, the test

cannot distinguish H0 from H1 because λ̃∞ = 0 and σ̃∞ = 1, consequently

from (C.21) P∞
D = P∞

FA. If n = 1 then λ̃∞ < ∞, σ̃∞ = 1 and the detection

probability converges to a value less than 1 provided by (C.21). If n > 1

and τ < ∞, then, under H1, dividing the decision statistic (C.18) by λ̃K , we

obtain
Q̃K

λ̃K

= Q̃(H1)
K︸ ︷︷ ︸

−→N (0,1)

σ̃K/λ̃K︸ ︷︷ ︸
−→0

+1, (C.22)

implying that Q̃K/λ̃K converges to one in probability under H1. Then,

following (C.21), and, since τ/λ̃K −→ 0, the detection probability converges

to one. Summarizing, for any P∞
FA < 1, we have:

P∞
D = P∞

FA if 0 ≤ n < 1,

P∞
D = Q

(
Q−1 (P∞

FA)− λ̃∞

)
if n = 1,

P∞
D = 1 if n > 1.

(C.23)

Note that the sequence qi, for i = 1, . . . , dK , where in general qi ̸= qj for

i ̸= j, represents the heterogeneity of the contacts. Each qi is a measure of

the information contained in a component of a single measurement (position

or velocity along one of the Cartesian axes). Clearly, if qi ≪ 1 this compo-

nent is adding mostly noise to the decision statistic degrading the detection

performance.



Appendix D

Detection of anomalous

deviations in the presence of

AIS spoofing

This appendix is related to the derivation of the GLRTs and the concern-

ing MLEs previously presented in Chapter 5 (see Subsection 5.4.1 and Sec-

tion 5.5).

D.1 Derivation of the GLRTs (5.20), (5.23),

and (5.40)

Some of the MLE and GLRT properties used in this derivation are provided

in [119], and also reported below for the sake of clarity.

Derivation of the GLRT (5.20)

Let us recall the data model after the SVD in (5.18). The derivation of

the unrestricted MLE of z̃ =
[
φ̃T, ṽT

R

]
, under hypothesis {H2, H3}, is the

following

p
(
y; ̂̃φ, ̂̃vR

)
= max

z̃
p (y; z̃) = p

(
y; ̂̃z) ,
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and can be obtained from̂̃z = argmax
z̃

{ln [p (y; z̃)]}

= argmin
z̃

{(
y − Ũ z̃

)T
C−1

y

(
y − Ũ z̃

)}
,

whose exact expression can be found by setting to zero the derivative with

respect to z̃, achieving

̂̃z =

[ ̂̃φ̂̃vR

]
=
(
ŨT C−1

y Ũ
)−1

ŨT C−1
y y

i)
=
(
ŨT C̃T C̃ Ũ

)−1

ŨT C̃T C̃y

ii)
=
(
Z̃T Z̃

)−1

Z̃T C̃y ∼ N
(
z̃,
(
Z̃T Z̃

)−1
)
, (D.1)

where in i) the Cholesky decomposition has been applied to matrix C−1
y ,

and in ii) Z̃
∆
= C̃ Ũ has been defined.

Since ̂̃z attains the Cramer-Rao Lower Bound (CRLB), it satisfies (see [118])

∂

∂z̃
ln p (y; z̃) = I (z̃)

(̂̃z − z̃
)
= I

(̂̃z)(̂̃z − z̃
)
, (D.2)

where I(̂̃z) is the Fisher Information Matrix (FIM) related to ̂̃z and defined

as

I
(̂̃z) = Z̃TZ̃ =

[
G̃T G̃ G̃T H̃

H̃T G̃ H̃T H̃

]
, (D.3)

with G̃
∆
= C̃ ŨG, and H̃

∆
= C̃ ŨL. Then, integrating equation (D.2) with

respect to z̃ produces

ln p (y; z̃) = −1

2

(̂̃z − z̃
)T

I
(̂̃z)(̂̃z − z̃

)
+ c

(̂̃z) ,
or, since c(̂̃z) = ln p(y; ̂̃z),

p (y; z̃) = p
(
y; ̂̃z) exp [−1

2

(̂̃z − z̃
)T

I
(̂̃z)(̂̃z − z̃

)]
. (D.4)

In order to find the MLE ̂̃v(0)

R , we need to maximize p(y; φ̃ = 0, ̂̃vR) over

ṽR under hypothesis {H0, H1}, i.e., we need to minimize

J (ṽR) =
(̂̃z − z̃

)T
I
(̂̃z)(̂̃z − z̃

)
(D.5)
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over ṽR, with z̃ = [φ̃T = 0, ṽT
R]

T. By replacing the components of the

FIM (D.3) in equation (D.5), and annulling the gradient of (D.5) with respect

to ṽ in the point ṽR = ṽ
(0)
R , we get

̂̃v(0)

R = ̂̃vR +
(
H̃T H̃

)−1

H̃T G̃ ̂̃φ,
J

(̂̃v(0)

R

)
= ̂̃φT

[
G̃T G̃− G̃T H̃

(
H̃T H̃

)−1

H̃T G̃

] ̂̃φ.
Consequently, we achieve

p

(
y; φ̃ = 0, ̂̃v(0)

R

)
= p

(
y; ̂̃φ) exp [−1

2
J

(̂̃v(0)

R

)]
,

and the GLRT is given by

Lφ̃(y) =
p
(
y; ̂̃z)

p
(
y; ̂̃z) exp [−1

2
J

(̂̃v(0)

R

)] = exp

[
1

2
J

(̂̃v(0)

R

)]
,

from which

2 lnLφ̃(y) = J

(̂̃v(0)

R

)
= ̂̃φT

[
G̃T G̃− G̃T H̃

(
H̃T H̃

)−1

H̃T G̃

] ̂̃φ
= ̂̃φT ([

I−1 (z̃)
]
φ̃φ̃

)−1 ̂̃φ,
where

[
I−1 (z̃)

]
φ̃φ̃

is the matrix of size ρG×ρG corresponding to the upper-

left partition of I−1 (z̃), and it is shown to be the covariance matrix of̂̃φ:
C ̂̃φ =

[
I−1 (z̃)

]
φ̃φ̃

.

Derivation of the GLRT (5.23)

Starting from (D.2) and repeating the procedure in terms of ṽR (treating φ̃

as a nuisance parameter), the resulting GLRT is achieved as

2 lnLṽR
(y) =

(̂̃vR − ṽ
(0)
R

)T ([
I−1 (z̃)

]
ṽRṽR

)−1 (̂̃vR − ṽ
(0)
R

)
, (D.6)
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where
[
I−1 (z̃)

]
ṽRṽR

is the matrix of size ρH × ρH corresponding to the

lower-right partition of I−1 (z̃), and it is shown to be the covariance matrix

of ̂̃vR:

Ĉ̃vR
=
[
I−1 (z̃)

]
ṽRṽR

. (D.7)

Derivation of the GLRT (5.40)

Manipulating the data model in (5.8) to bring matrix L
∆
= H−G up, after

the SVD application (see (5.36) and (5.37)) we get

y = ŨG ṽA + ŨL ṽR + ω =
[
ŨG ŨL

] [ṽA

ṽR

]
+ ω = Ũz̃ + ω (D.8)

so that, in this case, Ũ
∆
=
[
ŨG ŨL

]
, and z̃

∆
=

[
ṽA

ṽR

]
.

The unrestricted MLE ̂̃z attains the CRLB, and, hence, it satisfies the equal-

ity (D.2), where the FIM related to ̂̃z is defined as

I
(̂̃z) =

[
G̃T G̃ G̃T L̃

L̃T G̃ L̃T L̃

]
, (D.9)

with G̃
∆
= C̃ ŨG, and L̃

∆
= C̃ ŨH (see the SVD applications (5.15) and (5.37)).

The same procedure applied for the derivation of the GLRTs (5.20)

and (5.23) can be also implemented in this case by taking into account (D.9).

Consequently, treating ṽR as a nuisance parameter, the resulting GLRT (5.40)

has the following expression

2 lnLG(y) =
(̂̃vA − ṽ0

)T ([
I−1 (z̃)

]
ṽAṽA

)−1 (̂̃vA − ṽ0

)
, (D.10)

where
[
I−1 (z̃)

]
ṽAṽA

is the matrix of size ρG × ρG corresponding to the

upper-left partition of I−1 (z̃), and it corresponds to the covariance matrix

of ̂̃vA:

Ĉ̃vA
=
[
I−1 (z̃)

]
ṽAṽA

. (D.11)
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D.2 MLE expressions of φ̃, ṽR and ṽA

MLE of φ̃

Considering the unrestricted MLE (D.1), which can be rewritten as

[
φ̃

ṽR

]
= I−1 (z̃)

[
G̃T

H̃T

]
C̃y

=

[ [
I−1 (z̃)

]
φ̃φ̃

[
I−1 (z̃)

]
φ̃ṽR[

I−1 (z̃)
]
ṽRφ̃

[
I−1 (z̃)

]
ṽRṽR

][
G̃T

H̃T

]
C̃y, (D.12)

and extracting the upper part, it is easy to get

̂̃φ =
([

I−1 (z̃)
]
φ̃φ̃

G̃T +
[
I−1 (z̃)

]
φ̃ṽR

H̃T
)
C̃y, (D.13)

with

[
I−1 (z̃)

]
φ̃φ̃

=

[
G̃T G̃− G̃T H̃

(
H̃T H̃

)−1

H̃T G̃

]−1

,

[
I−1 (z̃)

]
φ̃ṽR

= −
[
I−1 (z̃)

]
φ̃φ̃

G̃T H̃
(
H̃T H̃

)−1

,

which, replaced in equation (D.13), yield

̂̃φ =
[
I−1 (z̃)

]
φ̃φ̃

[
G̃T − G̃T H̃

(
H̃T H̃

)−1

H̃T

]
C̃y, (D.14)

where C̃ is the lower triangular matrix with positive elements on the diagonal

derived from the Cholesky decomposition [96] of matrix C−1
y .

MLE of ṽR

In the same way, it is possible to get the MLE of the velocity parameters

vector from the lower part of equation (D.12) as

̂̃vR =
[
I−1 (z̃)

]
ṽRṽR

[
H̃T − H̃T G̃

(
G̃T G̃

)−1

G̃T

]
C̃y. (D.15)
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MLE of ṽA

In this case, considering the FIM (D.9), the unrestricted MLE can be ex-

pressed as[
ṽA

ṽR

]
= I−1 (z̃)

[
G̃T

L̃T

]
C̃y

=

[[
I−1 (z̃)

]
ṽAṽA

[
I−1 (z̃)

]
ṽAṽR[

I−1 (z̃)
]
ṽRṽA

[
I−1 (z̃)

]
ṽRṽR

][
G̃T

L̃T

]
C̃y, (D.16)

and extracting the upper part, it is easy to get

̂̃vA =
([

I−1 (z̃)
]
ṽAṽA

G̃T +
[
I−1 (z̃)

]
ṽAṽR

L̃T
)
C̃y, (D.17)

with

[
I−1 (z̃)

]
ṽAṽA

=

[
G̃T G̃− G̃T L̃

(
L̃T L̃

)−1

L̃T G̃

]−1

,

[
I−1 (z̃)

]
ṽAṽR

= −
[
I−1 (z̃)

]
ṽAṽA

G̃T L̃
(
L̃T L̃

)−1

,

which, replaced in equation (D.17), yield

̂̃vA =
[
I−1 (z̃)

]
ṽAṽA

[
G̃T − G̃T L̃

(
L̃T L̃

)−1

L̃T

]
C̃y. (D.18)



Appendix E

Optimal opponent stealth

trajectory planning

This appendix is related to the optimal opponent stealth trajectory planning,

previously presented in Chapter 6. Here we demonstrate Remark 6.3.3 and

Theorem 6.3.4 (see Subsection 6.3.3).

E.1 Proof of Remark 6.3.3

Let us prove that, given a temporal scale ∆t1, better performance can

be obtained including an additional point in each time interval, i.e., dou-

bling the degrees of freedom. To this end, let (V ⋆,P ⋆) be an optimal

solution to the planning problem corresponding to ∆t1, denoted, in the

following, as P1. Without loss of generality, let us assume that the ex-

tra time instants t̄h, h = 1, . . . , N , are given by t̄h = th−1 + α∆t1, with

0 < α < 1, namely th = t̄h + (1 − α)∆t1. Evidently, the velocity vector

matrix V̄ = [v⋆
1,v

⋆
1,v

⋆
2,v

⋆
2, . . . ,v

⋆
N ,v⋆

N ] ∈ R2,2N is feasible to the design

problem associated with t0, t̄1, t1, . . . , t̄N , tN , P2 say, and achieves the opti-

mal value of P1.

Let us now focus on the definition/construction of a trajectory feasible

for P2 based on P ⋆, i.e., P̄ = [p̄⋆
1,p

⋆
1, p̄

⋆
2,p

⋆
2, . . . , p̄

⋆
N ,p⋆

N ] ∈ R2,2N with p̄i

the vessel position at time t̄i. To this end, let p̄i = (1− α)pi + αpi+1, with

i = 1, . . . ,K. By assumption,(
pi+1 − (vi∆t1 + pi)

)T
C−1

p(∆t1)

(
pi+1 − (vi∆t1 + pi)

)
≤ ϵ (E.1)
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Hence, denoting by ∆t2 = (1− α)∆t1 and β = 1− α, it follows that

(p̄i − (viα∆t1 + pi))
T
C−1

p(α∆t1)
(p̄i − (viα∆t1 + pi))

= α2
(
pi+1 − (vi∆t1 + pi)

)T
C−1

p(α∆t1)

(
pi+1 − (vi∆t1 + pi)

)
= α

(
pi+1 − (vi∆t1 + pi)

)T
C−1

p(∆t1)

(
pi+1 − (vi∆t1 + pi)

)
≤ ϵα (E.2)

and (
pi+1 − (vi∆t2 + p̄i)

)T
C−1

p(∆t2)

(
pi+1 − (vi∆t2 + p̄i)

)
= β2

(
pi+1 − (vi∆t1 + pi)

)T
C−1

p(β∆t1)

(
pi+1 − (vi∆t1 + pi)

)
= β

(
pi+1 − (vi∆t1 + pi)

)T
C−1

p(∆t1)

(
pi+1 − (vi∆t1 + pi)

)
≤ ϵβ (E.3)

As a consequence, P̄ complies with constraint C2 in P2. Additionally, due

the convexity of Sc, {p̄⋆
1, p̄

⋆
2, . . . , p̄

⋆
N} ∈ Sc.

Finally, it follows that

∥p̄i − pc∥ =
∥∥(1− α)pi + αpi+1 − pc

∥∥ ≤ α ∥pi − pc∥+ (1− α)
∥∥pi+1 − pc

∥∥ ,
(E.4)

implying that the constructed trajectory also satisfies the constraint C3 of

P2 that accounts for the coast shape. Based on the above argumentation,(
V̄ , P̄

)
can be said to be feasible to P2, and the optimal value of P2 greater

than or equal to that of P1.

E.2 Proof of Theorem 6.3.4

The convexity of Pl, l ∈ A = 1, . . . , N − L+ 1, easily follows from the con-

vexity of the objective, as well as the constraint functions. In fact, λ(V ) is a

quadratic function with a positive semi-definite matrix, thus the objective is

a convex function. As to the requirements set, the constraints C1, C2 and C4

involve the norms of linear functions of the optimization variables. Further-

more, the constraint C4 is the point-wise maximum of convex functions [39].

Finally, constraint C3 forces the optimization variable to lie in a convex set.

Hence, the overall feasible set is convex as the intersection of convex sets.

To proceed further, let us observe that problems P and Pl, l ∈ A share

the same objective function. Let us observe that the feasible set of P is
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larger than that of Pl for all l ∈ A, being ∀l ∈ A

min
h=1,...,N−L+1

max
k=h,...,h+L−1

(∥pk − pc∥) ≤ max
k=l,...,l+L−1

(∥pk − pc∥) (E.5)

Hence, v(P) ≤ v(Pl), l ∈ A. Now, if P is not feasible then Pl, l ∈ A, is also

not feasible and v(P) = v(Pl) = +∞, l ∈ A. On the contrary, let (V ⋆,P ⋆)

be an optimal solution to P. Moreover, let

l⋆ = argmin
l′∈A

max
k=l′,...,h+L

(∥p⋆
k − pc∥) . (E.6)

Hence, (V ⋆,P ⋆) is also feasible to Pl⋆ . As a result, (V ⋆,P ⋆) is an optimal

solution to Pl⋆ , and v(P) = min
l′∈A

v(Pl′), which concludes the proof.



Appendix F

Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. E. d’Afflisio, P. Braca, L. M. Millefiori, P. Willett. “Detecting Anomalous

Deviations From Standard Maritime Routes Using the Ornstein-Uhlenbeck

Process”, in IEEE Transactions on Signal Processing, vol. 66, no. 24, pp.

6474 – 6487, Dec. 2018. [DOI: 10.1109/TSP.2018.2875887]

2. A. Aubry, P. Braca, E. d’Afflisio, A. De Maio, L. M. Millefiori, P. Willett.

“Optimal Opponent Stealth Trajectory Planning Based on an Efficient Op-

timization Technique”, in IEEE Transactions on Signal Processing, vol. 69,

pp. 270 – 283, Dec. 2020. [DOI: 10.1109/TSP.2020.3041925]

3. E. d’Afflisio, P. Braca, P. Willett. “Malicious AIS Spoofing and Abnormal

Stealth Deviations: A Comprehensive Statistical Framework for Maritime

Anomaly Detection”, IEEE Transactions on Aerospace and Electronic Sys-

tems, vol. 57, no. 4, pp. 2093–2108, Jun. 2021.

[DOI: 10.1109/TAES.2021.3083466]

4. N. Forti, E. d’Afflisio, P. Braca, L. M. Millefiori, P. Willett, and S. Carniel.

“Maritime anomaly detection in a real-world scenario: Ever Given ground-

ing in the Suez Canal”, IEEE Transactions on Intelligent Transportation

Systems, 2021. [DOI: 10.1109/TITS.2021.3123890]

1The author’s bibliometric indices are the following: H -index = 2, total number of

citations = 32 (source: Scopus on January 2022).
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International Conferences and Workshops

1. E. d’Afflisio, P. Braca, L. M. Millefiori, P. Willett. “Maritime Anomaly

Detection Based on Mean-Reverting Stochastic Processes Applied to a Real-

World Scenario”, in 21st International Conference on Information Fusion,

Cambridge (UK), 10-13 July 2018.

[DOI: 10.23919/ICIF.2018.8455854]

2. E. d’Afflisio, A. Aubry, P. Braca, A. De Maio, L. M. Millefiori, P. Wil-

lett. “Optimal Stealth Trajectory Design to Deceive Anomaly Detection Pro-

cess”, in MTS/IEEE OCEANS’19 Marseille Conference and Exhibit, Mar-

seille (France), 17-20 June 2019. [DOI: 10.1109/OCEANSE.2019.8867147]

3. E. d’Afflisio, P. Braca, L. Chisci, G. Battistelli, P. Willett. “Maritime

Anomaly Detection of Malicious Data Spoofing and Stealth Deviations from

Nominal Route Exploiting Heterogeneous Sources of Information”, in 24th

International Conference on Information Fusion, Sun City, South Africa, 1-4

November 2021.
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